JP4479502B2 - Multistage supercharging system for internal combustion engine and control method thereof - Google Patents

Multistage supercharging system for internal combustion engine and control method thereof Download PDF

Info

Publication number
JP4479502B2
JP4479502B2 JP2004379847A JP2004379847A JP4479502B2 JP 4479502 B2 JP4479502 B2 JP 4479502B2 JP 2004379847 A JP2004379847 A JP 2004379847A JP 2004379847 A JP2004379847 A JP 2004379847A JP 4479502 B2 JP4479502 B2 JP 4479502B2
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
exhaust
passage
pressure turbocharger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004379847A
Other languages
Japanese (ja)
Other versions
JP2006183605A (en
Inventor
嗣史 藍川
久 大木
清 藤原
崇志 松本
雄介 伯耆
崇 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2004379847A priority Critical patent/JP4479502B2/en
Publication of JP2006183605A publication Critical patent/JP2006183605A/en
Application granted granted Critical
Publication of JP4479502B2 publication Critical patent/JP4479502B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/013Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust-driven pumps arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/004Engines characterised by provision of pumps driven at least for part of the time by exhaust with exhaust drives arranged in series
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/18Control of the pumps by bypassing exhaust from the inlet to the outlet of turbine or to the atmosphere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/22Control of the pumps by varying cross-section of exhaust passages or air passages, e.g. by throttling turbine inlets or outlets or by varying effective number of guide conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Control Of Throttle Valves Provided In The Intake System Or In The Exhaust System (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

本発明は、内燃機関用多段過給システム及びその制御方法に関する。   The present invention relates to a multistage supercharging system for an internal combustion engine and a control method therefor.

従来から、互いに最大容量の異なる高圧ターボ過給機と低圧ターボ過給機とを直列に配置した内燃機関用多段過給システムが知られている。この種のシステムにおいて高圧ターボ過給機と低圧ターボ過給機とを適宜に使い分けるため、高圧ターボ過給機のタービンをバイパスするバイパス通路を設けるとともに、バイパス通路への排気ガスの流量を調整する排気バイパスバルブを設けたものが提案されている(例えば、特許文献1及び特許文献2参照)。また、内燃機関の減速時にタービンのノズル開口面積を狭めてエンジンブレーキを効率良く働かせる装置が知られている(例えば、特許文献3参照)。その他、本発明に関連する先行技術文献として特許文献4〜7が存在する。
特開2001−140653号公報 特開2001−329849号公報 実公平03−020511号公報 特開平08−114156号公報 特開2000−274289号公報 実公平01−021147号公報 実開平01−162051号公報
Conventionally, a multi-stage turbocharging system for an internal combustion engine in which a high-pressure turbocharger and a low-pressure turbocharger having different maximum capacities are arranged in series is known. In this type of system, in order to properly use the high-pressure turbocharger and the low-pressure turbocharger appropriately, a bypass passage that bypasses the turbine of the high-pressure turbocharger is provided and the flow rate of the exhaust gas to the bypass passage is adjusted. A device provided with an exhaust bypass valve has been proposed (see, for example, Patent Document 1 and Patent Document 2). Further, there is known a device that efficiently operates an engine brake by narrowing the nozzle opening area of the turbine when the internal combustion engine is decelerated (see, for example, Patent Document 3). In addition, Patent Documents 4 to 7 exist as prior art documents related to the present invention.
JP 2001-140653 A JP 2001-329849 A No. 03-020511 Japanese Patent Laid-Open No. 08-114156 JP 2000-274289 A Japanese Utility Model Publication No. 01-021147 Japanese Utility Model Publication No. 01-162051

これらの文献には、可動ベーンを備えた容量可変式のターボ過給機を多段に接続した多段過給システムにおいて各可動ベーンの開度及び排気バイパスバルブの開度をそれぞれ制御してエンジンブレーキの効きを強める方法について開示されていない。   In these documents, in the multistage turbocharging system in which variable capacity turbochargers equipped with movable vanes are connected in multiple stages, the opening degree of each movable vane and the opening degree of the exhaust bypass valve are controlled respectively. It does not disclose how to increase effectiveness.

そこで、本発明は、可動ベーンを備えたターボ過給機を多段に接続した多段過給システムにおいて、各可動ベーンの開度を制御してエンジンブレーキの効きを強めることが可能な内燃機関用多段過給システム及びその制御方法を提供することを目的とする。   Therefore, the present invention provides a multistage turbocharger system in which turbochargers having movable vanes are connected in multiple stages, and the multistage for an internal combustion engine capable of increasing the effectiveness of engine braking by controlling the opening of each movable vane. An object is to provide a supercharging system and a control method thereof.

本発明の第一の内燃機関用多段過給システムの制御方法は、可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサをそれぞれ有するとともに可動ベーンを備え、前記高圧ターボ過給機とは最大容量が異なる可変容量式の低圧ターボ過給機と、を備えた内燃機関用多段過給システムに適用される制御方法であって、前記内燃機関の減速時、吸気温度が上昇するように前記吸気通路の圧力を上昇させるとともに、前記吸気通路の圧力よりも前記排気通路の圧力が高く、かつ前記排気通路の圧力と前記吸気通路の圧力との差が拡大するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御することにより、上述した課題を解決する(請求項1)。
A control method for a first multistage supercharging system for an internal combustion engine according to the present invention includes a variable capacity high pressure turbocharger having a movable vane, and a downstream of an exhaust passage from a turbine of the high pressure turbocharger. And a variable displacement low-pressure turbocharger having a movable vane and having a compressor disposed upstream of the compressor of the high-pressure turbocharger and having a movable vane. A control method applied to a multistage supercharging system for an internal combustion engine comprising a supercharger, wherein the pressure of the intake passage is increased so that the intake air temperature rises during deceleration of the internal combustion engine, The movable vane of the high-pressure turbocharger so that the pressure of the exhaust passage is higher than the pressure of the intake passage, and the difference between the pressure of the exhaust passage and the pressure of the intake passage is enlarged. By controlling the opening and the opening of the movable vanes of the low pressure turbocharger respectively, solving the problems described above (claim 1).

気通路の圧力と吸気通路の圧力との差が拡大すると、内燃機関のピストンは吸気行程時に吸気から受ける力よりも大きい力で排気行程時に排気を押し出すため、ポンピングロスを増加させることができる。また、吸気温度を上昇させることで、圧縮行程時及び膨張行程時に吸気から内燃機関に逃げる熱を増加させ、内燃機関の冷却損失を増加させることができる。そのため、このように内燃機関のポンピングロス及び冷却損失をそれぞれ増加させることで、エンジンブレーキの効きを強めることができる。
The difference between the pressure in the pressure and the intake passage of the exhaust passage is expanded, a piston of an internal combustion engine to push the exhaust during the exhaust stroke at a greater force than the force received from the intake at the time of the intake stroke, it is possible to increase the pumping loss . Further, by increasing the intake air temperature, the heat that escapes from the intake air to the internal combustion engine during the compression stroke and the expansion stroke can be increased, and the cooling loss of the internal combustion engine can be increased. Therefore, the effectiveness of engine braking can be enhanced by increasing the pumping loss and cooling loss of the internal combustion engine in this way.

本発明の第一の内燃機関用多段過給システムの制御方法において、前記排気通路には、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路への排気ガスの流入及びその禁止を切り替え可能な排気バイパスバルブと、が設けられ、前記内燃機関の減速時、前記内燃機関の吸入空気量が多いほど前記低圧ターボ過給機の可動ベーンを閉じ側に設定するとともに前記高圧ターボ過給機の可動ベーンを開き側に設定し、かつ前記内燃機関の吸入空気量が前記高圧ターボ過給機の最大容量に基づいて設定された判定吸入空気量以上である場合は前記バイパス通路に排気ガスが流入するように前記排気バイパスバルブを切り替え、前記内燃機関の吸入空気量が前記判定吸入空気量未満である場合は前記バイパス通路への排気ガスの流入が禁止されるように前記排気バイパスバルブを切り替えてもよい(請求項2)。
In the first control method for a multistage turbocharging system for an internal combustion engine of the present invention, the exhaust passage includes a bypass passage that bypasses the turbine of the high-pressure turbocharger, an inflow of exhaust gas to the bypass passage, and An exhaust bypass valve capable of switching prohibition, and at the time of deceleration of the internal combustion engine, the higher the intake air amount of the internal combustion engine, the closer the movable vane of the low pressure turbocharger is set to the closed side and the high pressure turbo When the movable vane of the supercharger is set to the open side, and the intake air amount of the internal combustion engine is equal to or larger than the determined intake air amount set based on the maximum capacity of the high-pressure turbocharger, the bypass passage The exhaust bypass valve is switched so that exhaust gas flows in. If the intake air amount of the internal combustion engine is less than the determined intake air amount, the exhaust gas to the bypass passage is Even switches the exhaust bypass valve so that flow of is prohibited good (claim 2).

この態様によれば、内燃機関の減速時に吸入空気量が少ない場合は、高圧ターボ過給機の可動ベーンが閉じ側に制御されるので、高圧ターボ過給機のタービンよりも上流側の排気通路の圧力を上昇させ、排気通路の圧力と吸気通路の圧力の差を拡大させることができる。また、可動ベーンを閉じ側に制御することで、高圧ターボ過給機の回転数を増加させることができるので、吸気通路の圧力を上昇させ、吸気温度を上昇させることができる。また、このように高圧ターボ過給機の回転数を上昇させておくことで、再加速時に内燃機関の過給を速やかに行うことができる。この際、低圧ターボ過給機の可動ベーンは開き側に制御されるので、高圧ターボ過給機のタービンよりも下流側の排気通路の圧力の上昇が抑制される。これにより、高圧ターボ過給機のタービン前後の圧力差の縮小を抑制することができるので、高圧ターボ過給機の回転数の低下を抑制することができる。   According to this aspect, when the amount of intake air is small at the time of deceleration of the internal combustion engine, the movable vane of the high-pressure turbocharger is controlled to the closed side, so that the exhaust passage on the upstream side of the turbine of the high-pressure turbocharger The pressure difference between the exhaust passage pressure and the intake passage pressure can be increased. Further, by controlling the movable vane to the closed side, the number of revolutions of the high-pressure turbocharger can be increased, so that the pressure in the intake passage can be increased and the intake air temperature can be increased. Further, by increasing the rotational speed of the high-pressure turbocharger in this way, the internal combustion engine can be supercharged quickly during reacceleration. At this time, since the movable vanes of the low-pressure turbocharger are controlled to the opening side, an increase in the pressure of the exhaust passage on the downstream side of the turbine of the high-pressure turbocharger is suppressed. Thereby, since the reduction | decrease of the pressure difference before and behind the turbine of a high pressure turbocharger can be suppressed, the fall of the rotation speed of a high pressure turbocharger can be suppressed.

一方、内燃機関の減速時に吸入空気量が多い場合は、低圧ターボ過給機の可動ベーンが閉じ側に制御されるので、低圧ターボ過給機のタービンよりも上流側の排気通路の圧力を上昇させ、排気通路の圧力と吸気通路の圧力の差を拡大させることができる。また、この可動ベーンの閉じ側の制御により、低圧ターボ過給機の回転数を増加させて吸気通路の圧力を上昇させ、吸気温度を上昇させることができる。この際、高圧ターボ過給機の可動ベーンは開き側に制御されるので、高圧ターボ過給機の回転数の増加を抑制することができる。さらに、吸入空気量が判定吸入空気量以上である場合は、バイパス通路に排気が流入するように排気バイパスバルブが切り替えられるので、高圧ターボ過給機の過回転を防止することができる。このように各可動ベーンの開度及び排気バイパスバルブの開度を制御することで、エンジンブレーキの効きを強めつつ、高圧ターボ過給機の過回転を防止することができる。   On the other hand, if the amount of intake air is large during deceleration of the internal combustion engine, the movable vane of the low-pressure turbocharger is controlled to the closed side, so the pressure in the exhaust passage upstream of the turbine of the low-pressure turbocharger is increased. Thus, the difference between the pressure in the exhaust passage and the pressure in the intake passage can be increased. Further, by controlling the movable vane on the closing side, the number of revolutions of the low-pressure turbocharger can be increased to increase the pressure in the intake passage, thereby increasing the intake air temperature. At this time, since the movable vane of the high-pressure turbocharger is controlled to the open side, an increase in the rotation speed of the high-pressure turbocharger can be suppressed. Furthermore, when the intake air amount is greater than or equal to the determined intake air amount, the exhaust bypass valve is switched so that the exhaust flows into the bypass passage, so that over-rotation of the high-pressure turbocharger can be prevented. Thus, by controlling the opening degree of each movable vane and the opening degree of the exhaust bypass valve, it is possible to prevent over-rotation of the high-pressure turbocharger while enhancing the effectiveness of the engine brake.

本発明の第一の内燃機関用多段過給システムの制御方法は、前記吸気通路に吸入空気量を調整するスロットル弁が設けられ、前記排気通路から前記吸気通路に排気ガスの一部を還流させるEGR通路と、前記EGR通路に設けられて前記吸気通路に還流される排気ガス量を調整するEGR弁と、をさらに備え、前記内燃機関の減速時、前記スロットル弁を開くとともに前記EGR弁を全閉に制御してもよい(請求項3)。内燃機関の減速時にスロットル弁を開けることで、吸気通路の圧力を低下させることなく内燃機関に吸気を流入させることができる。また、EGR弁を全閉に制御することで、排気通路と吸気通路の間のガス流れを遮断して排気通路の圧力と吸気通路の圧力との圧力差を維持することができる。さらに、EGR弁を閉じることで、各ターボの回転数をそれぞれ増加させることができるので、吸気通路の圧力を上昇させることができる。
According to the first control method for a multistage supercharging system for an internal combustion engine of the present invention, a throttle valve for adjusting an intake air amount is provided in the intake passage, and a part of the exhaust gas is recirculated from the exhaust passage to the intake passage. An EGR passage, and an EGR valve that is provided in the EGR passage and adjusts the amount of exhaust gas recirculated to the intake passage. When the internal combustion engine is decelerated, the throttle valve is opened and the EGR valve is fully opened. It may be controlled to close ( Claim 3 ). By opening the throttle valve during deceleration of the internal combustion engine, intake air can be introduced into the internal combustion engine without reducing the pressure in the intake passage. Further, by controlling the EGR valve to be fully closed, the gas flow between the exhaust passage and the intake passage can be cut off, and the pressure difference between the pressure in the exhaust passage and the pressure in the intake passage can be maintained. Furthermore, by closing the EGR valve, the number of revolutions of each turbo can be increased, so that the pressure in the intake passage can be increased.

本発明の第一の内燃機関用多段過給システムの制御方法は、前記低圧ターボ過給機のタービンよりも下流の前記排気通路に設けられる排気浄化触媒と、前記排気浄化触媒の温度を取得する触媒温度取得手段と、前記内燃機関の減速時に前記内燃機関への燃料供給を停止する燃料供給停止手段と、を備え、前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記排気浄化触媒の活性温度域に応じて予め設定された所定温度よりも高いと判断した場合は、前記スロットル弁を全開に制御するとともに前記EGR弁を閉じ、一方前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記所定温度以下であると判断した場合は、前記スロットル弁を全閉に制御するとともに前記EGR弁を開き、さらに前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ閉じ側に制御してもよい(請求項4)。
The first control method for a multi-stage turbocharging system for an internal combustion engine according to the present invention acquires an exhaust purification catalyst provided in the exhaust passage downstream of the turbine of the low-pressure turbocharger and the temperature of the exhaust purification catalyst. Catalyst temperature acquisition means; and fuel supply stop means for stopping fuel supply to the internal combustion engine when the internal combustion engine is decelerated. The temperature acquired by the catalyst temperature acquisition means during deceleration of the internal combustion engine is the exhaust gas. When it is determined that the temperature is higher than a predetermined temperature set in advance according to the activation temperature range of the purification catalyst, the throttle valve is controlled to be fully opened and the EGR valve is closed, while the catalyst temperature is acquired when the internal combustion engine is decelerated. When it is determined that the temperature acquired by the means is equal to or lower than the predetermined temperature, the throttle valve is controlled to be fully closed, the EGR valve is opened, and the high pressure Bo of movable vanes of the supercharger opening and the opening of the movable vanes of the low pressure turbocharger may be controlled to the closing side, respectively (claim 4).

この態様によれば、内燃機関の減速時に内燃機関への燃料供給が停止されるので、排気ガスの温度が低下する。減速が長時間継続し、温度の低い排気ガスが排気浄化触媒に流入し続ける場合は、排気浄化触媒の温度が排気浄化触媒の活性温度域の下限値以下に低下するおそれがある。そこで、排気浄化触媒の温度がこの活性温度域に応じて設定された所定温度以下である場合、スロットル弁を全閉にして吸入空気量を減少させて排気浄化触媒に流入するガス量を減少させる。さらに、EGR弁を開いて排気通路から吸気通路に排気ガスを戻すとともに、低圧ターボ過給機の可動ベーンの開度及び高圧ターボ過給機の可動ベーンの開度をそれぞれ閉じ側に制御することで、排気浄化触媒に流入する排気ガスの量を減少させる。このようにスロットル弁、EGR弁、及び各可動ベーンの開度を制御することで、内燃機関の減速時における排気浄化触媒の温度低下を抑制し、排気エミッションの悪化を抑制することができる。   According to this aspect, since the fuel supply to the internal combustion engine is stopped when the internal combustion engine is decelerated, the temperature of the exhaust gas decreases. When the deceleration continues for a long time and the exhaust gas having a low temperature continues to flow into the exhaust purification catalyst, the temperature of the exhaust purification catalyst may fall below the lower limit value of the activation temperature range of the exhaust purification catalyst. Therefore, when the temperature of the exhaust purification catalyst is equal to or lower than a predetermined temperature set in accordance with this activation temperature range, the throttle valve is fully closed to reduce the amount of intake air and the amount of gas flowing into the exhaust purification catalyst. . Furthermore, the exhaust gas is returned from the exhaust passage to the intake passage by opening the EGR valve, and the opening degree of the movable vane of the low pressure turbocharger and the opening degree of the movable vane of the high pressure turbocharger are respectively controlled to the closed side. Thus, the amount of exhaust gas flowing into the exhaust purification catalyst is reduced. Thus, by controlling the opening degree of the throttle valve, the EGR valve, and each movable vane, it is possible to suppress a decrease in the temperature of the exhaust purification catalyst when the internal combustion engine is decelerated, and to suppress the deterioration of exhaust emission.

この態様において、前記触媒温度取得手段は、減速前の前記内燃機関の運転状態及び減速時の前記内燃機関の吸入空気量に基づいて前記排気浄化触媒の温度を推定してもよい(請求項5)。内燃機関の減速時、排気ガスの温度は、高圧ターボ過給機のタービンの温度、低圧ターボ過給機のタービンの温度、及び排気通路の温度が高いほど高く、また吸入空気量が少ないほど高くなる。各タービンの温度及び排気通路の温度は減速前の内燃機関の運転状態に応じて変化し、例えば内燃機関が高負荷で運転されていた場合は、内燃機関が低負荷で運転されていた場合よりも、各タービンの温度及び排気通路の温度が高くなる。このような関係に基づいて、減速前の内燃機関の運転状態及び減速時の吸入空気量から減速時の排気ガスの温度を推定し、この排気ガスが流入する排気浄化触媒の温度を推定する。このように、減速前の内燃機関に運転状態及び吸入空気量に基づいて温度を排気浄化触媒の推定することで、新たなセンサを設けることなく排気浄化触媒の温度を取得することができる。
In this embodiment, the catalyst temperature acquiring means may be estimated temperature of the exhaust purification catalyst based on the intake air amount of the internal combustion engine during the operating state and deceleration of the internal combustion engine before the deceleration (claim 5 ). During deceleration of the internal combustion engine, the temperature of the exhaust gas increases as the temperature of the turbine of the high-pressure turbocharger, the temperature of the turbine of the low-pressure turbocharger, and the temperature of the exhaust passage increase, and as the intake air amount decreases. Become. The temperature of each turbine and the temperature of the exhaust passage change according to the operating state of the internal combustion engine before deceleration. For example, when the internal combustion engine is operated at a high load, it is more than when the internal combustion engine is operated at a low load. In addition, the temperature of each turbine and the temperature of the exhaust passage are increased. Based on such a relationship, the temperature of the exhaust gas during deceleration is estimated from the operating state of the internal combustion engine before deceleration and the intake air amount during deceleration, and the temperature of the exhaust purification catalyst into which the exhaust gas flows is estimated. Thus, the temperature of the exhaust purification catalyst can be acquired without providing a new sensor by estimating the temperature of the exhaust purification catalyst based on the operating state and the intake air amount in the internal combustion engine before deceleration.

本発明の第二の内燃機関用多段過給システムの制御方法は、可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサを有し、前記高圧ターボ過給機とは最大容量が異なる低圧ターボ過給機と、前記排気通路に設けられ、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路を通過する排気ガスの流量を調整する排気バイパスバルブと、を備えた内燃機関用多段過給システムに適用される制御方法であって、前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記排気バイパスバルブの開度をそれぞれ制御することにより、上述した課題を解決する(請求項6)。
A second control method for a multi-stage turbocharging system for an internal combustion engine according to the present invention includes a variable capacity high pressure turbocharger having a movable vane and a downstream of an exhaust passage from a turbine of the high pressure turbocharger. A low-pressure turbocharger having a maximum capacity different from that of the high-pressure turbocharger, and an exhaust passage in the exhaust passage. The invention is applied to a multistage supercharging system for an internal combustion engine provided with a bypass passage that bypasses the turbine of the high-pressure turbocharger and an exhaust bypass valve that adjusts the flow rate of exhaust gas that passes through the bypass passage A control method, wherein when the internal combustion engine is decelerated, the opening degree of the movable vane of the high-pressure turbocharger and the pumping loss and the cooling loss of the internal combustion engine are increased. By controlling the opening degree of the exhaust bypass valve respectively, to solve the problems described above (claim 6).

本発明の第二の制御方法によれば、内燃機関の減速時、高圧ターボ過給機の可動ベーンの開度及び排気バイパスバルブの開度をそれぞれ制御して内燃機関のポンピングロス及び冷却損失をそれぞれ増加させるので、第一の制御方法と同様に、エンジンブレーキの効きを強めることができる。   According to the second control method of the present invention, when the internal combustion engine is decelerated, the opening degree of the movable vane and the exhaust bypass valve of the high-pressure turbocharger are controlled to reduce the pumping loss and cooling loss of the internal combustion engine. Since each of them is increased, the effectiveness of engine braking can be increased as in the first control method.

本発明の第一の内燃機関用多段過給システムは、可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサをそれぞれ有するとともに可動ベーンを備え、前記高圧ターボ過給機とは最大容量が異なる可変容量式の低圧ターボ過給機と、を備えた内燃機関用多段過給システムであって、前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御する制御手段を備え、前記制御手段は、前記内燃機関の減速時、吸気温度が上昇するように前記吸気通路の圧力を上昇させるとともに、前記吸気通路の圧力よりも前記排気通路の圧力が高く、かつ前記排気通路の圧力と前記吸気通路の圧力との差が拡大するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御することにより、上述した課題を解決する(請求項7)。
A first multistage supercharging system for an internal combustion engine according to the present invention includes a variable capacity high pressure turbocharger having a movable vane, and a turbine disposed downstream of an exhaust passage from the turbine of the high pressure turbocharger. And a variable displacement low-pressure turbocharger having a compressor disposed upstream of the compressor of the high-pressure turbocharger and having a movable vane and having a maximum capacity different from that of the high-pressure turbocharger And the opening degree of the movable vane of the high-pressure turbocharger so that the pumping loss and the cooling loss of the internal combustion engine respectively increase when the internal combustion engine is decelerated. and a control means for controlling the opening of the movable vanes of the low pressure turbocharger respectively, wherein, during deceleration of the internal combustion engine, so that the intake air temperature rises The high pressure turbocharger is configured to increase the pressure of the intake passage and to increase the pressure of the exhaust passage higher than the pressure of the intake passage and to increase the difference between the pressure of the exhaust passage and the pressure of the intake passage. by controlling the machine of the movable vane opening and the opening of the movable vanes of the low pressure turbocharger respectively, solving the problems described above (claim 7).

本発明の第一の内燃機関用多段過給システムによれば、内燃機関の減速時、制御手段が高圧ターボ過給機の可動ベーンの開度及び低圧ターボ過給機の可動ベーンの開度をそれぞれ制御して内燃機関のポンピングロス及び冷却損失をそれぞれ増加させるので、エンジンブレーキの効きを強めることができる。   According to the first multistage supercharging system for an internal combustion engine of the present invention, when the internal combustion engine is decelerated, the control means determines the opening degree of the movable vane of the high pressure turbocharger and the opening degree of the movable vane of the low pressure turbocharger. Since the pumping loss and the cooling loss of the internal combustion engine are respectively increased by controlling them, the effectiveness of the engine brake can be enhanced.

本発明の第一の内燃機関用多段過給システムは、上述した本発明の制御方法の好ましい態様を実現するために以下のような態様を備えることができる。   The first multistage supercharging system for an internal combustion engine according to the present invention can include the following aspects in order to realize the preferable aspect of the control method of the present invention described above.

すなわち、本発明の第一の内燃機関用多段過給システムにおいて、前記排気通路には、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路への排気ガスの流入及びその禁止を切り替え可能な排気バイパスバルブと、が設けられ、前記制御手段は、前記内燃機関の減速時、前記内燃機関の吸入空気量が多いほど前記低圧ターボ過給機の可動ベーンを閉じ側に設定するとともに前記高圧ターボ過給機の可動ベーンを開き側に設定し、かつ前記内燃機関の吸入空気量が前記高圧ターボ過給機の最大容量に基づいて設定された判定吸入空気量以上である場合は前記バイパス通路に排気ガスが流入するように前記排気バイパスバルブを切り替え、前記内燃機関の吸入空気量が前記判定吸入空気量未満である場合は前記バイパス通路への排気ガスの流入が禁止されるように前記排気バイパスバルブを切り替えてもよい(請求項8)。このように各可動ベーンの開度を制御することで、内燃機関のポンピングロス及び冷却損失をそれぞれ増加させることができるので、エンジンブレーキの効きを強めることができる。
That is, in the first internal combustion engine supercharger system of the present invention, before Symbol exhaust passage, a bypass passage bypassing the turbine of the high-pressure turbocharger, inlet and exhaust gas to the bypass passage An exhaust bypass valve capable of switching prohibition, and the control means sets the movable vane of the low-pressure turbocharger to the closed side as the intake air amount of the internal combustion engine increases when the internal combustion engine decelerates And when the movable vane of the high-pressure turbocharger is set to the open side, and the intake air amount of the internal combustion engine is equal to or greater than the determined intake air amount set based on the maximum capacity of the high-pressure turbocharger Switches the exhaust bypass valve so that exhaust gas flows into the bypass passage, and if the intake air amount of the internal combustion engine is less than the determined intake air amount, It may be switched to the exhaust bypass valve so the inflow of exhaust gas into the passage is prohibited (claim 8). By thus controlling the opening degree of the movable vanes, because the pumping loss and cooling loss of the engine can be increased respectively, can be enhanced effectiveness of engine braking.

本発明の第一の内燃機関用多段過給システムは、前記吸気通路に吸入空気量を調整するスロットル弁が設けられ、前記排気通路から前記吸気通路に排気ガスの一部を還流させるEGR通路と、前記EGR通路に設けられて前記吸気通路に還流される排気ガス量を調整するEGR弁と、をさらに備え、前記制御手段は、前記内燃機関の減速時、前記スロットル弁を開くとともに前記EGR弁を全閉に制御してもよい(請求項9)。さらに、前記低圧ターボ過給機のタービンよりも下流の前記排気通路に設けられる排気浄化触媒と、前記排気浄化触媒の温度を取得する触媒温度取得手段と、前記内燃機関の減速時に前記内燃機関への燃料供給を停止する燃料供給停止手段と、を備え、前記制御手段は、前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記排気浄化触媒の活性温度域に応じて予め設定された所定温度よりも高いと判断した場合は、前記スロットル弁を全開に制御するとともに前記EGR弁を閉じ、一方前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記所定温度以下であると判断した場合は、前記スロットル弁を全閉に制御するとともに前記EGR弁を開き、さらに前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ閉じ側に制御してもよい(請求項10)。この場合、前記触媒温度取得手段は、減速前の前記内燃機関の運転状態及び減速時の前記内燃機関の吸入空気量に基づいて前記排気浄化触媒の温度を推定してもよい(請求項11)。
The first multistage supercharging system for an internal combustion engine according to the present invention is provided with a throttle valve for adjusting an intake air amount in the intake passage, and an EGR passage for recirculating a part of exhaust gas from the exhaust passage to the intake passage. An EGR valve that is provided in the EGR passage and adjusts an amount of exhaust gas recirculated to the intake passage, and the control means opens the throttle valve and decelerates the EGR valve when the internal combustion engine is decelerated. May be controlled to be fully closed ( claim 9 ). Further, an exhaust purification catalyst provided in the exhaust passage downstream of the turbine of the low-pressure turbocharger, catalyst temperature acquisition means for acquiring the temperature of the exhaust purification catalyst, and the internal combustion engine when the internal combustion engine is decelerated Fuel supply stop means for stopping the fuel supply, and the control means presets the temperature acquired by the catalyst temperature acquisition means during deceleration of the internal combustion engine according to the activation temperature range of the exhaust purification catalyst When it is determined that the temperature is higher than the predetermined temperature, the throttle valve is controlled to be fully opened and the EGR valve is closed, while the temperature acquired by the catalyst temperature acquisition means when the internal combustion engine is decelerated is equal to or lower than the predetermined temperature. Is determined, the throttle valve is controlled to be fully closed, the EGR valve is opened, and the opening degree of the movable vane of the high-pressure turbocharger is increased. It may be used to control the degree of opening of the movable vanes of the low pressure turbocharger to the closing side, respectively (claim 10). In this case, the catalyst temperature acquiring means may be estimated temperature of the exhaust purification catalyst based on the intake air amount of the internal combustion engine during the operating state and deceleration of the internal combustion engine before the deceleration (claim 11) .

本発明の第二の内燃機関用多段過給システムは、可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサを有し、前記高圧ターボ過給機とは最大容量が異なる低圧ターボ過給機と、前記排気通路に設けられ、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路を通過する排気ガスの流量を調整する排気バイパスバルブと、を備えた内燃機関用多段過給システムであって、前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記排気バイパスバルブの開度をそれぞれ制御する制御手段を備えていることにより、上述した課題を解決する(請求項12)。
A second multi-stage turbocharging system for an internal combustion engine according to the present invention includes a variable capacity high-pressure turbocharger having a movable vane, and a turbine disposed downstream of an exhaust passage from the turbine of the high-pressure turbocharger. And a compressor disposed upstream of the intake passage from the compressor of the high-pressure turbocharger, the low-pressure turbocharger having a maximum capacity different from that of the high-pressure turbocharger, and provided in the exhaust passage, A multi-stage supercharging system for an internal combustion engine, comprising: a bypass passage that bypasses the turbine of the high-pressure turbocharger; and an exhaust bypass valve that adjusts a flow rate of exhaust gas that passes through the bypass passage. The opening degree of the movable vane of the high-pressure turbocharger and the opening degree of the exhaust bypass valve so that the pumping loss and the cooling loss of the internal combustion engine respectively increase during deceleration of By that it comprises a control means for controlling each of solving the problems described above (claim 12).

本発明の第二の内燃機関用多段過給システムによれば、内燃機関の減速時、制御手段が高圧ターボ過給機の可動ベーンの開度及び排気バイパスバルブの開度を制御して内燃機関のポンピングロス及び冷却損失をそれぞれ増加させるので、減速時のエンジンブレーキの効きを強めることができる。   According to the second multistage supercharging system for an internal combustion engine of the present invention, when the internal combustion engine is decelerated, the control means controls the opening of the movable vane and the opening of the exhaust bypass valve of the high-pressure turbocharger. The pumping loss and the cooling loss of the engine are respectively increased, so that the effectiveness of the engine brake at the time of deceleration can be enhanced.

以上に説明したように、本発明によれば、内燃機関の減速時に低圧ターボ過給機の可動ベーンの開度、高圧ターボ過給機の可動ベーンの開度、及び排気バイパスバルブの開度をそれぞれ制御して内燃機関のポンピングロス及び冷却損失を増加させるので、エンジンブレーキの効きを強くすることができる。   As described above, according to the present invention, the opening degree of the movable vane of the low-pressure turbocharger, the opening degree of the movable vane of the high-pressure turbocharger, and the opening degree of the exhaust bypass valve are determined during deceleration of the internal combustion engine. Since the pumping loss and the cooling loss of the internal combustion engine are increased by controlling each of them, the effectiveness of the engine brake can be enhanced.

(第一の実施形態)
図1は、本発明の多段過給システムを内燃機関としてのディーゼルエンジン(以下、エンジンと略称する。)1に適用した第一の実施形態を示した全体構成図である。エンジン1は、車両に走行用動力源として搭載されるもので、吸気マニホールド2及び排気マニホールド3をそれぞれ備え、吸気マニホールド2には吸気通路4が、排気マニホールド3には排気通路5がそれぞれ接続される。このように接続されることで、吸気マニホールド2は吸気通路4の一部を形成し、排気マニホールド3は排気通路5の一部を形成する。排気通路5には、高圧ターボチャージャ(以下、高圧TCと略称する。)6のタービン6aが設けられ、このタービン6aの下流側に低圧ターボチャージャ(以下、低圧TCと略称する。)7のタービン7aが設けられている。吸気通路4には、低圧TC7のコンプレッサ7bが設けられ、このコンプレッサ7bの下流側に高圧TC6のコンプレッサ6bが設けられている。高圧TC6のタービン6a及びコンプレッサ6bは、タービン6aとコンプレッサ6bが一体に回転可能なように、互いに共通の回転軸6cを介して連結されている。また、低圧TC7のタービン7a及びコンプレッサ7bも同様に、タービン7a及びコンプレッサ7bが一体に回転可能なように、互いに共通の回転軸7cを介して連結されている。
(First embodiment)
FIG. 1 is an overall configuration diagram showing a first embodiment in which a multistage supercharging system of the present invention is applied to a diesel engine (hereinafter abbreviated as an engine) 1 as an internal combustion engine. The engine 1 is mounted on a vehicle as a driving power source, and includes an intake manifold 2 and an exhaust manifold 3. An intake passage 4 is connected to the intake manifold 2, and an exhaust passage 5 is connected to the exhaust manifold 3. The By connecting in this way, the intake manifold 2 forms part of the intake passage 4, and the exhaust manifold 3 forms part of the exhaust passage 5. A turbine 6a of a high pressure turbocharger (hereinafter abbreviated as high pressure TC) 6 is provided in the exhaust passage 5, and a turbine of a low pressure turbocharger (hereinafter abbreviated as low pressure TC) 7 is provided downstream of the turbine 6a. 7a is provided. The intake passage 4 is provided with a compressor 7b having a low pressure TC7, and a compressor 6b having a high pressure TC6 is provided downstream of the compressor 7b. The turbine 6a and the compressor 6b of the high pressure TC 6 are connected to each other via a common rotating shaft 6c so that the turbine 6a and the compressor 6b can rotate together. Similarly, the turbine 7a and the compressor 7b of the low pressure TC 7 are connected to each other via a common rotating shaft 7c so that the turbine 7a and the compressor 7b can rotate integrally.

高圧TC6及び低圧TC7はそれぞれ可変容量式のターボチャージャであり、低圧TC7の最大容量は高圧TC6の最大容量よりも大きい。高圧TC6のタービン6aの入口部には、複数の可動ベーン6dが配置されており、これら複数の可動ベーン6dにより可変ノズルVNが構成される。この可変ノズルVNは、複数の可動ベーン6dの傾きを変更することで開口面積(可動ベーンの開度)を変化させることができる。低圧TC7も高圧TC6と同様に可動ベーン7dを備えており、この可動ベーン7dも可動ベーン6dと同様の機能を有している。周知のように、可動ベーン6dの開度を閉じ側に制御することで、過給圧を上げるとともにタービン6aよりも上流側の排気通路3の圧力を上昇させることができ、反対に可動ベーン6dの開度を開き側に制御することで、エンジン1の背圧を下げることができる。可動ベーン7dも同様に、開度を閉じ側に制御することで過給圧を上げるとともにタービン7aよりも上流側の排気通路3の圧力を上昇させることができ、開度を開き側に制御することでエンジン1の背圧を下げることができる。以降、可動ベーン6d及び可動ベーン7dの開度を最も閉じ側に変化させた状態を全閉状態と呼称し、可動ベーン6d及び可動ベーン7dの開度を最も開き側に変化させた状態を全開状態と呼称する。可動ベーン6d及び可動ベーン7dを動作させるための機構は、周知のものと同様でよいため、詳細は省略する。   Each of the high pressure TC6 and the low pressure TC7 is a variable capacity turbocharger, and the maximum capacity of the low pressure TC7 is larger than the maximum capacity of the high pressure TC6. A plurality of movable vanes 6d are arranged at the inlet of the turbine 6a of the high pressure TC6, and a variable nozzle VN is configured by the plurality of movable vanes 6d. The variable nozzle VN can change the opening area (opening degree of the movable vane) by changing the inclination of the plurality of movable vanes 6d. The low pressure TC 7 is provided with a movable vane 7d similarly to the high pressure TC 6, and this movable vane 7d also has the same function as the movable vane 6d. As is well known, by controlling the opening degree of the movable vane 6d to the closed side, it is possible to increase the supercharging pressure and increase the pressure in the exhaust passage 3 upstream of the turbine 6a, and conversely, the movable vane 6d. The back pressure of the engine 1 can be reduced by controlling the opening of the engine 1 to the open side. Similarly, the movable vane 7d can increase the supercharging pressure by controlling the opening degree to the closed side, and can increase the pressure in the exhaust passage 3 upstream of the turbine 7a, and the opening degree is controlled to the opening side. Thus, the back pressure of the engine 1 can be reduced. Hereinafter, a state in which the opening degree of the movable vane 6d and the movable vane 7d is changed to the most closed side is referred to as a fully closed state, and a state in which the opening degree of the movable vane 6d and the movable vane 7d is changed to the most open side is fully opened. This is called a state. Since the mechanism for operating the movable vane 6d and the movable vane 7d may be the same as a known mechanism, the details are omitted.

排気通路5には、高圧TC6のタービン6aを迂回するためのバイパス通路8と、バイパス通路8に導かれる排気ガスの流量を調整する排気バイパスバルブ9と、低圧TC7のタービン7aの下流側に配置される排気浄化触媒10とが設けられている。吸気通路4には、吸気濾過用のエアクリーナ11と、吸入空気量に対応した信号を出力するエアフローメータ12と、低圧TC7のコンプレッサ7bで昇温された吸気を冷却するための第一インタークーラ13と、高圧TC6のコンプレッサ6bで昇温された吸気を冷却するための第二インタークーラ14と、吸入空気量を調節するためのスロットル弁15が設けられている。排気通路5と吸気通路4とはEGR通路16で接続されており、EGR通路16にはEGR弁17が設けられている。   The exhaust passage 5 is disposed downstream of the bypass passage 8 for bypassing the turbine 6a of the high pressure TC 6, the exhaust bypass valve 9 for adjusting the flow rate of the exhaust gas guided to the bypass passage 8, and the turbine 7a of the low pressure TC 7. An exhaust purification catalyst 10 is provided. In the intake passage 4, an air cleaner 11 for filtering the intake air, an air flow meter 12 that outputs a signal corresponding to the amount of intake air, and a first intercooler 13 for cooling the intake air heated by the compressor 7 b of the low pressure TC 7. And a second intercooler 14 for cooling the intake air heated by the compressor 6b of the high pressure TC 6 and a throttle valve 15 for adjusting the intake air amount. The exhaust passage 5 and the intake passage 4 are connected by an EGR passage 16, and an EGR valve 17 is provided in the EGR passage 16.

可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度はエンジンコントロールユニット(ECU)20によってそれぞれ制御されている。ECU20は、マイクロプロセッサ及びその動作に必要なROM、RAM等の周辺装置を備え、エンジン1の運転状態を制御する周知のコンピュータユニットであり、スロットル弁15の開度を制御して吸入空気量を調整したり、EGR弁17の開度を制御して再循環される排気ガス量を調整している。また、ECU20は、エンジン1の気筒内に燃料を供給するための燃料噴射弁(不図示)の動作を制御している。例えばECU20は、エンジン1が減速状態であると判断した場合、エンジン1への燃料供給を停止させる。このように、減速時にエンジン1への燃料供給を停止させることで、ECU20は本発明の燃料供給停止手段として機能する。ECU20には、これらの機器を制御する際に参照する情報を取得するため、例えばエアフローメータ12の信号や、不図示のアクセルの開度に対応した信号を出力するアクセル開度センサ21の信号などが入力されている。   The opening degree of the movable vane 6d, the opening degree of the movable vane 7d, and the opening degree of the exhaust bypass valve 9 are controlled by an engine control unit (ECU) 20, respectively. The ECU 20 includes a microprocessor and peripheral devices such as ROM and RAM necessary for its operation, and is a well-known computer unit that controls the operating state of the engine 1. The ECU 20 controls the opening degree of the throttle valve 15 to control the intake air amount. The amount of exhaust gas to be recirculated is adjusted by adjusting the opening degree of the EGR valve 17. The ECU 20 controls the operation of a fuel injection valve (not shown) for supplying fuel into the cylinder of the engine 1. For example, when the ECU 20 determines that the engine 1 is in a deceleration state, the ECU 20 stops the fuel supply to the engine 1. Thus, by stopping the fuel supply to the engine 1 during deceleration, the ECU 20 functions as the fuel supply stop means of the present invention. In order to acquire information to be referred to when controlling these devices, the ECU 20 has, for example, a signal from the air flow meter 12 and a signal from the accelerator opening sensor 21 that outputs a signal corresponding to an accelerator opening (not shown). Is entered.

図2は、ECU20が可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度を制御するために実行する可動ベーン開度制御ルーチンを示している。図2の制御ルーチンを実行することにより、ECU20は本発明の制御手段として機能する。図2の制御ルーチンは、エンジン1の運転中に所定の周期で繰り返し実行される。   FIG. 2 shows a movable vane opening control routine executed by the ECU 20 to control the opening of the movable vane 6d, the opening of the movable vane 7d, and the opening of the exhaust bypass valve 9. By executing the control routine of FIG. 2, the ECU 20 functions as the control means of the present invention. The control routine of FIG. 2 is repeatedly executed at a predetermined cycle while the engine 1 is operating.

図2の制御ルーチンにおいてECU20は、まずステップS11において、エンジン1が減速状態か否か判断する。減速状態の判定は、例えばアクセル開度とエンジン1の回転速度とに基づいて行われ、エンジン1の回転速度が所定の回転速度(例えば、1400rpm)を超え、かつアクセル開度センサ21を参照して取得したアクセル開度が0%(即ちアクセルが踏み込まれていない。)である場合に減速状態であると判定する。エンジン1が減速状態ではないと判断した場合、今回の制御ルーチンを終了する。一方、エンジン1が減速状態であると判断した場合はステップS12に進み、ECU20はエアフローメータ12の出力信号を参照して吸入空気量を取得する。次のステップS13においてECU20は、後述する設定方法によって設定された開度に調整されるように、可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度を制御する。その後、今回の制御ルーチンを終了する。   In the control routine of FIG. 2, the ECU 20 first determines in step S11 whether or not the engine 1 is in a decelerating state. The determination of the deceleration state is performed based on, for example, the accelerator opening and the rotational speed of the engine 1, the rotational speed of the engine 1 exceeds a predetermined rotational speed (for example, 1400 rpm), and the accelerator opening sensor 21 is referred to. It is determined that the vehicle is decelerating when the accelerator opening obtained in step S is 0% (that is, the accelerator is not depressed). If it is determined that the engine 1 is not in a deceleration state, the current control routine is terminated. On the other hand, when it is determined that the engine 1 is in a decelerating state, the process proceeds to step S12, and the ECU 20 refers to the output signal of the air flow meter 12 and acquires the intake air amount. In the next step S13, the ECU 20 controls the opening degree of the movable vane 6d, the opening degree of the movable vane 7d, and the opening degree of the exhaust bypass valve 9 so as to be adjusted to the opening degree set by the setting method described later. . Thereafter, the current control routine is terminated.

可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度は、例えば図3に示したマップに基づいて設定される。図3は、エンジン1の減速時における吸入空気量と、可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度との関係の一例を示したマップである。なお、図3では、線Aが吸入空気量と可動ベーン6dの開度との関係の一例を、線Bが吸入空気量と可動ベーン7dの開度との関係の一例を、線Cが吸入空気量と排気バイパスバルブ9の開度との関係の一例をそれぞれ示している。これらの関係は、予め実験や数値計算などによって求めておき、ECU20のROMにマップとして記憶させておく。図3に示したように、吸入空気量が少ない場合、可動ベーン6dの開度は閉じ側に設定され、可動ベーン7dの開度は開き側に設定される。一方、吸入空気量が多い場合、可動ベーン6dの開度は開き側に設定され、可動ベーン7dの開度は閉じ側に設定される。即ち、吸入空気量が多いほど可動ベーン6dは開き側に設定され、可動ベーン7dは閉じ側に設定される。排気バイパスバルブ9は、図3に示したように吸入空気量が判定吸入空気量Ga未満の場合は閉じられ、吸入空気量が判定吸入空気量Ga以上の場合に開けられる。判定吸入空気量Gaは、例えば高圧TC6の最大容量に基づいて設定され、可動ベーン6dが全開状態において高圧TC6の回転数が許容上限回転数を超えないように、即ち高圧TC6が過回転しないように設定される。   The opening degree of the movable vane 6d, the opening degree of the movable vane 7d, and the opening degree of the exhaust bypass valve 9 are set based on, for example, the map shown in FIG. FIG. 3 is a map showing an example of the relationship between the intake air amount during deceleration of the engine 1, the opening degree of the movable vane 6d, the opening degree of the movable vane 7d, and the opening degree of the exhaust bypass valve 9. In FIG. 3, line A is an example of the relationship between the intake air amount and the opening of the movable vane 6d, line B is an example of the relationship between the intake air amount and the opening of the movable vane 7d, and line C is the intake. An example of the relationship between the air amount and the opening degree of the exhaust bypass valve 9 is shown. These relationships are obtained in advance by experiments or numerical calculations, and are stored as a map in the ROM of the ECU 20. As shown in FIG. 3, when the intake air amount is small, the opening degree of the movable vane 6d is set to the closed side, and the opening degree of the movable vane 7d is set to the open side. On the other hand, when the intake air amount is large, the opening degree of the movable vane 6d is set on the open side, and the opening degree of the movable vane 7d is set on the closing side. That is, as the intake air amount increases, the movable vane 6d is set to the open side, and the movable vane 7d is set to the closed side. As shown in FIG. 3, the exhaust bypass valve 9 is closed when the intake air amount is less than the determined intake air amount Ga, and is opened when the intake air amount is greater than or equal to the determined intake air amount Ga. The determination intake air amount Ga is set based on, for example, the maximum capacity of the high pressure TC 6, so that the rotation speed of the high pressure TC 6 does not exceed the allowable upper limit rotation speed when the movable vane 6 d is fully opened, that is, the high pressure TC 6 does not over-rotate. Set to

エンジン1の減速時、吸入空気量が少ない場合は、高圧TC6の可動ベーン6dを閉じ側に設定することで、排気マニホールド3の圧力を吸気マニホールド2の圧力よりも上昇させ、吸気マニホールド2の圧力と排気マニホールド3の圧力との差を拡大させることができる。そのため、エンジン1のポンピングロスを増加させることができる。また、高圧TC6の回転数を増加させ、吸気通路4の圧力を上昇させることができる。この際、低圧TC7の可動ベーン7dは開き側に設定されるので、タービン6aよりも下流の排気通路5の圧力の上昇を抑制することができる。これにより、タービン6aの上流側圧力と下流側圧力との差の縮小が抑制されるので、高圧TC6の回転数の低下が抑制される。また、排気バイパスバルブ9は閉じているので、高圧TC6のタービン6aに全ての排気ガスを導入することができる。このように吸気通路4の圧力を上昇させることで、エンジン1の冷却損失を増加させることができる。また、排気マニホールド3の圧力を高い状態に維持させることで、再加速時に速やかにタービン6aに排気ガスを導入し、迅速にエンジン1を過給できるため、エンジン1の加速性を向上させることができる。   When the amount of intake air is small when the engine 1 is decelerated, the pressure of the exhaust manifold 3 is increased more than the pressure of the intake manifold 2 by setting the movable vane 6d of the high pressure TC 6 to the closed side. And the pressure of the exhaust manifold 3 can be increased. Therefore, the pumping loss of the engine 1 can be increased. Further, the number of revolutions of the high pressure TC 6 can be increased and the pressure of the intake passage 4 can be increased. At this time, since the movable vane 7d of the low pressure TC7 is set on the open side, an increase in pressure in the exhaust passage 5 downstream of the turbine 6a can be suppressed. Thereby, since the reduction | decrease of the difference of the upstream pressure of the turbine 6a and a downstream pressure is suppressed, the fall of the rotation speed of the high voltage | pressure TC6 is suppressed. Further, since the exhaust bypass valve 9 is closed, all exhaust gas can be introduced into the turbine 6a of the high pressure TC6. Thus, the cooling loss of the engine 1 can be increased by increasing the pressure in the intake passage 4. Further, by maintaining the pressure of the exhaust manifold 3 at a high level, exhaust gas can be quickly introduced into the turbine 6a at the time of re-acceleration, and the engine 1 can be supercharged quickly, so that the acceleration performance of the engine 1 can be improved. it can.

一方、エンジン1の減速時、吸入空気量が多い場合は、低圧TC7の可動ベーン7dが閉じ側に制御されるので、低圧TC7のタービン7aよりも上流側の排気通路5の圧力を上昇させることができる。そのため、吸気マニホールド2の圧力と排気マニホールド3の圧力との差を拡大し、エンジン1のポンピングロスを増加させることができる。また、可動ベーン7dを閉じ側に制御することで、低圧TC7の回転数を増加させることができるので、吸気マニホールド2の圧力を上昇させて吸気温度を上昇させ、エンジン1の冷却損失を増加させることができる。この際、高圧TC6の可動ベーン6dは開き側に制御されるので、高圧TC6の回転数の上昇を抑制することができる。さらに、吸入空気量が判定吸入空気量Ga以上の場合は、排気バイパスバルブ9が開くので、高圧TC6のタービン6aに流入する排気ガス量を減少させて高圧TC6の過回転を防止することができる。   On the other hand, when the intake air amount is large when the engine 1 is decelerated, the movable vane 7d of the low pressure TC 7 is controlled to the closed side, so that the pressure in the exhaust passage 5 upstream of the turbine 7a of the low pressure TC 7 is increased. Can do. Therefore, the difference between the pressure of the intake manifold 2 and the pressure of the exhaust manifold 3 can be expanded, and the pumping loss of the engine 1 can be increased. Further, since the rotational speed of the low pressure TC 7 can be increased by controlling the movable vane 7d to the closed side, the pressure of the intake manifold 2 is increased to increase the intake air temperature, and the cooling loss of the engine 1 is increased. be able to. At this time, since the movable vane 6d of the high pressure TC6 is controlled to open, an increase in the rotational speed of the high pressure TC6 can be suppressed. Further, when the intake air amount is equal to or larger than the determination intake air amount Ga, the exhaust bypass valve 9 is opened, so that the amount of exhaust gas flowing into the turbine 6a of the high pressure TC 6 can be reduced to prevent the high pressure TC 6 from over-rotating. .

以上に説明したように、エンジン1の減速時、可動ベーン6dの開度、可動ベーン7dの開度、及び排気バイパスバルブ9の開度を吸入空気量に応じて制御し、エンジン1のポンピングロス及び冷却損失をそれぞれ増加させるので、エンジン1のエンジンブレーキの効きを強めることができる。また、排気マニホールド3の圧力を上昇させるので、再加速時にエンジン1の過給を速やかに行うことができる。そのため、エンジン1の加速性を向上させることができる。   As described above, when the engine 1 is decelerated, the opening degree of the movable vane 6d, the opening degree of the movable vane 7d, and the opening degree of the exhaust bypass valve 9 are controlled according to the intake air amount, and the pumping loss of the engine 1 is reduced. In addition, since the cooling loss is increased, the effectiveness of the engine brake of the engine 1 can be enhanced. Further, since the pressure of the exhaust manifold 3 is increased, the engine 1 can be supercharged quickly during reacceleration. Therefore, the acceleration performance of the engine 1 can be improved.

図4は、図2の可動ベーン開度制御ルーチンの変形例を示している。なお、図4において図2と同一の処理には同一の参照符号を付し、説明を省略する。図4の制御ルーチンも、エンジン1の運転中に所定の周期で繰り返し実行される。   FIG. 4 shows a modification of the movable vane opening degree control routine of FIG. In FIG. 4, the same processes as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The control routine of FIG. 4 is also repeatedly executed at a predetermined cycle while the engine 1 is operating.

図4の制御ルーチンにおいてECU20は、ステップS13まで図2の制御ルーチンと同様の処理を行う。続くステップS21においてECU20は、スロットル弁15を開けるとともにEGR弁17を全閉に制御する。その後、今回の制御ルーチンを終了する。   In the control routine of FIG. 4, the ECU 20 performs the same processing as in the control routine of FIG. 2 until step S13. In the subsequent step S21, the ECU 20 opens the throttle valve 15 and controls the EGR valve 17 to be fully closed. Thereafter, the current control routine is terminated.

図4の制御ルーチンによれば、エンジン1の減速時にEGR弁17を全閉に制御することで、吸気通路4と排気通路5との間のガス流れを遮断し、吸気マニホールド2の圧力と排気マニホールド3の圧力との差を維持することができる。そのため、エンジン1のポンピングロスが低減されることがない。EGR弁17を全閉に制御することで、高圧TC6のタービン6a及び低圧TC7のタービン7aに導かれる排気ガス量を増加させることができるので、高圧TC6及び低圧TC7の回転数をそれぞれ増加させて吸気マニホールド3の圧力を上昇させることができる。さらに、スロットル弁15を開けることで、吸気通路2の圧力を低下させることなく、エンジン1に吸気を導くことができる。そのため、エンジン1の冷却損失を増加させることができる。このように、エンジン1のポンピングロスの低減を抑制するとともに冷却損失を増加させることで、エンジンブレーキの効きを強くすることができる。   According to the control routine of FIG. 4, the gas flow between the intake passage 4 and the exhaust passage 5 is cut off by controlling the EGR valve 17 to be fully closed when the engine 1 is decelerated, and the pressure of the intake manifold 2 and the exhaust gas are exhausted. A difference from the pressure of the manifold 3 can be maintained. Therefore, the pumping loss of the engine 1 is not reduced. By controlling the EGR valve 17 to be fully closed, it is possible to increase the amount of exhaust gas introduced to the turbine 6a of the high pressure TC6 and the turbine 7a of the low pressure TC7. The pressure of the intake manifold 3 can be increased. Further, by opening the throttle valve 15, intake air can be guided to the engine 1 without reducing the pressure in the intake passage 2. Therefore, the cooling loss of the engine 1 can be increased. Thus, by suppressing the reduction of the pumping loss of the engine 1 and increasing the cooling loss, the effectiveness of the engine brake can be strengthened.

図5は、図2の可動ベーン開度制御ルーチンの他の変形例を示している。なお、図5において図2と同一の処理には同一の参照符号を付し、説明を省略する。図5の制御ルーチンもエンジン1の運転中に所定の周期で繰り返し実行される。   FIG. 5 shows another modification of the movable vane opening degree control routine of FIG. In FIG. 5, the same processes as those in FIG. 2 are denoted by the same reference numerals, and the description thereof is omitted. The control routine of FIG. 5 is also repeatedly executed at a predetermined cycle while the engine 1 is operating.

図5の制御ルーチンにおいてECU20は、ステップS13まで図2の制御ルーチンと同様の処理を行う。続くステップS31においてECU20は、排気浄化触媒10に流入する排気ガスの温度が所定の判定温度よりも低いか否か判断する。排気浄化触媒10の温度は排気浄化触媒10に流入する排気ガスの温度に応じて変化するので、この処理では排気ガスの温度を使用して排気浄化触媒10の温度が触媒活性温度域であるか否か判断する。排気浄化触媒10に流入する排気ガスの温度は、例えば排気通路5に排気ガスの温度に対応した信号を出力する温度センサを設けて取得してもよいし、後述する図6の温度推定ルーチンをECU20に実行させて取得してもよい。所定の判定温度は、排気浄化触媒10の触媒活性温度域に応じて設定され、エンジン1の減速時の排気ガスによって排気浄化触媒10の温度が触媒活性温度域の下限値以下に低下しないような排気ガスの温度が設定される。なお、触媒活性温度域は排気浄化触媒10の種類などに応じて異なるため、所定の判定温度は排気浄化触媒10に応じて適宜設定される。   In the control routine of FIG. 5, the ECU 20 performs the same processing as in the control routine of FIG. 2 until step S13. In subsequent step S31, the ECU 20 determines whether or not the temperature of the exhaust gas flowing into the exhaust purification catalyst 10 is lower than a predetermined determination temperature. Since the temperature of the exhaust purification catalyst 10 changes according to the temperature of the exhaust gas flowing into the exhaust purification catalyst 10, in this process, is the exhaust gas temperature used to determine whether the temperature of the exhaust purification catalyst 10 is in the catalyst activation temperature range? Judge whether or not. The temperature of the exhaust gas flowing into the exhaust purification catalyst 10 may be acquired by providing, for example, a temperature sensor that outputs a signal corresponding to the temperature of the exhaust gas in the exhaust passage 5, or a temperature estimation routine of FIG. You may make ECU20 perform and may acquire. The predetermined determination temperature is set according to the catalyst activation temperature range of the exhaust purification catalyst 10, and the temperature of the exhaust purification catalyst 10 is not lowered below the lower limit value of the catalyst activation temperature range by the exhaust gas when the engine 1 is decelerated. The temperature of the exhaust gas is set. Since the catalyst activation temperature range varies depending on the type of the exhaust purification catalyst 10 and the like, the predetermined determination temperature is appropriately set according to the exhaust purification catalyst 10.

排気ガスの温度が所定の判定温度よりも低いと判断した場合はステップS32に進み、ECU20は、スロットル弁15を全閉状態に制御する。続くステップS33においてECU20は、EGR弁17を開ける。次のステップS34においてECU20は、高圧TC6の可動ベーン6d及び低圧TC7の可動ベーン7dをそれぞれ全閉状態に制御する。続くステップS35においてECU20は、排気バイパスバルブ9を閉じる。その後、今回の制御ルーチンを終了する。一方、排気ガスの温度が所定の判定温度よりも高いと判断した場合はステップS36に進み、ECU20はスロットル弁15を全開状態に制御する。続くステップS37においてECU20は、EGR弁17を閉じる。その後、今回の制御ルーチンを終了する。   When it is determined that the temperature of the exhaust gas is lower than the predetermined determination temperature, the process proceeds to step S32, and the ECU 20 controls the throttle valve 15 to a fully closed state. In subsequent step S33, the ECU 20 opens the EGR valve 17. In the next step S34, the ECU 20 controls the movable vane 6d of the high pressure TC6 and the movable vane 7d of the low pressure TC7 to be fully closed. In the subsequent step S35, the ECU 20 closes the exhaust bypass valve 9. Thereafter, the current control routine is terminated. On the other hand, when it is determined that the temperature of the exhaust gas is higher than the predetermined determination temperature, the process proceeds to step S36, and the ECU 20 controls the throttle valve 15 to be fully opened. In subsequent step S37, the ECU 20 closes the EGR valve 17. Thereafter, the current control routine is terminated.

エンジン1の減速時はエンジン1に燃料が供給されないので、排気ガスの温度が低下する。減速が長時間継続した場合、この排気ガスの温度低下の影響により排気マニホールド3、タービン6a及びタービン7aの温度が低下するので、排気浄化触媒10に流入するガスの温度が低下し、排気浄化触媒10の温度が低下する。そこで、以上に説明したように図5の制御ルーチンでは、排気ガスの温度が所定の判定温度よりも低い場合、スロットル弁15を全閉状態に制御して吸入空気量を減少させて排気ガス量を減少させる。また、EGR弁17を開けることによって排気ガスを排気通路5からEGR通路16を介して吸気通路4に戻し、排気浄化触媒10に流入する排気ガスの量を減少させる。さらに、高圧CT6の可動ベーン6d及び低圧TC7の可動ベーン7dを全閉状態に制御するとともに排気バイパスバルブ9を閉じることで、タービン6a、タービン7a、及び排気浄化触媒10に流入する排気ガス量を減少させる。このように、排気浄化触媒10に流入する排気ガス量を減少させることで、排気浄化触媒10の温度低下を抑制することができる。そのため、排気エミッションの悪化を抑制することができる。   Since the fuel is not supplied to the engine 1 when the engine 1 is decelerated, the temperature of the exhaust gas decreases. When the deceleration continues for a long time, the temperature of the exhaust manifold 3, the turbine 6a, and the turbine 7a is lowered due to the effect of the temperature reduction of the exhaust gas, so that the temperature of the gas flowing into the exhaust purification catalyst 10 is reduced, and the exhaust purification catalyst. The temperature of 10 decreases. Therefore, as explained above, in the control routine of FIG. 5, when the temperature of the exhaust gas is lower than the predetermined determination temperature, the throttle valve 15 is controlled to be fully closed to reduce the intake air amount and the exhaust gas amount. Decrease. Further, by opening the EGR valve 17, the exhaust gas is returned from the exhaust passage 5 to the intake passage 4 via the EGR passage 16, and the amount of exhaust gas flowing into the exhaust purification catalyst 10 is reduced. Further, the movable vane 6d of the high pressure CT 6 and the movable vane 7d of the low pressure TC 7 are controlled to be fully closed, and the exhaust bypass valve 9 is closed, thereby reducing the amount of exhaust gas flowing into the turbine 6a, the turbine 7a, and the exhaust purification catalyst 10. Decrease. In this way, by reducing the amount of exhaust gas flowing into the exhaust purification catalyst 10, the temperature reduction of the exhaust purification catalyst 10 can be suppressed. Therefore, deterioration of exhaust emission can be suppressed.

排気浄化触媒10に流入する排気ガスの温度は、排気マニホールド3の温度、高圧TC6のタービン6aの温度、及び低圧TC7のタービン7aの温度とそれぞれ相関関係を有している。例えば、エンジン1の減速時、即ちエンジン1に燃料が供給されていないとき、排気ガスの温度は、排気マニホールド3、タービン6a、及びタービン7aから受ける熱に応じて決まる。一方、エンジン1の減速時以外、即ちエンジン1に燃料が供給されているとき、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度は、排気ガスから受ける熱に応じて決まる。そのため、排気ガスの温度は、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度に基づいて推定することができる。図6は、この関係を利用してECU20が排気ガスの温度を推定するために実行する排気ガス温度推定ルーチンを示している。なお、図6において図2と同一の処理には同一の参照符号を付し、説明を省略する。図6の推定ルーチンは、エンジン1の運転中に所定の周期で繰り返し実行される。図6の推定ルーチンを実行することにより、ECU20は本発明の触媒温度取得手段として機能する。   The temperature of the exhaust gas flowing into the exhaust purification catalyst 10 has a correlation with the temperature of the exhaust manifold 3, the temperature of the turbine 6a of the high pressure TC6, and the temperature of the turbine 7a of the low pressure TC7. For example, when the engine 1 is decelerated, that is, when fuel is not supplied to the engine 1, the temperature of the exhaust gas is determined according to the heat received from the exhaust manifold 3, the turbine 6a, and the turbine 7a. On the other hand, when the engine 1 is not decelerated, that is, when fuel is supplied to the engine 1, the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a are determined according to the heat received from the exhaust gas. Therefore, the temperature of the exhaust gas can be estimated based on the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a. FIG. 6 shows an exhaust gas temperature estimation routine executed by the ECU 20 to estimate the exhaust gas temperature using this relationship. In FIG. 6, the same processes as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted. The estimation routine of FIG. 6 is repeatedly executed at a predetermined cycle while the engine 1 is operating. By executing the estimation routine of FIG. 6, the ECU 20 functions as the catalyst temperature acquisition means of the present invention.

図6の推定ルーチンにおいてECU20は、まずステップS11でエンジン1が減速状態か否か判断する。減速状態であると判断した場合はステップS12に進み、吸入空気量を取得する。続くステップS41においてECU20は、取得した吸入空気量に基づいて排気マニホールド3の温度、高圧TC6のタービン6aの温度、及び低圧TC7のタービン7aの温度を推定する。これらの温度は、例えば以下に示す方法により推定される。なお、ここでは排気マニホールド3の温度の推定方法を一例として示す。タービン6aの温度及びタービン7aの温度もこの方法と同様の方法で推定することができる。排気マニホールド3の温度は、前回推定した排気マニホールド3の温度及び前回推定してからの排気マニホールド3の温度変化に基づいて推定する。エンジン1の減速時、排気マニホールド3の温度は排気ガスの量が多いほど大きく低下する。排気ガスの量は吸入空気量と相関関係を有しているので、予め実験などによって減速時に吸入空気量と排気マニホールド3の温度変化との関係を求め、この関係をECU20のROMにマップとして記憶させておく。前回推定してからの排気マニホールド3の温度は、このマップを参照して求める。今回推定する排気マニホールド3の温度は、前回推定した排気マニホールド3の温度にこの排気マニホールド3の温度変化を加算することで推定することができる。   In the estimation routine of FIG. 6, the ECU 20 first determines in step S11 whether or not the engine 1 is in a decelerating state. When it is determined that the vehicle is decelerating, the process proceeds to step S12 to acquire the intake air amount. In subsequent step S41, the ECU 20 estimates the temperature of the exhaust manifold 3, the temperature of the turbine 6a of the high pressure TC6, and the temperature of the turbine 7a of the low pressure TC7 based on the acquired intake air amount. These temperatures are estimated by the following method, for example. Here, a method for estimating the temperature of the exhaust manifold 3 is shown as an example. The temperature of the turbine 6a and the temperature of the turbine 7a can also be estimated by a method similar to this method. The temperature of the exhaust manifold 3 is estimated based on the previously estimated temperature of the exhaust manifold 3 and the temperature change of the exhaust manifold 3 since the previous estimation. When the engine 1 is decelerated, the temperature of the exhaust manifold 3 greatly decreases as the amount of exhaust gas increases. Since the amount of exhaust gas has a correlation with the amount of intake air, a relationship between the amount of intake air and the temperature change of the exhaust manifold 3 is obtained in advance by experiments or the like, and this relationship is stored in the ROM of the ECU 20 as a map. Let me. The temperature of the exhaust manifold 3 since the previous estimation is obtained with reference to this map. The temperature of the exhaust manifold 3 estimated this time can be estimated by adding the temperature change of the exhaust manifold 3 to the temperature of the exhaust manifold 3 estimated last time.

タービン6aの温度及びタービン7aの温度もこの方法と同様の方法で推定することができる。なお、タービン6aの温度及びタービン7aの温度も排気ガス量が多いほど、即ち吸入空気量が多いほど大きく低下するので、予め実験などによってタービン6aの温度変化及びタービン7aの温度変化と減速時の吸入空気量との関係を求めておき、この関係を、ECU20にマップとして記憶させておく。   The temperature of the turbine 6a and the temperature of the turbine 7a can also be estimated by a method similar to this method. Note that the temperature of the turbine 6a and the temperature of the turbine 7a also greatly decrease as the amount of exhaust gas increases, that is, as the amount of intake air increases. Therefore, the temperature change of the turbine 6a, the temperature change of the turbine 7a, A relationship with the intake air amount is obtained, and this relationship is stored in the ECU 20 as a map.

次のステップS42においてECU20は、排気浄化触媒10に流入する排気ガスの温度を推定する。その後、今回の推定ルーチンを終了する。排気ガスの温度は、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度に応じて変化する。例えば排気マニホールド3の温度が高いほど排気ガスが排気マニホールド3から受ける熱量が多いため、排気ガスの温度が高くなる。また、排気ガスの温度は、タービン6aの温度及びタービン7aの温度とも同様の関係を有する。そこで、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度と減速時の排気ガスの温度との関係を予め実験などによって求めてECU20のROMにマップとして記憶させておき、このマップを参照して排気ガスの温度を推定する。   In the next step S42, the ECU 20 estimates the temperature of the exhaust gas flowing into the exhaust purification catalyst 10. Thereafter, the current estimation routine is terminated. The temperature of the exhaust gas changes according to the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a. For example, as the temperature of the exhaust manifold 3 increases, the amount of heat that the exhaust gas receives from the exhaust manifold 3 increases, so the temperature of the exhaust gas increases. Further, the temperature of the exhaust gas has the same relationship with the temperature of the turbine 6a and the temperature of the turbine 7a. Therefore, the relationship between the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a and the exhaust gas temperature during deceleration is obtained in advance through experiments and stored in the ROM of the ECU 20 as a map. The temperature of the exhaust gas is estimated with reference.

一方、減速状態ではないと判断した場合はステップS43に進み、ECU20はエンジン1に供給した燃料量の積算値(以下、供給量積算値と略称する。)を取得する。ECU20は、燃料噴射弁の動作を制御するために燃料噴射弁からエンジン1に供給すべき燃料量を算出している。供給量積算値は、例えば、この供給すべき燃料量が、図6の推定ルーチンが実行されている時点の排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度が推定可能な程度の所定時間分積算された値である。   On the other hand, if it is determined that the vehicle is not in the deceleration state, the process proceeds to step S43, where the ECU 20 acquires an integrated value of the amount of fuel supplied to the engine 1 (hereinafter abbreviated as an integrated supply amount). The ECU 20 calculates the amount of fuel to be supplied from the fuel injection valve to the engine 1 in order to control the operation of the fuel injection valve. The supply amount integrated value is, for example, such that the amount of fuel to be supplied is such that the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a at the time when the estimation routine of FIG. 6 is executed can be estimated. It is a value integrated for a predetermined time.

次のステップS44においてECU20は、取得した供給量積算値に基づいて排気マニホールド3の温度、高圧TC6のタービン6aの温度、及び低圧TC7のタービン7aの温度を推定する。その後、今回の推定ルーチンを終了する。周知のように、エンジン1が高負荷で運転されている場合、エンジン1に供給される燃料量が多いので、排気ガスの温度が高い。一方、エンジン1が低負荷で運転されている場合は、エンジン1に供給される燃料量が少ないので、排気ガスの温度が低い。このようにエンジン1に運転状態に応じて供給される燃料量が変化し、排気ガスの温度が変化する。また、上述したように、エンジン1に燃料が供給されているとき、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度は、排気ガスから受ける熱に応じて決まるので、これらの温度は供給量積算値とも関係を有している。そこで、排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度と、供給量積算値との関係を予め実験などにより求めてECU20にマップとして記憶させておく。ステップS44では、このマップを参照して排気マニホールド3の温度、タービン6aの温度、及びタービン7aの温度のそれぞれ推定する。   In the next step S44, the ECU 20 estimates the temperature of the exhaust manifold 3, the temperature of the turbine 6a of the high pressure TC6, and the temperature of the turbine 7a of the low pressure TC7 based on the acquired supply amount integrated value. Thereafter, the current estimation routine is terminated. As is well known, when the engine 1 is operated at a high load, the amount of fuel supplied to the engine 1 is large, so the temperature of the exhaust gas is high. On the other hand, when the engine 1 is operated at a low load, the amount of fuel supplied to the engine 1 is small, so the temperature of the exhaust gas is low. In this way, the amount of fuel supplied to the engine 1 changes according to the operating state, and the temperature of the exhaust gas changes. Further, as described above, when the fuel is supplied to the engine 1, the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a are determined according to the heat received from the exhaust gas. Is also related to the integrated supply amount. Therefore, the relationship between the temperature of the exhaust manifold 3, the temperature of the turbine 6a, the temperature of the turbine 7a, and the integrated supply amount is obtained in advance through experiments and stored in the ECU 20 as a map. In step S44, the temperature of the exhaust manifold 3, the temperature of the turbine 6a, and the temperature of the turbine 7a are estimated with reference to this map.

以上に説明したように、図6の推定ルーチンでは、供給量積算値及び吸入空気量を参照して排気浄化触媒10に流入する排気ガスの温度を推定するので、新たに温度センサを設ける必要がない。なお、ステップS43において取得する物理量は供給量積算値に限定されない。例えば、吸入空気量の積算値など、エンジン1の運転状態を判断できる種々の物理量を使用してよい。   As described above, in the estimation routine of FIG. 6, the temperature of the exhaust gas flowing into the exhaust purification catalyst 10 is estimated with reference to the integrated supply amount value and the intake air amount. Therefore, it is necessary to newly provide a temperature sensor. Absent. The physical quantity acquired in step S43 is not limited to the supply amount integrated value. For example, various physical quantities that can determine the operating state of the engine 1 such as an integrated value of the intake air amount may be used.

(第二の実施形態)
図7は、本発明の多段過給システムが適用されたディーゼルエンジンの第二の実施形態を示した全体構成図である。なお、図7において、図1と共通する部分には同一符号を付してある。この実施形態では、低圧TC7が可動ベーンを備えていない点が第一の実施形態と異なる。そのため、ECU20は、エンジン1の減速時、高圧TC6の可動ベーン6dの開度及び排気バイパスバルブ9の開度を制御して、エンジン1のポンピングロス及び冷却損失を増加させる。図8は、ECU20が可動ベーン6dの開度及び排気バイパスバルブ9の開度を制御するために実行する可動ベーン開度制御ルーチンを示している。図8の制御ルーチンは、エンジン1の運転中に所定の周期で繰り返し実行される。なお、図8において図2と同一の処理には同一の参照符号を付し、説明を省略する。
(Second embodiment)
FIG. 7 is an overall configuration diagram showing a second embodiment of a diesel engine to which the multistage turbocharging system of the present invention is applied. In FIG. 7, the same reference numerals are given to the portions common to FIG. This embodiment is different from the first embodiment in that the low pressure TC7 does not include a movable vane. Therefore, when the engine 1 is decelerated, the ECU 20 controls the opening degree of the movable vane 6d of the high pressure TC 6 and the opening degree of the exhaust bypass valve 9 to increase the pumping loss and the cooling loss of the engine 1. FIG. 8 shows a movable vane opening degree control routine executed by the ECU 20 to control the opening degree of the movable vane 6d and the opening degree of the exhaust bypass valve 9. The control routine of FIG. 8 is repeatedly executed at a predetermined cycle while the engine 1 is operating. In FIG. 8, the same processes as those in FIG. 2 are denoted by the same reference numerals, and description thereof is omitted.

図8の制御ルーチンにおいて、ECU20はステップS12まで図2の制御ルーチンと同様の処理を行う。続くステップS51においてECU20は、取得した吸入空気量と後述する図9のマップに基づいて可動ベーン6dの開度及び排気バイパスバルブ9の開度を制御する。その後、今回の制御ルーチンを終了する。図9は、可動ベーン6dの開度及び排気バイパスバルブ9の開度と、吸入空気量との関係の一例を示している。なお、図9では、線Dが吸入空気量と可動ベーン6dの開度との関係の一例を、線Eが吸入空気量と排気バイパスバルブ9の開度との関係の一例をそれぞれ示している。これらの関係は、予め実験などにより求めておき、ECU20のROMにマップとして記憶させておく。図9に示したように、エンジン1の減速時に吸入空気量が少ない場合は、可動ベーン6dの開度が閉じ側に設定されるので、排気マニホールド3の圧力を上昇させ、吸気マニホールド2の圧力と排気マニホールド3の圧力との差を拡大させることができる。そのため、エンジン1のポンピングロスを増加させることができる。また、可動ベーン6dの開度を閉じ側に設定することで、高圧TC6の回転数が増加させて吸気温度を上昇させ、エンジン1の冷却損失を増加させることができる。また、排気マニホールド3の圧力を高い状態に維持することができるので、再加速時に高圧TC6の回転数を速やかに増加させ、エンジン1の過給を迅速に行うことができる。そのため、エンジン1の加速性を向上させることができる。一方、減速時に吸入空気量が多い場合は可動ベーン6dの開度が開き側に設定されるので、高圧TC6の回転数の増加を抑制することができる。また、吸入空気量が判定吸入空気量Ga以上の場合は排気バイパスバルブ9が開くので、高圧TC6のタービン6aに導入される排気ガスの量を減少させることで高圧TC6の過回転を防止することができる。   In the control routine of FIG. 8, the ECU 20 performs the same processing as in the control routine of FIG. 2 until step S12. In subsequent step S51, the ECU 20 controls the opening degree of the movable vane 6d and the opening degree of the exhaust bypass valve 9 based on the acquired intake air amount and a map shown in FIG. Thereafter, the current control routine is terminated. FIG. 9 shows an example of the relationship between the opening of the movable vane 6d, the opening of the exhaust bypass valve 9, and the intake air amount. In FIG. 9, line D shows an example of the relationship between the intake air amount and the opening degree of the movable vane 6d, and line E shows an example of the relationship between the intake air amount and the opening degree of the exhaust bypass valve 9. . These relationships are obtained in advance by experiments or the like and stored in the ROM of the ECU 20 as a map. As shown in FIG. 9, when the amount of intake air is small when the engine 1 is decelerated, the opening of the movable vane 6d is set to the closed side, so that the pressure of the exhaust manifold 3 is increased and the pressure of the intake manifold 2 is increased. And the pressure of the exhaust manifold 3 can be increased. Therefore, the pumping loss of the engine 1 can be increased. Further, by setting the opening degree of the movable vane 6d to the closed side, the rotational speed of the high pressure TC 6 can be increased, the intake air temperature can be increased, and the cooling loss of the engine 1 can be increased. Further, since the pressure of the exhaust manifold 3 can be maintained at a high level, the number of revolutions of the high pressure TC 6 can be quickly increased during re-acceleration, and the engine 1 can be supercharged quickly. Therefore, the acceleration performance of the engine 1 can be improved. On the other hand, when the intake air amount is large at the time of deceleration, the opening degree of the movable vane 6d is set to the open side, so that an increase in the rotation speed of the high pressure TC6 can be suppressed. Further, since the exhaust bypass valve 9 is opened when the intake air amount is greater than or equal to the determined intake air amount Ga, the excessive rotation of the high pressure TC 6 can be prevented by reducing the amount of exhaust gas introduced into the turbine 6 a of the high pressure TC 6. Can do.

以上に説明したように、本発明の第二の実施形態によれば、減速時の吸入空気量に応じて高圧TC6の可動ベーン6dの開度及び排気バイパスバルブ9の開度を制御し、エンジン1のポンピングロス及び冷却損失をそれぞれ増加させることができるので、エンジンブレーキの効きを強めることができる。なお、この第二の実施形態においても、第一の実施形態と同様に、減速時にスロットル弁15を開け、EGR弁17を全閉状態にしてもよい。このようにスロットル弁15及びEGR弁17をそれぞれ制御することで、エンジン1のポンピングロス及び冷却損失をさらに増加させることができる。また、排気浄化触媒10に流入する排気ガスの温度に応じてスロットル弁15の開度、EGR弁17の開度、及び排気バイパスバルブ9の開度を制御してもよい。この場合は、排気浄化触媒10の温度低下を抑制することができる。   As described above, according to the second embodiment of the present invention, the opening degree of the movable vane 6d of the high pressure TC 6 and the opening degree of the exhaust bypass valve 9 are controlled in accordance with the intake air amount at the time of deceleration. Since the pumping loss and the cooling loss of 1 can be increased, the effectiveness of the engine brake can be enhanced. In the second embodiment, as in the first embodiment, the throttle valve 15 may be opened and the EGR valve 17 may be fully closed during deceleration. Thus, by controlling the throttle valve 15 and the EGR valve 17 respectively, the pumping loss and the cooling loss of the engine 1 can be further increased. Further, the opening degree of the throttle valve 15, the opening degree of the EGR valve 17, and the opening degree of the exhaust bypass valve 9 may be controlled according to the temperature of the exhaust gas flowing into the exhaust purification catalyst 10. In this case, the temperature reduction of the exhaust purification catalyst 10 can be suppressed.

本発明は以上の実施形態に限定されず、種々の形態で実施してよい。例えば、エンジンの減速時における、高圧TCの可動ベーンの開度、低圧TCの可動ベーンの開度、及びバイパス弁の開度は、エンジンの回転数に応じて変化させてもよい。   The present invention is not limited to the above embodiment, and may be implemented in various forms. For example, the opening degree of the movable vane of the high pressure TC, the opening degree of the movable vane of the low pressure TC, and the opening degree of the bypass valve during engine deceleration may be changed according to the engine speed.

本発明の多段過給システムが適用されたディーゼルエンジンの第一の実施形態の全体構成を示す図。The figure which shows the whole structure of 1st embodiment of the diesel engine to which the multistage supercharging system of this invention was applied. ECUが実行する可動ベーン開度制御ルーチンを示すフローチャート。The flowchart which shows the movable vane opening degree control routine which ECU performs. 減速時の吸入空気量と、高圧TCの可動ベーンの開度、低圧TCの可動ベーンの開度、及びバイパス弁の開度との関係の一例を示す図。The figure which shows an example of the relationship between the amount of intake air at the time of deceleration, the opening degree of the movable vane of high pressure TC, the opening degree of the movable vane of low pressure TC, and the opening degree of a bypass valve. ECUが実行する可動ベーン開度制御ルーチンの変形例を示すフローチャート。The flowchart which shows the modification of the movable vane opening degree control routine which ECU performs. ECUが実行する可動ベーン開度制御ルーチンの他の変形例を示すフローチャート。The flowchart which shows the other modification of the movable vane opening degree control routine which ECU performs. ECUが実行する排気ガス温度推定ルーチンを示すフローチャート。The flowchart which shows the exhaust gas temperature estimation routine which ECU performs. 本発明の多段過給システムが適用されたディーゼルエンジンの第二の実施形態の全体構成を示す図。The figure which shows the whole structure of 2nd embodiment of the diesel engine to which the multistage supercharging system of this invention was applied. 図7のECUが実行する可動ベーン開度制御ルーチンを示すフローチャート。The flowchart which shows the movable vane opening degree control routine which ECU of FIG. 7 performs. 減速時の吸入空気量と高圧TCの可動ベーンの開度及びバイパス弁の開度との関係の一例を示す図。The figure which shows an example of the relationship between the amount of intake air at the time of deceleration, the opening degree of the movable vane of high pressure TC, and the opening degree of a bypass valve.

符号の説明Explanation of symbols

1 ディーゼルエンジン(内燃機関)
4 吸気通路
5 排気通路
6 高圧ターボチャージャ(高圧ターボ過給機)
6a タービン
6b コンプレッサ
6d 可動ベーン
7 低圧ターボチャージャ(低圧ターボ過給機)
7a タービン
7b コンプレッサ
7d 可動ベーン
8 バイパス通路
9 排気バイパスバルブ
10 排気浄化触媒
15 スロットル弁
16 EGR通路
17 EGR弁
20 エンジンコントロールユニット(制御手段、触媒温度取得手段、燃料供給停止手段)
1 Diesel engine (internal combustion engine)
4 Intake passage 5 Exhaust passage 6 High-pressure turbocharger (high-pressure turbocharger)
6a Turbine 6b Compressor 6d Movable vane 7 Low pressure turbocharger (low pressure turbocharger)
7a Turbine 7b Compressor 7d Movable vane 8 Bypass passage 9 Exhaust bypass valve 10 Exhaust purification catalyst 15 Throttle valve 16 EGR passage 17 EGR valve 20 Engine control unit (control means, catalyst temperature acquisition means, fuel supply stop means)

Claims (12)

可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサをそれぞれ有するとともに可動ベーンを備え、前記高圧ターボ過給機とは最大容量が異なる可変容量式の低圧ターボ過給機と、を備えた内燃機関用多段過給システムに適用される制御方法であって、
前記内燃機関の減速時、吸気温度が上昇するように前記吸気通路の圧力を上昇させるとともに、前記吸気通路の圧力よりも前記排気通路の圧力が高く、かつ前記排気通路の圧力と前記吸気通路の圧力との差が拡大するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御することを特徴とする内燃機関用多段過給システムの制御方法。
A variable capacity high-pressure turbocharger having a movable vane; a turbine disposed downstream of an exhaust passage from a turbine of the high-pressure turbocharger; and an upstream of an intake passage from a compressor of the high-pressure turbocharger And a variable displacement low-pressure turbocharger that has a movable vane and has a maximum capacity different from that of the high-pressure turbocharger, and is applied to a multistage supercharging system for an internal combustion engine. Control method,
When the internal combustion engine is decelerated, the pressure of the intake passage is increased so that the intake air temperature rises, the pressure of the exhaust passage is higher than the pressure of the intake passage, and the pressure of the exhaust passage and the intake passage over multistage for internal combustion engine you and controls each difference is movable vanes of the high-pressure turbocharger to expand the opening and the opening of the movable vanes of the low-pressure turbocharger and pressure Supply system control method.
前記排気通路には、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路への排気ガスの流入及びその禁止を切り替え可能な排気バイパスバルブと、が設けられ、
前記内燃機関の減速時、前記内燃機関の吸入空気量が多いほど前記低圧ターボ過給機の可動ベーンを閉じ側に設定するとともに前記高圧ターボ過給機の可動ベーンを開き側に設定し、かつ前記内燃機関の吸入空気量が前記高圧ターボ過給機の最大容量に基づいて設定された判定吸入空気量以上である場合は前記バイパス通路に排気ガスが流入するように前記排気バイパスバルブを切り替え、前記内燃機関の吸入空気量が前記判定吸入空気量未満である場合は前記バイパス通路への排気ガスの流入が禁止されるように前記排気バイパスバルブを切り替えることを特徴とする請求項1に記載の内燃機関用多段過給システムの制御方法。
The exhaust passage is provided with a bypass passage that bypasses the turbine of the high-pressure turbocharger, and an exhaust bypass valve that can switch between inflow and prohibition of exhaust gas into the bypass passage,
When the internal combustion engine decelerates, the larger the intake air amount of the internal combustion engine, the closer the movable vane of the low-pressure turbocharger is set to the closed side and the movable vane of the high-pressure turbocharger is set to the open side, and When the intake air amount of the internal combustion engine is greater than or equal to a determined intake air amount set based on the maximum capacity of the high-pressure turbocharger, the exhaust bypass valve is switched so that exhaust gas flows into the bypass passage, 2. The exhaust bypass valve according to claim 1, wherein when the intake air amount of the internal combustion engine is less than the determined intake air amount, the exhaust bypass valve is switched so that the inflow of exhaust gas to the bypass passage is prohibited. A control method of a multistage supercharging system for an internal combustion engine.
前記吸気通路に吸入空気量を調整するスロットル弁が設けられ、
前記排気通路から前記吸気通路に排気ガスの一部を還流させるEGR通路と、前記EGR通路に設けられて前記吸気通路に還流される排気ガス量を調整するEGR弁と、をさらに備え、
前記内燃機関の減速時、前記スロットル弁を開くとともに前記EGR弁を全閉に制御することを特徴とする請求項1又は2に記載の内燃機関用多段過給システムの制御方法。
A throttle valve for adjusting the amount of intake air is provided in the intake passage;
An EGR passage that recirculates a part of the exhaust gas from the exhaust passage to the intake passage, and an EGR valve that is provided in the EGR passage and adjusts the amount of exhaust gas recirculated to the intake passage,
3. The control method for a multistage supercharging system for an internal combustion engine according to claim 1 or 2 , wherein when the internal combustion engine is decelerated, the throttle valve is opened and the EGR valve is controlled to be fully closed.
前記低圧ターボ過給機のタービンよりも下流の前記排気通路に設けられる排気浄化触媒と、前記排気浄化触媒の温度を取得する触媒温度取得手段と、前記内燃機関の減速時に前記内燃機関への燃料供給を停止する燃料供給停止手段と、を備え、
前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記排気浄化触媒の活性温度域に応じて予め設定された所定温度よりも高いと判断した場合は、前記スロットル弁を全開に制御するとともに前記EGR弁を閉じ、一方前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記所定温度以下であると判断した場合は、前記スロットル弁を全閉に制御するとともに前記EGR弁を開き、さらに前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ閉じ側に制御することを特徴とする請求項3に記載の内燃機関用多段過給システムの制御方法。
An exhaust purification catalyst provided in the exhaust passage downstream of the turbine of the low-pressure turbocharger, catalyst temperature acquisition means for acquiring the temperature of the exhaust purification catalyst, and fuel to the internal combustion engine during deceleration of the internal combustion engine Fuel supply stopping means for stopping supply,
When it is determined that the temperature acquired by the catalyst temperature acquisition means during deceleration of the internal combustion engine is higher than a predetermined temperature set in advance according to the activation temperature range of the exhaust purification catalyst, the throttle valve is fully opened. When the EGR valve is closed and the temperature acquired by the catalyst temperature acquisition means during deceleration of the internal combustion engine is determined to be lower than the predetermined temperature, the throttle valve is controlled to be fully closed and the EGR is controlled. The internal combustion engine according to claim 3, wherein the valve is opened, and the opening degree of the movable vane of the high-pressure turbocharger and the opening degree of the movable vane of the low-pressure turbocharger are controlled to be closed. Control method for multi-stage turbocharging system.
前記触媒温度取得手段は、減速前の前記内燃機関の運転状態及び減速時の前記内燃機関の吸入空気量に基づいて前記排気浄化触媒の温度を推定することを特徴とする請求項4に記載の内燃機関用多段過給システムの制御方法。 The catalyst temperature acquiring means, according to claim 4, characterized in that for estimating the temperature of the exhaust purification catalyst based on the intake air amount of the internal combustion engine during the operating state and deceleration of the internal combustion engine before decelerating A control method of a multistage supercharging system for an internal combustion engine. 可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサを有し、前記高圧ターボ過給機とは最大容量が異なる低圧ターボ過給機と、前記排気通路に設けられ、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路を通過する排気ガスの流量を調整する排気バイパスバルブと、を備えた内燃機関用多段過給システムに適用される制御方法であって、
前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記排気バイパスバルブの開度をそれぞれ制御することを特徴とする内燃機関用多段過給システムの制御方法。
A variable capacity high-pressure turbocharger having a movable vane; a turbine disposed downstream of an exhaust passage from a turbine of the high-pressure turbocharger; and an upstream of an intake passage from a compressor of the high-pressure turbocharger A low-pressure turbocharger having a maximum capacity different from that of the high-pressure turbocharger, a bypass passage provided in the exhaust passage and bypassing the turbine of the high-pressure turbocharger, An exhaust bypass valve for adjusting the flow rate of exhaust gas passing through the bypass passage, and a control method applied to a multistage supercharging system for an internal combustion engine,
The opening degree of the movable vane and the opening degree of the exhaust bypass valve of the high-pressure turbocharger are respectively controlled so that the pumping loss and the cooling loss of the internal combustion engine are increased when the internal combustion engine is decelerated. Control method for a multistage supercharging system for an internal combustion engine.
可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサをそれぞれ有するとともに可動ベーンを備え、前記高圧ターボ過給機とは最大容量が異なる可変容量式の低圧ターボ過給機と、を備えた内燃機関用多段過給システムであって、
前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御する制御手段を備え
前記制御手段は、前記内燃機関の減速時、吸気温度が上昇するように前記吸気通路の圧力を上昇させるとともに、前記吸気通路の圧力よりも前記排気通路の圧力が高く、かつ前記排気通路の圧力と前記吸気通路の圧力との差が拡大するように前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ制御することを特徴とする内燃機関用多段過給システム。
A variable capacity high-pressure turbocharger having a movable vane; a turbine disposed downstream of an exhaust passage from a turbine of the high-pressure turbocharger; and an upstream of an intake passage from a compressor of the high-pressure turbocharger A variable capacity low-pressure turbocharger having a compressor and a movable vane each having a maximum capacity different from that of the high-pressure turbocharger. ,
When the internal combustion engine is decelerated, the opening degree of the movable vane of the high pressure turbocharger and the opening degree of the movable vane of the low pressure turbocharger are controlled so that the pumping loss and the cooling loss of the internal combustion engine respectively increase. a control means for,
The control means increases the pressure of the intake passage so that the intake air temperature increases when the internal combustion engine is decelerated, the pressure of the exhaust passage is higher than the pressure of the intake passage, and the pressure of the exhaust passage And the opening of the movable vane of the high-pressure turbocharger and the opening of the movable vane of the low-pressure turbocharger are controlled so that the difference between the pressure of the intake passage and the pressure of the intake passage increases. Multistage supercharging system.
前記排気通路には、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路への排気ガスの流入及びその禁止を切り替え可能な排気バイパスバルブと、が設けられ、
前記制御手段は、前記内燃機関の減速時、前記内燃機関の吸入空気量が多いほど前記低圧ターボ過給機の可動ベーンを閉じ側に設定するとともに前記高圧ターボ過給機の可動ベーンを開き側に設定し、かつ前記内燃機関の吸入空気量が前記高圧ターボ過給機の最大容量に基づいて設定された判定吸入空気量以上である場合は前記バイパス通路に排気ガスが流入するように前記排気バイパスバルブを切り替え、前記内燃機関の吸入空気量が前記判定吸入空気量未満である場合は前記バイパス通路への排気ガスの流入が禁止されるように前記排気バイパスバルブを切り替えることを特徴とする請求項7に記載の内燃機関用多段過給システム。
The exhaust passage is provided with a bypass passage that bypasses the turbine of the high-pressure turbocharger, and an exhaust bypass valve that can switch between inflow and prohibition of exhaust gas into the bypass passage,
When the internal combustion engine is decelerated, the control means sets the movable vane of the low-pressure turbocharger to the closed side as the intake air amount of the internal combustion engine increases, and opens the movable vane of the high-pressure turbocharger to the open side And when the intake air amount of the internal combustion engine is equal to or larger than a determined intake air amount set based on the maximum capacity of the high-pressure turbocharger, the exhaust gas flows into the bypass passage. switching the bypass valve, when the intake air amount of the internal combustion engine is less than the determination amount of intake air and switches the exhaust bypass valve so the inflow of exhaust gas into the bypass passage is inhibited claimed Item 8. The multistage turbocharging system for an internal combustion engine according to Item 7 .
前記吸気通路に吸入空気量を調整するスロットル弁が設けられ、
前記排気通路から前記吸気通路に排気ガスの一部を還流させるEGR通路と、前記EGR通路に設けられて前記吸気通路に還流される排気ガス量を調整するEGR弁と、をさらに備え、
前記制御手段は、前記内燃機関の減速時、前記スロットル弁を開くとともに前記EGR弁を全閉に制御することを特徴とする請求項7又は8に記載の内燃機関用多段過給システム。
A throttle valve for adjusting the amount of intake air is provided in the intake passage;
An EGR passage that recirculates a part of the exhaust gas from the exhaust passage to the intake passage, and an EGR valve that is provided in the EGR passage and adjusts the amount of exhaust gas recirculated to the intake passage,
9. The multistage supercharging system for an internal combustion engine according to claim 7 , wherein the control means opens the throttle valve and controls the EGR valve to be fully closed when the internal combustion engine is decelerated.
前記低圧ターボ過給機のタービンよりも下流の前記排気通路に設けられる排気浄化触媒と、前記排気浄化触媒の温度を取得する触媒温度取得手段と、前記内燃機関の減速時に前記内燃機関への燃料供給を停止する燃料供給停止手段と、を備え、
前記制御手段は、前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記排気浄化触媒の活性温度域に応じて予め設定された所定温度よりも高いと判断した場合は、前記スロットル弁を全開に制御するとともに前記EGR弁を閉じ、一方前記内燃機関の減速時に前記触媒温度取得手段により取得された温度が前記所定温度以下であると判断した場合は、前記スロットル弁を全閉に制御するとともに前記EGR弁を開き、さらに前記高圧ターボ過給機の可動ベーンの開度及び前記低圧ターボ過給機の可動ベーンの開度をそれぞれ閉じ側に制御することを特徴とする請求項9に記載の内燃機関用多段過給システム。
An exhaust purification catalyst provided in the exhaust passage downstream of the turbine of the low-pressure turbocharger, catalyst temperature acquisition means for acquiring the temperature of the exhaust purification catalyst, and fuel to the internal combustion engine during deceleration of the internal combustion engine Fuel supply stopping means for stopping supply,
When the control means determines that the temperature acquired by the catalyst temperature acquisition means during deceleration of the internal combustion engine is higher than a predetermined temperature set in advance according to the activation temperature range of the exhaust purification catalyst, the throttle The throttle valve is fully closed when it is determined that the temperature acquired by the catalyst temperature acquisition means during the deceleration of the internal combustion engine is lower than the predetermined temperature while the valve is controlled to be fully open and the EGR valve is closed. claim controls open the EGR valve, further wherein the controller controls the movable vanes of the high pressure turbocharger opening and the opening of the movable vanes of the low pressure turbocharger to the closing side, respectively 9 A multi-stage turbocharging system for an internal combustion engine as described in 1.
前記触媒温度取得手段は、減速前の前記内燃機関の運転状態及び減速時の前記内燃機関の吸入空気量に基づいて前記排気浄化触媒の温度を推定することを特徴とする請求項10に記載の内燃機関用多段過給システム。 The catalyst temperature acquiring means, according to claim 10, wherein estimating the temperature of the exhaust purification catalyst based on the intake air amount of the internal combustion engine during the operating state and deceleration of the internal combustion engine before decelerating Multistage supercharging system for internal combustion engines. 可動ベーンを備えた可変容量式の高圧ターボ過給機と、前記高圧ターボ過給機のタービンよりも排気通路の下流に配置されるタービン及び前記高圧ターボ過給機のコンプレッサよりも吸気通路の上流に配置されるコンプレッサを有し、前記高圧ターボ過給機とは最大容量が異なる低圧ターボ過給機と、前記排気通路に設けられ、前記高圧ターボ過給機のタービンを迂回するバイパス通路と、前記バイパス通路を通過する排気ガスの流量を調整する排気バイパスバルブと、を備えた内燃機関用多段過給システムであって、
前記内燃機関の減速時、前記内燃機関のポンピングロス及び冷却損失がそれぞれ増加するように前記高圧ターボ過給機の可動ベーンの開度及び前記排気バイパスバルブの開度をそれぞれ制御する制御手段を備えていることを特徴とする内燃機関用多段過給システム。
A variable capacity high-pressure turbocharger having a movable vane; a turbine disposed downstream of an exhaust passage from a turbine of the high-pressure turbocharger; and an upstream of an intake passage from a compressor of the high-pressure turbocharger A low-pressure turbocharger having a maximum capacity different from that of the high-pressure turbocharger, a bypass passage provided in the exhaust passage and bypassing the turbine of the high-pressure turbocharger, An exhaust bypass valve that adjusts the flow rate of exhaust gas that passes through the bypass passage, and a multi-stage turbocharging system for an internal combustion engine,
Control means for respectively controlling the opening degree of the movable vane and the opening degree of the exhaust bypass valve of the high-pressure turbocharger so that the pumping loss and the cooling loss of the internal combustion engine respectively increase during deceleration of the internal combustion engine. A multi-stage turbocharging system for an internal combustion engine.
JP2004379847A 2004-12-28 2004-12-28 Multistage supercharging system for internal combustion engine and control method thereof Expired - Fee Related JP4479502B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004379847A JP4479502B2 (en) 2004-12-28 2004-12-28 Multistage supercharging system for internal combustion engine and control method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004379847A JP4479502B2 (en) 2004-12-28 2004-12-28 Multistage supercharging system for internal combustion engine and control method thereof

Publications (2)

Publication Number Publication Date
JP2006183605A JP2006183605A (en) 2006-07-13
JP4479502B2 true JP4479502B2 (en) 2010-06-09

Family

ID=36736879

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004379847A Expired - Fee Related JP4479502B2 (en) 2004-12-28 2004-12-28 Multistage supercharging system for internal combustion engine and control method thereof

Country Status (1)

Country Link
JP (1) JP4479502B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006097684A (en) * 2004-09-27 2006-04-13 Borgwarner Inc Multi-stage turbo supercharger using vtg turbine stage
WO2008076013A1 (en) 2006-12-20 2008-06-26 Volvo Lastvagnar Ab Engine brake for vehicle
JP4935640B2 (en) * 2007-11-19 2012-05-23 マツダ株式会社 Engine deceleration control device
JP2010138710A (en) * 2008-12-09 2010-06-24 Hino Motors Ltd Two-stage supercharging system
JP5282629B2 (en) * 2009-03-31 2013-09-04 トヨタ自動車株式会社 Internal combustion engine system control device
JP5610871B2 (en) * 2010-06-23 2014-10-22 ダイハツ工業株式会社 Control method for internal combustion engine
WO2012051784A1 (en) * 2010-10-18 2012-04-26 Jin Beibiao Low-entropy mixed-combustion turbo compound explosive engine
CN102748077B (en) * 2011-06-21 2014-07-16 摩尔动力(北京)技术股份有限公司 Small-clearance volume explosion-exhaust engine
JP5880028B2 (en) * 2011-12-27 2016-03-08 マツダ株式会社 Control device for compression self-ignition engine with turbocharger
EP2861834B1 (en) 2012-06-19 2021-04-14 Volvo Lastvagnar AB A device for controlling a gas flow, an exhaust aftertreatment system and a system for propelling a vehicle
JP5958405B2 (en) * 2013-04-11 2016-08-02 マツダ株式会社 Engine control device
JP6360519B2 (en) * 2016-05-31 2018-07-18 ボルボ ラストバグナー アーベー Apparatus for controlling gas flow, exhaust aftertreatment system, and vehicle propulsion system
DE112018002996T5 (en) 2017-06-13 2020-03-05 Ihi Corporation Multi-stage turbocharger
CN111946443A (en) * 2020-07-28 2020-11-17 哈尔滨工程大学 Variable-section turbine two-stage sequential supercharging system structure and control method
JP7388372B2 (en) * 2021-01-25 2023-11-29 トヨタ自動車株式会社 Internal combustion engine control device

Also Published As

Publication number Publication date
JP2006183605A (en) 2006-07-13

Similar Documents

Publication Publication Date Title
JP3873742B2 (en) Control device for variable capacity turbocharger
JP4741678B2 (en) Diesel engine with supercharger
US8640459B2 (en) Turbocharger control systems and methods for improved transient performance
JP4479502B2 (en) Multistage supercharging system for internal combustion engine and control method thereof
US8096123B2 (en) System and method for mode transition for a two-stage series sequential turbocharger
EP3981979A1 (en) An internal combustion engine system
JP4254606B2 (en) Multistage turbocharging system for internal combustion engines
JP6024211B2 (en) Internal combustion engine and control method thereof
US20080053088A1 (en) Dual stage turbocharger control system
JP5031250B2 (en) Engine three-stage turbocharging system
US20120204560A1 (en) Method for controlling the operation of a compressor
JP2006057570A (en) Turbocharging system for internal combustion engine
JP3979294B2 (en) Multistage turbocharger controller
JP4935094B2 (en) Two-stage turbocharging system for diesel engines
JP2005009314A (en) Supercharger for engine
JP2010190052A (en) Supercharging system for internal combustion engine
JP2009057944A (en) Supercharging control device for internal combustion engine
JP2018159271A (en) Control method of internal combustion engine and control device of internal combustion engine
EP2271831A1 (en) A method of and apparatus for operating a supercharger
JP2010180782A (en) Multistage supercharging system of internal combustion engine and method of controlling the same
CN114245842B (en) Method for operating an internal combustion engine system
JP4311304B2 (en) Supercharging system for internal combustion engines
US11149666B2 (en) Control method and control device for vehicular internal combustion engine
EP1350937A2 (en) Energy regeneration control system and method for an internal combustion engine
JP6521022B2 (en) Control device and control method for turbocharged engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070903

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100223

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100308

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130326

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140326

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees