JP2009013872A - Intake control device for internal combustion engine - Google Patents

Intake control device for internal combustion engine Download PDF

Info

Publication number
JP2009013872A
JP2009013872A JP2007176305A JP2007176305A JP2009013872A JP 2009013872 A JP2009013872 A JP 2009013872A JP 2007176305 A JP2007176305 A JP 2007176305A JP 2007176305 A JP2007176305 A JP 2007176305A JP 2009013872 A JP2009013872 A JP 2009013872A
Authority
JP
Japan
Prior art keywords
passage
state
intake
valve
internal combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007176305A
Other languages
Japanese (ja)
Inventor
Akio Matsunaga
彰生 松永
Shigeki Nakayama
茂樹 中山
Tomomi Onishi
知美 大西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2007176305A priority Critical patent/JP2009013872A/en
Publication of JP2009013872A publication Critical patent/JP2009013872A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an intake control device for an internal combustion engine which is equipped with two passages provided to branch the intake passage and selectively switches the passages at introduction and stop of EGR gas without deteriorating exhaust emission and combustion state of the internal combustion engine. <P>SOLUTION: An intake control device is applied to an internal combustion engine 1 equipped with a first branch passage 9 and second branch passage 10 which are provided to the lower reaches from a connection position in a low pressure EGR passage 20 so as to branch an intake passage 3, and introduces intake to a cylinder 2 through the first branch passage 9 when introducing EGR gas and trough the second branch passage 10 when stopping the EGR gas, wherein a first main regulating valve 11 and second main regulating valve 13 are gradually closed from fully opened positions to totally closed positions, respectively, and a first fresh air regulating valve 14 and second fresh air regulating valve 16 are gradually opened from totally closed positions to fully opened positions, respectively, when switching intake flow from the first branch passage 9 to the second branch passage 10. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、排気通路から吸気通路に排気の一部をEGRガスとして導くEGR通路と、そのEGR通路の接続位置より下流において吸気通路を分岐するように設けられた第1通路及び第2通路と、を備えた内燃機関の吸気制御装置に関する。   The present invention relates to an EGR passage that guides part of the exhaust gas from the exhaust passage to the intake passage as EGR gas, and a first passage and a second passage provided to branch the intake passage downstream from the connection position of the EGR passage, And an intake control device for an internal combustion engine.

吸気通路に、インタークーラと、そのインタークーラをバイパスし、かつインタークーラが設けられた吸気管より短いバイパス通路とを設け、内燃機関に加速が要求されてEGR弁が閉弁されたときにはインタークーラへの吸気の流入を抑制し、バイパス通路を介して気筒に吸気を導くことにより新気の導入遅れを抑制する排気還流装置が知られている(特許文献1参照)。その他、本発明に関連する先行技術文献として特許文献2、3が存在する。   In the intake passage, an intercooler and a bypass passage that bypasses the intercooler and is shorter than the intake pipe provided with the intercooler are provided, and when the internal combustion engine is requested to accelerate and the EGR valve is closed, the intercooler An exhaust gas recirculation device that suppresses the introduction delay of fresh air by suppressing the inflow of intake air to the cylinder and guiding the intake air to the cylinder through a bypass passage is known (see Patent Document 1). In addition, Patent Documents 2 and 3 exist as prior art documents related to the present invention.

特開2005−146919号公報JP-A-2005-146919 特開平07−279778号公報JP 07-279778 A 特開2004−251201号公報JP 2004-251201 A

特許文献1の内燃機関のように吸気通路に互いに並列な2つの分岐通路が設けられ、これらの通路をEGRガスの導入時と停止時とで選択的に切り替える内燃機関では、使用しない通路の出入口をそれぞれ全閉にするものがある。このように通路の出入口を全閉にすると、その通路を使用していたときにその通路内を流れていた吸気が出入口を全閉にした際に通路内に閉じ込められるため、次にその通路を使用すべく出入口を急に全開にすると通路内に閉じ込められていた吸気が一度に気筒内に流入し、内燃機関の燃焼状態や排気エミッションを悪化させるおそれがある。例えば、通路内に閉じ込められていた吸気が大量にEGRガスを含む吸気であり、それまで気筒に導かれていた吸気がEGRガスを含まない吸気(以下、新気と称することがある。)であった場合、気筒に急に大量のEGRガスを含む吸気が導入され、これにより内燃機関の燃焼状態が悪化したり、気筒内に供給する燃料量の調整が間に合わずにスモークなどが発生して排気エミッションが悪化したりするおそれがある。   In an internal combustion engine in which two branch passages parallel to each other are provided in the intake passage as in the internal combustion engine of Patent Document 1 and these passages are selectively switched between when EGR gas is introduced and when the EGR gas is stopped, the entrance / exit of passages that are not used Some of them are fully closed. When the entrance / exit of the passage is fully closed in this way, the intake air flowing in the passage when the passage is in use is confined in the passage when the entrance / exit is fully closed. If the inlet / outlet is suddenly fully opened for use, the intake air confined in the passage flows into the cylinder at a time, which may deteriorate the combustion state and exhaust emission of the internal combustion engine. For example, the intake air confined in the passage is an intake air containing a large amount of EGR gas, and the intake air previously guided to the cylinder is an intake air that does not contain EGR gas (hereinafter sometimes referred to as fresh air). In such a case, the intake air containing a large amount of EGR gas is suddenly introduced into the cylinder, which causes the combustion state of the internal combustion engine to deteriorate or the amount of fuel supplied to the cylinder to be adjusted in time, resulting in smoke, etc. Exhaust emissions may deteriorate.

そこで、本発明は、吸気通路を分岐するように設けられた2つの通路を備え、これらをEGRガスの導入時と停止時とで選択的に切り替える内燃機関において、内燃機関の燃焼状態及び排気エミッションを悪化させることなく通路の切り替えを行うことが可能な内燃機関の吸気制御装置を提供することを目的とする。   Therefore, the present invention includes two passages provided so as to branch the intake passage, and in an internal combustion engine that selectively switches between when EGR gas is introduced and when it is stopped, the combustion state and exhaust emission of the internal combustion engine An object of the present invention is to provide an intake control device for an internal combustion engine capable of switching passages without deteriorating the engine.

本発明の内燃機関の吸気制御装置は、排気通路から吸気通路に排気の一部をEGRガスとして導くEGR通路と、前記EGR通路から前記吸気通路に導かれるEGRガスの流量を調整するEGR弁と、前記EGR通路の接続位置より下流において前記吸気通路を分岐するように設けられた第1通路及び第2通路と、を備えた内燃機関に適用され、前記第1通路の入口及び出口がそれぞれ開けられるとともに前記第2通路の入口及び出口がそれぞれ閉じられる第1状態と前記第1通路の入口及び出口がそれぞれ閉じられるとともに前記第2通路の入口及び出口がそれぞれ開けられる第2状態とに切り替え可能な弁手段と、前記EGR弁が開いている場合は前記弁手段が前記第1状態に切り替えられ、前記EGR弁が閉じている場合は前記弁手段が前記第2状態に切り替えられるように前記弁手段の動作を制御する制御手段と、を備えた内燃機関の吸気制御装置において、前記制御手段は、前記弁手段の状態を前記第1状態及び前記第2状態のうちの一方の状態から他方の状態に切り替える際、前記一方の状態において入口及び出口がそれぞれ閉じられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量が漸次増加するとともに前記一方の状態において入口及び出口がそれぞれ開けられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量が漸次減少するように前記弁手段の動作を制御することにより、上述した課題を解決する(請求項1)。   An intake control apparatus for an internal combustion engine according to the present invention includes an EGR passage that guides a part of exhaust gas from the exhaust passage to the intake passage as EGR gas, and an EGR valve that adjusts the flow rate of EGR gas that is guided from the EGR passage to the intake passage. Applied to an internal combustion engine including a first passage and a second passage provided so as to branch off the intake passage downstream from a connection position of the EGR passage, and an inlet and an outlet of the first passage are respectively opened. And can be switched between a first state in which the inlet and outlet of the second passage are closed and a second state in which the inlet and outlet of the first passage are closed and the inlet and outlet of the second passage are respectively opened. And when the EGR valve is open, the valve means is switched to the first state, and when the EGR valve is closed, the valve means And a control means for controlling the operation of the valve means to be switched to the second state, wherein the control means changes the state of the valve means to the first state and the first state. When switching from one of the two states to the other, the flow rate of the intake air led to the cylinders of the internal combustion engine gradually increases through the passages in which the inlet and the outlet are closed in the one state, respectively. By controlling the operation of the valve means so that the flow rate of the intake air guided to the cylinder of the internal combustion engine through the passages in which the inlet and the outlet are opened in the one state is gradually reduced, the above-described problem can be solved. This is solved (claim 1).

本発明の吸気制御装置によれば、弁手段の状態を切り替える場合、それまで出入口が閉じられていた通路を介して気筒に導かれる吸気の流量を漸次増加させるので、その通路に閉じ込められていた吸気が一度に気筒に流入することを防止できる。また、それまで出入口が開かれていた通路を介して気筒に導かれる吸気の流量を漸次減少させるので、急に吸気が減少することを防止できる。そのため、内燃機関の燃焼状態及び排気エミッションの悪化を防止しつつ通路の切り替えを行うことができる。   According to the intake control device of the present invention, when the state of the valve means is switched, the flow rate of the intake air led to the cylinder through the passage where the inlet / outlet has been closed is gradually increased, so that it is confined in the passage. It is possible to prevent intake air from flowing into the cylinder at a time. Further, since the flow rate of the intake air led to the cylinder through the passage that has previously been opened and closed is gradually reduced, it is possible to prevent the intake air from being suddenly reduced. Therefore, the passage can be switched while preventing the combustion state of the internal combustion engine and the exhaust emission from deteriorating.

本発明の吸気制御装置の一形態においては、前記EGR通路の接続位置より下流、かつ前記吸気通路が前記第1通路及び前記第2通路に分岐する分岐点より上流の吸気通路にはターボ過給機のコンプレッサが設けられ、前記弁手段が前記第2状態のときの前記コンプレッサより下流の吸気通路の圧力を検出可能なように設けられる圧力検出手段と、前記弁手段の状態が前記第2状態から前記第1状態に切り替えられるときに前記圧力検出手段が検出した圧力を記憶する記憶手段と、をさらに備え、前記制御手段は、前記弁手段を前記第1状態から前記第2状態に切り替える所定の状態切替条件が成立した場合、前回前記弁手段を前記第2状態から前記第1状態に切り替えたときに前記記憶手段に記憶された圧力が高いほど前記弁手段を前記第1状態から前記第2状態に切り替える際における前記第2通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの増加量及び前記第1通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの減少量がそれぞれ小さくなるように前記弁手段の動作を制御してもよい(請求項2)。一般にEGR弁は内燃機関に高い出力が要求された場合に閉じられ、このような場合はターボ過給機の回転数が上昇して吸気通路の圧力が上昇する。このような運転状態においてEGR弁が開けられると弁手段が第2状態から第1状態に切り替えられるので、第2通路には圧力の高い吸気が閉じ込められることになる。そして、第2通路に閉じ込められている吸気の圧力が高いほど、次に弁の状態を第1状態から第2状態に切り替える際に第2通路から吸気が急に噴出し易くなる。この形態では、前回弁手段を第2状態から第1状態に切り替えたときの圧力を記憶手段に記憶させておき、その圧力が高いほど弁手段の切り替え時における第2通路を介して内燃機関に導かれる吸気の流量の単位時間当たりの増加量を小さくするので、第2通路に閉じ込められていた吸気が一度に気筒に流入することを適切に抑制できる。そのため、気筒に流入する新気量の制御精度を向上させ、この新気量を滑らかに増加させることができる。   In one form of the intake control device of the present invention, the turbocharger is provided in the intake passage downstream from the connection position of the EGR passage and upstream from the branch point where the intake passage branches into the first passage and the second passage. A pressure detection means provided so as to detect the pressure in the intake passage downstream from the compressor when the valve means is in the second state, and the state of the valve means is the second state. Storage means for storing the pressure detected by the pressure detection means when switching from the first state to the first state, and the control means is a predetermined switch for switching the valve means from the first state to the second state. When the state switching condition is satisfied, the higher the pressure stored in the storage means when the valve means was last switched from the second state to the first state, the higher the pressure means stored in the storage means. An increase in the flow rate of intake air led to the internal combustion engine via the second passage when switching from the state to the second state and the flow rate of intake air led to the internal combustion engine via the first passage The operation of the valve means may be controlled such that the amount of decrease per unit time becomes smaller. In general, the EGR valve is closed when a high output is required for the internal combustion engine. In such a case, the rotational speed of the turbocharger increases and the pressure in the intake passage increases. When the EGR valve is opened in such an operating state, the valve means is switched from the second state to the first state, so that intake air with high pressure is confined in the second passage. The higher the pressure of the intake air confined in the second passage, the easier the intake air is suddenly ejected from the second passage when the valve state is next switched from the first state to the second state. In this embodiment, the pressure when the valve means was switched from the second state to the first state last time is stored in the storage means, and the higher the pressure is, the more the internal combustion engine passes through the second passage when the valve means is switched. Since the amount of increase in the flow rate of the introduced intake air per unit time is reduced, it is possible to appropriately suppress the intake air trapped in the second passage from flowing into the cylinder at a time. Therefore, the control accuracy of the amount of fresh air flowing into the cylinder can be improved, and the amount of fresh air can be increased smoothly.

この形態においては、前記第1通路内の圧力と前記第2通路内の圧力とを検出し、それら検出した圧力の差である圧力差を取得する圧力差取得手段をさらに備え、前記制御手段は、前記所定の状態切替条件が成立した場合、前記圧力差取得手段により取得された圧力差が大きいほど前記弁手段を前記第1状態から前記第2状態に切り替える際における前記第2通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの増加量及び前記第1通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの減少量がそれぞれさらに小さくなるように前記弁手段の動作を制御してもよい(請求項3)。このように第2通路内の圧力に加えて第1通路内の圧力を考慮して弁手段の切り替え時における第2通路を介して内燃機関に導かれる吸気の流量の単位時間当たりの増加量を調整することにより、気筒に流入する新気量の制御精度をさらに向上させることができる。   In this form, the pressure control device further comprises pressure difference acquisition means for detecting a pressure in the first passage and a pressure in the second passage, and acquiring a pressure difference which is a difference between the detected pressures. When the predetermined state switching condition is satisfied, the larger the pressure difference acquired by the pressure difference acquisition means, the larger the pressure difference, the more the valve means is switched from the first state to the second state. The valve means so that the increase amount per unit time of the flow rate of intake air led to the internal combustion engine and the decrease amount per unit time of the flow rate of intake air led to the internal combustion engine via the first passage are further reduced. May be controlled (claim 3). In this way, the increase amount per unit time of the flow rate of the intake air guided to the internal combustion engine through the second passage at the time of switching the valve means in consideration of the pressure in the first passage in addition to the pressure in the second passage. By adjusting, the control accuracy of the amount of fresh air flowing into the cylinder can be further improved.

また、前記所定の状態切替条件の成立時に前記圧力差取得手段により検出された前記第2通路内の圧力が前記第1通路内の圧力より低い場合、前記制御手段による前記弁手段の前記第2状態への切り替えを禁止する禁止手段をさらに備えていてもよい(請求項4)。第2通路内の圧力が第1通路内の圧力より低いときに弁手段を第1状態から第2状態に切り替えると吸気はまず第2通路内の圧力が第1通路内の圧力になるまで第2通路に流入し、その後気筒に流入し始める。そのため、吸気が気筒に流入するまでに要する時間が長くなる。この場合、運転者の操作に対して内燃機関の反応が遅れるため、ドライバビリティが悪化するおそれがある。この形態では、所定の状態切替条件の成立時に第2通路内の圧力が第1通路内の圧力より低い場合は弁手段の第2状態への切り替えを禁止するので、ドライバビリティの悪化を防止できる。   Further, when the pressure in the second passage detected by the pressure difference acquisition means when the predetermined state switching condition is satisfied is lower than the pressure in the first passage, the second of the valve means by the control means. The apparatus may further include a prohibiting unit that prohibits switching to the state (claim 4). When the valve means is switched from the first state to the second state when the pressure in the second passage is lower than the pressure in the first passage, the intake air first increases until the pressure in the second passage becomes the pressure in the first passage. It flows into two passages and then begins to flow into the cylinder. Therefore, the time required for the intake air to flow into the cylinder becomes longer. In this case, since the reaction of the internal combustion engine is delayed with respect to the operation of the driver, drivability may be deteriorated. In this embodiment, when the predetermined state switching condition is satisfied, if the pressure in the second passage is lower than the pressure in the first passage, switching to the second state of the valve means is prohibited, so that deterioration of drivability can be prevented. .

本発明の吸気制御装置の一形態においては、前記内燃機関の気筒に流入する吸気量を取得する吸気量取得手段をさらに備え、前記制御手段は、前記弁手段の状態を前記第1状態及び前記第2状態のうちの一方の状態から他方の状態に切り替える場合、前記吸気量取得手段により取得された吸気量に基づいて前記一方の状態において入口及び出口がそれぞれ閉じられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量及び前記一方の状態において入口及び出口がそれぞれ開けられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量がそれぞれの目標流量に調整されるように前記弁手段の動作を補正するフィードバック補正手段を備えていてもよい(請求項5)。周知のように弁手段は経年劣化などによって開度とその開度において弁手段を通過する流量との対応関係が変化する。この形態では、気筒に流入する吸気量を取得し、その吸気量に基づいて弁手段の動作を補正するので、弁手段の開度と流量との対応関係が変化していても弁手段の状態切替時に各通路を通過させるべき吸気の流量を適切に制御することができる。そのため、内燃機関の燃焼状態及び排気エミッションの悪化をより確実に防止しつつ通路の切り替えを行うことができる。   In one form of the intake control device of the present invention, the intake control device further comprises an intake amount acquisition means for acquiring an intake amount flowing into the cylinder of the internal combustion engine, wherein the control means sets the state of the valve means to the first state and the When switching from one state of the second states to the other state, the inlet and the outlet are closed in the one state based on the intake air amount acquired by the intake air amount acquiring means, respectively. The flow rate of the intake air guided to the cylinder of the internal combustion engine and the flow rate of the intake air guided to the cylinder of the internal combustion engine through the passages in which the inlet and the outlet are opened in the one state are adjusted to the respective target flow rates. Further, a feedback correction means for correcting the operation of the valve means may be provided (claim 5). As is well known, the correspondence between the opening degree of the valve means and the flow rate passing through the valve means at the opening degree changes due to deterioration over time. In this embodiment, the amount of intake air flowing into the cylinder is acquired, and the operation of the valve means is corrected based on the amount of intake air. Therefore, even if the correspondence between the opening degree of the valve means and the flow rate changes, the state of the valve means It is possible to appropriately control the flow rate of the intake air that should pass through each passage at the time of switching. Therefore, it is possible to switch the passage while more reliably preventing deterioration of the combustion state and exhaust emission of the internal combustion engine.

以上に説明したように、本発明の吸気制御装置によれば、弁手段の状態を切り替える際、それまで出入口が閉じられていた通路を介して気筒に導かれる吸気の流量を漸次増加させるので、内燃機関の燃焼状態及び排気エミッションの悪化を防止しつつ通路の切り替えを行うことができる。   As described above, according to the intake control device of the present invention, when the state of the valve means is switched, the flow rate of the intake air guided to the cylinder through the passage where the inlet / outlet has been closed is gradually increased. The passage can be switched while preventing the combustion state of the internal combustion engine and the exhaust emission from deteriorating.

図1は、本発明の一形態に係る吸気制御装置が組み込まれた内燃機関の一例を示している。図1に示した内燃機関(以下、エンジンと称することがある。)1は、車両に走行用動力源として搭載されるディーゼルエンジンであり、複数(図1では4つ)の気筒2と、各気筒2にそれぞれ接続される吸気通路3及び排気通路4とを備えている。吸気通路3には、吸気濾過用のエアフィルタ5、吸気量に対応した信号を出力するエアフローメータ6、吸入空気量を調整するためのスロットル弁7、ターボ過給機8のコンプレッサ8aが設けられている。   FIG. 1 shows an example of an internal combustion engine in which an intake air control device according to an embodiment of the present invention is incorporated. An internal combustion engine (hereinafter sometimes referred to as an engine) 1 shown in FIG. 1 is a diesel engine mounted on a vehicle as a driving power source, and includes a plurality (four in FIG. 1) of cylinders 2, An intake passage 3 and an exhaust passage 4 connected to the cylinder 2 are provided. The intake passage 3 is provided with an air filter 5 for filtering the intake air, an air flow meter 6 for outputting a signal corresponding to the intake air amount, a throttle valve 7 for adjusting the intake air amount, and a compressor 8a of the turbocharger 8. ing.

また、図1に示したように吸気通路3は、コンプレッサ8aの下流に設定された分岐点3aにおいて分岐し、分岐点3aより下流に設定された合流点3bで合流する第1通路としての第1分岐通路9及び第2通路としての第2分岐通路10を備えている。第1分岐通路9には、第1分岐通路9の入口に設けられる第1メイン調整弁11と、吸気を冷却するための第1インタークーラ12と、第1分岐通路9の出口に設けられる第2メイン調整弁13とが設けられている。第2分岐通路10には、第2分岐通路10の入口に設けられる第1新気調整弁14と、吸気を冷却するための第2インタークーラ15と、第2分岐通路10の出口に設けられる第2新気調整弁16とが設けられている。第1メイン調整弁11、第2メイン調整弁13、第1新気調整弁14、及び第2新気調整弁16としては、これら各弁が設けられた位置の吸気通路を全閉にする全閉位置と吸気通路を全開にする全開位置との間で開度を調整可能な弁が設けられる。   As shown in FIG. 1, the intake passage 3 branches at a branch point 3a set downstream of the compressor 8a and joins at a junction point 3b set downstream of the branch point 3a. A first branch passage 9 and a second branch passage 10 as a second passage are provided. The first branch passage 9 includes a first main regulating valve 11 provided at the inlet of the first branch passage 9, a first intercooler 12 for cooling the intake air, and a first main valve provided at the outlet of the first branch passage 9. 2 main adjusting valve 13 is provided. The second branch passage 10 is provided at the first fresh air regulating valve 14 provided at the inlet of the second branch passage 10, the second intercooler 15 for cooling the intake air, and the outlet of the second branch passage 10. A second fresh air adjustment valve 16 is provided. As the first main adjustment valve 11, the second main adjustment valve 13, the first fresh air adjustment valve 14, and the second fresh air adjustment valve 16, all the intake passages at positions where these valves are provided are fully closed. A valve capable of adjusting the opening degree between the closed position and the fully opened position for fully opening the intake passage is provided.

排気通路4には、ターボ過給機8のタービン8b、排気を浄化するための排気浄化触媒17、及び排気流量を調整するための排気絞り弁18が設けられている。   The exhaust passage 4 is provided with a turbine 8b of the turbocharger 8, an exhaust purification catalyst 17 for purifying exhaust, and an exhaust throttle valve 18 for adjusting the exhaust flow rate.

排気通路4と吸気通路3とは、低圧EGR通路20及び高圧EGR通路21にて接続されている。図1に示したように低圧EGR通路20は排気浄化触媒11より下流の排気通路4とコンプレッサ8aより上流の吸気通路3とを接続している。一方、高圧EGR通路21はタービン8bより上流の排気通路4とコンプレッサ8aより下流の吸気通路3とを接続している。そのため、低圧EGR通路20が本発明のEGR通路に相当する。低圧EGR通路20には、吸気通路4に導かれる排気、すなわちEGRガスを冷却するためのEGRクーラ22、及び低圧EGR通路20を介して吸気通路3に還流されるEGRガス(以下、第1EGRガスと称することがある。)の流量を調整するEGR弁としての低圧EGR弁23が設けられている。高圧EGR通路21には、高圧EGR通路21を介して吸気通路3に還流されるEGRガス(以下、第2EGRガスと称することがある。)の流量を調整する高圧EGR弁24が設けられている。   The exhaust passage 4 and the intake passage 3 are connected by a low pressure EGR passage 20 and a high pressure EGR passage 21. As shown in FIG. 1, the low pressure EGR passage 20 connects the exhaust passage 4 downstream of the exhaust purification catalyst 11 and the intake passage 3 upstream of the compressor 8a. On the other hand, the high pressure EGR passage 21 connects the exhaust passage 4 upstream of the turbine 8b and the intake passage 3 downstream of the compressor 8a. Therefore, the low pressure EGR passage 20 corresponds to the EGR passage of the present invention. The low pressure EGR passage 20 has exhaust gas guided to the intake passage 4, that is, an EGR cooler 22 for cooling the EGR gas, and EGR gas recirculated to the intake passage 3 through the low pressure EGR passage 20 (hereinafter referred to as first EGR gas). The low-pressure EGR valve 23 is provided as an EGR valve that adjusts the flow rate. The high-pressure EGR passage 21 is provided with a high-pressure EGR valve 24 that adjusts the flow rate of EGR gas (hereinafter sometimes referred to as second EGR gas) recirculated to the intake passage 3 through the high-pressure EGR passage 21. .

第1メイン調整弁11、第2メイン調整弁13、第1新気調整弁14、第2新気調整弁16、及び各EGR弁23、24の動作は、エンジンコントロールユニット(ECU)30にてそれぞれ制御される。ECU30は、マイクロプロセッサ及びその動作に必要なRAM、ROM等の周辺機器を含んだコンピュータとして構成され、エンジン1に設けられた各種センサからの出力信号に基づいてエンジン1の運転状態を制御する周知のコンピュータユニットである。ECU30は、例えば吸気通路3にEGRガスを導入する場合、エンジン1の回転数及び負荷に応じて低圧EGR通路20及び高圧EGR通路21のいずれを介して吸気通路3に排気を導入するか判定し、エンジン1の運転状態に応じて設定された所定流量のEGRガスが吸気通路3に導入されるように各EGR弁23、24の開度をそれぞれ制御する。このような制御を行う際に参照するセンサとしてECU30には、例えばクランク角に対応する信号を出力するクランク角センサ31、第1分岐通路9内の圧力に対応する信号を出力する第1圧力センサ32、第2分岐通路10内の圧力に対応する信号を出力する圧力検出手段としての第2圧力センサ33、及びエアフローメータ6、などが接続されている。この他にもECU30には、排気浄化触媒10の前後の差圧に対応する信号を出力する差圧センサ34、アクセル開度に対応する信号を出力するアクセル開度センサ35などが接続される。   The operations of the first main adjustment valve 11, the second main adjustment valve 13, the first fresh air adjustment valve 14, the second fresh air adjustment valve 16, and the EGR valves 23 and 24 are performed by an engine control unit (ECU) 30. Each is controlled. The ECU 30 is configured as a computer including a microprocessor and peripheral devices such as a RAM and a ROM necessary for its operation, and controls the operating state of the engine 1 based on output signals from various sensors provided in the engine 1. Computer unit. For example, when introducing EGR gas into the intake passage 3, the ECU 30 determines whether to introduce exhaust gas into the intake passage 3 via the low pressure EGR passage 20 or the high pressure EGR passage 21 according to the rotational speed and load of the engine 1. The opening degree of each EGR valve 23, 24 is controlled so that EGR gas having a predetermined flow rate set according to the operating state of the engine 1 is introduced into the intake passage 3. For example, a crank angle sensor 31 that outputs a signal corresponding to the crank angle, and a first pressure sensor that outputs a signal corresponding to the pressure in the first branch passage 9 are used as sensors to be referred to when performing such control. 32, a second pressure sensor 33 serving as a pressure detecting means for outputting a signal corresponding to the pressure in the second branch passage 10, the air flow meter 6, and the like are connected. In addition, the ECU 30 is connected to a differential pressure sensor 34 that outputs a signal corresponding to the differential pressure before and after the exhaust purification catalyst 10, an accelerator opening sensor 35 that outputs a signal corresponding to the accelerator opening, and the like.

ECU30は、第1分岐通路9にはEGRガスを含んだ吸気のみが流れ、第2分岐通路10には新気のみが流れるように第1メイン調整弁11、第2メイン調整弁13、第1新気調整弁14、及び第2新気調整弁16のそれぞれの動作を制御する。例えば、低圧EGR弁23が開弁され、吸気通路3に第1EGRガスが導かれている場合は第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置に切り替えるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置に切り替える。このように各弁11、13、14、16を制御することにより、吸気の全量が第1分岐通路9を介して気筒2に導かれる。以降、このように各弁11、13、14、16の状態を切り替えて吸気を気筒2に導入する吸気導入状態を第1状態と称することがある。一方、低圧EGR弁23が全閉に制御され、吸気通路3への第1EGRガスの導入が停止された場合は、第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全閉位置に切り替えるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全開位置に切り替える。この場合は、吸気の全量が第2分岐通路10を介して気筒2に導かれる。以降、この吸気導入状態を第2状態と称することがある。このように吸気導入状態を切り替えることにより、第1メイン調整弁11、第2メイン調整弁13、第1新気調整弁14、及び第2新気調整弁16が本発明の弁手段に相当する。   The ECU 30 includes the first main adjustment valve 11, the second main adjustment valve 13, the first main adjustment valve 11 so that only intake air including EGR gas flows through the first branch passage 9 and only fresh air flows through the second branch passage 10. The respective operations of the fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are controlled. For example, when the low pressure EGR valve 23 is opened and the first EGR gas is guided to the intake passage 3, the first main adjustment valve 11 and the second main adjustment valve 13 are switched to the fully opened positions and the first fresh air adjustment is performed. The valve 14 and the second fresh air adjustment valve 16 are each switched to the fully closed position. By controlling the valves 11, 13, 14, and 16 in this way, the entire amount of intake air is guided to the cylinder 2 through the first branch passage 9. Hereinafter, the intake air introduction state in which the state of each valve 11, 13, 14, 16 is switched and the intake air is introduced into the cylinder 2 in this way may be referred to as a first state. On the other hand, when the low pressure EGR valve 23 is controlled to be fully closed and the introduction of the first EGR gas into the intake passage 3 is stopped, the first main adjustment valve 11 and the second main adjustment valve 13 are respectively switched to the fully closed position. At the same time, the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are respectively switched to the fully open position. In this case, the entire amount of intake air is guided to the cylinder 2 via the second branch passage 10. Hereinafter, this intake state may be referred to as a second state. By switching the intake air introduction state in this way, the first main regulating valve 11, the second main regulating valve 13, the first fresh air regulating valve 14, and the second fresh air regulating valve 16 correspond to the valve means of the present invention. .

図2は、ECU30がエンジン1の運転状態に応じて吸気導入状態を第1状態又は第2状態に切り替えるべくエンジン1の運転中に所定の周期で繰り返し実行する吸気導入状態制御ルーチンを示している。この制御ルーチンを実行することにより、ECU30が本発明の制御手段として機能する。   FIG. 2 shows an intake air introduction state control routine that is repeatedly executed at a predetermined cycle during operation of the engine 1 so that the ECU 30 switches the intake air introduction state to the first state or the second state according to the operation state of the engine 1. . By executing this control routine, the ECU 30 functions as the control means of the present invention.

図2の制御ルーチンにおいてECU30は、まずステップS11でエンジン1の運転状態を取得する。次のステップS12でECU30は、吸気導入状態を第1状態から第2状態に切り替える新気導入条件が成立したか否か判断する。この新気導入条件は、例えばアクセル開度が開けられてエンジン1に加速が要求され、吸気通路3へのEGRガスの導入を停止させるべく各EGR弁23、24を開弁状態から全閉状態に切り替える場合などに成立したと判断される。新気導入条件が成立したと判断した場合はステップS13に進み、ECU30は吸気導入状態を第1状態から第2状態に切り替える、すなわち第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置から全閉位置に切り替えるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置から全開位置に切り替える新気導入制御を実行する。なお、既に吸気導入状態が第2状態に切り替えられていた場合はその吸気導入状態が維持される。その後、今回の制御ルーチンを終了する。   In the control routine of FIG. 2, the ECU 30 first acquires the operating state of the engine 1 in step S11. In the next step S12, the ECU 30 determines whether or not a fresh air introduction condition for switching the intake air introduction state from the first state to the second state is satisfied. The new air introduction condition is that, for example, the accelerator opening is opened and the engine 1 is required to be accelerated, and the EGR valves 23 and 24 are fully opened from the open state to stop the introduction of the EGR gas into the intake passage 3. It is judged that it was established when switching to. When it is determined that the fresh air introduction condition is satisfied, the process proceeds to step S13, where the ECU 30 switches the intake air introduction state from the first state to the second state, that is, the first main adjustment valve 11 and the second main adjustment valve 13 are fully opened. A fresh air introduction control is performed in which the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are switched from the fully closed position to the fully open position while switching from the position to the fully closed position. When the intake air introduction state has already been switched to the second state, the intake air introduction state is maintained. Thereafter, the current control routine is terminated.

図3及び図4を参照して新気導入制御について説明する。図3はエンジン1の各部のうち新気導入制御に関係する部分のみを示したエンジン1の概略図である。なお、図3において図1と共通の部分には同一の符号を付して説明を省略する。また、図3では図示の便宜のためにコンプレッサ8aとタービン8bとを分離して示した。図3に示したように各気筒2にはピストン40が挿入されるとともに気筒2内に燃料を噴射するインジェクタ41が設けられる。また、気筒2に対して吸気通路3を開閉する吸気弁42及び気筒2に対して排気通路4を開閉する排気弁43が設けられる。図4は、上から順に新気導入制御にて吸気導入状態を第1状態から第2状態に切り替えた際のアクセル開度、気筒2内に流入する吸気の流量、低圧EGR弁23の開度、第1新気調整弁14の開度、第2新気調整弁16の開度、第1メイン調整弁11の開度、及び第2メイン調整弁13の開度のそれぞれの時間変化の一例を示している。図4の時刻T1においてアクセル開度が開けられると低圧EGR弁23が開弁状態から全閉状態に切り替えられ、新気導入条件が成立されたと判断される。これにより新気導入制御が開始され、図4に示したように時刻T1から時刻T2にかけて第1メイン調整弁11及び第2メイン調整弁13がそれぞれ全開位置から全閉位置に徐々に閉弁されるとともに、第1新気調整弁14及び第2新気調整弁16がそれぞれ全閉位置から全開位置に徐々に開弁される。このように各弁11、13、14、16の開度を調整することにより、第1分岐通路9を介して気筒2に導かれる吸気の流量を漸次減少させるとともに第2分岐通路10を介して気筒2に導かれる吸気の流量を漸次増加させることができる。   The fresh air introduction control will be described with reference to FIGS. FIG. 3 is a schematic diagram of the engine 1 showing only the parts related to the fresh air introduction control among the respective parts of the engine 1. 3 that are the same as those in FIG. 1 are denoted by the same reference numerals and description thereof is omitted. In FIG. 3, the compressor 8a and the turbine 8b are shown separately for convenience of illustration. As shown in FIG. 3, each cylinder 2 is provided with an injector 41 in which a piston 40 is inserted and fuel is injected into the cylinder 2. An intake valve 42 that opens and closes the intake passage 3 for the cylinder 2 and an exhaust valve 43 that opens and closes the exhaust passage 4 for the cylinder 2 are provided. FIG. 4 shows the accelerator opening when the intake intake state is switched from the first state to the second state in the fresh air introduction control from the top, the flow rate of the intake air flowing into the cylinder 2, and the opening of the low pressure EGR valve 23. An example of each time change of the opening degree of the first fresh air regulating valve 14, the opening degree of the second fresh air regulating valve 16, the opening degree of the first main regulating valve 11, and the opening degree of the second main regulating valve 13 Is shown. When the accelerator opening is opened at time T1 in FIG. 4, the low pressure EGR valve 23 is switched from the open state to the fully closed state, and it is determined that the fresh air introduction condition is satisfied. As a result, fresh air introduction control is started, and the first main adjustment valve 11 and the second main adjustment valve 13 are gradually closed from the fully open position to the fully closed position from time T1 to time T2, as shown in FIG. At the same time, the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are gradually opened from the fully closed position to the fully opened position, respectively. Thus, by adjusting the opening degree of each of the valves 11, 13, 14, and 16, the flow rate of the intake air guided to the cylinder 2 through the first branch passage 9 is gradually reduced and the second branch passage 10 is used. The flow rate of the intake air guided to the cylinder 2 can be gradually increased.

図4の時刻T1から各弁11、13、14、16の開度が変更されると、気筒2にはまず合流点3bから気筒2の入口までの間の吸気通路(以下、下流部と称することがある。)Cの吸気が流入する。この下流部Cの吸気はEGRガスを含んだ吸気であるため、図4の上から2番目の図に示したように気筒2には空気とEGRガスとが流入する。気筒2には次に分岐点3aから合流点3bまでの間の吸気通路(以下、中間部と称することがある。)Bの吸気が流入する。この中間部Bには、第1分岐通路9と第2分岐通路10とがあるが、上述したように第1メイン調整弁11及び第2メイン調整弁13がそれぞれ全開位置から全閉位置に徐々に閉弁されるとともに第1新気調整弁14及び第2新気調整弁16がそれぞれ全閉位置から全開位置に徐々に開弁されるため、第1分岐通路9からEGRガスを含んだ吸気がその量を漸次減少しつつ気筒2に導かれるとともに第2分岐通路10から新気がその量を漸次増加しつつ気筒2に導かれる。そのため、図4の時刻T3〜T2に示したように気筒2に流入する吸気中のEGRガスの量を徐々に減少させるとともに吸気中の空気量を徐々に増加させることができる。その後、気筒2には低圧EGR通路20の接続位置から分岐点3aまでの間の吸気通路(以下、上流部と称することがある。)Aの吸気が導入される。この時点ではすでに低圧EGR弁23が全閉状態に切り替えられているため、アクセル開度の増加に伴うスロットル弁7の開き側の制御によって増加した新気、すなわち空気のみが気筒2に導入される。   When the opening degree of each of the valves 11, 13, 14, and 16 is changed from time T1 in FIG. 4, the intake passage (hereinafter referred to as the downstream portion) between the junction 3b and the inlet of the cylinder 2 is first introduced into the cylinder 2. ) C intake air flows in. Since the intake air in the downstream portion C is intake air containing EGR gas, air and EGR gas flow into the cylinder 2 as shown in the second diagram from the top in FIG. Next, the intake air from the intake passage (hereinafter sometimes referred to as an intermediate portion) B between the branch point 3a and the junction 3b flows into the cylinder 2. The intermediate portion B includes a first branch passage 9 and a second branch passage 10, and as described above, the first main adjustment valve 11 and the second main adjustment valve 13 are gradually moved from the fully open position to the fully closed position, respectively. And the first fresh air regulating valve 14 and the second fresh air regulating valve 16 are gradually opened from the fully closed position to the fully opened position, so that the intake air containing EGR gas from the first branch passage 9. Is introduced to the cylinder 2 while gradually reducing the amount thereof, and fresh air is introduced from the second branch passage 10 to the cylinder 2 while gradually increasing the amount thereof. Therefore, as shown at times T3 to T2 in FIG. 4, the amount of EGR gas in the intake air flowing into the cylinder 2 can be gradually decreased and the amount of air in the intake air can be gradually increased. Thereafter, the intake air of the intake passage (hereinafter sometimes referred to as the upstream portion) A between the connection position of the low pressure EGR passage 20 and the branch point 3a is introduced into the cylinder 2. At this time, since the low pressure EGR valve 23 has already been switched to the fully closed state, only the fresh air that has been increased by the control on the opening side of the throttle valve 7 accompanying the increase in the accelerator opening, that is, only air is introduced into the cylinder 2. .

図2に戻って吸気導入状態制御ルーチンの説明を続ける。ステップS12において新気導入条件が不成立と判断された場合はステップS14に進み、ECU30は吸気導入状態を第2状態から第1状態に切り替えるEGRガス導入条件が成立したか否か判断する。このEGRガス導入条件は、例えばエンジン1に減速が要求され、吸気通路3にEGRガスを導入すべく各EGR弁23、24を全閉状態から開弁状態に切り替える場合などに成立したと判断される。EGRガス導入条件が不成立と判断した場合は今回の制御ルーチンを終了する。一方、EGRガス導入条件が成立したと判断した場合はステップS15に進み、ECU30は吸気導入状態を第2状態から第1状態に切り替える、すなわち第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全閉位置から全開位置に切り替えるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全開位置から全閉位置に切り替えるEGRガス導入制御を実行する。なお、既に吸気導入状態が第1状態に切り替えられていた場合はその吸気導入状態が維持される。その後、今回の制御ルーチンを終了する。   Returning to FIG. 2, the description of the intake air introduction state control routine will be continued. When it is determined in step S12 that the fresh air introduction condition is not satisfied, the process proceeds to step S14, and the ECU 30 determines whether an EGR gas introduction condition for switching the intake air introduction state from the second state to the first state is satisfied. It is determined that the EGR gas introduction condition is satisfied when, for example, the engine 1 is requested to decelerate and the EGR valves 23 and 24 are switched from the fully closed state to the open state to introduce the EGR gas into the intake passage 3. The If it is determined that the EGR gas introduction condition is not satisfied, the current control routine is terminated. On the other hand, when it is determined that the EGR gas introduction condition is satisfied, the process proceeds to step S15, where the ECU 30 switches the intake air introduction state from the second state to the first state, that is, the first main adjustment valve 11 and the second main adjustment valve 13 are switched. EGR gas introduction control for switching from the fully closed position to the fully open position and switching the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 from the fully open position to the fully closed position is executed. When the intake air introduction state has already been switched to the first state, the intake air introduction state is maintained. Thereafter, the current control routine is terminated.

EGRガス導入制御においては、第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全閉位置から全開位置に徐々に開弁するとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全開位置から全閉位置に徐々に閉弁する。なお、第2状態においては上流部A、下流部Cのいずれの部分の吸気も新気であり、EGRガスは中間部Bの第1分岐通路9内に閉じ込められていた分のみであるため、第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全閉位置から全開位置に急に開弁しても気筒2に流入するEGRガスの量は少なく、エンジン1の運転状態に殆ど影響を与えないと考えられる。そこで、EGRガス導入制御においては、第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全閉位置から全開位置に急に開弁させるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全開位置から全閉位置に急に閉弁させてもよい。   In the EGR gas introduction control, the first main regulating valve 11 and the second main regulating valve 13 are gradually opened from the fully closed position to the fully opened position, and the first fresh air regulating valve 14 and the second fresh air regulating valve 16 are respectively opened. Are gradually closed from the fully open position to the fully closed position. In the second state, the intake air in both the upstream part A and the downstream part C is fresh air, and the EGR gas is only the amount confined in the first branch passage 9 of the intermediate part B. Even if the first main adjustment valve 11 and the second main adjustment valve 13 are suddenly opened from the fully closed position to the fully opened position, the amount of EGR gas flowing into the cylinder 2 is small, and the operation state of the engine 1 is hardly affected. It is thought not to give. Therefore, in the EGR gas introduction control, the first main adjustment valve 11 and the second main adjustment valve 13 are each suddenly opened from the fully closed position to the fully open position, and the first fresh air adjustment valve 14 and the second fresh air adjustment are performed. The valves 16 may each be suddenly closed from the fully open position to the fully closed position.

図5は、比較例として吸気導入状態を第1状態から第2状態に切り替える際に第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置から全閉位置に急に閉弁するとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置から全開位置に急に開弁した場合のアクセル開度、気筒2内に流入する吸気の流量、低圧EGR弁23の開度、第1新気調整弁14の開度、第2新気調整弁16の開度、第1メイン調整弁11の開度、及び第2メイン調整弁13の開度のそれぞれの時間変化の一例を示している。なお、図5において図4と共通の部分には共通の符号を付して説明を省略する。このように各弁11、13、14、16の開度変更を急に行うと、図5に示したように下流部Cの吸気の流入が終了して中間部Bの吸気が流入し始める時刻T11からは第2分岐通路10に閉じ込められていた新気が導入されるため、吸気中のEGRガスの割合が0になる。その後、中間部Bの吸気の導入が終了する時刻T12からはEGRガスを含む上流部Aの吸気が導入されるため、気筒2に流入する吸気中のEGRガスの割合が急増する。そして、上流部Aの吸気の導入が終了する時刻T13から新気のみの導入が開始される。このように気筒2に流入する吸気中のEGRガスの割合が短時間で急変すると気筒2内に供給される燃料量の制御が追い付かずエンジン1の燃焼状態が不安定になるおそれがある。そのため、排気エミッションが悪化するおそれがある。また、この場合は時刻T11〜T12の期間に気筒2に新気が導入されてエンジン1の出力が一旦上昇するが、その後時刻T12〜T13においてEGRガスが再度導入されてエンジン1の出力が低下するため、ドライバビリティが悪化するおそれがある。   FIG. 5 shows that the first main adjustment valve 11 and the second main adjustment valve 13 are suddenly closed from the fully open position to the fully closed position when the intake air introduction state is switched from the first state to the second state as a comparative example. When the first fresh air regulating valve 14 and the second fresh air regulating valve 16 are suddenly opened from the fully closed position to the fully opened position, the accelerator opening, the flow rate of the intake air flowing into the cylinder 2, and the low pressure EGR valve 23 Time variations of the opening, the opening of the first fresh air adjustment valve 14, the opening of the second fresh air adjustment valve 16, the opening of the first main adjustment valve 11, and the opening of the second main adjustment valve 13 An example is shown. 5 that are the same as those in FIG. 4 are denoted by the same reference numerals and description thereof is omitted. When the opening of each valve 11, 13, 14, 16 is suddenly changed in this way, the time when the intake of the downstream portion C ends and the intake of the intermediate portion B starts flowing as shown in FIG. Since fresh air confined in the second branch passage 10 is introduced from T11, the ratio of EGR gas in the intake air becomes zero. Thereafter, since the intake air of the upstream portion A including the EGR gas is introduced from the time T12 when the introduction of the intake air in the intermediate portion B ends, the ratio of the EGR gas in the intake air flowing into the cylinder 2 increases rapidly. Then, the introduction of only fresh air is started from time T13 when the introduction of the intake air in the upstream portion A ends. Thus, if the ratio of EGR gas in the intake air flowing into the cylinder 2 changes suddenly in a short time, the control of the amount of fuel supplied into the cylinder 2 cannot catch up, and the combustion state of the engine 1 may become unstable. Therefore, exhaust emission may be deteriorated. Further, in this case, fresh air is introduced into the cylinder 2 during the period of time T11 to T12, and the output of the engine 1 temporarily rises. Thereafter, EGR gas is reintroduced at time T12 to T13, and the output of the engine 1 decreases. Therefore, drivability may be deteriorated.

以上に説明したように、図2の制御ルーチンを実行して吸気導入状態を第1状態から第2状態に切り替える際は第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置から全閉位置に徐々に閉弁させるとともに第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置から全開位置に徐々に開弁させることにより、図4の上から2番目の図に示したように吸気中の空気量の割合を滑らかに増加させることができる。そのため、エンジン1の燃焼状態及び排気エミッションの悪化を防止しつつ吸気を通過させる通路を切り替えることができる。   As described above, when the control routine of FIG. 2 is executed and the intake air introduction state is switched from the first state to the second state, the first main adjustment valve 11 and the second main adjustment valve 13 are all opened from the fully open position. By gradually closing the first fresh air regulating valve 14 and the second fresh air regulating valve 16 from the fully closed position to the fully opened position, the second diagram from the top of FIG. As shown in Fig. 5, the ratio of the amount of air in the intake air can be increased smoothly. Therefore, it is possible to switch the passage through which the intake air is passed while preventing the combustion state of the engine 1 and the exhaust emission from deteriorating.

吸気導入制御時における各弁11、13、14、16の制御方法は、上述した方法に限定されない。例えば、吸気導入状態を第2状態から第1状態に切り替えたときの第2分岐通路10内の圧力を第2圧力センサ32に検出してECU30のRAMなどに記憶させておき、次に吸気導入状態を第1状態から第2状態に切り替える際にこの記憶させた圧力が高いほど第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置から全閉位置に徐々に閉弁させる際の単位時間当たりの開度変更量を小さくするとともに、第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置から全開位置に徐々に開弁する際の単位時間当たりの開度変更量を小さくしてもよい。このように開度変更量を調整することにより、記憶させた圧力が高いほど第2分岐通路10を介してエンジン1に導かれる吸気の流量の単位時間当たりの増加量を小さくするとともに第1分岐通路9を介してエンジン1に導かれる吸気の流量の単位時間当たりの減少量を小さくできる。   The control method of each valve 11, 13, 14, 16 at the time of intake air introduction control is not limited to the method described above. For example, the pressure in the second branch passage 10 when the intake air introduction state is switched from the second state to the first state is detected by the second pressure sensor 32 and stored in the RAM of the ECU 30, and then the intake air introduction is performed. When the stored pressure is higher when the state is switched from the first state to the second state, the first main adjustment valve 11 and the second main adjustment valve 13 are gradually closed from the fully open position to the fully closed position, respectively. The amount of change in opening per unit time is reduced, and the opening per unit time when the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are gradually opened from the fully closed position to the fully open position, respectively. The amount of change may be reduced. By adjusting the opening change amount in this way, the higher the stored pressure, the smaller the increase amount per unit time of the flow rate of the intake air guided to the engine 1 through the second branch passage 10, and the first branch A reduction amount per unit time of the flow rate of the intake air guided to the engine 1 through the passage 9 can be reduced.

第2分岐通路10内に閉じ込められている吸気の圧力が高いほど、第1新気調整弁14及び第2新気調整弁16を開弁したときに第2分岐通路10内から吸気が噴出し易くなる。そのため、このように各弁11、13、14、16の開度変更量を調整することにより、第2分岐通路10に閉じ込められていた吸気が一度に気筒2に流入することを適切に抑制できる。そのため、気筒2に流入する空気量の制御精度を向上させることができる。なお、このように圧力を記憶させることにより、ECU30が本発明の記憶手段として機能する。   As the pressure of the intake air trapped in the second branch passage 10 is higher, the intake air is ejected from the second branch passage 10 when the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are opened. It becomes easy. Therefore, by adjusting the opening change amount of each valve 11, 13, 14, 16 in this way, it is possible to appropriately suppress the intake air trapped in the second branch passage 10 from flowing into the cylinder 2 at a time. . Therefore, the control accuracy of the amount of air flowing into the cylinder 2 can be improved. Note that by storing the pressure in this way, the ECU 30 functions as the storage means of the present invention.

また、第1分岐通路9内の圧力と第2分岐通路10内の圧力の差である圧力差をECU30にて算出し、その算出した圧力差が大きいほど第1メイン調整弁11及び第2メイン調整弁13をそれぞれ全開位置から全閉位置に徐々に閉弁させる際の単位時間当たりの開度変更量をさらに小さく補正するとともに、第1新気調整弁14及び第2新気調整弁16をそれぞれ全閉位置から全開位置に徐々に開弁する際の単位時間当たりの開度変更量をさらに小さく補正してもよい。この補正により、吸気導入状態を第1状態から第2状態に切り替える際における第2分岐通路10を介してエンジン1に導かれる吸気の流量の単位時間当たりの増加量をさらに小さくできるとともに第1分岐通路9を介してエンジン1に導かれる吸気の流量の単位時間当たりの減少量をさらに小さくできる。   Further, the ECU 30 calculates a pressure difference, which is a difference between the pressure in the first branch passage 9 and the pressure in the second branch passage 10, and the larger the calculated pressure difference is, the first main adjustment valve 11 and the second main control valve 11 are. The opening change amount per unit time when the regulating valve 13 is gradually closed from the fully open position to the fully closed position is corrected to be smaller, and the first fresh air regulating valve 14 and the second fresh air regulating valve 16 are adjusted. The opening change amount per unit time when the valve is gradually opened from the fully closed position to the fully open position may be corrected to be smaller. By this correction, the increase amount per unit time of the flow rate of the intake air guided to the engine 1 via the second branch passage 10 when the intake air introduction state is switched from the first state to the second state can be further reduced, and the first branch A reduction amount per unit time of the flow rate of the intake air guided to the engine 1 through the passage 9 can be further reduced.

第1新気調整弁14及び第2新気調整弁16を開弁したときに第2分岐通路10内からの噴出する吸気の量は第1分岐通路9の影響も受け、圧力差が大きいほど噴出する吸気の量が増加する。そこで、このように第1分岐通路9内の圧力を考慮することにより、気筒2に流入する空気量の制御精度をさらに向上させることができる。なお、このように圧力差を算出することにより、ECU30が本発明の圧力差取得手段として機能する。   The amount of intake air ejected from the second branch passage 10 when the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are opened is also affected by the first branch passage 9, and the larger the pressure difference is, The amount of inhaled air increases. Therefore, the control accuracy of the amount of air flowing into the cylinder 2 can be further improved by considering the pressure in the first branch passage 9 in this way. By calculating the pressure difference in this way, the ECU 30 functions as a pressure difference acquisition unit of the present invention.

吸気導入状態を第1状態から第2状態に切り替える際、第2分岐通路10の圧力が第1分岐通路9の圧力よりも低い場合は、吸気導入状態の第2状態への切り替えを禁止してもよい。第2分岐通路10内の圧力が第1分岐通路9内の圧力より低い場合は、第1新気調整弁14及び第2新気調整弁16をそれぞれ開弁させた際、吸気がまず第2分岐通路10内に吸い込まれ、その後第2分岐通路10内の圧力が第1分岐通路9内の圧力に変化してから気筒2に吸気が流入し始める。そのため、吸気が気筒2に流入するまでに要する時間が長くなり、ドライバビリティが悪化するおそれがある。そこで、このような場合は、吸気導入状態の第2状態への切り替えを禁止する。これにより、ドライバビリティの悪化を防止できる。このように切り替えを禁止することにより、ECU30が本発明の禁止手段として機能する。   When switching the intake air introduction state from the first state to the second state, if the pressure in the second branch passage 10 is lower than the pressure in the first branch passage 9, switching the intake air introduction state to the second state is prohibited. Also good. When the pressure in the second branch passage 10 is lower than the pressure in the first branch passage 9, when the first fresh air adjustment valve 14 and the second fresh air adjustment valve 16 are opened, the intake air is first second. The intake air begins to flow into the cylinder 2 after being sucked into the branch passage 10 and then the pressure in the second branch passage 10 changes to the pressure in the first branch passage 9. Therefore, the time required for the intake air to flow into the cylinder 2 becomes longer, and drivability may be deteriorated. Therefore, in such a case, switching from the intake air introduction state to the second state is prohibited. Thereby, deterioration of drivability can be prevented. By prohibiting switching as described above, the ECU 30 functions as the prohibiting means of the present invention.

周知のように、各弁11、13、14、16の開度とその開度のときに弁を通過する流量との相関関係は経年劣化などにより変化する。そこで、吸気導入状態を第1状態から第2状態に切り替えているときに気筒2に流入する吸気量を取得し、その取得した吸気量に基づいて各弁11、13、14、16の開度をフィードバック補正してもよい。なお、気筒2に流入する吸気量は、例えば吸気通路3の一部を形成するインテークマニホールド(以下、インマニと略称することがある。)50にセンサを設けて取得してもよいし、インマニ50内の圧力、インマニ50における吸気の温度、及びエアフローメータ6にて検出された吸気量などに基づいて推定する周知の推定方法で推定してもよい。このように吸気量を推定することにより、ECU30が本発明の吸気量取得手段として機能する。このフィードバック補正においては、例えば図4の上から2番目の図で示した吸気中のEGRガスの割合の時間変化及び吸気中の空気の割合の時間変化をそれぞれECU30のROMにマップとして記憶させておき、吸気中のEGRガスの割合及び吸気中の空気の割合がそれぞれこのマップの時間変化で変化するように各弁11、13、14、16の動作を補正する。これにより、新気導入制御時に第2分岐通路10を介してエンジン1に導入される吸気の流量及び第1分岐通路9を介してエンジン1に導入される吸気の流量を吸気中のEGRガスの割合及び吸気中の空気の割合がマップで示した時間変化で変化する目標流量に調整することができる。   As is well known, the correlation between the opening degree of each valve 11, 13, 14, 16 and the flow rate passing through the valve at that opening degree changes due to deterioration over time. Therefore, the intake air amount that flows into the cylinder 2 when the intake air introduction state is switched from the first state to the second state is acquired, and the opening degree of each valve 11, 13, 14, 16 based on the acquired intake air amount. May be feedback corrected. The amount of intake air flowing into the cylinder 2 may be acquired by providing a sensor in an intake manifold (hereinafter sometimes referred to as intake manifold) 50 that forms a part of the intake passage 3, for example. It may be estimated by a known estimation method that estimates based on the internal pressure, the temperature of the intake air in the intake manifold 50, the intake air amount detected by the air flow meter 6, and the like. By estimating the intake air amount in this way, the ECU 30 functions as the intake air amount acquisition means of the present invention. In this feedback correction, for example, the time change in the ratio of EGR gas in the intake air and the time change in the air ratio in the intake air shown in the second diagram from the top in FIG. 4 are respectively stored in the ROM of the ECU 30 as a map. Then, the operation of each valve 11, 13, 14, 16 is corrected so that the ratio of EGR gas during intake and the ratio of air during intake change with the time change of this map. As a result, the flow rate of the intake air introduced into the engine 1 via the second branch passage 10 and the flow rate of the intake air introduced into the engine 1 via the first branch passage 9 during the fresh air introduction control are controlled by the EGR gas in the intake air. The ratio and the ratio of air in the intake air can be adjusted to the target flow rate that changes with the time change shown in the map.

このようにフィードバック補正を行うことにより、各弁11、13、14、16の開度と流量との対応関係が変化していても新気導入制御時における吸気中のEGRガスの割合及び吸気中の空気の割合をそれぞれマップの時間変化で変化させることができるので、エンジン1の燃焼状態及び排気エミッションの悪化をより確実に防止することができる。なお、このようにフィードバック補正を行うことにより、ECU30が本発明のフィードバック補正手段として機能する。   By performing feedback correction in this way, the ratio of EGR gas in the intake air during the fresh air introduction control and the intake air even when the correspondence between the opening degree and the flow rate of each valve 11, 13, 14, 16 is changed. Therefore, the combustion state of the engine 1 and the deterioration of exhaust emission can be more reliably prevented. In addition, by performing feedback correction in this way, the ECU 30 functions as feedback correction means of the present invention.

本発明は、上述した形態に限定されることなく、種々の形態にて実施することができる。例えば、本発明はディーゼルエンジンに限らず、ガソリンその他の燃料を利用する各種の内燃機関に適用してよい。吸気の流れを第1分岐通路又は第2分岐通路に切り替える弁手段は上述した形態の弁手段に限定されない。例えば三方弁など、吸気の流れを第1分岐通路又は第2分岐通路に選択的に切り替え可能な種々の弁を使用すればよい。   The present invention is not limited to the above-described form and can be implemented in various forms. For example, the present invention is not limited to a diesel engine, and may be applied to various internal combustion engines that use gasoline or other fuels. The valve means for switching the flow of intake air to the first branch passage or the second branch passage is not limited to the valve means of the above-described form. For example, various valves such as a three-way valve that can selectively switch the flow of intake air to the first branch passage or the second branch passage may be used.

本発明の一形態に係る吸気制御装置が組み込まれた内燃機関の一例を示す図。The figure which shows an example of the internal combustion engine in which the intake control device which concerns on one form of this invention was integrated. 図1のECUが実行する吸気導入状態制御ルーチンを示すフローチャート。The flowchart which shows the intake air introduction state control routine which ECU of FIG. 1 performs. 図1のエンジンの各部のうち新気導入制御に関係する部分のみを示したエンジンの概略図。The schematic of the engine which showed only the part relevant to fresh air introduction control among each part of the engine of FIG. 新気導入制御にて吸気導入状態を第1状態から第2状態に切り替えた際のアクセル開度、気筒内に流入する吸気の流量、低圧EGR弁の開度、第1新気調整弁の開度、第2新気調整弁の開度、第1メイン調整弁の開度、及び第2メイン調整弁の開度のそれぞれの時間変化の一例を示す図。The accelerator opening when the intake air introduction state is switched from the first state to the second state by the fresh air introduction control, the flow rate of the intake air flowing into the cylinder, the opening degree of the low pressure EGR valve, the opening of the first fresh air adjustment valve The figure which shows an example of each time change of a degree, the opening degree of a 2nd fresh air adjustment valve, the opening degree of a 1st main adjustment valve, and the opening degree of a 2nd main adjustment valve. 吸気導入状態を第1状態から第2状態に切り替える際に第1メイン調整弁及び第2メイン調整弁をそれぞれ全開位置から全閉位置に急に閉弁するとともに第1新気調整弁及び第2新気調整弁をそれぞれ全閉位置から全開位置に急に開弁した場合のアクセル開度、気筒内に流入する吸気の流量、低圧EGR弁の開度、第1新気調整弁の開度、第2新気調整弁の開度、第1メイン調整弁の開度、及び第2メイン調整弁の開度のそれぞれの時間変化の一例を示す図。When the intake intake state is switched from the first state to the second state, the first main adjustment valve and the second main adjustment valve are each suddenly closed from the fully open position to the fully closed position, and the first fresh air adjustment valve and the second Accelerator opening when the fresh air regulating valve is suddenly opened from the fully closed position to the fully opened position, the flow rate of the intake air flowing into the cylinder, the opening of the low pressure EGR valve, the opening of the first fresh air regulating valve, The figure which shows an example of each time change of the opening degree of a 2nd fresh air adjustment valve, the opening degree of a 1st main adjustment valve, and the opening degree of a 2nd main adjustment valve.

符号の説明Explanation of symbols

1 内燃機関
2 気筒
3 吸気通路
3a 分岐点
4 排気通路
8 ターボ過給機
8a コンプレッサ
9 第1分岐通路
10 第2分岐通路
11 第1メイン調整弁(弁手段)
13 第2メイン調整弁(弁手段)
14 第1新気調整弁(弁手段)
16 第2新気調整弁(弁手段)
20 低圧EGR通路(EGR通路)
23 低圧EGR弁(EGR弁)
30 エンジンコントロールユニット(制御手段、記憶手段、圧力差取得手段、禁止手段、吸気量取得手段、フィードバック補正手段)
32 第1圧力センサ
33 第2圧力センサ(圧力検出手段)
DESCRIPTION OF SYMBOLS 1 Internal combustion engine 2 Cylinder 3 Intake passage 3a Branch point 4 Exhaust passage 8 Turbo supercharger 8a Compressor 9 1st branch passage 10 2nd branch passage 11 1st main adjustment valve (valve means)
13 Second main regulating valve (valve means)
14 First fresh air regulating valve (valve means)
16 Second fresh air regulating valve (valve means)
20 Low pressure EGR passage (EGR passage)
23 Low pressure EGR valve (EGR valve)
30 Engine control unit (control means, storage means, pressure difference acquisition means, prohibition means, intake air amount acquisition means, feedback correction means)
32 1st pressure sensor 33 2nd pressure sensor (pressure detection means)

Claims (5)

排気通路から吸気通路に排気の一部をEGRガスとして導くEGR通路と、前記EGR通路から前記吸気通路に導かれるEGRガスの流量を調整するEGR弁と、前記EGR通路の接続位置より下流において前記吸気通路を分岐するように設けられた第1通路及び第2通路と、を備えた内燃機関に適用され、
前記第1通路の入口及び出口がそれぞれ開けられるとともに前記第2通路の入口及び出口がそれぞれ閉じられる第1状態と前記第1通路の入口及び出口がそれぞれ閉じられるとともに前記第2通路の入口及び出口がそれぞれ開けられる第2状態とに切り替え可能な弁手段と、前記EGR弁が開いている場合は前記弁手段が前記第1状態に切り替えられ、前記EGR弁が閉じている場合は前記弁手段が前記第2状態に切り替えられるように前記弁手段の動作を制御する制御手段と、を備えた内燃機関の吸気制御装置において、
前記制御手段は、前記弁手段の状態を前記第1状態及び前記第2状態のうちの一方の状態から他方の状態に切り替える際、前記一方の状態において入口及び出口がそれぞれ閉じられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量が漸次増加するとともに前記一方の状態において入口及び出口がそれぞれ開けられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量が漸次減少するように前記弁手段の動作を制御することを特徴とする内燃機関の吸気制御装置。
An EGR passage for leading part of the exhaust gas from the exhaust passage to the intake passage as EGR gas, an EGR valve for adjusting the flow rate of the EGR gas guided from the EGR passage to the intake passage, and the downstream of the connection position of the EGR passage. Applied to an internal combustion engine including a first passage and a second passage provided to branch the intake passage;
The first state where the inlet and outlet of the first passage are opened and the inlet and outlet of the second passage are closed respectively, and the inlet and outlet of the second passage are closed and the inlet and outlet of the second passage are closed respectively. Valve means that can be switched to a second state in which the valve is opened, and when the EGR valve is open, the valve means is switched to the first state, and when the EGR valve is closed, the valve means is An intake control device for an internal combustion engine comprising: control means for controlling the operation of the valve means so as to be switched to the second state;
When the control means switches the state of the valve means from one state of the first state and the second state to the other state, the control means passes through the passages in which the inlet and the outlet are closed in the one state, respectively. The flow rate of the intake air guided to the cylinder of the internal combustion engine gradually increases through the passage, and the flow rate of the intake air guided to the cylinder of the internal combustion engine through the passage in which the inlet and the outlet are opened in the one state is gradually decreased. An intake control device for an internal combustion engine, wherein the operation of the valve means is controlled as described above.
前記EGR通路の接続位置より下流、かつ前記吸気通路が前記第1通路及び前記第2通路に分岐する分岐点より上流の吸気通路にはターボ過給機のコンプレッサが設けられ、
前記弁手段が前記第2状態のときの前記コンプレッサより下流の吸気通路の圧力を検出可能なように設けられる圧力検出手段と、前記弁手段の状態が前記第2状態から前記第1状態に切り替えられるときに前記圧力検出手段が検出した圧力を記憶する記憶手段と、をさらに備え、
前記制御手段は、前記弁手段を前記第1状態から前記第2状態に切り替える所定の状態切替条件が成立した場合、前回前記弁手段を前記第2状態から前記第1状態に切り替えたときに前記記憶手段に記憶された圧力が高いほど前記弁手段を前記第1状態から前記第2状態に切り替える際における前記第2通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの増加量及び前記第1通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの減少量がそれぞれ小さくなるように前記弁手段の動作を制御することを特徴とする請求項1に記載の内燃機関の吸気制御装置。
A turbocharger compressor is provided in the intake passage downstream from the connection position of the EGR passage and upstream from the branch point where the intake passage branches into the first passage and the second passage,
Pressure detecting means provided so as to be able to detect the pressure in the intake passage downstream from the compressor when the valve means is in the second state, and the state of the valve means is switched from the second state to the first state Storage means for storing the pressure detected by the pressure detection means when
The control means, when a predetermined state switching condition for switching the valve means from the first state to the second state is satisfied, when the valve means was previously switched from the second state to the first state, As the pressure stored in the storage means is higher, the increase amount per unit time of the flow rate of the intake air guided to the internal combustion engine via the second passage when the valve means is switched from the first state to the second state. 2. The internal combustion engine according to claim 1, wherein the operation of the valve means is controlled such that a reduction amount per unit time of the flow rate of the intake air guided to the internal combustion engine via the first passage is reduced. Engine intake control device.
前記第1通路内の圧力と前記第2通路内の圧力とを検出し、それら検出した圧力の差である圧力差を取得する圧力差取得手段をさらに備え、
前記制御手段は、前記所定の状態切替条件が成立した場合、前記圧力差取得手段により取得された圧力差が大きいほど前記弁手段を前記第1状態から前記第2状態に切り替える際における前記第2通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの増加量及び前記第1通路を介して前記内燃機関に導かれる吸気の流量の単位時間当たりの減少量がそれぞれさらに小さくなるように前記弁手段の動作を制御することを特徴とする請求項2に記載の内燃機関の吸気制御装置。
A pressure difference acquisition means for detecting a pressure in the first passage and a pressure in the second passage and acquiring a pressure difference that is a difference between the detected pressures;
When the predetermined state switching condition is satisfied, the control unit is configured to switch the valve unit from the first state to the second state as the pressure difference acquired by the pressure difference acquisition unit increases. An increase amount per unit time of the flow rate of intake air guided to the internal combustion engine via the passage and a decrease amount per unit time of the flow rate of intake air guided to the internal combustion engine via the first passage are further reduced. 3. The intake control apparatus for an internal combustion engine according to claim 2, wherein the operation of the valve means is controlled.
前記所定の状態切替条件の成立時に前記圧力差取得手段により検出された前記第2通路内の圧力が前記第1通路内の圧力より低い場合、前記制御手段による前記弁手段の前記第2状態への切り替えを禁止する禁止手段をさらに備えていることを特徴とする請求項3に記載の内燃機関の吸気制御装置。   When the pressure in the second passage detected by the pressure difference acquisition means when the predetermined state switching condition is satisfied is lower than the pressure in the first passage, the control means shifts the valve means to the second state. The intake control device for an internal combustion engine according to claim 3, further comprising prohibiting means for prohibiting switching of the internal combustion engine. 前記内燃機関の気筒に流入する吸気量を取得する吸気量取得手段をさらに備え、
前記制御手段は、前記弁手段の状態を前記第1状態及び前記第2状態のうちの一方の状態から他方の状態に切り替える場合、前記吸気量取得手段により取得された吸気量に基づいて前記一方の状態において入口及び出口がそれぞれ閉じられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量及び前記一方の状態において入口及び出口がそれぞれ開けられていた通路を介して前記内燃機関の気筒に導かれる吸気の流量がそれぞれの目標流量に調整されるように前記弁手段の動作を補正するフィードバック補正手段を備えていることを特徴とする請求項1〜4のいずれか一項に記載の内燃機関の吸気制御装置。
An intake air amount obtaining means for obtaining an intake air amount flowing into the cylinder of the internal combustion engine;
When the control means switches the state of the valve means from one state of the first state and the second state to the other state, the one of the control means is based on the intake amount acquired by the intake amount acquisition means. In this state, the flow rate of the intake air introduced to the cylinder of the internal combustion engine through the passages in which the inlet and the outlet are closed and the passages in which the inlet and the outlet are opened in the one state, respectively. The feedback correction means for correcting the operation of the valve means so as to adjust the flow rate of the intake air guided to the cylinder to each target flow rate is provided. An intake control device for an internal combustion engine according to claim 1.
JP2007176305A 2007-07-04 2007-07-04 Intake control device for internal combustion engine Pending JP2009013872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007176305A JP2009013872A (en) 2007-07-04 2007-07-04 Intake control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007176305A JP2009013872A (en) 2007-07-04 2007-07-04 Intake control device for internal combustion engine

Publications (1)

Publication Number Publication Date
JP2009013872A true JP2009013872A (en) 2009-01-22

Family

ID=40355070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007176305A Pending JP2009013872A (en) 2007-07-04 2007-07-04 Intake control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP2009013872A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052066A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Control system for internal combustion engine
JP2014190338A (en) * 2013-12-19 2014-10-06 Toyota Motor Corp Control device for internal combustion engine
US9644553B2 (en) 2013-03-27 2017-05-09 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011052066A1 (en) * 2009-10-30 2011-05-05 トヨタ自動車株式会社 Control system for internal combustion engine
US9644553B2 (en) 2013-03-27 2017-05-09 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine
US9897022B2 (en) 2013-03-27 2018-02-20 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP2014190338A (en) * 2013-12-19 2014-10-06 Toyota Motor Corp Control device for internal combustion engine

Similar Documents

Publication Publication Date Title
JP4301295B2 (en) EGR system for internal combustion engine
US9719391B2 (en) Method and system for vacuum control
JP4561236B2 (en) Internal combustion engine supercharging system
US20110131978A1 (en) Exhaust gas purifying apparatus for supercharger-equipped internal combustion engine
EP2884078B1 (en) Control device for diesel engine
JP5187123B2 (en) Control device for internal combustion engine
US9464586B2 (en) Exhaust gas recirculation system of engine
JP6041753B2 (en) Engine exhaust gas recirculation system
US20140060043A1 (en) Internal combustion engine control apparatus
JP2017031825A (en) Control device for engine
JP5649343B2 (en) Intake throttle control method for internal combustion engine
CN108026841B (en) Control device for internal combustion engine and control method for internal combustion engine
JP2008138638A (en) Exhaust recirculating device of internal combustion engine
JP2014034959A (en) Exhaust gas recirculation device of engine with supercharger
JP2011112012A (en) Control device for internal combustion engine with supercharger
CN108026840B (en) Control device for internal combustion engine and control method for internal combustion engine
WO2019171671A1 (en) Engine system
US8596065B2 (en) Control device for internal combustion engine
JP2008202423A (en) Control device of internal combustion engine
JP2009013872A (en) Intake control device for internal combustion engine
JP6536184B2 (en) Engine control device
JP4911432B2 (en) Control device for internal combustion engine
JP6005543B2 (en) Control device for supercharged engine
JP6107876B2 (en) Control device for turbocharged engine
JP4206934B2 (en) Supercharging system for internal combustion engines