JP4935094B2 - Two-stage turbocharging system for diesel engines - Google Patents

Two-stage turbocharging system for diesel engines Download PDF

Info

Publication number
JP4935094B2
JP4935094B2 JP2006025726A JP2006025726A JP4935094B2 JP 4935094 B2 JP4935094 B2 JP 4935094B2 JP 2006025726 A JP2006025726 A JP 2006025726A JP 2006025726 A JP2006025726 A JP 2006025726A JP 4935094 B2 JP4935094 B2 JP 4935094B2
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
pressure stage
gas flow
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006025726A
Other languages
Japanese (ja)
Other versions
JP2007205265A (en
Inventor
直也 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2006025726A priority Critical patent/JP4935094B2/en
Publication of JP2007205265A publication Critical patent/JP2007205265A/en
Application granted granted Critical
Publication of JP4935094B2 publication Critical patent/JP4935094B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、高圧段ターボチャージャと低圧段ターボチャージャを備えたディーゼルエンジンの2段式過給システムに関する。 The present invention relates to a two-stage turbocharging system for a diesel engine equipped with a high-pressure stage turbocharger and a low-pressure stage turbocharger.

内燃機関の過給に関しては、排気ターボチャージャの作動領域を拡大することを目的に、ウェストゲートターボチャージャ、可変容量ターボチャージャ等が開発されてきている。しかし、エンジン回転数とトルクと排ガス流量の関係は図8に示すようなものであり、一つの過給器で内燃機関の広範囲の回転域における高圧力比(高過給圧)を得ようとする場合には、ターボチャージャの特性上から作動効率が低下するため、また、サージが起こり易くなり作動流量の範囲が減少するため、この高圧力比化には限界があった。   Regarding the supercharging of an internal combustion engine, a wastegate turbocharger, a variable capacity turbocharger, and the like have been developed for the purpose of expanding an operation range of an exhaust turbocharger. However, the relationship between the engine speed, torque and exhaust gas flow rate is as shown in FIG. 8, and it is intended to obtain a high pressure ratio (high supercharging pressure) in a wide range of rotation of the internal combustion engine with one supercharger. In this case, the operating efficiency is lowered due to the characteristics of the turbocharger, and surge is likely to occur, so that the range of the operating flow rate is reduced.

そのため、多段昇圧および過給器作動効率改善による高過給圧化を目的にした2段式過給システムが使用されている。この2段式過給システムでは、2個の過給器を直列2段配置とし、吸気を低圧段と高圧段の2段階に分けて昇圧して、各単段階での上昇圧力比を減少させることにより、作動効率の改善を図っている。 For this reason, a two-stage supercharging system aimed at increasing the supercharging pressure by improving the multistage boosting and the supercharger operating efficiency is used. In this two-stage supercharging system , two superchargers are arranged in series in two stages, and the intake air is boosted in two stages, a low pressure stage and a high pressure stage, to reduce the rising pressure ratio in each single stage. As a result, the operating efficiency is improved.

この2段式過給システムの一つに、シーケンシャルタイプの2段式過給システムがある。このシステムは、図1に示すように、容量が大きく異なる2つのターボチャージャ5,6を直列に配置すると共に、内燃機関1の運転状態に応じて適切な過給器5,6を選択できるようにバイパス6a,6dを設けて、過給システム10としての作動領域の拡大を図っている。 One of the two-stage supercharging systems is a sequential type two-stage supercharging system . In this system, as shown in FIG. 1, two turbochargers 5 and 6 having greatly different capacities are arranged in series, and an appropriate supercharger 5 and 6 can be selected according to the operating state of the internal combustion engine 1. By providing the bypasses 6a and 6d , the working area of the supercharging system 10 is expanded.

この2段式過給システム10では、図9に示すように、低速回転〜中速回転においては、低圧段ターボチャージャ5を使用せずに小容量の高圧段ターボチャージャ6を使用して過給を行い、一方、高速回転・高負荷領域にある時に、この運転領域に適合した大容量の低圧段ターボチャージャ5を使用して、従来技術の単段式過給システムと同等以上の過給を行う。 In this two-stage supercharging system 10, as shown in FIG. 9, during low-speed to medium-speed rotation, supercharging is performed using a small-capacity high-pressure turbocharger 6 without using the low-pressure turbocharger 5. It was carried out, whereas, when in the high-speed rotation and high load region, by using the low-pressure stage turbocharger 5 of large capacity adapted to the operating region, a single stage supercharging system with equal or supercharging the prior art Do.

このシステム10では、低圧段ターボチャージャ5と高圧段ターボチャージャ6の容量に大きな差を持たせることで、シリーズタイプの2段式過給システムでは、過給困難となるような運転領域でも、過給を行うことができる。 In this system 10, the capacity of the low-pressure stage turbocharger 5 and that of the high-pressure stage turbocharger 6 are greatly different, so that the series type two-stage supercharging system can perform supercharging even in an operation region where supercharging is difficult. Can be paid.

このシステム10においては、全負荷運転状態において、容量の小さい高圧段タービン6を作動させると排圧の上昇を招くため、運転状態によっては排気ガスの全量を、高圧段タービン6tをバイパスさせて低圧段タービン5tに流す必要がある。そのため、運転状態に応じて低圧段ターボチャージャ5と高圧段ターボチャージャ6を切り替えて使用する。   In this system 10, when the high-pressure turbine 6 having a small capacity is operated in the full-load operation state, the exhaust pressure is increased. Therefore, depending on the operation state, the entire amount of exhaust gas may be bypassed by the high-pressure turbine 6 t and the low pressure. It is necessary to flow to the stage turbine 5t. Therefore, the low-pressure stage turbocharger 5 and the high-pressure stage turbocharger 6 are switched and used according to the operating state.

このシステム10では、低速・低負荷運転では、小流量の高圧段ターボチャージャ6を用いることにより、高過給及び高EGR率を実現し、低NOx及び低煤燃焼を実現し、また、小慣性のタービンとなることにより、高レスポンスとなるため加速時のターボラグが無くなり、ドライバビリティも向上する。また、高速・高負荷運転では、低圧段のターボに切り替えて使用することにより、エンジンの性能が悪化するのを回避する。   In this system 10, in the low speed / low load operation, the high pressure turbocharger 6 with a small flow rate is used to achieve high supercharging and high EGR rate, low NOx and low soot combustion, and small inertia. Because it becomes a high-speed turbine, the turbo lag during acceleration is eliminated and drivability is improved. In high-speed / high-load operation, switching to a low-pressure turbo is used to avoid deteriorating engine performance.

しかしながら、内燃機関の運転状態が、低速回転領域にある場合は、必要な過給圧を得るために排気ガスの全量を高圧段タービン6に送る必要があり、また、中速回転領域にある場合は、低圧段ターボチャージャ5及び高圧段ターボチャージャ6の両段を使用して過給を行うため、高圧段と低圧段の両タービンに送る排ガス流量を正確に制御する必要がある。   However, when the operating state of the internal combustion engine is in the low speed rotation region, it is necessary to send the entire amount of exhaust gas to the high pressure turbine 6 in order to obtain the required supercharging pressure, and in the middle speed rotation region. Since supercharging is performed using both the low-pressure stage turbocharger 5 and the high-pressure stage turbocharger 6, it is necessary to accurately control the exhaust gas flow rate sent to both the high-pressure stage and low-pressure stage turbines.

そのため、このシステム10では、流量制御用のバイパスバルブ6eを備えた高圧段排気バイパス流路6dを設ける。このバイパスバルブ6eには、排ガスの流量が大流量となる運転状態において、排圧の上昇を招かずに排ガスの全量を流せる流量特性を持ちつつ、一方、排ガスの流量が小流量〜中流量となる運転状態において、高圧段タービン6tの排ガスの流れを制御できることが要求される。   Therefore, in this system 10, a high-pressure stage exhaust bypass passage 6d provided with a bypass valve 6e for flow control is provided. The bypass valve 6e has a flow rate characteristic that allows the entire amount of exhaust gas to flow without causing an increase in exhaust pressure in an operating state where the exhaust gas flow rate is large, while the exhaust gas flow rate is small to medium. In such an operating state, it is required that the flow of exhaust gas from the high-pressure turbine 6t can be controlled.

しかしながら、従来技術においては、2段式過給システムにおけるターボチャージャの切替制御は、マップ制御やブースト制御で行っている。 However, in the prior art, the turbocharger switching control in the two-stage supercharging system is performed by map control or boost control.

最初にマップ制御について説明するが、このマップ制御では、図10に示すようなエンジンの回転数と燃料噴射量とをベースにしたバイパスバルブの弁開度を示すマップデータを参照して、バイパスバルブの弁開度を算出し、この弁開度に制御してターボチャージャの切替を行っている。   First, map control will be described. In this map control, referring to map data indicating the valve opening degree of the bypass valve based on the engine speed and the fuel injection amount as shown in FIG. The valve opening is calculated, and the turbocharger is switched by controlling the valve opening.

このマップ制御の場合には、ターボチャージャの動作とは関係なく、定常試験で作成されたマップデータに従ってバイパスバルブの制御が行われるため、高圧段ターボチャージャと、低圧段ターボチャージャの使用領域の間の過渡時にはターボラグのため、マップデータと実際の排ガス流量との間に差が生じてしまい、ブースト圧の低下等が発生するという問題がある。即ち、過渡時にはターボラグのために同じエンジン回転数と燃料噴射量でも排ガス流量が異なるため、ターボの作動状況が異なるからである。   In the case of this map control, the bypass valve is controlled according to the map data created in the steady test regardless of the operation of the turbocharger. Therefore, between the high-pressure stage turbocharger and the low-pressure stage turbocharger usage area. Due to the turbo lag during the transition, there is a problem that a difference occurs between the map data and the actual exhaust gas flow rate, resulting in a decrease in boost pressure or the like. That is, because the exhaust gas flow rate is different even at the same engine speed and fuel injection amount due to the turbo lag at the time of transition, the operating state of the turbo differs.

この様子を図11に示す。図11は、一定速度からアクセルを踏み込んで燃料噴射量Qfを増加して、加速を開始した場合を示す。この燃料噴射量Qfの増加に伴い、エンジン回転数Neが上昇して、ブースト(過給圧)Pg2(B)が上昇する。このマップ制御の場合には、エンジン回転数Ne1になると、バイパスバルブの制御が開始され、Ne2になるとバイパスバルブを全開(100%)する。   This is shown in FIG. FIG. 11 shows a case where acceleration is started by depressing the accelerator from a constant speed to increase the fuel injection amount Qf. As the fuel injection amount Qf increases, the engine speed Ne increases and boost (supercharging pressure) Pg2 (B) increases. In the case of this map control, when the engine speed Ne1 is reached, the control of the bypass valve is started, and when it is Ne2, the bypass valve is fully opened (100%).

この過渡時ではターボラグによってブーストPg2(B)は定常運転時のブーストPg1程高くならない。このように、ターボ効率が落ちている状態で定常状態と同じようにバイパスバルブを開閉すると、高圧段ターボチャージャの回転が急に下がるためにブーストPg2(B)が落ちてしまう現象が起こる。なお、Vg1は定常運転時の排ガス流量を示し、Vg2は過渡時の排ガス流量を示す。また、Spvはバイパスバルブ制御信号を示す。   During this transition, boost Pg2 (B) does not become as high as boost Pg1 during steady operation due to the turbo lag. As described above, when the bypass valve is opened and closed in a state where the turbo efficiency is lowered, as in the steady state, the rotation of the high-pressure stage turbocharger suddenly falls, and thus a phenomenon occurs in which the boost Pg2 (B) falls. Vg1 indicates the exhaust gas flow rate during steady operation, and Vg2 indicates the exhaust gas flow rate during transition. Spv represents a bypass valve control signal.

次にブースト制御について説明するが、このブースト制御では、エンジンの吸入空気量を検出して、低吸入空気量域にある場合には、排気切替弁を強制的に開くことにより、即ち、吸入空気量を基にターボチャージャの切替を行うことにより、排気切替弁の上下流の圧力差を無くすと、排気切替弁をバタつかす力が排気切替弁に作用しなくなるので、排気切替弁のバタツキの発生を防止してビビリ音発生を防止することができる過給機付エンジンの制御方法が提案されている(例えば、特許文献1参照。)。 Next, boost control will be described. In this boost control, the intake air amount of the engine is detected, and when it is in the low intake air amount region, the exhaust switching valve is forcibly opened, that is, the intake air. If the pressure difference between the upstream and downstream of the exhaust gas switching valve is eliminated by switching the turbocharger based on the amount, the fluttering force of the exhaust gas switching valve will no longer act on the exhaust gas switching valve. There has been proposed a control method for an engine with a supercharger that can prevent chatter noise from occurring (see, for example, Patent Document 1).

また、高圧段コンプレッサの出口の吸入空気圧を基にターボチャージャの切替を行うことにより、エンジンの回転数の増大によって増大する吸気マニホールド圧力を得ることができ、排気切替弁が閉から開に切り替わったときの排圧減少によるトルク増大があってもこれと調和させ、円滑なトルク変化を得ることができる2段過給内燃機関の過給圧制御装置が提案されている(例えば、特許文献2参照。)。 In addition, by switching the turbocharger based on the intake air pressure at the outlet of the high-pressure compressor, it is possible to obtain an intake manifold pressure that increases as the engine speed increases, and the exhaust switching valve is switched from closed to open. There has been proposed a supercharging pressure control device for a two-stage supercharged internal combustion engine capable of obtaining a smooth torque change even when there is an increase in torque due to a decrease in exhaust pressure (see, for example, Patent Document 2). .)

しかしながら、これらの吸入空気量、又は、吸入空気圧を基にターボチャージャの切替を行う場合は、あくまで吸入される空気量、又は、空気圧であって、ターボチャージャの実際の挙動に影響を及ぼす排ガス流量ではないため、やはり、切替時にターボラグ等が生じるという問題がある。 However, when switching the turbocharger based on these intake air amounts or intake air pressures, the exhaust gas flow rate is the only intake air amount or air pressure that affects the actual behavior of the turbocharger. However, there is still a problem that a turbo lag or the like occurs at the time of switching.

また、ガソリンエンジンでは、空燃比(A/F)を14〜15のストイキの一定になるように制御して運転するので、吸入空気流量から排ガス流量を容易に推定できるが、ディーゼルエンジンにおいては、吸入空気量と燃料噴射量を独立させて制御しているので、吸入空気量だけで排ガス流量を正確に推定することは困難であるという問題がある。
特開平3−213620号公報 特開平4−17725号公報
Further, since the gasoline engine is operated by controlling the air-fuel ratio (A / F) so as to be constant at 14 to 15, the exhaust gas flow rate can be easily estimated from the intake air flow rate. Since the intake air amount and the fuel injection amount are controlled independently, there is a problem that it is difficult to accurately estimate the exhaust gas flow rate only from the intake air amount.
JP-A-3-213620 Japanese Patent Laid-Open No. 4-17725

本発明は、上記の問題を解決するためになされたものであり、その目的は、高圧段ターボチャージャと低圧段ターボチャージャを備えたシーケンシャルタイプの2段式過給システムにおいて、ターボ特性を考慮して、排ガス流量を基にして、高圧段ターボチャージャと低段圧ターボチャージャの切替制御を行うことにより、過渡期においても、ブ−ストの落ち込みもなくスムーズに過給圧の制御を行うことができるディーゼルエンジンの2段式過給システムを提供することにある。 The present invention has been made to solve the above-described problems, and its object is to consider turbo characteristics in a sequential type two-stage supercharging system including a high-pressure stage turbocharger and a low-pressure stage turbocharger. Te, based on exhaust gas flow rate, by performing the switching control of the high-pressure stage turbocharger and Teidan圧turbocharger, even in the transition period, blanking - possible to control the supercharging pressure smoothly without sagging strike It is to provide a two-stage supercharging system for a diesel engine capable of achieving the above.

上記のような目的を達成するためのディーゼルエンジンの2段式過給システムは、ディーゼルエンジンの吸気流路の上流側から順に低圧段ターボチャージャの低圧段コンプレッサと高圧段ターボチャージャの高圧段コンプレッサを設けると共に、排気流路の上流側から順に前記高圧段ターボチャージャの高圧段タービンと前記低圧段ターボチャージャの低圧段タービンを設け、前記高圧段コンプレッサをバイパスする高圧段吸気バイパス流路と、前記高圧段タービンをバイパスする高圧段排気バイパス流路とを備えたディーゼルエンジンの2段式過給システムにおいて、吸入空気量を求める吸入吸気量把握手段と、燃料噴射量を求める燃料噴射量把握手段と、前記吸入空気量と前記燃料噴射量に基づいて排ガス流量を求める排ガス流量算出手段と、前記排ガス流量と前記高圧段ターボチャージャ及び前記低圧段ターボチャージャの容量とに基づいて前記高圧段排気バイパス流路へ流入する排ガスの流入量を制御する排ガス流入量制御手段とを備え、前記排ガス流入量制御手段の制御において、燃料噴射量を増加して前記排ガス流量を漸増していった場合に、前記排ガス流量が前記高圧段タービンの容量の最大値である第1排ガス流量になったときから、前記高圧段ターボチャージャと前記低圧段ターボチャージャとの容量の比率によって設定された第2排ガス流量になるまで、前記高圧段排気バイパス流路へ流入する排ガスの流入量を漸増させていき、前記第2排ガス流量になったときに前記排ガスの流入量を最大にするように構成される。 A diesel engine two-stage turbocharging system for achieving the above-described object includes a low-pressure stage compressor of a low-pressure stage turbocharger and a high-pressure stage compressor of a high-pressure stage turbocharger in order from the upstream side of the intake passage of the diesel engine. And a high-pressure stage intake bypass passage for bypassing the high-pressure stage compressor, and a high-pressure stage turbine of the high-pressure stage turbocharger and a low-pressure stage turbine of the low-pressure stage turbocharger in order from the upstream side of the exhaust passage. In a two-stage turbocharging system for a diesel engine having a high-pressure stage exhaust bypass passage for bypassing a stage turbine, an intake air intake amount grasping means for obtaining an intake air amount, a fuel injection amount grasping means for obtaining a fuel injection amount, An exhaust gas flow rate calculation method for obtaining an exhaust gas flow rate based on the intake air amount and the fuel injection amount When provided with an exhaust gas flow amount control means for controlling the inflow of exhaust gas flowing into the high pressure stage exhaust bypass passage, based on the capacity of the exhaust gas flow rate and the high-pressure stage turbocharger and the low-pressure stage turbocharger, the In the control of the exhaust gas inflow control means, when the fuel injection amount is increased and the exhaust gas flow rate is gradually increased, the exhaust gas flow rate becomes the first exhaust gas flow rate which is the maximum value of the capacity of the high pressure turbine. From time to time, the inflow amount of the exhaust gas flowing into the high-pressure stage exhaust bypass passage is gradually increased until the second exhaust gas flow rate set by the capacity ratio of the high-pressure stage turbocharger and the low-pressure stage turbocharger is reached. The inflow amount of the exhaust gas is maximized when the second exhaust gas flow rate is reached.

この構成によれば、吸入空気量と燃料噴射量とから排ガス流量を算出し、この排ガス流量に基づいてターボチャージャの切替制御を行うため、ターボラグに起因するブーストの低下等の問題の発生を防止でき、過渡期においても、ブーストの落ち込みもなくスムーズに過給圧の制御を行うことができる。
また、この構成によれば、排ガス流量とターボチャージャの容量との関係によって排ガスの流入量の制御、言い換えれば、バイパスバルブの弁開度の調整制御が行われるので、スムーズなターボチャージャの切替が可能となる。
According to this configuration, since the exhaust gas flow rate is calculated from the intake air amount and the fuel injection amount, and the turbocharger switching control is performed based on the exhaust gas flow rate, problems such as a decrease in boost due to the turbo lag are prevented. In the transition period, the boost pressure can be controlled smoothly without a drop in boost.
In addition, according to this configuration, the inflow amount of exhaust gas is controlled according to the relationship between the exhaust gas flow rate and the capacity of the turbocharger, in other words, adjustment control of the valve opening degree of the bypass valve is performed. It becomes possible.

また、上記のディーゼルエンジンの2段式過給システムにおいて、前記排ガス流量算出手段が、前記排ガス流量として排ガス質量流量を算出し、前記排ガス流入量制御手段が、前記排ガス質量流量に基づいて前記高圧段排気バイパス流路への排ガス流入量を制御するように構成される。なお、排ガス質量流量は、排ガスの量を質量で表わすものである。 Further, in the two-stage supercharging system for the diesel engine, the exhaust gas flow rate calculation means calculates an exhaust gas mass flow rate as the exhaust gas flow rate, and the exhaust gas inflow amount control means calculates the high pressure based on the exhaust gas mass flow rate. The exhaust gas inflow amount to the stage exhaust bypass passage is controlled. The exhaust gas mass flow rate represents the amount of exhaust gas by mass.

この構成により、排ガス質量流量は吸入空気量(質量)と燃料噴射量(質量)の和で算出できるので、算出が容易な排ガス質量流量に基づいて制御でき、比較的簡便な制御となる。なお、この質量流量を使用する場合には、回転−負荷で排ガスの密度はほぼ決まっているとの仮定のもとで使用する。   With this configuration, since the exhaust gas mass flow rate can be calculated as the sum of the intake air amount (mass) and the fuel injection amount (mass), the control can be performed based on the exhaust gas mass flow rate that is easy to calculate, resulting in relatively simple control. In addition, when using this mass flow rate, it uses on the assumption that the density of exhaust gas is almost decided by rotation-load.

あるいは、上記のディーゼルエンジンの2段式過給システムにおいて、排ガス密度を求める排ガス密度算出手段を備えると共に、前記排ガス流量算出手段は、前記排ガス流量として、前記吸入空気量と前記燃料噴射量と前記排ガス密度から排ガス体積流量を算出し、前記排ガス流入量制御手段が、前記排ガス体積流量に基づいて前記高圧段排気バイパス流路への排ガスの流入量を制御するように構成される。なお、排ガス体積流量は、排ガスの量を体積で表わすものである。 Alternatively, in the two-stage turbocharging system for a diesel engine, the exhaust gas density calculating means for obtaining the exhaust gas density is provided, and the exhaust gas flow rate calculating means includes the intake air amount, the fuel injection amount, and the exhaust gas flow rate as the exhaust gas flow rate. An exhaust gas volume flow rate is calculated from the exhaust gas density, and the exhaust gas inflow rate control means is configured to control the inflow amount of exhaust gas to the high-pressure stage exhaust bypass flow path based on the exhaust gas volume flow rate. The exhaust gas volume flow rate represents the amount of exhaust gas in volume.

この構成により、吸入空気量(質量)と燃料噴射量(質量)の和を、排ガス温度の関数となる排ガス密度で割り算して求める排ガス体積流量に基づいて制御することができる。実際には、体積流量でターボ性能が変化し、ターボを通過した流体の体積に応じて仕事を取り出しているので、通常、ターボの動作状態を表すために体積流量が使用されている。なお、同一の質量でも温度が変わると体積が変わるので、排ガス温度から密度の補正をする。これにより、排ガス質量流量で制御する場合よりも、制御の精度を増すことができる。   With this configuration, the sum of the intake air amount (mass) and the fuel injection amount (mass) can be controlled based on the exhaust gas volume flow rate obtained by dividing by the exhaust gas density that is a function of the exhaust gas temperature. Actually, the turbo performance changes with the volume flow rate, and the work is taken out according to the volume of the fluid that has passed through the turbo. Therefore, the volume flow rate is usually used to represent the operating state of the turbo. Since the volume changes when the temperature changes even with the same mass, the density is corrected from the exhaust gas temperature. Thereby, the control accuracy can be increased as compared with the case of controlling by the exhaust gas mass flow rate.

本発明に係るディーゼルエンジンの2段式過給システムによれば、ターボチャージャの特性を考慮して、排ガス流量を指標にしてターボチャージャの切替制御を行うことにより、過渡時においても、ブーストの落ち込みも無くスムーズに過給圧の制御を行うことができる。   According to the two-stage turbocharging system of a diesel engine according to the present invention, boost switching is reduced even in a transient state by performing turbocharger switching control using the exhaust gas flow rate as an index in consideration of the characteristics of the turbocharger. Therefore, the supercharging pressure can be controlled smoothly.

以下、本発明に係る実施の形態のディーゼルエンジンの2段式過給システムについて、図面を参照しながら説明する。 Hereinafter, a two-stage turbocharging system for a diesel engine according to an embodiment of the present invention will be described with reference to the drawings.

図1に示すように、この2段式過給システム10では、ディーゼルエンジン1の吸気流路3の上流側から順に低圧段ターボチャージャ5の低圧段コンプレッサ5cと高圧段ターボチャージャ6の高圧段コンプレッサ6cを設けると共に、排気流路4の上流側から順に高圧段ターボチャージャ6の高圧段タービン6tと低圧段ターボチャージャ5の低圧段タービン5tを設ける。 As shown in FIG. 1, in the two-stage supercharging system 10, the low-pressure stage compressor 5 c of the low-pressure stage turbocharger 5 and the high-pressure stage compressor of the high-pressure stage turbocharger 6 are sequentially arranged from the upstream side of the intake passage 3 of the diesel engine 1. 6c, and a high-pressure stage turbine 6t of the high-pressure stage turbocharger 6 and a low-pressure stage turbine 5t of the low-pressure stage turbocharger 5 are provided in this order from the upstream side of the exhaust passage 4.

また、低圧段ターボチャージャ5には、低圧段タービン5tをバイパスするための低圧段排気バイパス流路5aを設け、この低圧段排気バイパス流路5aには、流れる排ガス流量を制御するためのウェストゲートバルブ5bを取り付ける。このウェストゲートバルブ5bは、過給圧供給管14からの過給圧で作動するアクチュエータ5dにより開弁、閉弁、または、その弁開度の調整が行われる。この調整により、ターボチャージャ5の過回転により、ターボチャージャ5の損傷を防ぎブースト圧を一定に保つことができる。   The low-pressure stage turbocharger 5 is provided with a low-pressure stage exhaust bypass passage 5a for bypassing the low-pressure stage turbine 5t. The low-pressure stage exhaust bypass passage 5a has a waste gate for controlling the flow rate of exhaust gas flowing therethrough. Install the valve 5b. The waste gate valve 5b is opened, closed, or adjusted in valve opening by an actuator 5d that operates with the supercharging pressure from the supercharging pressure supply pipe 14. By this adjustment, the turbocharger 5 can be prevented from being damaged by over-rotation of the turbocharger 5, and the boost pressure can be kept constant.

また、高圧段ターボチャージャ6には、吸気系においては、高圧段コンプレッサ6cをバイパスさせる高圧段吸気バイパス流路6aを設け、この高圧段吸気バイパス流路6aと吸気流路3との合流部位には、流れるガス量を制御するための高圧段吸気バイパスバルブ(図1では3方弁)6bを取り付ける。また、この高圧段吸気バイパスバルブ6bと吸気マニホールド3aとの間の吸気流路3には、圧縮されて温度が上昇した吸入空気を冷却するインタークーラ7を設ける。   In the intake system, the high-pressure stage turbocharger 6 is provided with a high-pressure stage intake bypass flow path 6a that bypasses the high-pressure stage compressor 6c, and the high-pressure stage intake bypass flow path 6a and the intake flow path 3 are joined to each other. Is equipped with a high-pressure stage intake bypass valve (three-way valve in FIG. 1) 6b for controlling the amount of flowing gas. An intercooler 7 is provided in the intake passage 3 between the high-pressure stage intake bypass valve 6b and the intake manifold 3a to cool the compressed intake air whose temperature has risen.

更に、排気系においては、高圧段タービン6tをバイパスさせる高圧段排気バイパス流路6dを設け、この高圧段排気バイパス流路6dには、流れる排ガスの流量を制御するための高圧段排気バイパスバルブ6eを取り付ける。この高圧段排気バイパスバルブ6eは、2ウェイバルブ6gで制御されるアクチュエータ6fにより、開弁、閉弁、または、その弁開度の調整が行われる。このアクチュエータ6fは、過給圧供給管14からの過給圧で作動するが、2ウェイバルブ6gにより、開弁、閉弁及びその弁開度の調整が行われる。   Further, in the exhaust system, a high-pressure stage exhaust bypass passage 6d for bypassing the high-pressure turbine 6t is provided, and the high-pressure stage exhaust bypass passage 6d has a high-pressure stage exhaust bypass valve 6e for controlling the flow rate of the flowing exhaust gas. Install. The high-pressure stage exhaust bypass valve 6e is opened, closed, or adjusted in valve opening by an actuator 6f controlled by a 2-way valve 6g. The actuator 6f operates with the supercharging pressure from the supercharging pressure supply pipe 14, but the two-way valve 6g performs valve opening, valve closing, and adjustment of the valve opening.

そして、EGRに関して、EGRクーラ12とEGR弁13を備えたEGR流路11を、排気マニホールド4aと、吸気マニホールド3aとを接続して設ける。このEGR流路11により、排気マニホールド4aから吸気マニホールド3aへ、EGRクーラ12とEGR弁13とを経由してEGRガスGeを導入する。   And regarding EGR, the EGR flow path 11 provided with the EGR cooler 12 and the EGR valve 13 is provided by connecting the exhaust manifold 4a and the intake manifold 3a. By this EGR flow path 11, EGR gas Ge is introduced from the exhaust manifold 4 a to the intake manifold 3 a via the EGR cooler 12 and the EGR valve 13.

更に、このディーゼルエンジン1の2段式過給システム10では、図示しないが、吸入空気量把握手段、燃料噴射把握手段、排ガス密度算出手段、排ガス流量算出手段、排ガス流入量制御手段を備えて構成する。 Further, the two-stage turbocharging system 10 of the diesel engine 1 includes an intake air amount grasping means, a fuel injection grasping means, an exhaust gas density calculating means, an exhaust gas flow rate calculating means, and an exhaust gas inflow amount control means, although not shown. To do.

この吸入空気量把握手段は、吸入空気量Qawを求める手段であり、MAF(マスエアフローセンサ)の測定値や、エンジン回転数とトルク(負荷)をベースにした目標吸入空気量のマップデータから求めた目標吸入空気量などから、吸入空気量Qawを求める。また、燃料噴射把握手段は、燃料噴射量Qfvを求める手段であり、目標燃料噴射量から求めるが、実際の燃料噴射量を算出して求める方法でもよい。   This intake air amount grasping means is means for obtaining the intake air amount Qaw, and is obtained from the measured data of MAF (mass air flow sensor) and the map data of the target intake air amount based on the engine speed and torque (load). The intake air amount Qaw is obtained from the target intake air amount. The fuel injection grasping means is a means for obtaining the fuel injection amount Qfv, and is obtained from the target fuel injection amount, but may be a method for obtaining the actual fuel injection amount.

排ガス密度算出手段は、排気温度センサなどで計測された排ガス温度、または、エンジン回転数とトルクをベースにした排ガス温度のマップデータ等から算出される排ガス温度Tgを基に排ガス密度ρgを求める手段であり、排ガス温度Tgをベースにした排ガス密度ρgのデータから、現在の排ガス温度Tgに対する排ガス密度ρgを求める。また、排ガス流量算出手段は、吸入空気量Qawと燃料噴射量Qfvに基づいて排ガス流量Vg2を求める手段である。   The exhaust gas density calculating means obtains the exhaust gas density ρg based on the exhaust gas temperature measured by the exhaust gas temperature sensor or the exhaust gas temperature Tg calculated from the exhaust gas temperature map data based on the engine speed and torque. From the data of the exhaust gas density ρg based on the exhaust gas temperature Tg, the exhaust gas density ρg with respect to the current exhaust gas temperature Tg is obtained. The exhaust gas flow rate calculation means is a means for obtaining the exhaust gas flow rate Vg2 based on the intake air amount Qaw and the fuel injection amount Qfv.

また、排ガス流入量制御手段は、算出された排ガス流量Vg2に基づいて高圧段排気バイパス流路6eへ流入する排ガスの流入量Qbを制御する手段であり、高圧段排気バイパスバルブ6eとこれを制御するバイパスバルブ制御機構(アクチュエータ6f,2ウェイバルブ6g)とこのバイパスバルブ制御機構を制御するバイパスバルブ制御装置からなる。   Further, the exhaust gas inflow control means is a means for controlling the inflow amount Qb of the exhaust gas flowing into the high-pressure stage exhaust bypass passage 6e based on the calculated exhaust gas flow rate Vg2, and controls the high-pressure stage exhaust bypass valve 6e. A bypass valve control mechanism (actuator 6f, 2-way valve 6g) and a bypass valve control device for controlling the bypass valve control mechanism.

これらの吸入空気量把握手段、燃料噴射量把握手段、排ガス流量算出手段等の演算手段とバイパスバルブ制御装置は、ディーゼルエンジン1を制御するエンジン・コントロール・ユニット(ECU)と呼ばれるエンジン制御装置に組込まれる。   These intake air amount grasping means, fuel injection amount grasping means, exhaust gas flow rate calculating means and other computing means and bypass valve control device are incorporated in an engine control device called an engine control unit (ECU) for controlling the diesel engine 1. It is.

そして、本発明の排ガス流入量制御手段は、エンジン1の運転状態が低速・低負荷時には高圧段排気バイパス流路6dの高圧段排気バイパスバルブ6eを閉弁し、中速・中負荷時はこのバイパスバルブ6eを徐々に開弁し、高速・高負荷時はこのバイパスバルブ6eを全開する制御を行う。 The exhaust gas inflow control means of the present invention closes the high pressure exhaust bypass valve 6e of the high pressure exhaust bypass passage 6d when the engine 1 is operating at a low speed and a low load, and at an intermediate speed and a medium load, The bypass valve 6e is gradually opened, and control is performed to fully open the bypass valve 6e at high speed and high load.

図2にエンジンの運転状態を示すエンジン回転数とトルクに対する排ガス流量を模式的に示す。図2に示すように、低速・低負荷時で排ガス流量が少ないときは高圧段ターボチャージャ6の高圧段作動領域となり、高速・高負荷時で排ガスの流量が多いときは低圧段ターボチャージャ5の低圧段作動領域となる。 FIG. 2 schematically shows the exhaust gas flow rate with respect to the engine speed and torque indicating the operating state of the engine. As shown in FIG. 2, when the exhaust gas flow rate is low at low speed and low load, the high pressure stage turbocharger 6 is in the high pressure stage operation region. When the exhaust gas flow rate is high at high speed and high load, the low pressure stage turbocharger 5 It becomes a low-pressure stage operation area.

そして、図2に示すように、この高圧段作動領域から低圧段作動領域に移行する部分に、中速・中負荷時のバイパス弁開度制御領域(ハッチング部分)が設けられる。このバイパス弁開度制御領域では、図3に示すように、高圧段排気バイパスバルブ6eを排ガス流量の増加に伴って徐々に開弁し、高圧段排気バイパス流路6dを使用して高圧段ターボチャージャ6の作動領域から徐々に低圧段ターボチャージャ5の作動領域に移行する。 As shown in FIG. 2, a bypass valve opening control region (hatched portion) at medium speed / medium load is provided in a portion where the high pressure stage operation region shifts to the low pressure stage operation region. In this bypass valve opening control region, as shown in FIG. 3, the high-pressure stage exhaust bypass valve 6e is gradually opened as the exhaust gas flow rate increases, and the high-pressure stage turbo is used using the high-pressure stage exhaust bypass passage 6d. The operation region of the charger 6 gradually shifts to the operation region of the low-pressure turbocharger 5.

そして、本発明においては、図2に示すように、高圧段ターボチャージ6のみが作動する高圧段作動領域と、低圧段ターボチャージャ5のみが作動する低圧段作動領域との間のバイパス弁開度制御領域におけるターボチャージャ5、6の切替操作で、高圧段排気バイパス弁6eの弁開度を図3に示すように、排ガス流量Vg2に基づいて制御する。即ち、排ガス流量Vg2が第1排ガス流量Q1になった時から、弁開度を0%から増加し始め、排ガス流量Vg2が第2排ガス流量Q2になった時に最大の弁開度(100%)とし、それ以後、即ち、排ガス流量Vg2がQ2以上では、最大の弁開度(100%)を維持する。   In the present invention, as shown in FIG. 2, the bypass valve opening between the high-pressure stage operating region where only the high-pressure stage turbocharge 6 operates and the low-pressure stage operating region where only the low-pressure stage turbocharger 5 operates. By switching the turbochargers 5 and 6 in the control region, the valve opening degree of the high-pressure stage exhaust bypass valve 6e is controlled based on the exhaust gas flow rate Vg2, as shown in FIG. That is, when the exhaust gas flow rate Vg2 becomes the first exhaust gas flow rate Q1, the valve opening degree starts to increase from 0%, and when the exhaust gas flow rate Vg2 becomes the second exhaust gas flow rate Q2, the maximum valve opening degree (100%). After that, that is, when the exhaust gas flow rate Vg2 is Q2 or more, the maximum valve opening (100%) is maintained.

この第1排ガス流量Q1は、高圧段タービン6tの容量の最大値であり、排ガス流量Vg2が、この第1排ガス流量Q1になるときから、弁開度を0%から増加し始め、高圧段排気バイパス流路6dへの排ガスの流入量Qbを増加し始める。   The first exhaust gas flow rate Q1 is the maximum value of the capacity of the high-pressure stage turbine 6t, and when the exhaust gas flow rate Vg2 becomes the first exhaust gas flow rate Q1, the valve opening degree starts to increase from 0%, The inflow amount Qb of the exhaust gas into the bypass channel 6d starts to increase.

また、第2排ガス流量Q2は、高圧段ターボチャージャ6と低圧段ターボチャージャ5との容量の比率によって設定された値であり、この第2排ガス流量Q2になると弁開度を100%とし、高圧段排気バイパス流路6dへの排ガスの流入量Qbを最大とする。   The second exhaust gas flow rate Q2 is a value set according to the capacity ratio of the high-pressure stage turbocharger 6 and the low-pressure stage turbocharger 5. When the second exhaust gas flow rate Q2 is reached, the valve opening is 100%, The amount Qb of exhaust gas flowing into the stage exhaust bypass passage 6d is maximized.

つまり、排ガス流入量制御手段の制御において、排ガス流量Vg2が、高圧段タービン6tの容量の最大値である第1排ガス流量Q1になったときから、高圧段排気バイパス流路6eへの排ガスの流入量Qbを増加し始め、高圧段ターボチャージャ6と低圧段ターボチャージャ5との容量の比率によって設定された第2排ガス流量Q2になったときに、排ガスの流入量Qbを最大にする。   That is, in the control of the exhaust gas inflow control means, when the exhaust gas flow rate Vg2 becomes the first exhaust gas flow rate Q1, which is the maximum value of the capacity of the high pressure stage turbine 6t, the exhaust gas flows into the high pressure stage exhaust bypass passage 6e. The amount Qb starts to increase, and the exhaust gas inflow amount Qb is maximized when the second exhaust gas flow rate Q2 set by the capacity ratio of the high-pressure stage turbocharger 6 and the low-pressure stage turbocharger 5 is reached.

この第2排ガス流量Q2は、二つのターボチャージャ5、6の特性によって決まる値であり、過給と排圧の特性や排ガスの特性により判断され、概略的には、排ガス流量が増加し低圧段ターボチャージャ5の効率が上がってきた所となる。   The second exhaust gas flow rate Q2 is a value determined by the characteristics of the two turbochargers 5 and 6, and is determined by the characteristics of supercharging and exhaust pressure and the characteristics of exhaust gas. This is where the efficiency of the turbocharger 5 has increased.

そして、第1の実施の形態では、この排ガス流量Vg2の算出は、図4に示すように、{吸入空気量(質量)Qaw(g/cyc)+燃料噴射量Qfv(mm3 /cyc)×燃料密度ρf(g/mm3 )}により、1気筒の1サイクルあたりの排ガス質量Qgc(g/min)を算出し(Qgc=Qaw+Qfv×ρf)、これに、気筒数Ncとエンジン回転数Ne(rpm)/2を乗じて、排ガス質量流量Vg2w(g/min)を算出する(Vg2w=Qgc×Nc×Ne/2)。この排ガス質量流量Vg2wを排ガス流量Vg2とする(Vg2=Vg2w)。 In the first embodiment, the exhaust gas flow rate Vg2 is calculated as follows: {intake air amount (mass) Qaw (g / cyc) + fuel injection amount Qfv (mm 3 / cyc) × The exhaust gas mass Qgc (g / min) per cycle per cylinder is calculated from the fuel density ρf (g / mm 3 )} (Qgc = Qaw + Qfv × ρf), and the number of cylinders Nc and engine speed Ne ( rpm) / 2 to calculate the exhaust gas mass flow rate Vg2w (g / min) (Vg2w = Qgc × Nc × Ne / 2). This exhaust gas mass flow rate Vg2w is defined as an exhaust gas flow rate Vg2 (Vg2 = Vg2w).

つまり、排ガス流量算出手段が、排ガス流量Vg2として排ガス質量流量Vg2wを算出する。そして、排ガス流入量制御手段が、この排ガス質量流量Vg2wに基づいて高圧段排気バイパス流路6dへの排ガスの流入量Qbを制御する。   That is, the exhaust gas flow rate calculation means calculates the exhaust gas mass flow rate Vg2w as the exhaust gas flow rate Vg2. Then, the exhaust gas inflow amount control means controls the inflow amount Qb of the exhaust gas to the high-pressure stage exhaust bypass passage 6d based on the exhaust gas mass flow rate Vg2w.

また、第2の実施の形態では、この排ガス流量Vg2の算出は、図5に示すように、{吸入空気量(質量)Qaw(g/cyc)+燃料噴射量Qfv(mm3 /cyc)×燃料密度ρf(g/mm3 )}により、1気筒の1サイクルあたりの排ガス質量Qgc(g/cyc)を算出し(Qgc=Qaw+Qfv×ρf)、これに、気筒数Ncとエンジン回転数Ne(rpm)/2を乗じて、排ガス質量流量Vg2w(g/min)を算出する(Vg2w=Qgc×Nc×Ne/2)。この排ガス質量流量Vg2w(g/min)を排ガス温度(℃)の関数となる排ガス密度ρg(g/mm3 )で割算して、排ガス体積流量Vg2v(mm3 /min)を算出し(Vg2v=Vg2w/ρg)、これを排ガス流量Vg2とする(Vg2=Vg2v)。なお、この排ガス密度(g/mm3 )ρgは、排ガス温度(℃)をベースにした予め定められたデータとして記憶されている。 In the second embodiment, the exhaust gas flow rate Vg2 is calculated as follows: {intake air amount (mass) Qaw (g / cyc) + fuel injection amount Qfv (mm 3 / cyc) × From the fuel density ρf (g / mm 3 )}, an exhaust gas mass Qgc (g / cyc) per cycle of one cylinder is calculated (Qgc = Qaw + Qfv × ρf), and the cylinder number Nc and the engine speed Ne ( rpm) / 2 to calculate the exhaust gas mass flow rate Vg2w (g / min) (Vg2w = Qgc × Nc × Ne / 2). The exhaust gas mass flow rate Vg2w (g / min) is divided by the exhaust gas density ρg (g / mm 3 ) as a function of the exhaust gas temperature (° C.) to calculate the exhaust gas volume flow rate Vg2v (mm 3 / min) (Vg2v = Vg2w / ρg), this is the exhaust gas flow rate Vg2 (Vg2 = Vg2v). The exhaust gas density (g / mm 3 ) ρg is stored as predetermined data based on the exhaust gas temperature (° C.).

なお、実際には排ガスの体積流量でターボ性能が変わるので、排ガス質量流量Vg2wではなく、排ガス体積流量Vg2vに換算してターボの制御を行うのが好ましい。   Since the turbo performance actually changes depending on the volume flow rate of the exhaust gas, it is preferable to control the turbo in terms of the exhaust gas volume flow rate Vg2v instead of the exhaust gas mass flow rate Vg2w.

つまり、排ガス流量算出手段は、排ガス流量Vg2として、吸入空気量Qawと燃料噴射量Qfwと排ガス密度ρgから排ガス体積流量Vg2vを算出し、排ガス流入量制御手段が、排ガス体積流量Vg2vに基づいて高圧段排気バイパス流路6dへの排ガスの流入量Qbを制御する。   That is, the exhaust gas flow rate calculation means calculates the exhaust gas volume flow rate Vg2v from the intake air amount Qaw, the fuel injection amount Qfw, and the exhaust gas density ρg as the exhaust gas flow rate Vg2, and the exhaust gas inflow rate control means calculates the high pressure based on the exhaust gas volume flow rate Vg2v. The amount Qb of exhaust gas flowing into the stage exhaust bypass passage 6d is controlled.

この排ガス流量Vg2に基づく高圧段排気バイパスバルブ6eの制御は、例えば、図6に示すような制御フローに基づいて行われる。この図6の制御フローは、高圧段排気バイパスバルブ6eの制御を行う際に繰り返し呼ばれる制御フローとして例示してある。   Control of the high-pressure stage exhaust bypass valve 6e based on the exhaust gas flow rate Vg2 is performed based on, for example, a control flow as shown in FIG. The control flow in FIG. 6 is illustrated as a control flow that is repeatedly called when the high-pressure stage exhaust bypass valve 6e is controlled.

この制御フローがスタートすると、ステップS11で、MAFで計測された吸入空気量Qawや、燃料噴射で使用する燃料噴射量Qfvを読み込む。排ガス流量Vg2として排ガス体積流量Vg2vを使用する場合には排ガス温度Tgも読み込む。なお、排ガス温度センサが無い場合には、その時にエンジン回転数と負荷から、エンジン回転数と負荷をベースに排ガス温度を示すマップデータから排ガス温度Tgを推定する。   When this control flow starts, in step S11, the intake air amount Qaw measured by the MAF and the fuel injection amount Qfv used for fuel injection are read. When the exhaust gas volume flow rate Vg2v is used as the exhaust gas flow rate Vg2, the exhaust gas temperature Tg is also read. If there is no exhaust gas temperature sensor, the exhaust gas temperature Tg is estimated from the map data indicating the exhaust gas temperature based on the engine rotation speed and load from the engine rotation speed and load at that time.

次のステップS12で、排ガス流量Vg2を算出する。この排ガス流量Vg2の算出は上述したように図4や図5のような排ガス流量の計算フローに従って、ステップS11で読み込んだ吸入空気量Qawと燃料噴射量Qfvとから排ガス質量流量Vg2wを算出する。また、排ガス体積流量Vg2vを使用する場合は排ガス温度Tgから排ガス密度ρgを算出し、この排ガス密度ρgで排ガス質量流量Vg2wを割り算して排ガス体積流量Vg2vを算出する。   In the next step S12, the exhaust gas flow rate Vg2 is calculated. As described above, the exhaust gas flow rate Vg2 is calculated from the intake air amount Qaw and the fuel injection amount Qfv read in step S11 in accordance with the exhaust gas flow rate calculation flow as shown in FIGS. When the exhaust gas volume flow rate Vg2v is used, the exhaust gas density ρg is calculated from the exhaust gas temperature Tg, and the exhaust gas mass flow rate Vg2w is divided by the exhaust gas density ρg to calculate the exhaust gas volume flow rate Vg2v.

そして、次のステップS13で、この算出した排ガス流量Vg2から、高圧段排気バイパスバルブ6eの弁開度を算出する。次のステップS14で、この弁開度になるように、高圧段排気バイパスバルブ6eの弁開度を制御する。この弁開度の制御では、単純な制御ではDUTY制御を行うが、より高精度な制御では、高圧段排気バイパスバルブ6eのリフトのフィードバック制御を行う。このステップS14を終えるとリターンする。   In the next step S13, the opening degree of the high-pressure stage exhaust bypass valve 6e is calculated from the calculated exhaust gas flow rate Vg2. In the next step S14, the valve opening degree of the high-pressure stage exhaust bypass valve 6e is controlled so as to be this valve opening degree. In the control of the valve opening, DUTY control is performed in simple control, but lift control of lift of the high-pressure stage exhaust bypass valve 6e is performed in more precise control. When this step S14 is completed, the process returns.

一方、高圧段コンプレッサ6c側の高圧段吸気バイパスバルブ6bの制御では、吸気流路3と高圧段吸気バイパス流路6aの圧力差をモニターして、高圧段吸気バイパス流路6aの圧力が大きくなった場合には開く制御をするか、あるいは、自動弁として自動的に開くようにしておく。また、高圧段排気バイパスバルブ6eが全開に近くなると仕事をしなくなるので、高圧段排気バイパスバルブ6eの弁開度に閾値を設けて開く等する。これらの場合は、それぞれ対応するマップを予め作成しておいて、それに基づいて制御する。

On the other hand, in the control of the high-pressure stage intake bypass valve 6b on the high-pressure stage compressor 6c side, the pressure difference between the intake passage 3 and the high-pressure stage intake bypass passage 6a is monitored, and the pressure of the high-pressure stage intake bypass passage 6a increases. In such a case, it is controlled to open, or automatically opened as an automatic valve. Further, when the high-pressure stage exhaust bypass valve 6e is almost fully opened, the work is stopped, so that the valve opening degree of the high-pressure stage exhaust bypass valve 6e is opened with a threshold value. In these cases, a corresponding map is created in advance, and control is performed based on the map.

この制御フローに従うことにより、排ガス流量Vg2を算出して、この排ガス流量Vg2を基に高圧段排気バイパスバルブ6eの弁開度を制御するので、排ガス流量Vg2に基づいて高圧段排気バイパス流路6dへの排ガスの流入量Qbを制御することができる。   By following this control flow, the exhaust gas flow rate Vg2 is calculated, and the valve opening degree of the high pressure exhaust gas bypass valve 6e is controlled based on the exhaust gas flow rate Vg2, so that the high pressure exhaust gas bypass channel 6d is based on the exhaust gas flow rate Vg2. It is possible to control the inflow amount Qb of the exhaust gas to the.

図7に、この実施の形態において、一定速度からアクセルを踏み込んで、燃料噴射量Qfを増加して加速を開始した時の、排ガス流量(体積)Vg2とブーストPg2(A)の様子を示す。Vg1は定常運転時の排ガス流量(体積)を、Pg2(B)は従来技術のマップ制御を行った場合のブーストを示す(図11のPg2(B)と同じ)。また、Neはエンジンの回転数を、Qfは燃料噴射量を、Spvは高圧段排気バイパスバルブ6eの制御信号を示す。   FIG. 7 shows the state of the exhaust gas flow rate (volume) Vg2 and boost Pg2 (A) when acceleration is started by depressing the accelerator from a constant speed and increasing the fuel injection amount Qf in this embodiment. Vg1 indicates the exhaust gas flow rate (volume) during steady operation, and Pg2 (B) indicates boost when the conventional map control is performed (same as Pg2 (B) in FIG. 11). Further, Ne represents the engine speed, Qf represents the fuel injection amount, and Spv represents a control signal for the high-pressure stage exhaust bypass valve 6e.

この図7によれば、この過渡時の挙動、高圧段ターボチャージャ6に流れる排ガス流量Vg2を考慮して高圧段排気バイパスバルブ6eの開度制御を行うので、ブーストPg1で示すように、従来技術のブーストPg2(B)のような落ち込みもなく、スムーズに制御することができることが分かる。   According to FIG. 7, since the opening degree of the high-pressure stage exhaust bypass valve 6e is controlled in consideration of the behavior at the time of transition and the exhaust gas flow rate Vg2 flowing through the high-pressure stage turbocharger 6, as shown by the boost Pg1, It can be seen that the control can be performed smoothly without a drop like the boost Pg2 (B).

従って、上記の構成のディーゼルエンジン1の2段式過給システム10によれば、吸入空気量Qawと燃料噴射量Qfvとから排ガス流量Vg2を算出し、この排ガス流量Vg2に基づいてターボチャージャ5,6の切替制御を行うため、ターボラグに起因するブーストの低下等の問題の発生を防止でき、過渡時においても、ブーストの落ち込みも無くスムーズに過給圧の制御を行うことができる。 Therefore, according to the two-stage turbocharging system 10 of the diesel engine 1 configured as described above, the exhaust gas flow rate Vg2 is calculated from the intake air amount Qaw and the fuel injection amount Qfv, and the turbocharger 5, based on the exhaust gas flow rate Vg2. Since the switching control of 6 is performed, it is possible to prevent the occurrence of problems such as a decrease in boost due to the turbo lag, and it is possible to smoothly control the boost pressure without a drop in boost even during a transition.

本発明に係る実施の形態のディーゼルエンジンの2段式過給システムの構成を示す図である。It is a figure which shows the structure of the two-stage supercharging system of the diesel engine of embodiment which concerns on this invention. 排ガス流量とターボチャージャの作動領域の関係を示す図である。It is a figure which shows the relationship between the waste gas flow volume and the operation area | region of a turbocharger. 2段式過給システムにおける排ガス流量と高圧段排気バイパスバルブの弁開度の関係を示す図である。It is a figure which shows the relationship between the exhaust gas flow rate in the two-stage supercharging system, and the valve opening degree of a high pressure stage exhaust bypass valve. 排ガス流量(質量)の計算フローを示す図である。It is a figure which shows the calculation flow of exhaust gas flow volume (mass). 排ガス流量(体積)の計算フローを示す図である。It is a figure which shows the calculation flow of exhaust gas flow volume (volume). 本発明に係る実施の形態のディーゼルエンジンの2段式過給システムの制御フローを示す図である。It is a figure which shows the control flow of the two-stage supercharging system of the diesel engine of embodiment which concerns on this invention. 実施例と従来例の制御とブーストを示す図である。It is a figure which shows the control and boost of an Example and a prior art example. エンジンの運転領域(エンジン回転数、トルク)と排ガス流量との関係を示す図である。It is a figure which shows the relationship between the driving | operation area | region (engine speed, torque) of an engine, and exhaust gas flow volume. エンジンの運転領域(エンジン回転数、トルク)と高圧段ターボチャージャと低圧段ターボチャージャの作動領域を示す概念図である。It is a conceptual diagram which shows the operation area | region (engine speed, torque) of an engine, and the operation area | region of a high pressure stage turbocharger and a low pressure stage turbocharger. 従来技術の制御で使用される、エンジン回転数、燃料噴射量をベースに高圧段排気バイパスバルブの弁開度を示すマップデータの例である。It is an example of the map data which shows the valve opening degree of a high pressure stage exhaust bypass valve based on an engine speed and fuel injection amount used by control of a prior art. 従来技術におけるマップ制御によるブーストの過渡時の挙動を示す図である。It is a figure which shows the behavior at the time of the boost transient by the map control in a prior art.

符号の説明Explanation of symbols

1 ディーゼルエンジン
2 エンジン本体
3 吸気流路
4 排気流路
5 低圧段ターボチャージャ
5a 低圧段排気バイパス流路
5b ウェストゲートバルブ
5c 低圧段コンプレッサ
5t 低圧段タービン
6 高圧段ターボチャージャ
6a 高圧段吸気バイパス流路
6b 高圧段吸気バイパスバルブ
6c 高圧段コンプレッサ
6d 高圧段排気バイパス流路
6e 高圧段排気バイパスバルブ
6f アクチュエータ
6g 2ウェイバルブ
6t 高圧段タービン
10 2段式過給システム
A 吸気
排ガス
Ge EGRガス
Nc 気筒数
Ne エンジン回転数
Qaw 吸入空気量(質量)
Qgc 1気筒の1サイクルあたりの排ガス質量
Qfv 燃料噴射量(体積)
Vg2 排ガス流量
Vg2w 排ガス質量流量
Vg2v 排ガス体積流量
ρf 燃料密度
ρg 排ガス密度
1 Diesel engine
2 Engine body
3 Intake channel
4 Exhaust flow path
5 Low-pressure stage turbocharger
5a Low-pressure stage exhaust bypass flow path
5b Westgate valve
5c Low pressure compressor
5t low pressure stage turbine
6 High-pressure turbocharger
6a High-pressure stage intake bypass passage
6b High-pressure stage intake bypass valve
6c High pressure compressor
6d High-pressure stage exhaust bypass flow path
6e High-pressure stage exhaust bypass valve
6f Actuator
6g 2-way valve
6t high pressure turbine
10 Two-stage supercharging system
A Inhalation
G exhaust gas
Ge EGR gas
Nc Number of cylinders
Ne engine speed
Qaw Intake air volume (mass)
Qgc Mass of exhaust gas per cycle of one cylinder
Qfv Fuel injection amount (volume)
Vg2 exhaust gas flow rate
Vg2w Exhaust gas mass flow rate
Vg2v exhaust gas volume flow
ρf Fuel density
ρg exhaust gas density

Claims (3)

ディーゼルエンジンの吸気流路の上流側から順に低圧段ターボチャージャの低圧段コンプレッサと高圧段ターボチャージャの高圧段コンプレッサを設けると共に、排気流路の上流側から順に前記高圧段ターボチャージャの高圧段タービンと前記低圧段ターボチャージャの低圧段タービンを設け、前記高圧段コンプレッサをバイパスする高圧段吸気バイパス流路と、前記高圧段タービンをバイパスする高圧段排気バイパス流路とを備えたディーゼルエンジンの2段式過給システムにおいて、
吸入空気量を求める吸入吸気量把握手段と、燃料噴射量を求める燃料噴射量把握手段と、前記吸入空気量と前記燃料噴射量に基づいて排ガス流量を求める排ガス流量算出手段と、前記排ガス流量と前記高圧段ターボチャージャ及び前記低圧段ターボチャージャの容量とに基づいて前記高圧段排気バイパス流路へ流入する排ガスの流入量を制御する排ガス流入量制御手段とを備え、
前記排ガス流入量制御手段の制御において、燃料噴射量を増加して前記排ガス流量を漸増していった場合に、前記排ガス流量が前記高圧段タービンの容量の最大値である第1排ガス流量になったときから、前記高圧段ターボチャージャと前記低圧段ターボチャージャとの容量の比率によって設定された第2排ガス流量になるまで、前記高圧段排気バイパス流路へ流入する排ガスの流入量を漸増させていき、前記第2排ガス流量になったときに前記排ガスの流入量を最大にすることを特徴とするディーゼルエンジンの2段式過給システム。
A low-pressure stage compressor of the low-pressure stage turbocharger and a high-pressure stage compressor of the high-pressure stage turbocharger are provided in order from the upstream side of the intake passage of the diesel engine, and the high-pressure stage turbine of the high-pressure stage turbocharger in order from the upstream side of the exhaust passage. A two-stage diesel engine having a low-pressure stage turbine for the low-pressure stage turbocharger, and having a high-pressure stage intake bypass path for bypassing the high-pressure stage compressor and a high-pressure stage exhaust bypass path for bypassing the high-pressure stage turbine In the supercharging system,
An intake air intake amount grasping means for obtaining an intake air amount; a fuel injection amount grasping means for obtaining a fuel injection amount; an exhaust gas flow rate calculating means for obtaining an exhaust gas flow rate based on the intake air amount and the fuel injection amount ; An exhaust gas inflow amount control means for controlling an inflow amount of exhaust gas flowing into the high pressure stage exhaust bypass passage based on the capacity of the high pressure stage turbocharger and the low pressure stage turbocharger ;
In the control of the exhaust gas inflow control means, when the fuel injection amount is increased and the exhaust gas flow rate is gradually increased, the exhaust gas flow rate becomes the first exhaust gas flow rate that is the maximum value of the capacity of the high-pressure turbine. Until the second exhaust gas flow rate set by the capacity ratio between the high-pressure stage turbocharger and the low-pressure stage turbocharger is reached, the inflow amount of the exhaust gas flowing into the high-pressure stage exhaust bypass passage is gradually increased. A two-stage turbocharging system for a diesel engine, wherein the exhaust gas flow rate is maximized when the second exhaust gas flow rate is reached.
前記排ガス流量算出手段が、前記排ガス流量として排ガス質量流量を算出し、前記排ガス流入量制御手段が、前記排ガス質量流量に基づいて前記高圧段排気バイパス流路への排ガス流入量を制御することを特徴とする請求項1記載のディーゼルエンジンの2段式過給システム。   The exhaust gas flow rate calculating means calculates an exhaust gas mass flow rate as the exhaust gas flow rate, and the exhaust gas inflow amount control means controls the exhaust gas inflow amount to the high-pressure stage exhaust bypass flow path based on the exhaust gas mass flow rate. The two-stage turbocharging system for a diesel engine according to claim 1, wherein 排ガス密度を求める排ガス密度算出手段を備えると共に、前記排ガス流量算出手段は、前記排ガス流量として、前記吸入空気量と前記燃料噴射量と前記排ガス密度から排ガス体積流量を算出し、前記排ガス流入量制御手段が、前記排ガス体積流量に基づいて前記高圧段排気バイパス流路への排ガスの流入量を制御することを特徴とする請求項1記載のディーゼルエンジンの2段式過給システム。   Exhaust gas density calculating means for obtaining an exhaust gas density is provided, and the exhaust gas flow rate calculating means calculates an exhaust gas volume flow rate from the intake air amount, the fuel injection amount, and the exhaust gas density as the exhaust gas flow rate, and controls the exhaust gas inflow amount control. The two-stage turbocharging system for a diesel engine according to claim 1, wherein the means controls the amount of exhaust gas flowing into the high-pressure stage exhaust bypass passage based on the exhaust gas volume flow rate.
JP2006025726A 2006-02-02 2006-02-02 Two-stage turbocharging system for diesel engines Expired - Fee Related JP4935094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006025726A JP4935094B2 (en) 2006-02-02 2006-02-02 Two-stage turbocharging system for diesel engines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006025726A JP4935094B2 (en) 2006-02-02 2006-02-02 Two-stage turbocharging system for diesel engines

Publications (2)

Publication Number Publication Date
JP2007205265A JP2007205265A (en) 2007-08-16
JP4935094B2 true JP4935094B2 (en) 2012-05-23

Family

ID=38484937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006025726A Expired - Fee Related JP4935094B2 (en) 2006-02-02 2006-02-02 Two-stage turbocharging system for diesel engines

Country Status (1)

Country Link
JP (1) JP4935094B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533490B2 (en) 2015-02-02 2020-01-14 Mitsubishi Heavy Industries, Ltd. Supercharging system of internal combustion engine and method of controlling supercharging system

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009191667A (en) * 2008-02-13 2009-08-27 Toyota Central R&D Labs Inc Supercharging device and supercharging engine system
JP5163514B2 (en) * 2009-01-20 2013-03-13 トヨタ自動車株式会社 Control device for an internal combustion engine with a supercharger
JP5906725B2 (en) * 2011-12-27 2016-04-20 マツダ株式会社 Control device for turbocharged engine
CN105464769B (en) * 2015-12-30 2017-11-17 东风商用车有限公司 A kind of dual channel power turbine system and its control method
GB2540446B (en) * 2016-01-07 2018-12-12 Ford Global Tech Llc Method and system to deliver smooth engine torque

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522359B2 (en) * 1988-10-06 1996-08-07 トヨタ自動車株式会社 Supercharging control device for two-stage turbo engine
JP3931507B2 (en) * 1999-11-17 2007-06-20 いすゞ自動車株式会社 Diesel engine turbocharger system
JP4291627B2 (en) * 2003-06-10 2009-07-08 トヨタ自動車株式会社 Method for removing particulate matter
JP4561236B2 (en) * 2004-08-23 2010-10-13 トヨタ自動車株式会社 Internal combustion engine supercharging system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10533490B2 (en) 2015-02-02 2020-01-14 Mitsubishi Heavy Industries, Ltd. Supercharging system of internal combustion engine and method of controlling supercharging system

Also Published As

Publication number Publication date
JP2007205265A (en) 2007-08-16

Similar Documents

Publication Publication Date Title
JP3918855B1 (en) Two-stage supercharging system for internal combustion engines
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
US8096123B2 (en) System and method for mode transition for a two-stage series sequential turbocharger
JP4883221B2 (en) Control valve abnormality determination device for internal combustion engine
JP4692201B2 (en) EGR system for internal combustion engine
US8813493B2 (en) Supercharger control device for an internal combustion engine
JP5444996B2 (en) Internal combustion engine and control method thereof
WO2007040071A1 (en) Egr system of two stage super-charging engine
JP2005315163A (en) Multi-stage supercharging system for internal combustion engine
JPWO2011007456A1 (en) Control valve abnormality determination device for internal combustion engine
JP2013505395A (en) Control method of engine in transient operation
JP4935094B2 (en) Two-stage turbocharging system for diesel engines
JP5031250B2 (en) Engine three-stage turbocharging system
JP2010096049A (en) Control device of internal combustion engine
JP2006183605A (en) Multi-stage supercharging system for internal combustion engine and control method for the system
JP5035097B2 (en) Surge avoidance control system for multi-stage turbocharging system
US10145297B2 (en) Control device for engine equipped with turbo-supercharger
Salehi et al. Comparison of high-and low-pressure electric supercharging of a HDD engine: steady state and dynamic air-path considerations
JP6056740B2 (en) Exhaust gas recirculation controller
JP2011111929A (en) Internal combustion engine and method for controlling the same
JP6521022B2 (en) Control device and control method for turbocharged engine
JP5970972B2 (en) Internal combustion engine with mechanical supercharger
JP5906724B2 (en) Control device for turbocharged engine
JP2011241723A (en) Egr device of internal combustion engine with supercharger
JP5906725B2 (en) Control device for turbocharged engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101111

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150302

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees