JP2004225586A - Control device for multi-stage turbocharger - Google Patents

Control device for multi-stage turbocharger Download PDF

Info

Publication number
JP2004225586A
JP2004225586A JP2003013093A JP2003013093A JP2004225586A JP 2004225586 A JP2004225586 A JP 2004225586A JP 2003013093 A JP2003013093 A JP 2003013093A JP 2003013093 A JP2003013093 A JP 2003013093A JP 2004225586 A JP2004225586 A JP 2004225586A
Authority
JP
Japan
Prior art keywords
control
pressure
stage turbocharger
engine
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003013093A
Other languages
Japanese (ja)
Other versions
JP3979294B2 (en
Inventor
Shoji Sasaki
祥二 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2003013093A priority Critical patent/JP3979294B2/en
Priority to DE102004003378A priority patent/DE102004003378B4/en
Publication of JP2004225586A publication Critical patent/JP2004225586A/en
Application granted granted Critical
Publication of JP3979294B2 publication Critical patent/JP3979294B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Turbines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a control device for a multi-stage turbocharger capable of operating a control system as a steady system, preventing surge of a compressor and operating a turbine in an efficient zone. <P>SOLUTION: This device is a control device for a multi-stage turbocharger in which a plurality of turbochargers are provided in series. The device is provided with an operation state detection means detecting an operation state of an engine, a control zone selection means selecting a control zone based on a detection result of the operation state detection means, and a feed back control means controlling with giving priority to keeping pressure ratio by at least one turbocharger constant in a predetermined control zone selected by the control zone selection means and performing feed back control based on target supercharging pressure and actual supercharging pressure by other turbochargers. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、エンジン、特に、自動車用エンジンの多段ターボチャージャ制御装置に関する。
【0002】
【従来の技術】
近年、エンジンの低燃料消費量および高出力の両立への要求から、エンジンの強度の限界近くにまで過給圧を上げる、いわゆる、高過給圧化の傾向にある。この高過給圧化のため、エンジンに複数のターボチャージャを直列に設けた、いわゆる、多段ターボチャージャが提案されている。かかる多段ターボチャージャにおいては、複数のコンプレッサによって最終的な過給圧を得るわけであるが、その制御を適正に行わないと、駆動損失を招いたり、システム効率を低下させることとなる。
【0003】
そこで、かかる多段ターボチャージャの制御の適正化を目指した制御装置が種々提案されているが、その中で、例えば、特許文献1に記載のものが知られている。
【0004】
特許文献1に記載のものは、排気経路に、高、中、低圧段のタービンとこれらのタービンによって駆動される高、中、低圧段の圧縮機とを備え、さらに、排気をタービンを迂回させて上流側から下流側に直接供給するタービン側バイパス路と、吸気を圧縮機を迂回させて下流側から上流側に戻す圧縮機側バイパス路と、タービン側バイパス路の排気流量を制御するウェストゲートバルブと、圧縮機側バイパス路の吸気流量を制御するブリードバルブとを備えている。そして、所定の過給圧を得るのに、圧縮機の下流側に設けた圧力センサからの信号を用いて、各段の圧縮機の圧力比が同等となるように、ウェストゲートバルブとブリードバルブとを制御するようにしている。
【0005】
【特許文献1】
特開平11−315725号公報
【0006】
【発明が解決しようとする課題】
しかしながら、特許文献1に記載のものは、高度25Km以上の高空域を長時間にわたって飛行可能な航空機用のレシプロエンジン用に提案されたものであり、地上を走行する自動車用のエンジンにとって各段の圧縮機の圧力比が同等となるように制御するメリットは多くない。かえって、各段の圧縮機の圧力比が同等となるように制御すると、アクセル操作に伴う負荷変動の大きい自動車用のエンジンにおいては、制御のヒステリシスに伴い制御の安定性を損ない、過給圧の大きな変動が生じ運転性に悪影響を与えるからである。
【0007】
そこで、本発明の課題は、かかる従来の問題を解消し、制御システムを安定した系として作動させることができ、コンプレサのサージを防ぎ、タービンの高効率域での作動を可能とする多段ターボチャージャの制御装置を提供することにある。
【0008】
【課題を解決するための手段】
上記課題を解決する本発明の一形態に係る多段ターボチャージャの制御装置は、複数のターボチャージャを直列に設けた多段ターボチャージャの制御装置であって、エンジンの運転状態を検出する運転状態検出手段と、該運転状態検出手段の検出結果に基づき制御領域を選択する制御領域選択手段と、該制御領域選択手段により選択された所定の制御領域において、少なくとも一つのターボチャージャによる圧力比がほぼ一定となるように優先して制御すると共に、他のターボチャージャにより目標過給圧と実過給圧とに基づいてフィードバック制御するフィードバック制御手段と、を備えることを特徴とする。
【0009】
かかる構成によれば、制御の対象を減ずることができ、システムを安定した系として作動させることができる。
【0010】
ここで、前記複数のターボチャージャは、タービンノズル部に流量可変機構を有する可変容量ターボチャージャであることが好ましい。
【0011】
また、前記所定の制御領域は、エンジンの回転数が所定値以上で且つエンジン出力トルク増大要求が所定値以上の制御領域であることが好ましい。
【0012】
さらに、前記圧力比がほぼ一定となるように優先して制御されるのは、高圧段のターボチャージャであることが好ましい。
【0013】
さらに、前記所定の制御領域以外の領域においては、エンジンの運転状態に応じた所定の過給圧を得るべくマップに記憶設定された制御値に基づいて、前記複数のターボチャージャをオープン制御するオープン制御手段を有することが好ましい。
【0014】
【発明の実施の形態】
本発明の一実施の形態を添付図面に基づいて説明する。
【0015】
図1は、本実施の形態に係る多段ターボチャージャの制御装置の概要を示す図であり、本発明を、可変ノズルを有する可変容量ターボチャージャを2台直列に配置した多段ターボチャージャに適用した例である。
【0016】
図示するように、エンジン10の排気経路12には、高圧段タービン14と低圧段タービン16とが排気ガスの流れ方向に間隔を隔てて直列に介設されており、エンジン10の吸気経路18には、高圧段コンプレッサ20と低圧段コンプレッサ22とが吸入空気の流れ方向に間隔を隔てて直列に介設されている。高圧段コンプレッサ20と高圧段タービン14とは回転軸24で連結されて高圧段ターボチャージャ26を構成し、低圧段コンプレッサ22と低圧段タービン16とは回転軸28で連結されて低圧段ターボチャージャ30を構成している。
【0017】
低圧段コンプレッサ22と高圧段コンプレッサ20との間の吸気経路18には、第1インタークーラ32が介設されており、高圧段コンプレッサ20とエンジン10との間の吸気経路18には、第2インタークーラ34が介設されている。これらは圧縮によって昇温した吸入空気を冷却するためのものであるが、発明の構成上必ずしも必要なものではなく、いずれか一方でもよくまた双方ともなくても構わない。
【0018】
排気経路12には、高圧段タービン14と低圧段タービン16をバイパスするように、高圧段タービン14の上流側と低圧段タービン16の下流側とに接続されたバイパス通路36が設けられている。バイパス通路36には、排気バイパス弁38が介設されている。排気バイパス弁38は、不図示のアクチュエータによってその開度が調節され、バイパス通路36内を流れる排気ガスの流量を調節するものである。アクチュエータの作動は、後述のように、コントロールユニット40によって制御される。
【0019】
低圧段コンプレッサ22の上流側の吸気経路18には、大気の圧力P1を検出する第1圧力センサ42、高圧段コンプレッサ20と第1インタークーラ32との間の吸気経路18には、高圧段コンプレッサ20の入口圧力P2を検出する第2圧力センサ44、および高圧段コンプレッサ20と第2インタークーラ34との間の吸気経路18には、高圧段コンプレッサ20の出口圧力P3を検出する第3圧力センサ46が設けられている。
【0020】
また、エンジン10には、エンジン10の回転数Neを検出する回転数センサ48および負荷(アクセル開度A)を検出するアクセル開度センサ50が設けられている。これら第1圧力センサ42、第2圧力センサ44、第3圧力センサ46、回転数センサ48およびアクセル開度センサ50は、コントロールユニット40に接続されており、各センサの出力がコントロールユニット40に送られるようになっている。
【0021】
さらに、高圧段ターボチャージャ26の高圧段タービン14と低圧段ターボチャージャ30の低圧段タービン16とは、それらのタービンノズル部に流量可変機構としての可変ノズルVNHおよびVNLを有している。マイクロコンピュータ等で構成されるコントロールユニット40は、所定の過給圧を得るために、各センサから送られてきた出力値に応じて、可変ノズルVNHおよびVNLを後述のように制御する。
【0022】
ここで、制御領域の選択と可変ノズルVNHおよびVNLの制御のために使用される開度設定マップMにつき、図2を参照して説明する。開度設定マップMは、縦軸にエンジンの負荷を表すアクセル開度Aをとり、横軸にエンジン回転数Neをとったもので、エンジン10の運転領域のフィードバック制御領域以外のオープン制御領域において、可変ノズルVNHおよびVNLがとるべき開度を表しており、その制御値は、例えば、エンジンの要求特性等に合わせて実験的に求めた最適値とされている。そして、この開度設定マップMはコントロールユニット40のテーブルに保存されている。
【0023】
ここで、本実施の形態においては、この開度設定マップMの左側、換言すると、エンジン10のほぼ低速領域である領域R1においては、可変ノズルVNHおよびVNLが共に全閉となるように設定されている。また、エンジン10のほぼ中負荷以下で中速から高速領域である領域R2においては、その左上から右下にかけて可変ノズルVNHおよびVNLが中開から全開に次第に開度を増すように設定されている。なお、領域R1と領域R2との境界上に段部が存するのは、エンジン10の軽負荷域で中速域までの領域(領域R1の右側領域)は、可変ノズルVNHおよびVNLを全閉とすることにより背圧を高め、吸気系への排気還流(EGR)を利かせるためである。
【0024】
ここで、可変ノズルの「全閉」とは、ノズルが最小流路面積に絞られた状態、可変ノズルの「全開」とは、ノズルが最大流路面積に開けられた状態、可変ノズルの「中開」とは、ノズルが最小流路面積から最大流路面積の間の流路面積となるように、例えば、不図示のアクチュエータにて駆動される可動ベーンが、位置されている状態を意味する。
【0025】
また、エンジン10の出力トルク増大要求が所定値以上である高負荷域で、中速以上の領域においては、可変ノズルVNHおよびVNLの特定の開度は設定されず、可変ノズルVNHおよびVNLの開度が適宜変更されて過給圧P3のフィードバック制御が行われる領域RFBとされている。この結果、領域R1およびR2においては、過給圧P3のオープン制御が行われるのに対し、領域RFBではフィードバック制御が行われることになる。なお、これらのオープン制御領域R1、R2およびフィードバック制御領域RFBは固定的なものではなく、個々のエンジンの要求特性に応じて、それらの境界線が適宜設定されるものである。
【0026】
次に、本発明の実施の形態において、コントロールユニット40による制御ルーチンの一例を図3のフローチャートを用いて説明する。エンジンが始動され制御がスタートすると、コントロールユニット40による多段ターボチャージャの制御ルーチンにおいては、ステップS1で、エンジンの運転状態を検出する運転状態検出手段による作動として、回転数センサ48によって現在のエンジン回転数Neが検出されると共に、アクセル開度センサ50によって現在のアクセル開度Aが検出され、検出された現在のエンジン回転数Ne と現在のアクセル開度Aとがコントロールユニット40に読み込まれる。
【0027】
次に、ステップS2において、ステップS1で検出した現在のエンジン回転数Ne とアクセル開度Aとが、コントロールユニット40内のテーブルに記憶保存されている、図2に示す開度設定マップMと参照される。そして、ステップS3に進み、制御領域選択手段の作動として、運転状態が過給圧フィードバック制御領域RFBか否かが判断され、NOの場合、すなわち、オープン制御領域R1またはR2の場合にはステップS4に進み、上記運転状態に対応して開度設定マップMに設定されている開度に、可変ノズルVNHおよびVNLの開度がなるように制御される。この開度設定マップMに設定されている所定の開度を参照しつつ、可変ノズルVNHおよびVNLの開度を制御することで、エンジン10の運転状態に合わせて、高圧段タービン14および低圧段タービン16の排気ガス流量特性を制御し、高圧段コンプレッサ20および低圧段コンプレッサ22により、エンジン10の運転状態に最適な所望の過給圧を得ることができる。
【0028】
一方、ステップS3における、運転状態が過給圧フィードバック制御領域RFBか否かの判断において、YESの場合には、ステップS5に進み、以下、フィードバック制御手段の作動としての制御が行われる。すなわち、ステップS5において、先ず、第1、第2および第3の圧力センサ42,44および46によって、大気圧力P1、低圧段コンプレッサ22の下流すなわち高圧段コンプレッサ20の上流側の圧力P2、およびその下流側の圧力すなわち過給圧P3が検出され、その各値がコントロールユニット40に読み込まれる。コントロールユニット40では、次に、ステップS6において、ステップS1で既に読み込まれていた現在のエンジン回転数Neとアクセル開度Aとに基づき目標過給圧f(Ne、A)が演算される。そして、ステップS7に進み、現在の実過給圧P3が目標過給圧f(Ne、A)よりも大きいか否かが判断される。
【0029】
現在の実過給圧P3が目標過給圧f(Ne、A)よりも大きいYESの場合には、ステップS8に進み、可変ノズルVNHおよびVNLが全開か否かが判断される。なお、この可変ノズルVNHおよびVNLの現在の開度については、可変ノズルVNHおよびVNLに設けられた開度センサ(不図示)による検出信号を利用するか、前回の制御ルーチンにおいて用いられた設定開度値データを用いて判断することができる。ここで、可変ノズルVNHおよびVNLが既に全開の場合には、ステップS9に進み、排気バイパス弁38が開方向に所定量調節され、高圧段タービン14と低圧段タービン16とへの排気ガスの流量が減少され、過給圧P3を下げるように制御される。
【0030】
現在の過給圧P3が目標過給圧f(Ne、A)よりも大きいが、ステップS8において、可変ノズルVNHおよびVNLが全開でないと判断された場合には、ステップS10に進み、高圧段ターボチャージャ26の高圧段コンプレッサ20による圧力比P3/P2と、現在のエンジン回転数Ne とアクセル開度Aとに基づく現在の運転状態における目標圧力比g(Ne、A)とが演算される。
【0031】
次に、ステップS11において、演算された現在の高圧段コンプレッサ20による圧力比P3/P2と目標圧力比g(Ne、A)とが比較される。そして、コントロールユニット40は、高圧段の圧力比P3/P2>目標圧力比g(Ne、A)の場合、ステップS12に進み、高圧段ターボチャージャ26の可変ノズルVNHの開度を大きくする方向に制御し、高圧段の圧力比P3/P2≦目標圧力比g(Ne、A)の場合には、ステップS13に進み、低圧段ターボチャージャ30の可変ノズルVNLの開度を大きくする方向に制御する。
【0032】
一方、ステップS7における判断で、現在の過給圧P3が目標過給圧f(Ne、A)以下であるNOの場合には、ステップS14に進み、ステップS10と同様に、高圧段ターボチャージャ26による圧力比P3/P2と、現在のエンジン回転数Ne とアクセル開度Aとに基づく目標圧力比g(Ne、A)とが演算され、さらに、ステップS15において、演算された現在の高圧段の圧力比P3/P2と目標圧力比g(Ne、A)とが比較される。そして、コントロールユニット40は、高圧段の圧力比P3/P2>目標圧力比g(Ne、A)の場合、ステップS16に進み、低圧段ターボチャージャ30の可変ノズルVNLの開度を小さくする方向に制御し、高圧段の圧力比P3/P2≦目標圧力比g(Ne、A)の場合、ステップS17に進み、高圧段ターボチャージャ26の可変ノズルVNHの開度を小さくする方向に制御する。
【0033】
上述のコントロールユニット40による制御ルーチンは所定の時間周期で実行され、該ルーチンを繰り返し実行することにより、上述の過給圧フィードバック制御領域RFBにおいては、過給圧P3が目標過給圧にフィードバック制御されることになる。この際、上述の実施の形態では、まず、高圧段の圧力比P3/P2が目標圧力比g(Ne、A)に近づくように制御されており、高圧段ターボチャージャ26による圧力比がほぼ一定となるように優先して制御されているのである。このようにすると、適用できるエンジンの回転数範囲が広く取れ、高圧段ターボチャージャ26および低圧段ターボチャージャ30のそれぞれのコンプレッサとタービンとのバランスが良く、ターボ効率を出し易い。
【0034】
ここで、上述の過給圧フィードバックを含み、エンジン10の多段ターボチャージャの制御につき、より具体的に説明する。例えば、車両の発進時の如く、エンジン10が低速、低負荷の運転状態からアクセルペダルが急激に踏み込まれ全負荷(または高負荷)の運転状態になる加速運転の場合を想定すると、エンジン10の回転数は周知のように直ぐには上昇せず、運転状態はまず領域R1の上方に移行するが、可変ノズルVNHおよびVNLは開度設定マップMにおける設定により全閉のまま維持されている。この状態でアクセル開度Aが維持されると、エンジン回転数の上昇に伴い、運転状態は過給圧フィードバック制御領域RFBにエンジン回転数Ne0付近において移行することになる。ここで、この過給圧フィードバック制御領域RFBにおける可変ノズルVNHおよびVNLの開度とエンジンの回転数Neとの関係は図4に示す通りであり、高圧段の可変ノズルVNHは、上述のように、高圧段の圧力比P3/P2がほぼ一定の圧力比になるように優先制御され、低圧段の可変ノズルVNLは過給圧がフィードバック制御される結果、高圧段の可変ノズルVNHの開度も低圧段の可変ノズルVNLの開度もエンジン回転数Neの上昇に伴い連続的に増大するように制御される。なお、ここで、エンジン回転数Ne0は、図2における領域R1とフィードバック制御領域RFBとの境界線付近のエンジン回転数を表している。
【0035】
従って、このオープン制御領域R1からフィードバック制御領域RFBへの移行は、可変ノズルVNHおよびVNLが全閉状態で行われるので、過給圧の大きな変動を生ぜず、また、その後の回転数の上昇に伴って、可変ノズルVNHおよびVNLは連続的に開方向に変化されるので、安定した制御が可能となる。つまり、可変ノズルVNHおよびVNLの開閉が繰返されると、そのヒステリシスに伴い制御の安定性が損なわれるが、可変ノズルVNHおよびVNLが連続的に開方向に変化される場合には、そのようなことがなく、制御が安定するのである。また、エンジン10が中速、中負荷の運転状態からアクセルペダルが急激に踏み込まれ全負荷または高負荷の運転状態になる加速運転の場合を想定すると、エンジン10の運転状態は領域R2からフィードバック制御領域RFBに移行することになる。この場合、エンジン回転数Ne1において領域R2からフィードバック制御領域RFBに移行すると仮定すると、領域R2において、エンジン回転数Ne1における領域R2とフィードバック制御領域RFBとの境界付近では、可変ノズルVNHおよびVNLの開度が、その移行時の変化が抑えられるように、開度設定マップMに設定されているので、領域R1からフィードバック制御領域RFBへの移行の場合と同様に、過給圧の大きな変動を生ぜず、また、その後の回転数の上昇に伴って、可変ノズルVNHおよびVNLは連続的に開方向に変化されて安定した制御が可能である。
【0036】
なお、上では、高圧段の圧力比P3/P2を優先させて目標圧力比g(Ne、A)に近づくように制御する実施の形態につき説明した。しかしながら、多少のターボ効率の低下は否めないが、低圧段の圧力比P2/P1を優先させて目標圧力比g(Ne、A)に近づくように制御することも可能であることはいうまでもない。
【0037】
さらに、上述の実施の形態は、可変ノズルを有する可変容量型ターボチャージャに本発明を適用した例につき説明したが、本発明は、ウェイストゲートバルブを有する形式の多段ターボチャージャにおいても、可変ノズル開度を制御する代わりにウェイストゲートバルブの開度を制御することにより、同様に、適用できる。
【0038】
上述の実施の形態では、フィードバック制御領域RFBにおける高圧段の圧力比P3/P2の目標圧力比g(Ne、A)は、図4に示されるように、エンジン回転数の上昇につれて除増するように設定されているが、エンジン回転数にかかわらず常に一定の値をとるようにしてもよい。
【0039】
さらに、上述の実施の形態では、過給圧として、高圧段コンプレッサ20の出口部分に設けられた圧力センサ46によって検出される高圧段出口圧力P3が用いられているが、エンジンの吸気管に設けられている吸気管圧力センサによって検出される吸気管圧力Pbで代用してもよい。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る多段ターボチャージャ制御装置の概要を示すブロック線図である。
【図2】本発明の一実施形態の制御で、制御領域の選択と可変ノズルVNHおよびVNLの制御のために使用される開度設定マップである。
【図3】本発明の一実施形態に係る多段ターボチャージャ制御装置の制御手順の一例を示すフローチャートである。
【図4】本発明の一実施形態に係る多段ターボチャージャの可変ノズルVNHおよびVNLの開度を示すグラフである。
【符号の説明】
10 エンジン
14 高圧段タービン
16 低圧段タービン
20 高圧段コンプレッサ
22 低圧段コンプレッサ
26 高圧段ターボチャージャ
30 低圧段ターボチャージャ
36 バイパス通路
38 排気バイパス弁
40 コントロールユニット
42 第1圧力センサ
44 第2圧力センサ
46 第3圧力センサ
48 回転数センサ
50 アクセル開度センサ
VNH 高圧段タービン可変ノズル
VNL 低圧段タービン可変ノズル
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a multi-stage turbocharger control device for an engine, particularly an automobile engine.
[0002]
[Prior art]
In recent years, there has been a tendency to increase the supercharging pressure to near the limit of the strength of the engine, that is, to increase the supercharging pressure due to a demand for both low fuel consumption and high output of the engine. To increase the supercharging pressure, a so-called multi-stage turbocharger in which a plurality of turbochargers are provided in series in an engine has been proposed. In such a multi-stage turbocharger, the final supercharging pressure is obtained by a plurality of compressors. However, if the control is not performed properly, a drive loss is caused or the system efficiency is reduced.
[0003]
Therefore, various control devices aiming at optimizing the control of such a multi-stage turbocharger have been proposed, and among them, for example, one described in Patent Document 1 is known.
[0004]
The one described in Patent Document 1 includes a high-, medium-, and low-pressure stage turbine and a high-, medium-, and low-pressure stage compressor driven by these turbines in an exhaust path, and further allows exhaust gas to bypass the turbine. Turbine-side bypass path that supplies air directly from the upstream side to the downstream side, a compressor-side bypass path that returns intake air from the downstream side to the upstream side by bypassing the compressor, and a wastegate that controls the exhaust flow rate of the turbine-side bypass path. A valve and a bleed valve for controlling the intake flow rate of the compressor-side bypass passage are provided. Then, in order to obtain a predetermined supercharging pressure, a waste gate valve and a bleed valve are used by using a signal from a pressure sensor provided on the downstream side of the compressor so that the pressure ratios of the compressors of the respective stages become equal. And to control.
[0005]
[Patent Document 1]
JP-A-11-315725
[Problems to be solved by the invention]
However, the one described in Patent Document 1 has been proposed for a reciprocating engine for an aircraft capable of flying for a long time in a high altitude area at an altitude of 25 km or more. There is not much merit in controlling the pressure ratios of the compressors to be equal. On the contrary, if control is performed so that the pressure ratios of the compressors of the respective stages become equal, in a vehicle engine having a large load variation due to the accelerator operation, the stability of the control is impaired due to the hysteresis of the control. This is because large fluctuations occur and adversely affect drivability.
[0007]
Accordingly, an object of the present invention is to solve such a conventional problem, to enable a control system to operate as a stable system, to prevent a compressor surge, and to enable a turbine to operate in a high efficiency region. To provide a control device.
[0008]
[Means for Solving the Problems]
A control device for a multi-stage turbocharger according to one embodiment of the present invention that solves the above problems is a control device for a multi-stage turbocharger in which a plurality of turbochargers are provided in series, and an operation state detection unit that detects an operation state of an engine. A control area selecting means for selecting a control area based on a detection result of the operating state detecting means; and a pressure ratio by at least one turbocharger being substantially constant in a predetermined control area selected by the control area selecting means. And feedback control means for performing feedback control by another turbocharger based on the target supercharging pressure and the actual supercharging pressure.
[0009]
According to such a configuration, the number of control targets can be reduced, and the system can be operated as a stable system.
[0010]
Here, it is preferable that the plurality of turbochargers are variable capacity turbochargers having a variable flow rate mechanism in a turbine nozzle portion.
[0011]
Further, it is preferable that the predetermined control region is a control region in which the number of revolutions of the engine is equal to or higher than a predetermined value and the request for increasing the engine output torque is equal to or higher than the predetermined value.
[0012]
Furthermore, it is preferable that the high-pressure stage turbocharger be controlled preferentially so that the pressure ratio becomes substantially constant.
[0013]
Further, in an area other than the predetermined control area, an open control that opens and controls the plurality of turbochargers based on a control value stored in a map so as to obtain a predetermined supercharging pressure corresponding to an operating state of the engine. It is preferable to have control means.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described with reference to the accompanying drawings.
[0015]
FIG. 1 is a diagram showing an outline of a control device for a multi-stage turbocharger according to the present embodiment, in which the present invention is applied to a multi-stage turbocharger in which two variable capacity turbochargers having variable nozzles are arranged in series. It is.
[0016]
As shown in the drawing, a high-pressure stage turbine 14 and a low-pressure stage turbine 16 are provided in series in the exhaust path 12 of the engine 10 at intervals in the flow direction of the exhaust gas. The high pressure stage compressor 20 and the low pressure stage compressor 22 are interposed in series at intervals in the flow direction of the intake air. The high-pressure compressor 20 and the high-pressure turbine 14 are connected by a rotating shaft 24 to form a high-pressure turbocharger 26. The low-pressure compressor 22 and the low-pressure turbine 16 are connected by a rotating shaft 28 to form a low-pressure turbocharger 30. Is composed.
[0017]
A first intercooler 32 is provided in an intake path 18 between the low-pressure compressor 22 and the high-pressure compressor 20, and a second intercooler 32 is provided in the intake path 18 between the high-pressure compressor 20 and the engine 10. An intercooler 34 is provided. These are for cooling the intake air whose temperature has been raised by compression, but are not necessarily required for the constitution of the present invention, and either one or neither of them may be present.
[0018]
The exhaust passage 12 is provided with a bypass passage 36 connected to the upstream side of the high-pressure turbine 14 and the downstream side of the low-pressure turbine 16 so as to bypass the high-pressure turbine 14 and the low-pressure turbine 16. An exhaust bypass valve 38 is provided in the bypass passage 36. The opening degree of the exhaust bypass valve 38 is adjusted by an actuator (not shown) to adjust the flow rate of the exhaust gas flowing in the bypass passage 36. The operation of the actuator is controlled by the control unit 40 as described later.
[0019]
A first pressure sensor 42 for detecting the atmospheric pressure P1 is provided in the intake path 18 on the upstream side of the low-pressure stage compressor 22, and a high-pressure stage compressor is provided in the intake path 18 between the high-pressure stage compressor 20 and the first intercooler 32. A second pressure sensor 44 for detecting an inlet pressure P2 of the compressor 20; and a third pressure sensor for detecting an outlet pressure P3 of the high-pressure compressor 20 in the intake passage 18 between the high-pressure compressor 20 and the second intercooler 34. 46 are provided.
[0020]
Further, the engine 10 is provided with a rotation speed sensor 48 for detecting the rotation speed Ne of the engine 10 and an accelerator opening sensor 50 for detecting a load (accelerator opening A). The first pressure sensor 42, the second pressure sensor 44, the third pressure sensor 46, the rotation speed sensor 48, and the accelerator opening sensor 50 are connected to the control unit 40, and the output of each sensor is sent to the control unit 40. It is supposed to be.
[0021]
Further, the high-pressure stage turbine 14 of the high-pressure stage turbocharger 26 and the low-pressure stage turbine 16 of the low-pressure stage turbocharger 30 have variable nozzles VNH and VNL as variable flow mechanisms at their turbine nozzles. The control unit 40 constituted by a microcomputer or the like controls the variable nozzles VNH and VNL in accordance with the output values sent from the respective sensors as described later in order to obtain a predetermined supercharging pressure.
[0022]
Here, the opening degree setting map M used for selecting the control area and controlling the variable nozzles VNH and VNL will be described with reference to FIG. The opening setting map M is obtained by taking the accelerator opening A representing the load of the engine on the ordinate and the engine speed Ne on the abscissa, and in the open control region of the operation region of the engine 10 other than the feedback control region. , The variable nozzles VNH and VNL represent the opening to be taken, and the control value thereof is an optimum value experimentally obtained in accordance with, for example, the required characteristics of the engine. The opening degree setting map M is stored in a table of the control unit 40.
[0023]
Here, in the present embodiment, in the left side of the opening degree setting map M, in other words, in the region R1 which is a substantially low speed region of the engine 10, the variable nozzles VNH and VNL are both set to be fully closed. ing. Further, in a region R2 which is a region from a middle speed to a high speed under substantially the middle load of the engine 10, the variable nozzles VNH and VNL are set so as to gradually increase the opening degree from the middle opening to the full opening from the upper left to the lower right. . It should be noted that the step exists on the boundary between the region R1 and the region R2 because the variable nozzles VNH and VNL are fully closed in the region from the light load region of the engine 10 to the middle speed region (the right region of the region R1). By doing so, the back pressure is increased, and the exhaust gas recirculation (EGR) to the intake system is improved.
[0024]
Here, “fully closed” of the variable nozzle means a state in which the nozzle is narrowed to the minimum flow path area, “full open” of the variable nozzle means a state in which the nozzle is opened to the maximum flow area, and “ The “medium opening” means a state in which, for example, a movable vane driven by an actuator (not shown) is positioned such that the nozzle has a flow area between the minimum flow area and the maximum flow area. I do.
[0025]
Further, in a high load region where the request for increasing the output torque of the engine 10 is equal to or higher than a predetermined value, and in a region where the speed is higher than a medium speed, the specific opening of the variable nozzles VNH and VNL is not set, and the opening of the variable nozzles VNH and VNL is not set. The degree is appropriately changed, and a region RFB is set in which the feedback control of the supercharging pressure P3 is performed. As a result, open control of the supercharging pressure P3 is performed in the regions R1 and R2, whereas feedback control is performed in the region RFB. The open control areas R1 and R2 and the feedback control area RFB are not fixed, and their boundaries are appropriately set according to the required characteristics of each engine.
[0026]
Next, an example of a control routine by the control unit 40 in the embodiment of the present invention will be described with reference to the flowchart of FIG. When the engine is started and the control is started, in the control routine of the multi-stage turbocharger by the control unit 40, in step S1, the operation of the operating state detecting means for detecting the operating state of the engine is performed by the rotational speed sensor 48 to detect the current engine speed. While the number Ne is detected, the current accelerator opening A is detected by the accelerator opening sensor 50, and the detected current engine speed Ne and the current accelerator opening A are read into the control unit 40.
[0027]
Next, in step S2, the current engine speed Ne and the accelerator opening A detected in step S1 are stored and stored in a table in the control unit 40 with reference to the opening setting map M shown in FIG. Is done. Then, the process proceeds to step S3, where it is determined whether or not the operation state is the boost pressure feedback control region RFB as an operation of the control region selection means. If NO, that is, if the open control region R1 or R2, the operation proceeds to step S4. The control is performed such that the opening degrees of the variable nozzles VNH and VNL become equal to the opening degrees set in the opening degree setting map M corresponding to the operating state. By controlling the opening of the variable nozzles VNH and VNL while referring to the predetermined opening set in the opening setting map M, the high-pressure turbine 14 and the low-pressure stage 14 are adjusted in accordance with the operating state of the engine 10. The exhaust gas flow characteristic of the turbine 16 is controlled, and a desired supercharging pressure optimal for the operating state of the engine 10 can be obtained by the high-pressure compressor 20 and the low-pressure compressor 22.
[0028]
On the other hand, if the determination in step S3 as to whether or not the operating state is in the supercharging pressure feedback control region RFB is YES, the process proceeds to step S5, and thereafter, control is performed as the operation of the feedback control means. That is, in step S5, first, the first, second, and third pressure sensors 42, 44, and 46 detect the atmospheric pressure P1, the pressure P2 downstream of the low-pressure stage compressor 22, that is, the pressure P2 upstream of the high-pressure stage compressor 20, and the like. The pressure on the downstream side, that is, the supercharging pressure P3 is detected, and each value thereof is read into the control unit 40. Next, in step S6, the control unit 40 calculates a target supercharging pressure f (Ne, A) based on the current engine speed Ne and the accelerator opening A already read in step S1. Then, the process proceeds to step S7, and it is determined whether the current actual supercharging pressure P3 is larger than the target supercharging pressure f (Ne, A).
[0029]
If the current actual supercharging pressure P3 is larger than the target supercharging pressure f (Ne, A), the process proceeds to step S8, and it is determined whether or not the variable nozzles VNH and VNL are fully opened. Note that the current opening of the variable nozzles VNH and VNL can be determined by using a detection signal from an opening sensor (not shown) provided in the variable nozzles VNH and VNL, or by using the setting opening used in the previous control routine. The determination can be made using the degree value data. Here, when the variable nozzles VNH and VNL are already fully opened, the process proceeds to step S9, the exhaust bypass valve 38 is adjusted by a predetermined amount in the opening direction, and the flow rate of the exhaust gas to the high-pressure turbine 14 and the low-pressure turbine 16 is adjusted. Is controlled to reduce the supercharging pressure P3.
[0030]
If the current supercharging pressure P3 is larger than the target supercharging pressure f (Ne, A), but it is determined in step S8 that the variable nozzles VNH and VNL are not fully opened, the process proceeds to step S10, and the high-pressure turbo A pressure ratio P3 / P2 of the high-pressure stage compressor 20 of the charger 26 and a target pressure ratio g (Ne, A) in the current operating state based on the current engine speed Ne and the accelerator opening A are calculated.
[0031]
Next, in step S11, the calculated current pressure ratio P3 / P2 by the high-pressure compressor 20 is compared with the target pressure ratio g (Ne, A). When the pressure ratio P3 / P2 of the high-pressure stage is greater than the target pressure ratio g (Ne, A), the control unit 40 proceeds to step S12, and increases the opening of the variable nozzle VNH of the high-pressure stage turbocharger 26 in the direction of increasing the opening degree. If the pressure ratio of the high-pressure stage P3 / P2 ≦ the target pressure ratio g (Ne, A), the process proceeds to step S13, in which the opening degree of the variable nozzle VNL of the low-pressure stage turbocharger 30 is controlled to increase. .
[0032]
On the other hand, if it is determined in step S7 that the current supercharging pressure P3 is equal to or less than the target supercharging pressure f (Ne, A), the process proceeds to step S14, and similarly to step S10, the high-pressure stage turbocharger 26 And the target pressure ratio g (Ne, A) based on the current engine speed Ne and the accelerator opening A are calculated in step S15. The pressure ratio P3 / P2 is compared with the target pressure ratio g (Ne, A). When the pressure ratio P3 / P2 of the high-pressure stage is greater than the target pressure ratio g (Ne, A), the control unit 40 proceeds to step S16, and in the direction in which the opening of the variable nozzle VNL of the low-pressure stage turbocharger 30 is reduced. If the pressure ratio of the high-pressure stage P3 / P2 ≦ the target pressure ratio g (Ne, A), the process proceeds to step S17, in which the opening degree of the variable nozzle VNH of the high-pressure stage turbocharger 26 is reduced.
[0033]
The control routine by the control unit 40 is executed at a predetermined time period, and by repeatedly executing the routine, the supercharging pressure P3 is feedback-controlled to the target supercharging pressure in the supercharging pressure feedback control region RFB. Will be done. At this time, in the above-described embodiment, first, the pressure ratio P3 / P2 of the high-pressure stage is controlled so as to approach the target pressure ratio g (Ne, A), and the pressure ratio by the high-pressure stage turbocharger 26 is substantially constant. It is controlled with priority so that By doing so, the applicable engine speed range can be widened, the balance between the compressor and the turbine of each of the high-pressure stage turbocharger 26 and the low-pressure stage turbocharger 30 is good, and turbo efficiency can be easily obtained.
[0034]
Here, the control of the multi-stage turbocharger of the engine 10 including the above-described supercharging pressure feedback will be described more specifically. For example, assuming that the engine 10 is accelerated from a low-speed, low-load operation state to a full-load (or high-load) operation state when the accelerator pedal is rapidly depressed, such as when the vehicle starts, As is well known, the rotational speed does not immediately rise, and the operating state first shifts to above the region R1. However, the variable nozzles VNH and VNL are kept fully closed by the setting in the opening degree setting map M. If the accelerator opening A is maintained in this state, the operating state shifts to the supercharging pressure feedback control region RFB near the engine speed Ne0 as the engine speed increases. Here, the relationship between the opening degrees of the variable nozzles VNH and VNL and the engine speed Ne in the supercharging pressure feedback control region RFB is as shown in FIG. 4, and the high-pressure stage variable nozzle VNH Priority control is performed so that the pressure ratio P3 / P2 of the high pressure stage becomes substantially constant, and the supercharging pressure of the variable nozzle VNL of the low pressure stage is feedback-controlled, so that the opening degree of the variable nozzle VNH of the high pressure stage is also reduced. The opening of the low-pressure stage variable nozzle VNL is also controlled so as to increase continuously as the engine speed Ne increases. Here, the engine speed Ne0 represents the engine speed near the boundary between the region R1 and the feedback control region RFB in FIG.
[0035]
Therefore, the shift from the open control region R1 to the feedback control region RFB is performed in a state in which the variable nozzles VNH and VNL are fully closed, so that a large change in the supercharging pressure does not occur, and the subsequent increase in the rotational speed. Accordingly, the variable nozzles VNH and VNL are continuously changed in the opening direction, so that stable control is possible. That is, if the opening and closing of the variable nozzles VNH and VNL are repeated, the stability of the control is impaired due to the hysteresis. However, such a case is caused when the variable nozzles VNH and VNL are continuously changed in the opening direction. There is no control. Further, assuming a case where the accelerator pedal is suddenly depressed from the medium speed and the medium load operation state to the full load or high load operation state, the operation state of the engine 10 is controlled by the feedback control from the region R2. The process moves to the region RFB. In this case, assuming that the engine speed Ne1 shifts from the region R2 to the feedback control region RFB, the variable nozzles VNH and VNL are opened near the boundary between the region R2 and the feedback control region RFB at the engine speed Ne1 in the region R2. Since the degree is set in the opening degree setting map M so that the change at the time of the transition is suppressed, a large change in the supercharging pressure occurs as in the case of the transition from the area R1 to the feedback control area RFB. In addition, as the number of rotations increases thereafter, the variable nozzles VNH and VNL are continuously changed in the opening direction, and stable control is possible.
[0036]
In the above, the embodiment has been described in which the pressure ratio P3 / P2 of the high-pressure stage is prioritized and control is performed so as to approach the target pressure ratio g (Ne, A). However, although a certain reduction in turbo efficiency cannot be denied, it goes without saying that control can be performed so as to approach the target pressure ratio g (Ne, A) by giving priority to the pressure ratio P2 / P1 of the low pressure stage. Absent.
[0037]
Further, in the above-described embodiment, an example in which the present invention is applied to a variable displacement turbocharger having a variable nozzle has been described. However, the present invention is also applicable to a multistage turbocharger having a waste gate valve. The same applies by controlling the opening of the wastegate valve instead of controlling the opening.
[0038]
In the above-described embodiment, the target pressure ratio g (Ne, A) of the pressure ratio P3 / P2 of the high pressure stage in the feedback control region RFB increases and decreases as the engine speed increases, as shown in FIG. , But may always take a constant value regardless of the engine speed.
[0039]
Furthermore, in the above-described embodiment, the high-pressure stage outlet pressure P3 detected by the pressure sensor 46 provided at the outlet of the high-pressure stage compressor 20 is used as the supercharging pressure. Alternatively, the intake pipe pressure Pb detected by the intake pipe pressure sensor may be used instead.
[Brief description of the drawings]
FIG. 1 is a block diagram showing an outline of a multi-stage turbocharger control device according to an embodiment of the present invention.
FIG. 2 is an opening setting map used for selecting a control area and controlling variable nozzles VNH and VNL in the control according to the embodiment of the present invention.
FIG. 3 is a flowchart illustrating an example of a control procedure of the multi-stage turbocharger control device according to the embodiment of the present invention.
FIG. 4 is a graph showing the opening degrees of variable nozzles VNH and VNL of the multi-stage turbocharger according to one embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 10 engine 14 high-pressure turbine 16 low-pressure turbine 20 high-pressure compressor 22 low-pressure compressor 26 high-pressure turbocharger 30 low-pressure turbocharger 36 bypass passage 38 exhaust bypass valve 40 control unit 42 first pressure sensor 44 second pressure sensor 46 3 pressure sensor 48 rotation speed sensor 50 accelerator opening sensor VNH high-pressure turbine variable nozzle VNL low-pressure turbine variable nozzle

Claims (5)

複数のターボチャージャを直列に設けた多段ターボチャージャの制御装置であって、
エンジンの運転状態を検出する運転状態検出手段と、
該運転状態検出手段の検出結果に基づき制御領域を選択する制御領域選択手段と、
該制御領域選択手段により選択された所定の制御領域において、少なくとも一つのターボチャージャによる圧力比がほぼ一定となるように優先して制御すると共に、他のターボチャージャにより目標過給圧と実過給圧とに基づいてフィードバック制御するフィードバック制御手段と、
を備えることを特徴とする多段ターボチャージャの制御装置。
A multi-stage turbocharger control device provided with a plurality of turbochargers in series,
Operating state detecting means for detecting an operating state of the engine;
Control region selecting means for selecting a control region based on the detection result of the operating state detecting means,
In the predetermined control region selected by the control region selection means, control is performed preferentially so that the pressure ratio of at least one turbocharger is substantially constant, and the target supercharging pressure and the actual supercharging are controlled by another turbocharger. Feedback control means for performing feedback control based on the pressure and
A control device for a multi-stage turbocharger, comprising:
前記複数のターボチャージャは、タービンノズル部に流量可変機構を有する可変容量ターボチャージャであることを特徴とする請求項1に記載の多段ターボチャージャの制御装置。The control device for a multi-stage turbocharger according to claim 1, wherein the plurality of turbochargers are variable capacity turbochargers having a variable flow rate mechanism in a turbine nozzle unit. 前記所定の制御領域は、エンジンの回転数が所定値以上で且つエンジン出力トルク増大要求が所定値以上の制御領域であることを特徴とする請求項1または2に記載の多段ターボチャージャの制御装置。3. The control device for a multi-stage turbocharger according to claim 1, wherein the predetermined control region is a control region in which the engine speed is equal to or higher than a predetermined value and an engine output torque increase request is equal to or higher than a predetermined value. . 前記圧力比がほぼ一定となるように優先して制御されるのは、高圧段のターボチャージャであることを特徴とする請求項1ないし3のいずれかに記載の多段ターボチャージャの制御装置。4. The control device for a multi-stage turbocharger according to claim 1, wherein the high-pressure stage turbocharger is preferentially controlled so that the pressure ratio becomes substantially constant. 前記所定の制御領域以外の領域においては、エンジンの運転状態に応じた所定の過給圧を得るべくマップに記憶設定された制御値に基づいて、前記複数のターボチャージャをオープン制御するオープン制御手段を有することを特徴とする請求項1ないし4のいずれかに記載の多段ターボチャージャの制御装置。In an area other than the predetermined control area, an open control unit that performs open control of the plurality of turbochargers based on a control value stored and set in a map to obtain a predetermined supercharging pressure according to an operating state of the engine. The control device for a multi-stage turbocharger according to any one of claims 1 to 4, further comprising:
JP2003013093A 2003-01-22 2003-01-22 Multistage turbocharger controller Expired - Fee Related JP3979294B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2003013093A JP3979294B2 (en) 2003-01-22 2003-01-22 Multistage turbocharger controller
DE102004003378A DE102004003378B4 (en) 2003-01-22 2004-01-22 Control and control apparatus and control method for a multi-stage turbocharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003013093A JP3979294B2 (en) 2003-01-22 2003-01-22 Multistage turbocharger controller

Publications (2)

Publication Number Publication Date
JP2004225586A true JP2004225586A (en) 2004-08-12
JP3979294B2 JP3979294B2 (en) 2007-09-19

Family

ID=32709237

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003013093A Expired - Fee Related JP3979294B2 (en) 2003-01-22 2003-01-22 Multistage turbocharger controller

Country Status (2)

Country Link
JP (1) JP3979294B2 (en)
DE (1) DE102004003378B4 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097684A (en) * 2004-09-27 2006-04-13 Borgwarner Inc Multi-stage turbo supercharger using vtg turbine stage
WO2008032649A1 (en) 2006-09-11 2008-03-20 Isuzu Motors Limited Control device for multi-stage turbochargers
CN106939823A (en) * 2017-04-26 2017-07-11 哈尔滨工程大学 A kind of open cooling system to improve cooling system efficiency applied to marine low-speed machine exhaust gas turbine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004005945B4 (en) * 2004-02-06 2008-08-28 Daimler Ag Method and device for charge pressure control in two-stage turbocharging
US20080148727A1 (en) * 2006-12-20 2008-06-26 International Engine Intellectual Property Company, Llc Model-based turbocharger control
FR2917125B1 (en) * 2007-06-05 2009-08-21 Renault Sas SYSTEM AND METHOD FOR CONTROLLING A SUPER-COMBUSTION ENGINE WITH TWO STAGES OF TURBOCHARGERS, ONE OF WHICH IS VARIABLE GEOMETRY
DE102008003333A1 (en) 2008-01-07 2009-07-09 Dirk Landau Internal-combustion engine for use as electric heater in e.g. hotel, has exhaust-gas turbine with compressor arranged in fresh-air line, where water in droplet form is supplied to exhaust gas of combustion chamber via nozzle
DE102008017164B3 (en) 2008-04-03 2009-08-06 Continental Automotive Gmbh Device for controlling an exhaust gas turbocharging of an internal combustion engine and internal combustion engine
FR2936278A1 (en) * 2008-09-19 2010-03-26 Peugeot Citroen Automobiles Sa High pressure control valve i.e. on/off valve, controlling method for series bi-turbo engine architecture of car, involves sending control signals to valve, and displacing valve between end positions in response to control signals
JP2010180782A (en) * 2009-02-05 2010-08-19 Isuzu Motors Ltd Multistage supercharging system of internal combustion engine and method of controlling the same
FR2945318B1 (en) * 2009-05-06 2011-04-29 Renault Sas SYSTEM AND METHOD FOR CONTROLLING OVER-POWERING OF AN INTERNAL COMBUSTION ENGINE
DE102009042283A1 (en) * 2009-09-22 2011-03-31 Abb Turbo Systems Ag Turbocompound system and components
JP5665602B2 (en) * 2011-02-25 2015-02-04 三菱重工業株式会社 Multistage turbocharger structure
DE102012019896A1 (en) * 2012-10-11 2014-04-17 GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) Internal combustion engine for motor vehicles, particularly passenger cars, has cylinder arrangement, air supply passage, exhaust passage and turbo charger with compressor arranged in air supply passage
DE102015216105A1 (en) * 2015-08-24 2017-03-02 Ford Global Technologies, Llc Method for controlling the boost pressure of a supercharged internal combustion engine having at least two compressors and internal combustion engine for carrying out such a method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59609439D1 (en) * 1995-06-07 2002-08-22 Volkswagen Ag Control for the boost pressure of a turbocharger on an internal combustion engine
JP3953636B2 (en) * 1998-04-30 2007-08-08 富士重工業株式会社 Multistage turbocharging system for reciprocating engine
JP3931507B2 (en) * 1999-11-17 2007-06-20 いすゞ自動車株式会社 Diesel engine turbocharger system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097684A (en) * 2004-09-27 2006-04-13 Borgwarner Inc Multi-stage turbo supercharger using vtg turbine stage
WO2008032649A1 (en) 2006-09-11 2008-03-20 Isuzu Motors Limited Control device for multi-stage turbochargers
US8176735B2 (en) 2006-09-11 2012-05-15 Isuzu Motors Limited Control device for multi-stage turbochargers
CN106939823A (en) * 2017-04-26 2017-07-11 哈尔滨工程大学 A kind of open cooling system to improve cooling system efficiency applied to marine low-speed machine exhaust gas turbine

Also Published As

Publication number Publication date
DE102004003378B4 (en) 2006-07-27
DE102004003378A1 (en) 2004-08-12
JP3979294B2 (en) 2007-09-19

Similar Documents

Publication Publication Date Title
US7735320B2 (en) Dual stage turbocharger control system
US8033108B2 (en) Two-stage supercharging system for internal combustion engine
JP5324961B2 (en) Internal combustion engine supercharging system
JP3931507B2 (en) Diesel engine turbocharger system
US8096123B2 (en) System and method for mode transition for a two-stage series sequential turbocharger
US8001953B2 (en) Exhaust gas recirculation system for internal combustion engine and method for controlling the same
JP4254606B2 (en) Multistage turbocharging system for internal combustion engines
US6050093A (en) Method of controlling a supercharged internal combustion engine and apparatus for performing the method
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
US8806869B2 (en) Method for controlling a turbocharger system of an internal combustion engine, and turbocharger system
JP3979294B2 (en) Multistage turbocharger controller
JP2006097684A (en) Multi-stage turbo supercharger using vtg turbine stage
US20060123782A1 (en) Method and device for regulating the charge pressure of an internal combustion engine
JP5031250B2 (en) Engine three-stage turbocharging system
US20070214786A1 (en) Internal combustion engine and method of operating the engine
JP4479502B2 (en) Multistage supercharging system for internal combustion engine and control method thereof
JP4935094B2 (en) Two-stage turbocharging system for diesel engines
JPH02227522A (en) Supercharging pressure control device
JP2005320937A (en) Supercharging pressure controller of internal combustion engine
JPS62113829A (en) Control device for supercharge pressure in engine with two-stage supercharger
JPH0344207B2 (en)
EP1302644A1 (en) Method for controlling an exhaust-gas turbocharger with a variable turbine geometry
JPH11229885A (en) Diesel engine
US11268436B2 (en) Method and vehicle system using such method
JPS61164041A (en) Internal-combustion engine with turbo charger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070313

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070511

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070618

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100706

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110706

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120706

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130706

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees