JP2004221339A - Solid-state imaging device - Google Patents

Solid-state imaging device Download PDF

Info

Publication number
JP2004221339A
JP2004221339A JP2003007156A JP2003007156A JP2004221339A JP 2004221339 A JP2004221339 A JP 2004221339A JP 2003007156 A JP2003007156 A JP 2003007156A JP 2003007156 A JP2003007156 A JP 2003007156A JP 2004221339 A JP2004221339 A JP 2004221339A
Authority
JP
Japan
Prior art keywords
solid
state imaging
imaging device
unit
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007156A
Other languages
Japanese (ja)
Inventor
Tadaki Mine
忠己 峯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2003007156A priority Critical patent/JP2004221339A/en
Publication of JP2004221339A publication Critical patent/JP2004221339A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the fixed pattern noise due to dark current even at gain-up in a solid-state imaging device using a solid-state imaging element. <P>SOLUTION: The solid-state imaging device is provided with a solid-state imaging element 1, a signal processing circuit 2, a CPU 3, a timing generation circuit 4, and a driving circuit 5. The CPU 3 changes the driving timing of the timing generation means at gain-up. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、固体撮像装置にかかわり、例えばCCD等電荷結合素子をアレイ状に配置したいわゆる2次元撮像素子を用いた固体撮像装置に関する。
【0002】
【従来の技術】
従来、CCD構造を用いる電荷転送部を有するものとして、CCDイメージセンサ、CCDリニアセンサ、およびCCD遅延線等が挙げられる。
【0003】
その中でもCCDイメージセンサ、、例えばフレームインターライン転送(FIT)型イメージセンサにおいては、特開平8−279608号公報に記載されたものが知られている。
【0004】
図5に従来のFIT型イメージセンサの構造を示しており、入射光量に応じた量の電荷に光電変換する受光部6が多数マトリクス状に配され、更にこれら多数の受光部6のうち、列方向に配列された受光部6に対して共通とされた垂直転送レジスタ7が多数本、行方向に配列されたイメージ部(撮像部)8と、この撮像部8に隣接して配され、撮像部8に形成されているような受光部6はなく、撮像部8における多数本の垂直転送レジスタ7のみが延長形成されたストレージ部(蓄積部)10とを有する。また、蓄積部10に隣接し、かつ多数本の垂直転送レジスタ9に対して共通とされた水平転送レジスタ11が1本設けられている。
【0005】
また、水平転送レジスタ11の最終段には出力部12が接続されている。出力12は、水平転送レジスタ11の最終段から転送されてきた信号電荷を電気信号(例えば電圧信号)に変換する例えばフローティング・ディフュージョン等で構成される電荷―電気信号変換部と、この電荷―電気信号部からの電気信号を増幅するアンプを有して構成されている。
【0006】
そして、これら撮像部8における垂直転送パルスΦVA1〜ΦVA4及び蓄積部ΦVB1〜ΦVB4の供給によって、撮像部8および蓄積部10における各垂直転送電極下のポテンシャル分布が順次変化し、これによって、信号電荷がそれぞれ撮像部8における垂直転送レジスタ7および蓄積部10における垂直転送レジスタ9に沿って縦方向(水平転送レジスタ側)に転送されることになる。
【0007】
特に、撮像部8においては、受光部6に蓄積されている信号電荷を図6に示す読み出し期間Pにおいて、まず、垂直転送レジスタ7に読み出し、その後、図6に示す期間FSにおいて、上記垂直転送レジスタ7に転送された信号電荷を高速に蓄積部10の垂直転送レジスタ9に転送する。
【0008】
蓄積部10は、期間FS内において垂直転送レジスタ9に転送された信号電荷を、その後の水平帰線期間HBLKにおいて1行単位に第1の水平転送レジスタ11側に転送する。
【0009】
そして、次の水平転送期間HBLKにおいて、信号電荷が順次対応する出力部12側に転送され、出力部12の出力端子13より撮像信号Sとして取り出されることになる。つまり、ある水平転送期間から次の水平転送期間までの間信号電荷は、電極ΦVB3,および電極ΦVB4の下に蓄えられていることになる。
【0010】
しかしながら、全ての固体撮像素子は暗電流の影響を受け、暗電流は熱励起による電子−正孔対の発生に起因し、光信号電荷の集積時間が長くなると、影響が大きくなる。以下に、暗電流の発生原因について説明する。
【0011】
図7に示す従来構造の垂直転送レジスタ断面図において、14はn型のシリコン基板、15はPウエル、16はN型半導体層、17はSiOからなる絶縁膜(シリコン酸化膜)であり、この垂直転送レジスタはn型のシリコン基板14にP型ウエル15と基板表面にN型半導体層16を設けた埋め込み型nチャンネル構造となっている。
【0012】
また、ゲートの電極材料にはポリシリコンが使用され、18は1層目のポリシリコン、19は2層目のポリシリコンである。電極としての各ポリシリコン18、19は垂直転送レジスタの駆動端子に接続されている。
【0013】
図8は垂直転送レジスタの基本構造として良く知られているものである。図中の(a)はポリシリコンゲート電極レベルに高レベル、(b)はポリシリコンゲートに低レベルのパルスを印加した時の状態を示している。ここで、垂直転送レジスタの暗電流はほとんど(a)状態における絶縁膜17とシリコン基板14の界面から発生することが知られている。これは、暗電流の発生源となる準位が界面に集中しているからである。
【0014】
一方、(b)のポリシリコンゲート電極に低レベルのパルスを印加したときには、シリコン基板14表面のポテンシャルが十分浅いため。表面には垂直転送レジスタに隣接したチャンネルストップ(図示略)より供給された正孔が蓄積された状態となっている。この結果、界面準位が正孔で満たされ、界面準位からの電子(すなわち暗電流)の発生が抑制される。このため、(b)状態での暗電流の発生は(a)状態に比べ十分無視できるものである。
【0015】
つまり、図6に示すLS期間のほとんどの期間でハイレベルになっているΦVB3,ΦVB4の下に電荷が蓄えられている期間における暗電流が支配的となる。
【0016】
このような固体撮像素子を用いた固体撮像装置の一般的な機能としてゲインアップ機能がある。この機能は、夜間等の撮影に用いられるもので、信号のゲインを標準撮影状態より大きくすることにより、暗い撮影環境下においても撮像を可能にするものである。
【0017】
【特許文献1】
特開平8−279608号公報[0002]〜[0014]
【0018】
【発明が解決しようとする課題】
ところで、近年では固体撮像素子の高感度化のために、電荷―電気信号変換効率を高めていった結果、暗電流も増幅してしまっていた。その結果、変換効率を高める以前に比べ、暗電流に起因する固定パターンノイズが増加するという問題点があった。また、この固定パターンノイズは前述したゲインアップ機能を使用した時には特に大きな問題となってきている。
【0019】
【課題を解決するための手段】
この課題を解決するために本発明は、ゲインアップの状況に対応して固体撮像素子の駆動条件を変化させる。具体的には、LS期間に蓄積するゲート数を通常ゲイン時よりも少なくなるように設定する。
【0020】
これにより、ゲインアップ時の暗電流の発生量を低減させることができる。
【0021】
【発明の実施の形態】
本発明の請求項1に記載の発明は、複数の受光素子と、前記受光素子からの電荷を受けて転送する垂直転送レジスタを有する固体撮像素子と、前記垂直レジスタを駆動する駆動手段と、前記駆動手段の駆動タイミングを決定するタイミング発生手段と、前記固体撮像素子の出力に対し、信号処理を施す信号処理手段と、前記信号処理手段と、前記駆動手段と、前記タイミング発生手段の動作を制御する制御手段とを備えており、前期信号処理手段の状態に対応して前記タイミング発生手段、および前記駆動手段の駆動条件を変化させるという作用を有する。
【0022】
請求項2に記載の発明は、複数の受光素子と、前記受光素子からの電荷を受けて転送する垂直転送レジスタを有する固体撮像素子と、前記垂直レジスタを駆動する駆動手段と、前記駆動手段の駆動タイミングを決定するタイミング発生手段と、前記固体撮像素子の出力に対し、信号処理を施す信号処理手段と、前記信号処理手段と、前記駆動手段と、前記タイミング発生手段の動作を制御する制御手段とを備えており、前記信号処理手段のゲインの状態に対応して、前記タイミング発生手段の動作を変化させるという作用を有する。
【0023】
請求項3に記載の発明は、複数の受光素子と、前記受光素子からの電荷を受けて転送する垂直転送レジスタを有する固体撮像素子と、前記垂直レジスタを駆動する駆動手段と、前記駆動手段の駆動タイミングを決定するタイミング発生手段と、前記固体撮像素子の出力に対し、信号処理を施す信号処理手段と、前記信号処理手段と、前記駆動手段と、前記タイミング発生手段の動作を制御する制御手段とを備えており、前記信号処理手段のゲインの状態に対応して、前記駆動手段の基板電圧を変化させるという作用を有する。
【0024】
以下、本発明の実施の形態について、図1から図6、および図8を用いて説明する。
【0025】
(実施の形態1)
図1は請求項1ないし請求項2に対応する本発明の実施の形態1に係る固体撮像装置の構成を示すブロック図であり、図2は本発明の実施の形態1に係る固体撮像装置のゲインアップ時の固体撮像素子の動作を示すタイミングチャートである。
【0026】
図1において固体撮像素子1は、例えば図5に示すような一般的な構造のCCDであり、その出力は信号処理回路2に接続されている。信号処理回路2はCPU3により通常ゲイン、およびゲインアップ等の信号処理を施し出力する。
【0027】
また、タイミング発生回路4はCPU3により、通常時は図6に示すような、従来通りの固体撮像素子の動作を行い、ゲインアップ時は図2に示すような動作を行うように切り換えられる。駆動回路5は、タイミング発生回路4より入力されたタイミング信号を所望の電圧に変換し、その他いくつかの直流電圧信号を固体撮像素子1にあたえ、固体撮像素子1を動作させる。
【0028】
次に、図2および図6を用いて通常時、およびゲインアップ時の動作についてさらに詳しく説明する。
【0029】
通常時は図6に示すように受光部から垂直転送レジスタへの電荷読み出し期間P、および撮像部から蓄積部へと高速に信号電荷を転送するFS期間以外、および蓄積部の垂直転送レジスタから水平転送レジスタへの電荷の転送期間以外の期間すべてにおいてΦVB3、およびΦVB4がハイレベルのポテンシャルに固定されている。つまり、信号電荷は大多数の期間これらの2つの電極の下に蓄えられていることになる。よってこれらの2つの電極の下で暗電流が多く混入されることになる。
【0030】
一方、ゲインアップ時は図2に示すように受光部から垂直転送レジスタへの電荷読み出し期間P、および撮像部から蓄積部へと高速に信号電荷を転送するFS期間以外、および蓄積部の垂直転送レジスタから水平転送レジスタへの電荷の転送期間以外の期間すべてにおいてΦVB4のみがハイレベルのポテンシャルに固定されている。つまり、つまり、信号電荷は大多数の期間1つの電極ΦVB4の下に蓄えられていることになる。すなわち、通常時に比べて少ないゲート電極信号電荷を蓄えるため、暗電流の混入が少なくなる。
【0031】
ただし、蓄積するゲート数が少なくなっているため蓄えられる電荷の量が少なくなり、所謂ダイナミックレンジが減少するが、元々ゲインアップ時は暗い被写体を撮像する場合に用いられる機能であるため、問題とはならない。
【0032】
このように本実施の形態1によれば、ゲインアップ時には通常時に比べ少ないゲート数で電荷を蓄積するようにしたので、ゲインアップ時において暗電流の混入を低減させることが可能になり、固定パターンノイズの少ない良好な映像を提供することが可能となる。
【0033】
なお、本実施の形態1においてはFIT−CCDを用いた固体撮像素子の場合について述べたが、本発明はこれに限らず、例えばIT−CCD等の異なる固体撮像素子を用いた場合においても広く適用できる。
【0034】
(実施の形態2)
図3は固体撮像素子に印加する駆動電圧である基板電圧と、固体撮像素子から出力される信号の最大電圧である飽和電圧との関係を示す図である。図3に示すように、基板電圧が低いほど飽和電圧は増加する。すなわちこの固体撮像素子を用いた固体撮像装置のダイナミックレンジは増大する。
【0035】
一方、CCD等の固体撮像素子にはハロゲンランプや太陽等の高輝度の被写体を撮像した際に、画面上で高輝度被写体より下側の領域の画素に信号が漏れ出す現象(以下Vタレと称す)が発生する。これは基板電圧が高いほど改善され、また、垂直転送レジスタの蓄積ゲート枚数が多いほど改善される(図4)。
【0036】
そこで、本実施例では図1に示すような固体撮像装置において、ゲインアップ時に固体撮像素子の蓄積ゲート数を減らすとともに固体撮像装置に印加する基板電圧も変化させる。つまり、ゲインアップには通常時よりも高い電圧を加えるように動作させる。
【0037】
このように本実施の形態2によれば、ゲインアップ時には通常時に比べ少ないゲート数で電荷を蓄積するとともに、異なった基板電圧印加するようににしたので、ゲインアップ時において、暗電流の混入を低減させることが可能になり、固定パターンノイズの少ない良好な映像を提供することが可能となるとともに、高輝度被写体を撮像した際のVタレについても良好に抑圧できる。
【0038】
なお、本実施の形態2においては実施の形態1と同様、FIT−CCDを用いた固体撮像素子の場合について述べたが、本発明はこれに限らず、例えばIT−CCD等の異なる固体撮像素子を用いた場合においても広く適用できる。
【0039】
【発明の効果】
以上のように本発明によれば、信号処理回路の状態によって最適な固体撮像素子の駆動条件を別々に設定するため、前記信号処理の状態毎に良好な映像信号が得られるという有利な効果がある。
【0040】
また、特にゲインアップ時に顕著になる暗電流の固定パターンノイズを良好に低減できるという有利な効果がある。
【0041】
また、通常時、およびゲインアップ時の両方の状態においても、高輝度被写体を撮像してもVタレの少ない良好な映像を得られるという有利な効果がある。
【図面の簡単な説明】
【図1】本発明の一実施の形態による固体撮像装置を示すブロック図
【図2】本発明の一実施の形態による固体撮像装置のゲインアップ時の動作を示すタイミングチャート
【図3】CCDの基板電圧と飽和電圧の関係を示す図
【図4】CCDの基板電圧とVタレレベルの関係を示す図
【図5】従来のイメージセンサを示す構造図
【図6】従来のイメージセンサの動作を示すタイミングチャート
【図7】従来の垂直転送レジスタの構造を示す断面図
【図8】従来のイメージセンサのポテンシャルを示す図
【符号の説明】
1 固体撮像素子
2 信号処理回路
3 CPU
4 タイミング発生回路
5 駆動回路
6 受光部
7、9 垂直転送レジスタ
8 撮像部
10 蓄積部
11 水平転送レジスタ
12 出力部
13 出力端
14 n型シリコン基板
15 P型ウエル
16 N型半導体層
17 絶縁膜(シリコン酸化膜)
18 1層目ポリシリコンゲート
19 2層目ポリシリコンゲート
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a solid-state imaging device using a so-called two-dimensional imaging device in which charge-coupled devices such as CCDs are arranged in an array, in addition to a solid-state imaging device.
[0002]
[Prior art]
Conventionally, a CCD image sensor, a CCD linear sensor, a CCD delay line, and the like are known as those having a charge transfer unit using a CCD structure.
[0003]
Among them, a CCD image sensor, for example, a frame interline transfer (FIT) type image sensor described in Japanese Patent Application Laid-Open No. 8-279608 is known.
[0004]
FIG. 5 shows the structure of a conventional FIT type image sensor, in which a large number of light receiving sections 6 for photoelectrically converting into an amount of charge corresponding to the amount of incident light are arranged in a matrix. A large number of vertical transfer registers 7 common to the light receiving units 6 arranged in the horizontal direction, an image unit (imaging unit) 8 arranged in the row direction, and an image unit (imaging unit) 8 There is no light receiving section 6 formed in the section 8 and a storage section (accumulation section) 10 formed by extending only a large number of vertical transfer registers 7 in the imaging section 8. Further, one horizontal transfer register 11 is provided adjacent to the storage unit 10 and common to many vertical transfer registers 9.
[0005]
The output unit 12 is connected to the last stage of the horizontal transfer register 11. The output 12 is a charge-to-electrical signal conversion unit composed of, for example, a floating diffusion for converting signal charges transferred from the final stage of the horizontal transfer register 11 into an electric signal (for example, a voltage signal), and the like. It has an amplifier for amplifying the electric signal from the signal section.
[0006]
The supply of the vertical transfer pulses ΦVA1 to ΦVA4 and the accumulation units ΦVB1 to ΦVB4 in the imaging unit 8 sequentially changes the potential distribution under each vertical transfer electrode in the imaging unit 8 and the accumulation unit 10, thereby reducing the signal charge. The data is transferred in the vertical direction (horizontal transfer register side) along the vertical transfer register 7 in the imaging unit 8 and the vertical transfer register 9 in the storage unit 10, respectively.
[0007]
In particular, in the imaging section 8, the signal charges accumulated in the light receiving section 6 are firstly read out to the vertical transfer register 7 in the readout period P shown in FIG. 6, and then, during the period FS shown in FIG. The signal charges transferred to the register 7 are transferred to the vertical transfer register 9 of the storage unit 10 at high speed.
[0008]
The accumulation unit 10 transfers the signal charges transferred to the vertical transfer register 9 during the period FS to the first horizontal transfer register 11 side by row in the subsequent horizontal flyback period HBLK.
[0009]
Then, in the next horizontal transfer period HBLK, the signal charges are sequentially transferred to the corresponding output unit 12 side, and are taken out as the imaging signal S from the output terminal 13 of the output unit 12. That is, the signal charges are stored under the electrodes ΦVB3 and ΦVB4 during a period from one horizontal transfer period to the next horizontal transfer period.
[0010]
However, all solid-state imaging devices are affected by dark current, and the dark current is caused by the generation of electron-hole pairs due to thermal excitation. Hereinafter, the cause of the dark current will be described.
[0011]
In the sectional view of the vertical transfer register having the conventional structure shown in FIG. 7, 14 is an n-type silicon substrate, 15 is a P well, 16 is an N-type semiconductor layer, 17 is an insulating film (silicon oxide film) made of SiO 2 , This vertical transfer register has an embedded n-channel structure in which a P-type well 15 is provided on an n-type silicon substrate 14 and an N-type semiconductor layer 16 is provided on the substrate surface.
[0012]
Also, polysilicon is used as a gate electrode material, 18 is a first-layer polysilicon, and 19 is a second-layer polysilicon. Each polysilicon 18, 19 as an electrode is connected to a drive terminal of a vertical transfer register.
[0013]
FIG. 8 shows a well-known basic structure of a vertical transfer register. In the figure, (a) shows a state when a high level pulse is applied to the polysilicon gate electrode level, and (b) shows a state when a low level pulse is applied to the polysilicon gate. Here, it is known that the dark current of the vertical transfer register is almost generated from the interface between the insulating film 17 and the silicon substrate 14 in the state (a). This is because levels serving as a source of dark current are concentrated at the interface.
[0014]
On the other hand, when a low-level pulse is applied to the polysilicon gate electrode shown in FIG. 4B, the potential on the surface of the silicon substrate 14 is sufficiently shallow. Holes supplied from a channel stop (not shown) adjacent to the vertical transfer register are accumulated on the surface. As a result, the interface states are filled with holes, and the generation of electrons (that is, dark current) from the interface states is suppressed. For this reason, the occurrence of dark current in the state (b) is sufficiently negligible as compared with the state (a).
[0015]
That is, the dark current becomes dominant during the period in which the electric charge is stored under ΦVB3 and ΦVB4 which are at the high level during most of the LS period shown in FIG.
[0016]
A general function of a solid-state imaging device using such a solid-state imaging device is a gain-up function. This function is used for photographing at night or the like, and makes it possible to capture an image even in a dark photographing environment by increasing the signal gain from the standard photographing state.
[0017]
[Patent Document 1]
JP-A-8-279608 [0002] to [0014]
[0018]
[Problems to be solved by the invention]
By the way, in recent years, the charge-electric signal conversion efficiency has been increased in order to increase the sensitivity of the solid-state imaging device, and as a result, the dark current has also been amplified. As a result, there is a problem that fixed pattern noise due to dark current increases as compared to before the conversion efficiency is increased. This fixed pattern noise has become a particularly serious problem when the above-described gain-up function is used.
[0019]
[Means for Solving the Problems]
In order to solve this problem, the present invention changes the driving condition of the solid-state imaging device according to the situation of gain increase. Specifically, the number of gates accumulated during the LS period is set to be smaller than that at the time of the normal gain.
[0020]
As a result, the amount of dark current generated when the gain is increased can be reduced.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
The invention according to claim 1 of the present invention is directed to a solid-state imaging device having a plurality of light receiving elements, a vertical transfer register that receives and transfers charges from the light receiving elements, a driving unit that drives the vertical register, Timing generating means for determining the drive timing of the driving means, signal processing means for performing signal processing on the output of the solid-state imaging device, control of the signal processing means, the driving means, and operation of the timing generating means Controlling means for changing the driving conditions of the timing generating means and the driving means in accordance with the state of the signal processing means.
[0022]
The invention according to claim 2 is a solid-state imaging device having a plurality of light receiving elements, a vertical transfer register that receives and transfers electric charges from the light receiving elements, a driving unit that drives the vertical register, and a driving unit that drives the vertical register. Timing generating means for determining drive timing, signal processing means for performing signal processing on the output of the solid-state imaging device, signal processing means, the driving means, and control means for controlling the operation of the timing generating means And an operation of changing the operation of the timing generating means in accordance with the state of the gain of the signal processing means.
[0023]
According to a third aspect of the present invention, there is provided a solid-state imaging device having a plurality of light receiving elements, a vertical transfer register that receives and transfers charges from the light receiving elements, a driving unit that drives the vertical register, and a driving unit that drives the vertical register. Timing generating means for determining drive timing, signal processing means for performing signal processing on the output of the solid-state imaging device, signal processing means, the driving means, and control means for controlling the operation of the timing generating means And has the effect of changing the substrate voltage of the driving means in accordance with the state of the gain of the signal processing means.
[0024]
Hereinafter, embodiments of the present invention will be described with reference to FIGS. 1 to 6 and FIG.
[0025]
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of a solid-state imaging device according to a first embodiment of the present invention corresponding to claims 1 and 2, and FIG. 2 is a block diagram of a solid-state imaging device according to the first embodiment of the present invention. 6 is a timing chart illustrating an operation of the solid-state imaging device when a gain is increased.
[0026]
In FIG. 1, a solid-state imaging device 1 is a CCD having a general structure as shown in FIG. 5, for example, and its output is connected to a signal processing circuit 2. The signal processing circuit 2 performs signal processing such as normal gain and gain up by the CPU 3 and outputs the processed signal.
[0027]
Further, the timing generation circuit 4 is switched by the CPU 3 so that the operation of the conventional solid-state imaging device as shown in FIG. 6 is normally performed, and the operation as shown in FIG. The drive circuit 5 converts the timing signal input from the timing generation circuit 4 into a desired voltage, supplies some other DC voltage signals to the solid-state imaging device 1, and operates the solid-state imaging device 1.
[0028]
Next, the normal operation and the gain-up operation will be described in more detail with reference to FIGS.
[0029]
Normally, as shown in FIG. 6, the period other than the charge reading period P from the light receiving unit to the vertical transfer register, the FS period for transferring the signal charge from the imaging unit to the storage unit at high speed, and the horizontal transfer from the vertical transfer register of the storage unit ΦVB3 and ΦVB4 are fixed at a high-level potential in all periods other than the period for transferring charges to the transfer register. That is, the signal charge is stored under these two electrodes for the majority of the time. Therefore, a large amount of dark current is mixed under these two electrodes.
[0030]
On the other hand, when the gain is increased, other than the charge reading period P from the light receiving unit to the vertical transfer register and the FS period in which the signal charge is transferred from the imaging unit to the storage unit at high speed as shown in FIG. Only ΦVB4 is fixed at the high-level potential in all periods other than the period for transferring charges from the register to the horizontal transfer register. That is, the signal charge is stored under one electrode ΦVB4 for the majority of the period. That is, since a smaller amount of gate electrode signal charges are stored than in the normal state, the dark current is less mixed.
[0031]
However, since the number of gates to be stored is reduced, the amount of stored charges is reduced, and the so-called dynamic range is reduced. Not be.
[0032]
As described above, according to the first embodiment, the charge is accumulated with a smaller number of gates at the time of the gain increase than at the normal time, so that the dark current can be prevented from being mixed at the time of the gain increase, and the fixed pattern can be reduced. It is possible to provide a good image with less noise.
[0033]
In the first embodiment, the case of a solid-state imaging device using an FIT-CCD has been described. However, the present invention is not limited to this, and is widely applicable to a case where a different solid-state imaging device such as an IT-CCD is used. Applicable.
[0034]
(Embodiment 2)
FIG. 3 is a diagram illustrating a relationship between a substrate voltage which is a driving voltage applied to the solid-state imaging device and a saturation voltage which is a maximum voltage of a signal output from the solid-state imaging device. As shown in FIG. 3, the saturation voltage increases as the substrate voltage decreases. That is, the dynamic range of the solid-state imaging device using the solid-state imaging device increases.
[0035]
On the other hand, when a solid-state imaging device such as a CCD captures a high-luminance object such as a halogen lamp or the sun, a signal leaks to pixels in a region below the high-luminance object on a screen (hereinafter referred to as V sagging). Will occur). This is improved as the substrate voltage is increased, and is improved as the number of storage gates in the vertical transfer register is increased (FIG. 4).
[0036]
Therefore, in the present embodiment, in the solid-state imaging device as shown in FIG. 1, the number of storage gates of the solid-state imaging device is reduced when the gain is increased, and the substrate voltage applied to the solid-state imaging device is also changed. In other words, the gain is increased so that a higher voltage than normal is applied.
[0037]
As described above, according to the second embodiment, at the time of gain increase, charges are accumulated with a smaller number of gates than at the normal time, and different substrate voltages are applied. As a result, it is possible to provide a good image with little fixed pattern noise, and it is also possible to satisfactorily suppress V sagging when a high-luminance subject is imaged.
[0038]
In the second embodiment, as in the first embodiment, the case of the solid-state imaging device using the FIT-CCD has been described. However, the present invention is not limited to this, and a different solid-state imaging device such as an IT-CCD may be used. It can be widely applied even when using.
[0039]
【The invention's effect】
As described above, according to the present invention, the optimal driving conditions of the solid-state imaging device are separately set according to the state of the signal processing circuit. Therefore, an advantageous effect that a good video signal can be obtained for each state of the signal processing is obtained. is there.
[0040]
In addition, there is an advantageous effect that fixed pattern noise of dark current, which is particularly remarkable when the gain is increased, can be favorably reduced.
[0041]
Further, in both the normal state and the gain-up state, there is an advantageous effect that a good image with little V sag can be obtained even when a high-luminance subject is imaged.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a solid-state imaging device according to an embodiment of the present invention; FIG. 2 is a timing chart showing an operation when the gain of the solid-state imaging device according to an embodiment of the present invention is increased; FIG. 4 is a diagram showing a relationship between a substrate voltage and a saturation voltage. FIG. 4 is a diagram showing a relationship between a substrate voltage of a CCD and a V sag level. FIG. 5 is a structural diagram showing a conventional image sensor. FIG. 7 is a cross-sectional view showing the structure of a conventional vertical transfer register. FIG. 8 is a diagram showing the potential of a conventional image sensor.
DESCRIPTION OF SYMBOLS 1 Solid-state image sensor 2 Signal processing circuit 3 CPU
Reference Signs List 4 timing generation circuit 5 drive circuit 6 light receiving unit 7, 9 vertical transfer register 8 imaging unit 10 storage unit 11 horizontal transfer register 12 output unit 13 output terminal 14 n-type silicon substrate 15 p-type well 16 n-type semiconductor layer 17 insulating film ( Silicon oxide film)
18 First layer polysilicon gate 19 Second layer polysilicon gate

Claims (3)

複数の受光素子と、前記受光素子からの電荷を受けて転送する垂直転送レジスタを有する固体撮像素子と、前記垂直レジスタを駆動する駆動手段と、前記駆動手段の駆動タイミングを決定するタイミング発生手段と、前記固体撮像素子の出力に対し、信号処理を施す信号処理手段と、前記信号処理手段と、前記駆動手段と、前記タイミング発生手段の動作を制御する制御手段とを備え、前期信号処理手段の状態に対応して前記タイミング発生手段、および前記駆動手段の駆動条件を変化させることを特徴とする固体撮像装置。A plurality of light receiving elements, a solid-state imaging device having a vertical transfer register that receives and transfers electric charges from the light receiving elements, a driving unit that drives the vertical register, and a timing generation unit that determines a driving timing of the driving unit. A signal processing unit that performs signal processing on an output of the solid-state imaging device; a signal processing unit; the driving unit; and a control unit that controls an operation of the timing generation unit. A solid-state imaging device, wherein driving conditions of the timing generation unit and the driving unit are changed according to a state. 前記信号処理手段のゲインの状態に対応して、前記タイミング発生手段の動作を変化させることを特徴とする請求項1記載の固体撮像装置。2. The solid-state imaging device according to claim 1, wherein an operation of said timing generating means is changed according to a gain state of said signal processing means. 前記信号処理手段のゲインの状態に対応して、前記駆動手段の基板電圧を変化させることを特徴とする固体撮像装置。A solid-state imaging device, wherein a substrate voltage of the driving unit is changed according to a gain state of the signal processing unit.
JP2003007156A 2003-01-15 2003-01-15 Solid-state imaging device Pending JP2004221339A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007156A JP2004221339A (en) 2003-01-15 2003-01-15 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007156A JP2004221339A (en) 2003-01-15 2003-01-15 Solid-state imaging device

Publications (1)

Publication Number Publication Date
JP2004221339A true JP2004221339A (en) 2004-08-05

Family

ID=32897333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007156A Pending JP2004221339A (en) 2003-01-15 2003-01-15 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2004221339A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108315A (en) * 2004-10-04 2006-04-20 Matsushita Electric Ind Co Ltd Solid state imaging device
JP2008028677A (en) * 2006-07-20 2008-02-07 Sony Corp Solid imaging apparatus and control system
JP2009010600A (en) * 2007-06-27 2009-01-15 Canon Inc Imaging apparatus and signal reading method
US8462252B2 (en) 2005-08-17 2013-06-11 Sony Corporation Solid state imaging device, driving method for solid state imaging device, imaging apparatus, and image input apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108315A (en) * 2004-10-04 2006-04-20 Matsushita Electric Ind Co Ltd Solid state imaging device
US8462252B2 (en) 2005-08-17 2013-06-11 Sony Corporation Solid state imaging device, driving method for solid state imaging device, imaging apparatus, and image input apparatus
JP2008028677A (en) * 2006-07-20 2008-02-07 Sony Corp Solid imaging apparatus and control system
US8735952B2 (en) 2006-07-20 2014-05-27 Sony Corporation Solid-state imaging device and control system
US9749505B2 (en) 2006-07-20 2017-08-29 Sony Corporation Solid-state imaging device and control system
JP2009010600A (en) * 2007-06-27 2009-01-15 Canon Inc Imaging apparatus and signal reading method

Similar Documents

Publication Publication Date Title
JP4455435B2 (en) Solid-state imaging device and camera using the solid-state imaging device
US8289425B2 (en) Solid-state image pickup device with an improved output amplifier circuitry
TWI425830B (en) A solid-state imaging element and a driving method thereof, and a camera system
JP5641287B2 (en) Solid-state imaging device, driving method of solid-state imaging device, and electronic apparatus
JP5016941B2 (en) Solid-state imaging device
US7864238B2 (en) Solid-state imaging device, driving method thereof, camera, and driving method thereof
JP4442590B2 (en) Solid-state imaging device and driving apparatus thereof, imaging device, and solid-state imaging device driving method
US8085331B2 (en) Solid-state imaging device, driving method thereof, and camera
JP4774311B2 (en) Solid-state imaging device, driving method thereof, and imaging apparatus
JP2006041866A (en) Solid-state imaging unit
JP4281375B2 (en) CMOS solid-state imaging device and driving method thereof
US20080106623A1 (en) Solid-state imaging device and imaging apparatus
JP2004015291A (en) Solid-state image pickup device and its driving method
JP2008177357A (en) Solid-state image sensor
JP2004221339A (en) Solid-state imaging device
JP4128947B2 (en) Solid-state imaging device
WO2011105018A1 (en) Solid-state imaging device and camera system
US7274391B2 (en) CCD having improved flushing by reducing power consumption and creating a uniform dark field while maintaining low dark current
JP2007201092A (en) Solid state imaging element and its driving method
JP3775327B2 (en) Solid-state imaging device, solid-state imaging device, and driving method of solid-state imaging device
JP2012120106A (en) Solid-state imaging device and imaging apparatus
JP2003258234A (en) Solid-state image sensor and its driving method
JPH08279608A (en) Charge transfer element and its drive method
JP2006121140A (en) Drive method of solid-state imaging apparatus, and imaging apparatus
JP5067414B2 (en) Solid-state image sensor driving apparatus, image input apparatus, and solid-state image sensor driving method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20050708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060425

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060622

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060905