JP4561236B2 - Internal combustion engine supercharging system - Google Patents

Internal combustion engine supercharging system Download PDF

Info

Publication number
JP4561236B2
JP4561236B2 JP2004241988A JP2004241988A JP4561236B2 JP 4561236 B2 JP4561236 B2 JP 4561236B2 JP 2004241988 A JP2004241988 A JP 2004241988A JP 2004241988 A JP2004241988 A JP 2004241988A JP 4561236 B2 JP4561236 B2 JP 4561236B2
Authority
JP
Japan
Prior art keywords
egr
pressure turbocharger
passage
amount
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004241988A
Other languages
Japanese (ja)
Other versions
JP2006057570A (en
Inventor
久 大木
清 藤原
崇志 松本
雄介 伯耆
嗣史 藍川
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004241988A priority Critical patent/JP4561236B2/en
Publication of JP2006057570A publication Critical patent/JP2006057570A/en
Application granted granted Critical
Publication of JP4561236B2 publication Critical patent/JP4561236B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/02Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust
    • F01N3/021Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters
    • F01N3/033Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices
    • F01N3/035Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for cooling, or for removing solid constituents of, exhaust by means of filters in combination with other devices with catalytic reactors, e.g. catalysed diesel particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/02EGR systems specially adapted for supercharged engines
    • F02M26/08EGR systems specially adapted for supercharged engines for engines having two or more intake charge compressors or exhaust gas turbines, e.g. a turbocharger combined with an additional compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0412Multiple heat exchangers arranged in parallel or in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B29/00Engines characterised by provision for charging or scavenging not provided for in groups F02B25/00, F02B27/00 or F02B33/00 - F02B39/00; Details thereof
    • F02B29/04Cooling of air intake supply
    • F02B29/0406Layout of the intake air cooling or coolant circuit
    • F02B29/0418Layout of the intake air cooling or coolant circuit the intake air cooler having a bypass or multiple flow paths within the heat exchanger to vary the effective heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/24Control of the pumps by using pumps or turbines with adjustable guide vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M26/00Engine-pertinent apparatus for adding exhaust gases to combustion-air, main fuel or fuel-air mixture, e.g. by exhaust gas recirculation [EGR] systems
    • F02M26/13Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories
    • F02M26/22Arrangement or layout of EGR passages, e.g. in relation to specific engine parts or for incorporation of accessories with coolers in the recirculation passage
    • F02M26/23Layout, e.g. schematics
    • F02M26/28Layout, e.g. schematics with liquid-cooled heat exchangers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Description

本発明は、複数のターボ過給機を組み合わせた内燃機関の過給システムに関する。   The present invention relates to a supercharging system for an internal combustion engine in which a plurality of turbochargers are combined.

内燃機関の過給システムとして、低圧ターボ過給機と高圧ターボ過給機とを使用し、高圧ターボ過給機のタービンを低圧ターボ過給機のそれよりも排気通路の上流側に、高圧ターボ過給機のコンプレッサを低圧ターボ過給機のそれよりも吸気通路の下流側にそれぞれ配置した二段過給システムが知られている。この種の過給システムが設けられた内燃機関のEGR装置としては、タービン間の排気通路からEGRガスを取り出して低圧ターボ過給機のコンプレッサの上流にEGRガスを導入するEGR装置(特許文献1参照)、高圧ターボ過給機のタービンの上流からEGRガスを取り出して高圧ターボ過給機のコンプレッサの下流にEGRガスを導入するEGR装置(特許文献2参照)がそれぞれ知られている。二段過給システムにおいて、タービン間の排気通路からEGRガスを取り出してコンプレッサ間の吸気通路にEGRガスを導入する構成も提案されている(特許文献3参照)。但し、特許文献3において、後段のターボ過給機の容量は前段のターボ過給機のそれよりも大きく示されている。
実用新案登録第2522482号公報 特許第2759375号公報 特開2000−220480号公報
As a supercharging system for an internal combustion engine, a low-pressure turbocharger and a high-pressure turbocharger are used, and the high-pressure turbocharger turbine is located upstream of the low-pressure turbocharger in the exhaust passage, and the high-pressure turbocharger. There is known a two-stage supercharging system in which a compressor of a supercharger is disposed downstream of an intake passage from that of a low-pressure turbocharger. As an EGR device of an internal combustion engine provided with this type of supercharging system, an EGR device that takes out EGR gas from an exhaust passage between turbines and introduces EGR gas upstream of a compressor of a low-pressure turbocharger (Patent Document 1). Reference is also made to an EGR device (see Patent Document 2) that takes out EGR gas from the upstream of the turbine of the high-pressure turbocharger and introduces EGR gas downstream of the compressor of the high-pressure turbocharger. In a two-stage supercharging system, a configuration has also been proposed in which EGR gas is taken out from an exhaust passage between turbines and introduced into an intake passage between compressors (see Patent Document 3). However, in Patent Document 3, the capacity of the subsequent turbocharger is shown to be larger than that of the preceding turbocharger.
Utility Model Registration No. 2522482 Japanese Patent No. 2759375 JP 2000-220480 A

EGRガスを前段(低圧段)のコンプレッサの上流に導入した場合(特許文献1)には、EGRガスが燃焼室に達するまでの流路容積が大きくなり、EGRの応答遅れが大きい。EGRガスを高圧ターボ過給機のタービンの上流から取り出す場合(特許文献2)には、EGRガスの取り出しによって高圧ターボ過給機のタービンに導かれる排気エネルギが減少して過給効果が損なわれる。特許文献3の構成では、後段のターボ過給機の容量が前段のターボ過給機のそれよりも大きいのでEGRの流路容積が大きくなり、EGRの応答性に関して懸念がある。   When EGR gas is introduced upstream of the preceding (low pressure stage) compressor (Patent Document 1), the volume of the flow path until the EGR gas reaches the combustion chamber increases, and the response delay of EGR is large. When the EGR gas is taken out from the upstream of the turbine of the high-pressure turbocharger (Patent Document 2), the exhaust energy led to the turbine of the high-pressure turbocharger is reduced by the removal of the EGR gas, and the supercharging effect is impaired. . In the configuration of Patent Document 3, since the capacity of the turbocharger at the rear stage is larger than that of the turbocharger at the front stage, the EGR channel volume is increased, and there is a concern regarding the responsiveness of EGR.

本発明は、EGRの応答性に優れ、かつ過給効果を損なうことなくEGRを実行することができる内燃機関の過給システムを提供することを目的とする。   An object of the present invention is to provide a supercharging system for an internal combustion engine that is excellent in EGR response and can execute EGR without impairing the supercharging effect.

本発明は、低圧ターボ過給機と、前記低圧ターボ過給機のタービンよりも排気通路の上流に配置されたタービン及び前記低圧ターボ過給機のコンプレッサよりも吸気通路の下流に配置されたコンプレッサをそれぞれ有し、前記低圧ターボ過給機よりも容量が小さい高圧ターボ過給機と、前記高圧ターボ過給機のタービンと前記低圧ターボ過給機のタービンとの間に設定されたEGR取出位置と、前記低圧ターボ過給機のコンプレッサと前記高圧ターボ過給機のコンプレッサとの間に設定されたEGR導入位置とを結ぶEGR通路と、前記EGR通路を通過するEGR量を調整するEGR弁と、内燃機関の運転状態に応じたEGR量が得られるように前記EGR弁を制御するEGR弁制御手段と、前記排気通路の前記EGR取出位置の下流に設けられ、開度調整が可能な可変絞り手段と、前記可変絞り手段の開度を制御する絞り制御手段と、前記吸気通路に導入されているEGR量を検出するEGR量検出手段と、を備え、前記EGR弁制御手段は、前記EGR量検出手段によるEGR量の検出値を帰還量として、前記目標EGR量に対する前記検出値の偏差が減少するように前記EGR弁をフィードバック制御し、前記絞り制御手段は、前記EGR弁のフィードバック制御が所定の限界を超えているか否か判断し、前記限界を超えている場合に前記偏差が減少する方向に前記可変絞り手段の開度を変化させ、前記低圧ターボ過給機として、タービンの入口部分の流路断面積を変更可能な可変ノズル式ターボ過給機が設けられることにより、該低圧ターボ過給機が前記可変絞り手段として機能し、前記絞り制御手段は、前記限界を超えている場合に実行すべきものとして予め用意されたマップに基づいて前記低圧ターボ過給機のノズル開度の変更幅を取得し、その取得された変更幅に従って前記低圧ターボ過給機のノズル開度をオープンループ制御するものである(請求項1)。
The present invention relates to a low-pressure turbocharger, a turbine disposed upstream of an exhaust passage from a turbine of the low-pressure turbocharger, and a compressor disposed downstream of an intake passage from a compressor of the low-pressure turbocharger. A high-pressure turbocharger having a smaller capacity than the low-pressure turbocharger, and an EGR take-out position set between the turbine of the high-pressure turbocharger and the turbine of the low-pressure turbocharger An EGR passage that connects an EGR introduction position set between the compressor of the low-pressure turbocharger and the compressor of the high-pressure turbocharger, and an EGR valve that adjusts an EGR amount that passes through the EGR passage An EGR valve control means for controlling the EGR valve so as to obtain an EGR amount corresponding to the operating state of the internal combustion engine; and an EGR valve downstream of the EGR extraction position in the exhaust passage. Variable throttle means capable of adjusting the opening, throttle control means for controlling the opening of the variable throttle means, and EGR amount detection means for detecting the EGR amount introduced into the intake passage, The EGR valve control means feedback-controls the EGR valve so that a deviation of the detected value with respect to the target EGR amount is reduced by using a detected value of the EGR amount by the EGR amount detecting means as a feedback amount, and the throttle control means Determines whether or not the feedback control of the EGR valve exceeds a predetermined limit, and when it exceeds the limit, changes the opening of the variable throttle means in a direction in which the deviation decreases, As the supercharger, a variable nozzle turbocharger capable of changing the flow path cross-sectional area of the inlet portion of the turbine is provided, so that the low-pressure turbocharger and the variable throttle means The throttle control means acquires a change range of the nozzle opening of the low-pressure turbocharger based on a map prepared in advance as a thing to be executed when the limit is exceeded, and the acquired The open degree of the nozzle opening of the low-pressure turbocharger is controlled according to the change width (Claim 1).

この発明の過給システムによれば、吸気通路に対するEGR通路の接続位置であるEGR導入位置が低圧ターボ過給機及び高圧ターボ過給機のそれぞれのコンプレッサの間に設定されているため、低圧ターボ過給機のコンプレッサの上流にEGR通路を接続する場合と比較してEGRの流路容積が小さくなる。従って、EGRの応答性が向上し、EGRの制御精度が向上する。しかも、高圧ターボ過給機のコンプレッサの容量が低圧ターボ過給機のコンプレッサの容量よりも小さく設定されているため、高圧ターボ過給機を低圧ターボ過給機よりも大容量に設定した場合と比べてEGRの流路容積が小さく、EGRの応答性に優れる。EGR通路の排気通路に対する接続位置であるEGR取出位置が低圧ターボ過給機及び高圧ターボ過給機のそれぞれのタービンの間に設定されているので、EGR取出位置を高圧ターボ過給機のタービンの上流に設定した場合と比較して高圧ターボ過給機のタービンにより大きな排気エネルギを与えることができる。それにより過給効果を損なうことなくEGRを実行することができる。また、EGR弁のフィードバック制御によりEGR量を高精度に制御しつつ、その制御が限界に達したときには可変絞り手段を操作してEGR量を変化させ、それによりEGR弁のフィードバック制御を限界内に戻すことができる。さらに、可変ノズル式ターボ過給機によるEGRの制御精度はEGR弁によるEGR量の制御精度と比較して劣るため、ノズル開度の調整によるEGR量の制御をオープンループ制御としてEGR量の目標EGR量に対するずれ量を所定の制御範囲内に抑制しつつ、EGR量のずれを解消するようにEGR弁をフィードバック制御することにより、EGR調整手段としての可変ノズルとEGR弁とを合理的に使い分けてEGR量を効率よくかつ高精度に目標EGR量へと制御することができる。
According to the supercharging system of the present invention, the EGR introduction position, which is the connection position of the EGR passage to the intake passage, is set between the compressors of the low pressure turbocharger and the high pressure turbocharger. Compared with the case where the EGR passage is connected upstream of the compressor of the supercharger, the EGR passage volume is reduced. Therefore, the response of EGR is improved and the control accuracy of EGR is improved. In addition, since the capacity of the compressor of the high-pressure turbocharger is set smaller than the capacity of the compressor of the low-pressure turbocharger, the high-pressure turbocharger is set to have a larger capacity than the low-pressure turbocharger. In comparison, the EGR channel volume is small and the EGR response is excellent. Since the EGR take-out position, which is the connection position of the EGR passage to the exhaust passage, is set between the turbines of the low-pressure turbocharger and the high-pressure turbocharger, the EGR take-out position is set to the turbine of the high-pressure turbocharger. Compared with the case where it is set upstream, a large exhaust energy can be given to the turbine of the high-pressure turbocharger. Thereby, EGR can be executed without impairing the supercharging effect. In addition, while controlling the EGR amount with high accuracy by the feedback control of the EGR valve, when the control reaches the limit, the variable throttle means is operated to change the EGR amount, thereby bringing the feedback control of the EGR valve within the limit. Can be returned. Furthermore, since the control accuracy of EGR by the variable nozzle turbocharger is inferior to the control accuracy of the EGR amount by the EGR valve, the control of the EGR amount by adjusting the nozzle opening is set as an open loop control and the target EGR amount of EGR amount By controlling the EGR valve so as to eliminate the deviation of the EGR amount while suppressing the deviation amount with respect to the amount within a predetermined control range, the variable nozzle as the EGR adjustment means and the EGR valve can be used properly. The EGR amount can be controlled efficiently and with high accuracy to the target EGR amount.

以上に説明したように、本発明によれば、低圧ターボ過給機のコンプレッサの上流にEGR通路を接続する場合と比較してEGRの流路容積を小さく構成してEGRの応答性を向上させ、EGRの制御精度を高めることができる。しかも、高圧ターボ過給機のコンプレッサの容量が低圧ターボ過給機のコンプレッサの容量よりも小さく設定されているため、高圧ターボ過給機を低圧ターボ過給機よりも大容量に設定した場合と比べてEGRの流路容積が小さくなり、EGRの応答性に優れる。EGR取出位置を高圧ターボ過給機のタービンの上流に設定した場合と比較して高圧ターボ過給機のタービンにより大きな排気エネルギを与え、それにより過給効果を損なうことなくEGRを実行することができる。   As described above, according to the present invention, the EGR passage volume is made smaller compared with the case where the EGR passage is connected upstream of the compressor of the low-pressure turbocharger to improve the EGR response. , EGR control accuracy can be improved. In addition, since the capacity of the compressor of the high-pressure turbocharger is set smaller than the capacity of the compressor of the low-pressure turbocharger, the high-pressure turbocharger is set to have a larger capacity than the low-pressure turbocharger. In comparison, the EGR channel volume is reduced, and the EGR response is excellent. Compared to the case where the EGR take-out position is set upstream of the turbine of the high-pressure turbocharger, a larger exhaust energy is given to the turbine of the high-pressure turbocharger, thereby performing EGR without impairing the supercharging effect. it can.

[第1の形態]
図1は本発明の過給システムの一形態を示している。本過給システムは、内燃機関としてのディーゼルエンジン(以下、エンジンと称することがある。)に適用される。エンジン1は吸気通路2と排気通路3とを備えており、それらの通路2、3の間には低圧ターボ過給機4及び高圧ターボ過給機5が設けられている。これらのターボ過給機4、5は、排気通路3に配置されるタービン4b、5bにて排気エネルギを回収し、そのエネルギで吸気通路2に配置されるコンプレッサ4a、5aを駆動して吸気を圧縮する周知の装置である。高圧ターボ過給機5はのタービン5bは低圧ターボ過給機4のタービン4bよりも排気通路3の上流に配置され、コンプレッサ5aは低圧ターボ過給機4のコンプレッサ4aよりも吸気通路2の下流に配置される。従って、低圧ターボ過給機4にて圧縮された吸気は高圧ターボ過給機5にてさらに圧縮されてエンジン1のシリンダ(不図示)内に送り込まれる。高圧ターボ過給機5の容量は低圧ターボ過給機4の容量よりも小さい。すなわち、高圧ターボ過給機5のコンプレッサ5a及びタービン5bの容量は低圧ターボ過給機4のコンプレッサ4a及びタービン4bの容量よりもそれぞれ小さい。
[First embodiment]
FIG. 1 shows an embodiment of a supercharging system according to the present invention. This supercharging system is applied to a diesel engine as an internal combustion engine (hereinafter sometimes referred to as an engine). The engine 1 includes an intake passage 2 and an exhaust passage 3, and a low-pressure turbocharger 4 and a high-pressure turbocharger 5 are provided between the passages 2 and 3. These turbochargers 4 and 5 collect exhaust energy by turbines 4b and 5b arranged in the exhaust passage 3, and drive the compressors 4a and 5a arranged in the intake passage 2 by the energy to take in intake air. It is a known device for compressing. The turbine 5 b of the high-pressure turbocharger 5 is arranged upstream of the exhaust passage 3 than the turbine 4 b of the low-pressure turbocharger 4, and the compressor 5 a is downstream of the intake passage 2 than the compressor 4 a of the low-pressure turbocharger 4. Placed in. Accordingly, the intake air compressed by the low-pressure turbocharger 4 is further compressed by the high-pressure turbocharger 5 and sent into a cylinder (not shown) of the engine 1. The capacity of the high-pressure turbocharger 5 is smaller than the capacity of the low-pressure turbocharger 4. That is, the capacities of the compressor 5a and the turbine 5b of the high pressure turbocharger 5 are smaller than the capacities of the compressor 4a and the turbine 4b of the low pressure turbocharger 4, respectively.

コンプレッサ4aの上流には吸気を濾過するためのエアクリーナ6、及び吸入空気量に対応した信号を出力するエアフローメータ7が設けられている。また、コンプレッサ4a、5aの間には吸入空気量を変化させるスロットル弁8が設けられている。一方、高圧ターボ過給機5のコンプレッサ5aの下流と吸気マニホールド9との間において、吸気通路2は主通路2aと吸気バイパス通路2bとに分岐されている。主通路2aにはターボ過給機4、5にて圧縮された吸気を冷却するインタークーラ10が設けられている。吸気をインタークーラ10又は吸気バイパス通路2bのいずれに導くかを選択する流路選択手段として、吸気バイパス通路2bの主通路2aに対する合流部の近傍には第1切替弁11が設けられ、かつインタクーラ10の上流でかつ吸気バイパス通路2bの分岐部の下流の主通路2aには第2切替弁12が設けられている。第1切替弁11は可能な限り合流部に近付けて配置することが望ましく、第2切替弁12は可能な限り分岐部に近付けて配置することが望ましい。   An air cleaner 6 for filtering the intake air and an air flow meter 7 for outputting a signal corresponding to the intake air amount are provided upstream of the compressor 4a. A throttle valve 8 for changing the intake air amount is provided between the compressors 4a and 5a. On the other hand, between the downstream of the compressor 5a of the high-pressure turbocharger 5 and the intake manifold 9, the intake passage 2 is branched into a main passage 2a and an intake bypass passage 2b. An intercooler 10 for cooling the intake air compressed by the turbochargers 4 and 5 is provided in the main passage 2a. As a flow path selection means for selecting whether the intake air is guided to the intercooler 10 or the intake bypass passage 2b, a first switching valve 11 is provided in the vicinity of the junction of the intake bypass passage 2b with the main passage 2a, and the intercooler A second switching valve 12 is provided in the main passage 2a upstream of 10 and downstream of the branch portion of the intake bypass passage 2b. It is desirable to arrange the first switching valve 11 as close to the junction as possible, and it is desirable to arrange the second switching valve 12 as close to the branch as possible.

主通路2aと吸気バイパス通路2bとの間で、これらの分岐部から合流部までの流路長を比較した場合、吸気バイパス通路2bの流路長は、インタークーラ10の内部通路が省略されることにより、主通路2aの流路長と比較して十分に短い。また、吸気バイパス通路2bはEGR実行中にのみ使用され、急加速時のように吸入空気量が大きい場合にはEGRが禁止されて吸気バイパス通路2bは閉じられる。従って、吸気バイパス通路2bの断面積はEGRの実行中における最大吸入空気量に合わせて設定すればよく、主通路2aの断面積よりも小さくてよい。これにより、吸気バイパス通路2bの流路容積は主通路2a(分岐部から合流部まで)のそれと比して十分に小さくなる。   When the flow path lengths from the branching portion to the merge portion are compared between the main passage 2a and the intake bypass passage 2b, the flow passage length of the intake bypass passage 2b is omitted from the internal passage of the intercooler 10. Thus, it is sufficiently shorter than the flow path length of the main passage 2a. The intake bypass passage 2b is used only during execution of EGR, and when the intake air amount is large as in sudden acceleration, EGR is prohibited and the intake bypass passage 2b is closed. Therefore, the cross-sectional area of the intake bypass passage 2b may be set according to the maximum intake air amount during execution of EGR, and may be smaller than the cross-sectional area of the main passage 2a. As a result, the flow volume of the intake bypass passage 2b is sufficiently smaller than that of the main passage 2a (from the branch portion to the merge portion).

一方、排気通路3には、排気マニホールド13の排気を高圧ターボ過給機5のタービン5bに導く主通路3aと、排気マニホールド13からタービン5bを迂回してタービン5bの下流で主通路3aに合流する排気バイパス通路3bとが設けられている。排気バイパス通路3bにはその排気バイパス通路3bを通過する排気の流量を調整するための排気バイパス弁14が設けられている。排気バイパス弁14は最小開度と最大開度との間で開度調整が可能である。排気バイパス弁14を最小開度に設定した場合には排気バイパス通路3bが閉じられて排気マニホールド13の排気ガスの全量が主通路3aに導かれる。   On the other hand, in the exhaust passage 3, a main passage 3 a that guides exhaust from the exhaust manifold 13 to the turbine 5 b of the high-pressure turbocharger 5, and the exhaust passage 13 bypasses the turbine 5 b and joins the main passage 3 a downstream of the turbine 5 b. An exhaust bypass passage 3b is provided. The exhaust bypass passage 3b is provided with an exhaust bypass valve 14 for adjusting the flow rate of the exhaust gas passing through the exhaust bypass passage 3b. The exhaust bypass valve 14 can be adjusted between a minimum opening and a maximum opening. When the exhaust bypass valve 14 is set to the minimum opening, the exhaust bypass passage 3b is closed and the entire amount of exhaust gas in the exhaust manifold 13 is guided to the main passage 3a.

排気通路3のタービン4b、5bの間には、排気を浄化するための排気浄化装置15が設けられている。排気浄化装置15は主通路3aと排気バイパス通路3bとの合流位置よりも下流に配置されている。従って、高圧ターボ過給機5のタービン5b又は排気バイパス通路3bのいずれを通過した排気も排気浄化装置15を通過する。なお、排気浄化装置15としては、排気中の粒子状物質を捕捉するパティキュレートフィルタ、酸化能を有する触媒を単独で又は組み合わせて用いることができる。酸化能を有する触媒は、酸化触媒でもよいし、NOx吸蔵還元触媒でもよい。これらのパティキュレートフィルタに酸化能を有する触媒物質を担持させて排気浄化装置15を構成してもよい。   Between the turbines 4b and 5b in the exhaust passage 3, an exhaust purification device 15 for purifying the exhaust is provided. The exhaust purification device 15 is disposed downstream of the joining position of the main passage 3a and the exhaust bypass passage 3b. Therefore, the exhaust gas that has passed through either the turbine 5 b or the exhaust bypass passage 3 b of the high-pressure turbocharger 5 passes through the exhaust gas purification device 15. As the exhaust purification device 15, a particulate filter that captures particulate matter in the exhaust and a catalyst having oxidation ability can be used alone or in combination. The catalyst having oxidation ability may be an oxidation catalyst or a NOx storage reduction catalyst. The exhaust gas purification device 15 may be configured by supporting a catalytic material having oxidizing ability on these particulate filters.

排気通路3と吸気通路2とはEGR通路16にて接続されている。EGR通路16は、排気通路3の排気浄化装置15の下流でかつターボ過給機4のタービン4bの上流に設定されたEGR取出位置と、吸気通路2のスロットル弁8の下流でかつ高圧ターボ過給機5のコンプレッサ5aの上流に設定されたEGR導入位置とを結ぶように設けられている。EGR通路16にはEGRガスを冷却する水冷式のEGRクーラ17と、EGR通路16を通過するガス流量を調整するEGR弁18とが設けられている。EGRクーラ17の冷却水としてはエンジン1の冷却水が導かれる。EGR弁18は最小開度と最大開度との間で開度調整が可能である。EGR弁18を最小開度に設定した場合にはEGR通路16が閉じられて吸気通路2へのEGRガスの導入が阻止される。   The exhaust passage 3 and the intake passage 2 are connected by an EGR passage 16. The EGR passage 16 includes an EGR extraction position set downstream of the exhaust purification device 15 in the exhaust passage 3 and upstream of the turbine 4b of the turbocharger 4, and downstream of the throttle valve 8 in the intake passage 2 and high-pressure turbocharger. The EGR introduction position set upstream of the compressor 5a of the feeder 5 is provided. The EGR passage 16 is provided with a water-cooled EGR cooler 17 that cools EGR gas and an EGR valve 18 that adjusts the flow rate of gas passing through the EGR passage 16. As the cooling water of the EGR cooler 17, the cooling water of the engine 1 is guided. The EGR valve 18 can be adjusted between a minimum opening and a maximum opening. When the EGR valve 18 is set to the minimum opening, the EGR passage 16 is closed and the introduction of EGR gas into the intake passage 2 is prevented.

以上の過給システムにおいて、第1切替弁11、第2切替弁12、排気バイパス弁14及びEGR弁18の動作はエンジンコントロールユニット(以下、ECUと呼ぶ。)20によって制御される。ECU20はエンジン1に対する燃料噴射等を制御するコンピュータユニットとして設けられるものであり、本発明の過給システムを制御するために用意された特定のプログラムを実行することにより、各弁11、12、14及び18の動作を制御する手段として機能する。なお、ECU20にはエンジン1の運転状態を判別するためにエアフローメータ7の他に、吸気圧センサ21等の各種のセンサの出力信号が入力されるが、それらの詳細は省略した。   In the supercharging system described above, the operations of the first switching valve 11, the second switching valve 12, the exhaust bypass valve 14, and the EGR valve 18 are controlled by an engine control unit (hereinafter referred to as ECU) 20. The ECU 20 is provided as a computer unit that controls fuel injection and the like for the engine 1, and each valve 11, 12, 14 is executed by executing a specific program prepared for controlling the supercharging system of the present invention. And 18 functions as a means for controlling the operation. In addition to the air flow meter 7, output signals from various sensors such as the intake pressure sensor 21 are input to the ECU 20 in order to determine the operating state of the engine 1, but details thereof are omitted.

図2はEGR弁18を制御するためにECU20が一定周期で繰り返し実行するEGR弁制御ルーチンを示している。このEGR制御ルーチンを実行することによりECU20はEGR弁制御手段として機能する。図2のEGR弁制御ルーチンにおいて、ECU20はまずステップS1で各種のセンサの信号を参照してエンジン1の運転状態を識別する。続くステップS2で、ECU20はEGR実行条件が成立しているか否か判別する。この判別は公知のEGR弁制御と同様の手法で行えばよい。例えばエンジン1に始動時や加速時のように出力が要求される場合にはEGR実行条件の成立が否定される。大量のEGRガスを必要とする予混合圧縮着火モードで運転可能なエンジンにおいては、その予混合圧縮着火モードが選択された場合にEGR実行条件が成立する。   FIG. 2 shows an EGR valve control routine that the ECU 20 repeatedly executes at a constant cycle in order to control the EGR valve 18. By executing this EGR control routine, the ECU 20 functions as an EGR valve control means. In the EGR valve control routine of FIG. 2, the ECU 20 first identifies the operating state of the engine 1 with reference to various sensor signals in step S1. In subsequent step S2, the ECU 20 determines whether or not an EGR execution condition is satisfied. This determination may be performed by a method similar to the known EGR valve control. For example, when the engine 1 is required to output at the time of starting or accelerating, the establishment of the EGR execution condition is denied. In an engine that can be operated in a premixed compression ignition mode that requires a large amount of EGR gas, the EGR execution condition is satisfied when the premixed compression ignition mode is selected.

EGR実行条件の成立が否定された場合、ECU20はステップS3でEGR実行フラグを0にリセットし、続くステップS4でEGR弁18を閉じてEGR通路16を締め切る。一方、EGR実行条件が成立している場合、ECU20はステップS5に進んでEGR実行フラグに1をセットし、続くステップS6で運転状態に対応した目標EGR量を取得する。目標EGR量は例えばECU20に設けられたROMに運転状態と目標EGR量とを対応付けたマップを予め記憶させ、そのマップを利用して特定することができる。続くステップS7において、ECU20はEGR量(EGRガス量)を検出する。EGR量は種々の手段によって取得することができる。一例として、吸気圧センサ21が取得した吸気圧力に基づいて特定した吸入空気量と不図示の吸気温センサの検出する吸気温度とから吸入空気量を算出し、その値からエアフローメータ7が検出する吸入空気量を差し引くことによりEGR通路16を介して吸気通路2に流入しているEGRガスの量を求めることができる。ステップS7の処理を行うことにより、ECU20はエアフローメータ7及び吸気圧センサ21と協働してEGR量検出手段として機能する。   If the establishment of the EGR execution condition is denied, the ECU 20 resets the EGR execution flag to 0 in step S3, and then closes the EGR passage 16 by closing the EGR valve 18 in step S4. On the other hand, if the EGR execution condition is satisfied, the ECU 20 proceeds to step S5, sets 1 to the EGR execution flag, and acquires the target EGR amount corresponding to the operating state in the subsequent step S6. The target EGR amount can be specified by, for example, storing a map in which the operating state and the target EGR amount are associated with each other in a ROM provided in the ECU 20 in advance, and using the map. In subsequent step S7, the ECU 20 detects the EGR amount (EGR gas amount). The EGR amount can be obtained by various means. As an example, the intake air amount is calculated from the intake air amount specified based on the intake pressure acquired by the intake pressure sensor 21 and the intake air temperature detected by an unillustrated intake air temperature sensor, and the air flow meter 7 detects from that value. By subtracting the intake air amount, the amount of EGR gas flowing into the intake passage 2 via the EGR passage 16 can be obtained. By performing the process of step S7, the ECU 20 functions as an EGR amount detection means in cooperation with the air flow meter 7 and the intake pressure sensor 21.

EGR量の検出後、ECU20はステップS8に進んでEGR量の検出値の目標EGR量からの偏差を特定する。続くステップS9において、ECU20はEGR量の偏差に基づいてEGR弁18の開度を設定する。この場合、目標EGR量に対してEGR量の検出値が不足しているときはEGR弁18の開度を開き側に変更し、目標EGR量に対してEGR量の検出値が過剰なときはEGR弁18の開度を閉じ側に変更する。EGR弁18の開度変更幅は、一回のルーチンで一定幅としてもよいし、偏差が大きいほど開度変更幅をより大きく設定してもよい。   After detecting the EGR amount, the ECU 20 proceeds to step S8 and specifies the deviation of the detected value of the EGR amount from the target EGR amount. In subsequent step S9, the ECU 20 sets the opening degree of the EGR valve 18 based on the deviation of the EGR amount. In this case, when the detected value of the EGR amount is insufficient with respect to the target EGR amount, the opening degree of the EGR valve 18 is changed to the open side, and when the detected value of the EGR amount is excessive with respect to the target EGR amount. The opening degree of the EGR valve 18 is changed to the closed side. The opening change width of the EGR valve 18 may be a constant width in one routine, or the opening change width may be set larger as the deviation is larger.

ステップS4又はステップS9でEGR弁18を操作した後、ECU20は今回のEGR弁制御ルーチンを終了する。以上の制御が繰り返し実行されることにより、EGR量の検出値を帰還量として、その検出値の目標EGR量に対する偏差が減少するようにEGR弁18の開度がフィードバック制御される。なお、ここでいうEGR量は所定時間当りにEGR通路16から吸気通路2に導入されるEGRガスの量であり、流量として把握されるべき物理量である。   After operating the EGR valve 18 in step S4 or step S9, the ECU 20 ends the current EGR valve control routine. By repeatedly executing the above control, the opening degree of the EGR valve 18 is feedback-controlled so that the detected value of the EGR amount is a feedback amount and the deviation of the detected value from the target EGR amount is reduced. The EGR amount here is the amount of EGR gas introduced from the EGR passage 16 into the intake passage 2 per predetermined time, and is a physical quantity to be grasped as a flow rate.

上述したEGR弁制御ルーチンと並行して、ECU20は図3の吸気バイパス制御ルーチンを繰り返し実行する。この吸気バイパス制御ルーチンを実行することにより、ECU20は吸気バイパス制御手段として機能する。図3の吸気バイパス制御ルーチンにおいて、ECU20はまずステップS11でEGR実行フラグに1がセットされているか否か判断する。1がセットされていない場合、ECU20はステップS12へ進んで第1切替弁11を閉じ、続くステップS13で第2切替弁12を開く。従って、EGR弁18が閉じられている状態、すなわちEGRが禁止されている場合には吸気バイパス通路2bが閉じられ、吸気通路2を通過する吸気はインタークーラ10を経て吸気マニホールド9へ導かれる。一方、EGR実行フラグに1がセットされている場合、ECU20はステップS14に進んで第1切替弁11を開き、続くステップS15で第2切替弁12を閉じる。これによりEGRの実行中は、EGRガスを含んだ吸気がインタークーラ10を迂回して吸気バイパス通路2bから吸気マニホールド9へと導かれる。   In parallel with the above-described EGR valve control routine, the ECU 20 repeatedly executes the intake bypass control routine of FIG. By executing this intake bypass control routine, the ECU 20 functions as intake bypass control means. In the intake bypass control routine of FIG. 3, the ECU 20 first determines whether or not 1 is set in the EGR execution flag in step S11. If 1 is not set, the ECU 20 proceeds to step S12, closes the first switching valve 11, and opens the second switching valve 12 in the subsequent step S13. Therefore, when the EGR valve 18 is closed, that is, when EGR is prohibited, the intake bypass passage 2 b is closed, and the intake air passing through the intake passage 2 is guided to the intake manifold 9 via the intercooler 10. On the other hand, when the EGR execution flag is set to 1, the ECU 20 proceeds to step S14 to open the first switching valve 11, and then closes the second switching valve 12 in step S15. As a result, during execution of EGR, intake air containing EGR gas bypasses the intercooler 10 and is guided from the intake bypass passage 2b to the intake manifold 9.

ECU20は、上述した図2及び図3のルーチンと並行して、図4の排気バイパス弁制御ルーチンを所定の周期で繰り返し実行する。図4の排気バイパス弁制御ルーチンにおいて、ECU20は、まずステップS21で排気ガスの流量(排気流量)を取得する。排気流量は、例えばエンジン1の回転数と吸気圧センサ21の出力に基づいて特定した吸入空気量とから求めることができる。続くステップS22にて、ECU20は排気流量に応じた排気バイパス弁14の開度を例えばROMが記憶するマップから取得する。例えば、高圧ターボ過給機5のタービン5bが受入可能な排気ガスの限界量を超える流量の排気が排気マニホールドに排出されている場合に、その限界量を超える排気ガスが排気バイパス通路3bに導かれるように排気バイパス弁14の開度が定められる。続くステップS23において、ECU20は排気バイパス弁14の開度をステップS22で取得した開度に設定し、その後に排気バイパス弁制御ルーチンを終える。   The ECU 20 repeatedly executes the exhaust bypass valve control routine of FIG. 4 at a predetermined cycle in parallel with the routines of FIGS. 2 and 3 described above. In the exhaust bypass valve control routine of FIG. 4, the ECU 20 first acquires the exhaust gas flow rate (exhaust flow rate) in step S21. The exhaust flow rate can be obtained from, for example, the intake air amount specified based on the rotational speed of the engine 1 and the output of the intake pressure sensor 21. In subsequent step S22, the ECU 20 acquires the opening degree of the exhaust bypass valve 14 corresponding to the exhaust flow rate from, for example, a map stored in the ROM. For example, when exhaust gas having a flow rate exceeding the limit amount of exhaust gas that can be received by the turbine 5b of the high-pressure turbocharger 5 is discharged to the exhaust manifold, the exhaust gas exceeding the limit amount is introduced into the exhaust bypass passage 3b. The opening degree of the exhaust bypass valve 14 is determined so as to be adjusted. In the following step S23, the ECU 20 sets the opening degree of the exhaust bypass valve 14 to the opening degree acquired in step S22, and thereafter ends the exhaust bypass valve control routine.

以上の過給システムによれば、吸気通路2に対するEGR通路16の接続位置(EGR導入位置)が低圧ターボ過給機4及び高圧ターボ過給機5のそれぞれのコンプレッサ4a、5aの間に設定されているため、低圧ターボ過給機4のコンプレッサ4aの上流にEGR通路16を接続する場合と比較してEGRの流路容積が小さくなる。従って、EGRの応答性が向上し、EGRの制御精度が向上する。しかも、高圧ターボ過給機5のコンプレッサ5aの容量が低圧ターボ過給機4のコンプレッサ4aの容量よりも小さく設定されているため、高圧ターボ過給機5を低圧ターボ過給機4よりも大容量に設定した従来例と比べてEGRの流路容積が小さく、EGRの応答性に優れる。EGR通路16の排気通路3に対する接続位置(EGR取出位置)が低圧ターボ過給機4及び高圧ターボ過給機5のそれぞれのタービン4b、5bの間に設定されているので、EGR取出位置をタービン5bの上流に設定した場合と比較して高圧ターボ過給機5のタービン5bにより大きな排気エネルギを与えることができ、それにより過給性能を損なうことなくEGRを実行することができる。   According to the above supercharging system, the connection position (EGR introduction position) of the EGR passage 16 with respect to the intake passage 2 is set between the compressors 4 a and 5 a of the low pressure turbocharger 4 and the high pressure turbocharger 5. Therefore, the EGR channel volume is smaller than when the EGR passage 16 is connected upstream of the compressor 4a of the low-pressure turbocharger 4. Therefore, the response of EGR is improved and the control accuracy of EGR is improved. Moreover, since the capacity of the compressor 5a of the high-pressure turbocharger 5 is set smaller than the capacity of the compressor 4a of the low-pressure turbocharger 4, the high-pressure turbocharger 5 is larger than the low-pressure turbocharger 4. Compared to the conventional example set to capacity, the EGR channel volume is small and the EGR response is excellent. Since the connection position (EGR extraction position) of the EGR passage 16 to the exhaust passage 3 is set between the turbines 4b and 5b of the low-pressure turbocharger 4 and the high-pressure turbocharger 5, the EGR extraction position is set to the turbine. Compared with the case where it is set upstream of 5b, it is possible to give a larger exhaust energy to the turbine 5b of the high-pressure turbocharger 5, thereby performing EGR without impairing the supercharging performance.

また、上記の過給システムによれば、EGR弁18が開いている間は第1切替弁11が開き、第2切替弁12が閉じられてEGRガスを含む全ての吸気がインタークーラ10を迂回して吸気バイパス通路2bから吸気マニホールド9に導かれる。上記のように吸気バイパス通路2bの流路容積は主通路2aのそれと比較して十分に小さいため、EGRの応答性がさらに改善される。EGRガスによるインタークーラ10の汚れ、及びその汚れに伴うインタークーラ10の冷却効率の悪化を防止することができる。さらに、第2切替弁12がインタークーラ10の上流に配置されているので、EGRガスを含んだ吸気がインタークーラ10に滞留するおそれがない。従って、急加速等によりEGR実行条件が成立しなくなった場合に、第2切替弁12を開く一方で第1切替弁11を閉じることにより、EGRガスを含まない空気をエンジン1に迅速に送り込むことができる。このため、EGRガスを含んだ吸気がエンジン1に導入されることに起因するスモークの発生を抑制することができる。第1切替弁11が吸気バイパス通路2bの終端部、すなわち主通路2aに対する合流部の近傍に設けられているため、第1切替弁11を閉じることによって吸気バイパス通路2bから吸気マニホールド9へのEGRガスの導入を直ちに停止させることができる。これによってもスモークの発生を抑制することができる。   Further, according to the supercharging system, the first switching valve 11 is opened while the EGR valve 18 is open, the second switching valve 12 is closed, and all intake air including EGR gas bypasses the intercooler 10. Then, the air is guided from the intake bypass passage 2b to the intake manifold 9. As described above, since the flow volume of the intake bypass passage 2b is sufficiently smaller than that of the main passage 2a, the responsiveness of EGR is further improved. The contamination of the intercooler 10 due to EGR gas and the deterioration of the cooling efficiency of the intercooler 10 due to the contamination can be prevented. Furthermore, since the second switching valve 12 is disposed upstream of the intercooler 10, there is no possibility that intake air containing EGR gas will stay in the intercooler 10. Therefore, when the EGR execution condition is no longer satisfied due to sudden acceleration or the like, air that does not contain EGR gas is rapidly sent to the engine 1 by opening the second switching valve 12 and closing the first switching valve 11. Can do. For this reason, it is possible to suppress the occurrence of smoke due to the intake air containing EGR gas being introduced into the engine 1. Since the first switching valve 11 is provided at the end of the intake bypass passage 2b, that is, in the vicinity of the junction with the main passage 2a, the EGR from the intake bypass passage 2b to the intake manifold 9 by closing the first switching valve 11 The introduction of gas can be stopped immediately. This can also suppress the occurrence of smoke.

一方、排気通路3に関しては、高圧ターボ過給機5のタービン5bの容量を超える流量の排気ガスが排気マニホールド13に排出される場合、仮に排気バイパス通路3bが存在しなければタービン5bが排気絞りとして作用し、EGR通路16の接続位置に導かれる排気ガスの量がタービン5bを通過可能な限界量に制限される。これに対して、上記の過給システムでは、排気バイパス通路3bに設けられた排気バイパス弁14を開くことにより、タービン5bの限界量を超える流量の排気ガスをEGR通路16の接続位置へと導くことができる。このため、大量のEGRガスを吸気通路2に導入することができる。特に予混合圧縮着火モードで運転可能なエンジン1の場合には、吸気通路2に導入可能なEGRガス量の最大値を増加させ、それによりEGRガスの不足による過早着火を抑え、予混合圧縮着火モードに適したエンジン1の運転領域を高負荷側に拡大することができる。   On the other hand, regarding the exhaust passage 3, when exhaust gas having a flow rate exceeding the capacity of the turbine 5 b of the high-pressure turbocharger 5 is discharged to the exhaust manifold 13, if the exhaust bypass passage 3 b does not exist, the turbine 5 b The amount of exhaust gas guided to the connection position of the EGR passage 16 is limited to a limit amount that can pass through the turbine 5b. On the other hand, in the above supercharging system, by opening the exhaust bypass valve 14 provided in the exhaust bypass passage 3b, exhaust gas having a flow rate exceeding the limit amount of the turbine 5b is guided to the connection position of the EGR passage 16. be able to. For this reason, a large amount of EGR gas can be introduced into the intake passage 2. In particular, in the case of the engine 1 that can be operated in the premixed compression ignition mode, the maximum amount of EGR gas that can be introduced into the intake passage 2 is increased, thereby suppressing premature ignition due to lack of EGR gas and premixed compression. The operating range of the engine 1 suitable for the ignition mode can be expanded to the high load side.

また、タービン5bの限界量を超える流量の排気ガスを排気バイパス通路3bに流すことにより、排気マニホールド13の圧力(排気背圧)の上昇を抑え、それによりエンジン1の吸気充填効率の悪化を防止してエンジン1の出力を確実に上昇させることができる。さらに、排気バイパス弁14を開いて排気ガスの圧力の一部をEGR取出位置に導くことにより、EGR通路16のEGR取出位置の圧力を上昇させ、それにより、EGR通路16の排気通路3との接続位置(EGR取出位置)の圧力をEGR通路16の吸気通路2との接続位置(EGR導入位置)の圧力に対してより大きく上昇させ、EGRの効率を高めることができる。さらに、高圧ターボ過給機5のタービン5b又は排気バイパス通路3bのいずれを通過した排気も排気浄化装置15を通過してからEGR取出位置へ導かれるため、EGR通路16に導入される粒子状物質の量が減少し、それによりEGR通路16、EGRクーラ17、EGR弁18、高圧ターボ過給機5のタービン5bといったEGRガスが通過する各種の装置類の汚れを抑えることができる。   Further, by flowing exhaust gas having a flow rate exceeding the limit amount of the turbine 5b to the exhaust bypass passage 3b, an increase in the pressure (exhaust back pressure) of the exhaust manifold 13 is suppressed, thereby preventing deterioration of the intake charging efficiency of the engine 1. Thus, the output of the engine 1 can be reliably increased. Further, by opening the exhaust bypass valve 14 and guiding a part of the exhaust gas pressure to the EGR extraction position, the pressure at the EGR extraction position of the EGR passage 16 is increased, and thereby the EGR passage 16 is connected to the exhaust passage 3. The pressure at the connection position (EGR extraction position) can be further increased with respect to the pressure at the connection position (EGR introduction position) of the EGR passage 16 with the intake passage 2 to increase the efficiency of EGR. Further, since the exhaust gas that has passed through either the turbine 5b or the exhaust bypass passage 3b of the high-pressure turbocharger 5 passes through the exhaust purification device 15 and is guided to the EGR extraction position, the particulate matter introduced into the EGR passage 16 As a result, the contamination of various devices through which EGR gas passes, such as the EGR passage 16, the EGR cooler 17, the EGR valve 18, and the turbine 5b of the high-pressure turbocharger 5, can be suppressed.

以上の形態において、EGR弁18の開度制御によっては目標EGR量を達成できない場合、スロットル弁8の開度を閉じ側に変化させてEGR通路16のEGR導入位置に導かれる新気量(エアクリーナ6を経由して取り込まれる外気の量)を絞り込み、それによりEGR量を増加させて目標EGR量を確保するようにしてもよい。もっとも、本発明においてスロットル弁8は必ずしも設けなくてもよく、他の手段によって吸入空気量を調整してもよい。   In the above embodiment, when the target EGR amount cannot be achieved by the opening degree control of the EGR valve 18, the opening amount of the throttle valve 8 is changed to the closed side and the fresh air amount (air cleaner) guided to the EGR introduction position of the EGR passage 16 is reached. 6), the target EGR amount may be ensured by increasing the EGR amount. However, in the present invention, the throttle valve 8 is not necessarily provided, and the intake air amount may be adjusted by other means.

[第2の形態]
図5は本発明の第2の形態に係る過給システムを示している。本形態は、低圧ターボ過給機4が、タービン4bの入口部分の流路断面積を変更可能ないわゆる可変ノズル式ターボ過給機とされることにより、低圧ターボ過給機を可変絞り手段として機能させる点が図1の形態と相違する。また、EGRクーラ17の冷却水は、機関冷却用のラジエータ(不図示)とは別に設けられたEGR用ラジエータ31に導かれる。そのEGR用ラジエータ31とEGRクーラ17とを結ぶ冷却系は機関冷却用ラジエータを含む機関冷却系とは分離されている。すなわち、両冷却系の冷却水循環経路は互いに交わることなく分離されている。そして、EGRクーラ17とラジエータ31とを結ぶ流路(往路又は復路の何れでもよい)には冷却水の循環用のウォーターポンプ32が接続されている。過給システムのその余の構成は図1の形態と同じである。従って、図5において上述した図1の形態と共通する部分には同一の参照符号を付し、それらの説明は省略する。
[Second form]
FIG. 5 shows a supercharging system according to the second embodiment of the present invention. In the present embodiment, the low-pressure turbocharger 4 is a so-called variable nozzle turbocharger that can change the flow path cross-sectional area of the inlet portion of the turbine 4b. The function is different from the embodiment of FIG. The cooling water of the EGR cooler 17 is guided to an EGR radiator 31 provided separately from an engine cooling radiator (not shown). The cooling system connecting the EGR radiator 31 and the EGR cooler 17 is separated from the engine cooling system including the engine cooling radiator. That is, the cooling water circulation paths of both cooling systems are separated without crossing each other. A water pump 32 for circulating cooling water is connected to the flow path (which may be either the forward path or the return path) connecting the EGR cooler 17 and the radiator 31. The rest of the configuration of the supercharging system is the same as that of FIG. Therefore, in FIG. 5, the same reference numerals are given to the portions common to the above-described embodiment of FIG.

ECU20はエンジン1の運転状態に応じた過給効果が得られるように低圧ターボ過給機4のノズル開度を制御する。目標過給圧に対するノズル開度の制御は可変ノズル式ターボ過給機を利用する公知の過給システムと同様の手順で行えばよく、ここでは詳細を省略する。また、ECU20は図2〜図4に示した各ルーチンを所定の周期で繰り返し実行するとともに、それらの制御と並行して、図6に示したノズル開度補正制御ルーチンを所定の周期で繰り返し実行することにより、本発明の絞り制御手段として機能する。このノズル開度補正制御ルーチンは、EGR弁18によるEGR量の制御を補うために実行されるものである。最初のステップS31において、ECU20はEGR弁18の開度の基準開度からのずれ量が限界に達しているか否かを判断する。EGR弁18の開度のずれ量は、例えばエンジン1の始動時にEGR弁18の開度を基準開度に初期化し、図2のステップS9が実行される毎に基準開度からのずれ量を演算することにより識別することができる。ずれ量の限界はEGR弁18の開度制御のみでEGR量を制御できる範囲として、基準開度から開方向及び閉方向にそれぞれ適当に定めておけばよい。   The ECU 20 controls the nozzle opening degree of the low-pressure turbocharger 4 so that a supercharging effect according to the operating state of the engine 1 is obtained. Control of the nozzle opening with respect to the target supercharging pressure may be performed in the same procedure as a known supercharging system using a variable nozzle turbocharger, and details thereof are omitted here. The ECU 20 repeatedly executes the routines shown in FIGS. 2 to 4 at a predetermined cycle, and in parallel with these controls, repeatedly executes the nozzle opening correction control routine shown in FIG. 6 at a predetermined cycle. By doing so, it functions as the aperture control means of the present invention. This nozzle opening correction control routine is executed to supplement the control of the EGR amount by the EGR valve 18. In first step S31, the ECU 20 determines whether or not the deviation amount of the opening degree of the EGR valve 18 from the reference opening degree has reached a limit. For example, when the engine 1 is started, the opening degree of the EGR valve 18 is initialized to the reference opening degree, and every time step S9 in FIG. 2 is executed, the deviation amount from the reference opening degree is changed. It can be identified by calculation. The limit of the deviation amount may be appropriately determined from the reference opening degree in the opening direction and the closing direction as a range in which the EGR amount can be controlled only by the opening degree control of the EGR valve 18.

ステップS31にてずれ量が限界以内と判断した場合、ECU20は今回の制御ルーチンを終了する。一方、ずれ量が限界を超えた場合、ECU20はステップS32へ進み、基準開度からのずれ量に応じたノズル開度の補正量をそのROMに予め記録されたマップから取得する。このマップは、EGR弁18の開度のずれ量とノズル開度の補正量との対関係を記述したものであり、ベンチ適合試験あるいはシミュレーションにより作成することができる。EGR弁18の開度のずれ量とノズル開度の補正量との関係は次の通りである。   If it is determined in step S31 that the deviation amount is within the limit, the ECU 20 ends the current control routine. On the other hand, when the deviation amount exceeds the limit, the ECU 20 proceeds to step S32, and obtains the correction amount of the nozzle opening according to the deviation amount from the reference opening from the map recorded in advance in the ROM. This map describes the correlation between the deviation amount of the opening of the EGR valve 18 and the correction amount of the nozzle opening, and can be created by a bench fit test or simulation. The relationship between the deviation amount of the opening degree of the EGR valve 18 and the correction amount of the nozzle opening degree is as follows.

EGR弁18の開度が基準開度に対してEGR弁18を開く方向にずれている場合には、EGR弁18によるEGR量の制御限界を超えてEGR量を増加させる必要があることから、ノズル開度の補正量は低圧ターボ過給機4のノズルを閉じる方向に与えられる。低圧ターボ過給機4のノズル開度を閉側に変化させると低圧ターボ過給機4の上流のEGR取出位置の圧力が上昇して、EGR弁18の開度が一定のままでもより多くのEGRガスがEGR通路16を介して吸気通路2に導入される。一方、EGR弁18の開度が基準開度に対してEGR弁18を閉じる方向にずれている場合には、EGR弁18によるEGR量の制御限界を超えてEGR量を減少させる必要があることから、ノズル開度の補正量は低圧ターボ過給機4のノズルを開く方向に与えられる。低圧ターボ過給機4のノズル開度を開側に変化させると低圧ターボ過給機4の上流のEGR取出位置の圧力が低下し、EGR弁18の開度が一定のままでもEGR通路16を介して吸気通路2に導入されるEGRガス量が減少する。   When the opening degree of the EGR valve 18 is deviated in the direction to open the EGR valve 18 with respect to the reference opening degree, it is necessary to increase the EGR amount beyond the control limit of the EGR amount by the EGR valve 18. The correction amount of the nozzle opening is given in the direction in which the nozzle of the low-pressure turbocharger 4 is closed. When the nozzle opening degree of the low-pressure turbocharger 4 is changed to the closed side, the pressure at the EGR take-out position upstream of the low-pressure turbocharger 4 increases, and even if the opening degree of the EGR valve 18 remains constant, more EGR gas is introduced into the intake passage 2 via the EGR passage 16. On the other hand, when the opening degree of the EGR valve 18 is deviated in the direction to close the EGR valve 18 with respect to the reference opening degree, it is necessary to reduce the EGR amount beyond the control limit of the EGR amount by the EGR valve 18. Therefore, the correction amount of the nozzle opening is given in the direction in which the nozzle of the low-pressure turbocharger 4 is opened. When the nozzle opening degree of the low-pressure turbocharger 4 is changed to the open side, the pressure at the EGR take-out position upstream of the low-pressure turbocharger 4 is reduced, and the EGR passage 16 is allowed to pass even if the opening degree of the EGR valve 18 remains constant. Thus, the amount of EGR gas introduced into the intake passage 2 decreases.

ステップS32でノズル開度の補正量を取得した後、ECU20はステップS33へ進み、取得した補正量に従って低圧ターボ過給機4のノズル開度を補正する。この後、ECU20は今回のルーチンを終了する。なお、ここで行われるノズル開度の補正は、マップで特定された補正量相当だけノズルのアクチュエータを駆動するオープンループ制御である。   After acquiring the correction amount of the nozzle opening in step S32, the ECU 20 proceeds to step S33, and corrects the nozzle opening of the low-pressure turbocharger 4 according to the acquired correction amount. Thereafter, the ECU 20 ends the current routine. The correction of the nozzle opening performed here is open loop control that drives the actuator of the nozzle by the amount corresponding to the correction amount specified in the map.

図7は上述したノズル開度補正制御が実行された場合のEGR弁開度とノズル開度(VN開度)との対応関係の一例を示している。この例では、図2に示すフィードバック制御の結果としてEGR弁18の開度が基準開度に対して開側に徐々に変化している。EGR弁開度が上限(開側の限界)を超えると、図6のルーチンによって低圧ターボ過給機4のノズル開度が閉側に所定の補正量だけ変更される。それによりEGR通路16を介して吸気通路2に導かれるEGRガス量が増加するため、EGR弁18の開度は図2のフィードバック制御によって減少方向に制御され、再び基準開度付近で調整されるようになる。   FIG. 7 shows an example of a correspondence relationship between the EGR valve opening and the nozzle opening (VN opening) when the above-described nozzle opening correction control is executed. In this example, as a result of the feedback control shown in FIG. 2, the opening degree of the EGR valve 18 gradually changes to the open side with respect to the reference opening degree. When the EGR valve opening exceeds the upper limit (open side limit), the nozzle opening of the low-pressure turbocharger 4 is changed to the closed side by a predetermined correction amount by the routine of FIG. As a result, the amount of EGR gas guided to the intake passage 2 via the EGR passage 16 increases, so the opening degree of the EGR valve 18 is controlled in the decreasing direction by the feedback control of FIG. 2 and is adjusted again near the reference opening degree. It becomes like this.

このように、本形態によれば、EGR弁18の開度を所定範囲(図7の上限〜下限の間)でフィードバック制御する限りはEGR量を目標EGR量に制御できない場合に、EGR弁18のフィードバック制御が所定の限界を超えたものとみなして低圧ターボ過給機4のノズル開度を補正してEGR弁18の開度を基準開度に対する所定範囲に戻している。タービン4bのノズル開度の制御によるEGR量の制御精度は、EGR弁18のフィードバック制御によるEGR量の制御精度と比較して劣るため、本形態のような制御を実行することにより、EGR弁18の開度の基準開度からの偏りに起因する制御不能状態の発生を避けつつEGR量を目標EGR量に向って高精度に制御することができる。   Thus, according to the present embodiment, the EGR valve 18 can be controlled when the EGR amount cannot be controlled to the target EGR amount as long as the opening degree of the EGR valve 18 is feedback controlled within a predetermined range (between the upper limit and the lower limit in FIG. 7). The feedback control is regarded as exceeding a predetermined limit, the nozzle opening of the low-pressure turbocharger 4 is corrected, and the opening of the EGR valve 18 is returned to a predetermined range with respect to the reference opening. Since the control accuracy of the EGR amount by the control of the nozzle opening of the turbine 4b is inferior to the control accuracy of the EGR amount by the feedback control of the EGR valve 18, the EGR valve 18 is executed by executing the control as in this embodiment. The EGR amount can be controlled with high accuracy toward the target EGR amount while avoiding the occurrence of an uncontrollable state due to the deviation of the opening from the reference opening.

また、本形態ではEGRクーラ17の冷却水の熱をEGRクーラ17に対する専用品として設けられたラジエータ31から放出させることにより、EGRクーラ17による冷却効率をエンジン1の冷却水を使用した場合と比較して顕著に増加させることができる。これにより、EGR通路16から吸気通路2に導入されるEGRガスの温度を十分に低下させ、高圧ターボ過給機5のコンプレッサ5aの熱負荷を軽減してその信頼性を向上させることができる。また、排気浄化装置15が酸化能を有する場合には、排気中のHCやCOの酸化熱でEGRガスの温度が上昇するが、ラジエータ31を利用してEGRガスを十分に冷却すれば、酸化熱による温度上昇分に相当する熱をEGRガスから奪って、吸気通路2に導入されるEGRガスの温度を十分に低下させることができる。   Further, in the present embodiment, the cooling efficiency of the EGR cooler 17 is compared with the case where the cooling water of the engine 1 is used by releasing the heat of the cooling water of the EGR cooler 17 from the radiator 31 provided as a dedicated product for the EGR cooler 17. Can be significantly increased. As a result, the temperature of the EGR gas introduced from the EGR passage 16 into the intake passage 2 can be sufficiently lowered, the thermal load on the compressor 5a of the high-pressure turbocharger 5 can be reduced, and the reliability thereof can be improved. Further, when the exhaust purification device 15 has an oxidizing ability, the temperature of the EGR gas rises due to the oxidation heat of HC and CO in the exhaust. However, if the EGR gas is sufficiently cooled using the radiator 31, the oxidation is performed. Heat corresponding to the temperature rise due to heat is taken away from the EGR gas, and the temperature of the EGR gas introduced into the intake passage 2 can be sufficiently lowered.

本発明は上述した形態に限定されることなく、種々の形態にて実施してよい。図1及び図5に示した吸気通路2及び排気通路3の各種の機器の配置や通路構成は本発明の一例に過ぎず、これらは種々の変更が可能である。例えば、吸気バイパス通路2b及びこれに伴って設けられた第1切替弁11及び第2切替弁12、並びに、排気バイパス通路3b及び排気バイパス弁14は本発明において必ずしも設けなくてもよい。本発明の最も簡素な形態としては、EGR通路16のEGR取出位置がタービン4b、5b間に設定され、EGR導入位置がコンプレッサ4a、5a間に設定され、かつ高圧ターボ過給機5の容量が低圧ターボ過給機4の容量よりも小さく設定されていればよい。吸気バイパス通路2bを設ける場合、その吸気バイパス通路2bを経由する流路の容積が主通路2aを経由する流路の容積よりも小さく維持される限り、吸気バイパス通路2bにEGRクーラ等の吸気冷却手段を設けてもよい。吸気通路2の流路選択手段としては、第1切替弁11及び第2切替弁12の組み合わせに限らず、各種の弁手段を利用してよい。   The present invention is not limited to the form described above, and may be implemented in various forms. The arrangement and passage configuration of various devices such as the intake passage 2 and the exhaust passage 3 shown in FIGS. 1 and 5 are merely examples of the present invention, and various modifications can be made. For example, the intake bypass passage 2b, the first switching valve 11 and the second switching valve 12 provided therewith, and the exhaust bypass passage 3b and the exhaust bypass valve 14 are not necessarily provided in the present invention. In the simplest form of the present invention, the EGR extraction position of the EGR passage 16 is set between the turbines 4b and 5b, the EGR introduction position is set between the compressors 4a and 5a, and the capacity of the high-pressure turbocharger 5 is What is necessary is just to set smaller than the capacity | capacitance of the low pressure turbocharger 4. FIG. When the intake bypass passage 2b is provided, as long as the volume of the flow path passing through the intake bypass passage 2b is kept smaller than the volume of the flow path passing through the main passage 2a, intake cooling such as an EGR cooler is provided in the intake bypass path 2b. Means may be provided. The flow path selection means of the intake passage 2 is not limited to the combination of the first switching valve 11 and the second switching valve 12, and various valve means may be used.

図8に示すように、吸気通路2における低圧ターボ過給機4のコンプレッサ4aの下流でかつEGR通路16との接続位置よりも上流にインタークーラ33をさらに設けてもよい。これにより低圧ターボ過給機4で圧縮された吸気を冷却して過給効率を高めることができる。インタークーラ33をEGR通路16の接続位置よりも上流に配置すれば、EGRガスの流路容積がそのインタークーラ33の影響を受けることなく小さく維持されてEGRの応答性は何ら損なわれない。なお、吸気通路2にスロットル弁8が設けられる場合には、そのスロットル弁8よりも上流にインタークーラ33を配置することができる。   As shown in FIG. 8, an intercooler 33 may be further provided in the intake passage 2 downstream of the compressor 4 a of the low-pressure turbocharger 4 and upstream of the connection position with the EGR passage 16. Thereby, the intake air compressed by the low-pressure turbocharger 4 can be cooled to increase the supercharging efficiency. If the intercooler 33 is disposed upstream of the connection position of the EGR passage 16, the flow volume of the EGR gas is kept small without being affected by the intercooler 33, and the responsiveness of EGR is not impaired at all. When the throttle valve 8 is provided in the intake passage 2, the intercooler 33 can be disposed upstream of the throttle valve 8.

第2の形態では、排気通路3のEGR取出位置より下流に設けられる可変絞り手段として低圧ターボ過給機4のノズルを利用したが、排気絞り弁その他の各種の可変絞り手段を利用してEGR弁18のフィードバック制御を補うようにしてもよい。排気バイパス弁14の制御は必ずしも排気流量に基づいて行わなくてもよい。エンジン1の運転状態、要求出力に応じて排気バイパス弁14の開度を適宜に調整してもよい。エンジン1の運転状態に応じて排気バイパス弁14を全閉状態と全開状態の二位置間で切り替え制御してもよい。   In the second embodiment, the nozzle of the low-pressure turbocharger 4 is used as the variable throttle means provided downstream from the EGR take-out position of the exhaust passage 3, but EGR is performed using various variable throttle means such as an exhaust throttle valve. The feedback control of the valve 18 may be supplemented. The control of the exhaust bypass valve 14 is not necessarily performed based on the exhaust flow rate. The opening degree of the exhaust bypass valve 14 may be appropriately adjusted according to the operating state of the engine 1 and the required output. Depending on the operating state of the engine 1, the exhaust bypass valve 14 may be switched between two positions, a fully closed state and a fully open state.

本発明の第1の形態に係る過給システムの構成を示す図。The figure which shows the structure of the supercharging system which concerns on the 1st form of this invention. EGR弁を制御するためにECUが実行するEGR弁制御ルーチンを示すフローチャート。The flowchart which shows the EGR valve control routine which ECU performs in order to control an EGR valve. 吸気バイパス通路を開閉するためのECUが実行する吸気バイパス制御ルーチンを示すフローチャート。The flowchart which shows the intake bypass control routine which ECU for opening and closing an intake bypass passage performs. 排気バイパス通路を通過する排気ガス量を調整するためにECUが実行する排気バイパス弁制御ルーチンを示すフローチャート。6 is a flowchart showing an exhaust bypass valve control routine executed by the ECU to adjust the amount of exhaust gas passing through the exhaust bypass passage. 本発明の第2の形態に係る過給システムの構成を示す図。The figure which shows the structure of the supercharging system which concerns on the 2nd form of this invention. 図5のECUが低圧ターボ過給機の可変ノズルの開度を制御するために実行するノズル開度補正制御ルーチンを示すフローチャート。6 is a flowchart showing a nozzle opening correction control routine executed by the ECU of FIG. 5 to control the opening of the variable nozzle of the low-pressure turbocharger. EGR弁の開度の制御状態と、図6のルーチンによって制御される可変ノズル開度との関係の一例を示す図。The figure which shows an example of the relationship between the control state of the opening degree of an EGR valve, and the variable nozzle opening degree controlled by the routine of FIG. 本発明のさらなる形態に係る過給システムの構成を示す図。The figure which shows the structure of the supercharging system which concerns on the further form of this invention.

符号の説明Explanation of symbols

1 エンジン(内燃機関)
2 吸気通路
2a 主通路
2b 吸気バイパス通路
3 排気通路
3a 主通路
3b 排気バイパス通路
4 低圧ターボ過給機
4a コンプレッサ
4b タービン
5 高圧ターボ過給機
5a コンプレッサ
5b タービン
8 スロットル弁
10 インタークーラ
11 第1切替弁(流路選択手段)
12 第2切替弁(流路選択手段)
14 排気バイパス弁
15 排気浄化装置
16 EGR通路
17 EGRクーラ
18 EGR弁
31 EGR用ラジエータ
32 ウォーターポンプ
33 インタークーラ
1 engine (internal combustion engine)
2 Intake passage 2a Main passage 2b Intake bypass passage 3 Exhaust passage 3a Main passage 3b Exhaust bypass passage 4 Low pressure turbocharger 4a Compressor 4b Turbine 5 High pressure turbocharger 5a Compressor 5b Turbine 8 Throttle valve 10 Intercooler 11 First switching Valve (channel selection means)
12 Second switching valve (channel selection means)
DESCRIPTION OF SYMBOLS 14 Exhaust bypass valve 15 Exhaust gas purification device 16 EGR passage 17 EGR cooler 18 EGR valve 31 EGR radiator 32 Water pump 33 Intercooler

Claims (1)

低圧ターボ過給機と、
前記低圧ターボ過給機のタービンよりも排気通路の上流に配置されたタービン及び前記低圧ターボ過給機のコンプレッサよりも吸気通路の下流に配置されたコンプレッサをそれぞれ有し、前記低圧ターボ過給機よりも容量が小さい高圧ターボ過給機と、
前記高圧ターボ過給機のタービンと前記低圧ターボ過給機のタービンとの間に設定されたEGR取出位置と、前記低圧ターボ過給機のコンプレッサと前記高圧ターボ過給機のコンプレッサとの間に設定されたEGR導入位置とを結ぶEGR通路と
前記EGR通路を通過するEGR量を調整するEGR弁と、
内燃機関の運転状態に応じたEGR量が得られるように前記EGR弁を制御するEGR弁制御手段と、
前記排気通路の前記EGR取出位置の下流に設けられ、開度調整が可能な可変絞り手段と、
前記可変絞り手段の開度を制御する絞り制御手段と、
前記吸気通路に導入されているEGR量を検出するEGR量検出手段と、を備え、
前記EGR弁制御手段は、前記EGR量検出手段によるEGR量の検出値を帰還量として、前記目標EGR量に対する前記検出値の偏差が減少するように前記EGR弁をフィードバック制御し、
前記絞り制御手段は、前記EGR弁のフィードバック制御が所定の限界を超えているか否か判断し、前記限界を超えている場合に前記偏差が減少する方向に前記可変絞り手段の開度を変化させ、
前記低圧ターボ過給機として、タービンの入口部分の流路断面積を変更可能な可変ノズル式ターボ過給機が設けられることにより、該低圧ターボ過給機が前記可変絞り手段として機能し、
前記絞り制御手段は、前記限界を超えている場合に実行すべきものとして予め用意されたマップに基づいて前記低圧ターボ過給機のノズル開度の変更幅を取得し、その取得された変更幅に従って前記低圧ターボ過給機のノズル開度をオープンループ制御することにより、前記EGR量の前記偏差を減少させる、
ことを特徴とする過給システム。
A low-pressure turbocharger,
The low-pressure turbocharger has a turbine disposed upstream of the exhaust passage from the turbine of the low-pressure turbocharger and a compressor disposed downstream of the intake passage from the compressor of the low-pressure turbocharger. A high-pressure turbocharger with a smaller capacity than
Between the EGR take-out position set between the turbine of the high-pressure turbocharger and the turbine of the low-pressure turbocharger, and between the compressor of the low-pressure turbocharger and the compressor of the high-pressure turbocharger An EGR passage connecting the set EGR introduction position ;
An EGR valve that adjusts the amount of EGR passing through the EGR passage;
EGR valve control means for controlling the EGR valve so as to obtain an EGR amount corresponding to the operating state of the internal combustion engine;
Variable throttle means provided downstream of the EGR extraction position of the exhaust passage and capable of adjusting the opening;
Throttle control means for controlling the opening of the variable throttle means;
EGR amount detection means for detecting the amount of EGR introduced into the intake passage,
The EGR valve control means feedback-controls the EGR valve so that a deviation of the detected value with respect to the target EGR amount is reduced by using the detected value of the EGR amount by the EGR amount detecting means as a feedback amount,
The throttle control means determines whether or not feedback control of the EGR valve exceeds a predetermined limit, and when the limit is exceeded, the opening degree of the variable throttle means is changed in a direction in which the deviation decreases. Let
As the low-pressure turbocharger, by providing a variable nozzle turbocharger capable of changing the flow path cross-sectional area of the inlet portion of the turbine, the low-pressure turbocharger functions as the variable throttle means,
The throttle control means acquires a change width of the nozzle opening of the low-pressure turbocharger based on a map prepared in advance as that to be executed when the limit is exceeded, and according to the acquired change width The deviation of the EGR amount is reduced by open-loop control of the nozzle opening of the low-pressure turbocharger.
Supercharging system that is characterized in that.
JP2004241988A 2004-08-23 2004-08-23 Internal combustion engine supercharging system Expired - Fee Related JP4561236B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004241988A JP4561236B2 (en) 2004-08-23 2004-08-23 Internal combustion engine supercharging system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004241988A JP4561236B2 (en) 2004-08-23 2004-08-23 Internal combustion engine supercharging system

Publications (2)

Publication Number Publication Date
JP2006057570A JP2006057570A (en) 2006-03-02
JP4561236B2 true JP4561236B2 (en) 2010-10-13

Family

ID=36105246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004241988A Expired - Fee Related JP4561236B2 (en) 2004-08-23 2004-08-23 Internal combustion engine supercharging system

Country Status (1)

Country Link
JP (1) JP4561236B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102651A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Engine exhaust gas purification device

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005022022U1 (en) * 2004-09-27 2012-05-31 Borgwarner Inc. Multi-stage turbocharger system using VTG turbine stage (s)
FR2894623B1 (en) * 2005-12-08 2008-02-01 Renault Sas METHOD FOR CONTROLLING AN ENGINE COMPRISING A LOW PRESSURE TYPE EXHAUST GAS RECIRCULATION LOOP
GB0601315D0 (en) * 2006-01-23 2006-03-01 Ricardo Uk Ltd Supercharged diesel engines
JP4935094B2 (en) * 2006-02-02 2012-05-23 いすゞ自動車株式会社 Two-stage turbocharging system for diesel engines
US20080000230A1 (en) * 2006-06-30 2008-01-03 Caterpillar Inc. Exhaust Gas Recirculation System
ITMI20061479A1 (en) 2006-07-27 2008-01-28 Iveco Spa MOTOR WITH ENERGY RECOVERY AND CATALYTIC SYSTEM OF DISCHARGE GAS TREATMENT
US7377270B2 (en) * 2006-10-23 2008-05-27 Caterpillar Inc. Exhaust gas recirculation in a homogeneous charge compression ignition engine
DE102007032736A1 (en) * 2007-07-13 2009-01-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Exhaust gas aftertreatment in front of a turbocharger
JP5164737B2 (en) * 2008-08-19 2013-03-21 ヤンマー株式会社 engine
JP5163514B2 (en) * 2009-01-20 2013-03-13 トヨタ自動車株式会社 Control device for an internal combustion engine with a supercharger
DE102010010480A1 (en) * 2010-03-06 2011-09-08 Volkswagen Ag Internal combustion engine with two-stage supercharging
JP2011226374A (en) * 2010-04-20 2011-11-10 Fuji Heavy Ind Ltd Engine control device
DE102010055059A1 (en) * 2010-12-17 2012-06-21 Audi Ag Device for charging of internal combustion engine of vehicle, has exhaust gas turbocharger provided with double-flow turbine, where exhaust gas turbocharger is designed for lower speed range of internal combustion engine
JP5942453B2 (en) * 2012-02-07 2016-06-29 マツダ株式会社 Intake device for vehicle engine
DE102012020828B4 (en) * 2012-09-07 2019-01-03 Technische Universität Dresden Internal combustion engine with two-stage supercharging and an integrated oxidation catalytic converter
JP6343232B2 (en) * 2014-12-11 2018-06-13 ヤンマー株式会社 Engine equipment
JP6170263B1 (en) * 2017-01-31 2017-07-26 矢野 隆志 Power system with medium pressure EGR low pressure stage drive tiered electric turbocharger
US11846257B2 (en) 2021-05-03 2023-12-19 Deere & Company Engine system with reversible exhaust gas recirculation pump for controlling bypass flow
US11591992B2 (en) 2021-05-05 2023-02-28 Deere & Company Engine system with air pump for enhanced turbocharger air exchange
US11572824B2 (en) 2021-05-13 2023-02-07 Deere & Company Electrified engine boost components for mitigating engine stalling in a work vehicle
US11536213B2 (en) 2021-05-19 2022-12-27 Deere & Company Engine system with electrified air system components for managing emissions of nitrogen oxides in a work vehicle
US11572673B2 (en) 2021-06-25 2023-02-07 Deere & Company Work vehicle power system with decoupled engine air system components
US11939929B2 (en) 2021-08-19 2024-03-26 Deere &Company Engine electrified air system including electric turbocharger and exhaust gas recirculation pump
CN114294094B (en) * 2021-11-19 2023-05-12 东风商用车有限公司 Dynamic air compensation system with bypass heat exchange function for engine
CN117432539B (en) * 2023-12-18 2024-03-19 潍柴动力股份有限公司 Opening control method and device of EGR (exhaust gas Recirculation) system, electronic equipment and storage medium

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450433A (en) * 1990-06-20 1992-02-19 Toyota Motor Corp Exhaust gas recirculating device of serial two-step supercharge internal combustion engine
JPH0518251A (en) * 1991-07-11 1993-01-26 Mazda Motor Corp Suction device of diesel engine with supercharger
JPH0814111A (en) * 1994-06-24 1996-01-16 Isuzu Motors Ltd Egr device of supercharged diesel engine with intercooler
JP2003278608A (en) * 2002-03-20 2003-10-02 Hino Motors Ltd Egr device
JP2004060601A (en) * 2002-07-31 2004-02-26 Denso Corp Control device of internal combustion engine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0450433A (en) * 1990-06-20 1992-02-19 Toyota Motor Corp Exhaust gas recirculating device of serial two-step supercharge internal combustion engine
JPH0518251A (en) * 1991-07-11 1993-01-26 Mazda Motor Corp Suction device of diesel engine with supercharger
JPH0814111A (en) * 1994-06-24 1996-01-16 Isuzu Motors Ltd Egr device of supercharged diesel engine with intercooler
JP2003278608A (en) * 2002-03-20 2003-10-02 Hino Motors Ltd Egr device
JP2004060601A (en) * 2002-07-31 2004-02-26 Denso Corp Control device of internal combustion engine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012102651A (en) * 2010-11-09 2012-05-31 Mitsubishi Heavy Ind Ltd Engine exhaust gas purification device

Also Published As

Publication number Publication date
JP2006057570A (en) 2006-03-02

Similar Documents

Publication Publication Date Title
JP4561236B2 (en) Internal combustion engine supercharging system
JP5024459B2 (en) Exhaust gas purification device for a supercharged internal combustion engine
JP4254606B2 (en) Multistage turbocharging system for internal combustion engines
JP5335358B2 (en) engine
JP5164737B2 (en) engine
JP5018975B2 (en) Supercharger control device for internal combustion engine
JP4670592B2 (en) Exhaust gas recirculation system for internal combustion engines
JP6090088B2 (en) Engine exhaust gas recirculation control device
US20150089941A1 (en) Exhaust gas recirculation control device of engine
JP5665930B2 (en) engine
JP2011069305A (en) Internal combustion engine and method for controlling the same
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP5035097B2 (en) Surge avoidance control system for multi-stage turbocharging system
JP2010190052A (en) Supercharging system for internal combustion engine
JP5120343B2 (en) Intake passage structure of internal combustion engine
JP6357902B2 (en) Engine exhaust gas recirculation method and exhaust gas recirculation device
JP4940927B2 (en) Turbocharger control device
JP2009209887A (en) Control device of internal combustion engine
JP2009108693A (en) Control device for internal combustion engine
JP4311304B2 (en) Supercharging system for internal combustion engines
JP2009013872A (en) Intake control device for internal combustion engine
JP4206934B2 (en) Supercharging system for internal combustion engines
JP6521022B2 (en) Control device and control method for turbocharged engine
JP6540659B2 (en) Control system for internal combustion engine
JP5791960B2 (en) Internal combustion engine with a supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070725

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100129

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100719

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 4561236

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130806

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees