JP2004220953A - Manufacturing method of lithium secondary battery - Google Patents

Manufacturing method of lithium secondary battery Download PDF

Info

Publication number
JP2004220953A
JP2004220953A JP2003007921A JP2003007921A JP2004220953A JP 2004220953 A JP2004220953 A JP 2004220953A JP 2003007921 A JP2003007921 A JP 2003007921A JP 2003007921 A JP2003007921 A JP 2003007921A JP 2004220953 A JP2004220953 A JP 2004220953A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode current
secondary battery
lithium secondary
collecting member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007921A
Other languages
Japanese (ja)
Inventor
Shinji Otsubo
真治 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2003007921A priority Critical patent/JP2004220953A/en
Publication of JP2004220953A publication Critical patent/JP2004220953A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a manufacturing method of a lithium secondary battery with an excellent productivity. <P>SOLUTION: The lithium secondary battery is manufactured by forming a wound inside electrode body or the like by winding a positive electrode plate 1A and a negative electrode plate through a separator, and connecting end parts of the positive electrode plate 1A and the negative electrode plate to a positive electrode current collecting member 4A made of aluminum or the like and a negative electrode current collecting member made of copper, respectively. The surface of respective connection parts 5 of the positive electrode current collecting member 4A and/or the negative electrode current collecting member are processed so as to have a center line average surface coarseness of 0.05 to 6.3 μmRa. The connection parts 5 of the positive electrode current collecting member 4A is fused and welded to the end part 15 of the positive electrode plate 1A by a laser beam having a power density of 5 kW/mm<SP>2</SP>or higher, and/or the connection parts of the negative electrode current collecting member is fused and welded to the end part of the negative electrode plate by a laser beam having a power density of 3 kW/mm<SP>2</SP>or higher. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】本発明は、リチウム二次電池(以下、単に「電池」ともいう)の製造方法に関し、さらに詳しくは、生産性に優れたリチウム二次電池の製造方法に関する。
【0002】
【従来の技術】近年、国際的な地球環境の保護のための省資源化や省エネルギー化の要請が高まり、電気自動車やハイブリッド電気自動車(以下、単に「電気自動車等」ともいう)のモータ駆動用電源として、リチウム二次電池の開発が進められている。
【0003】このリチウム二次電池は、その内部に正極板と負極板とを多孔性ポリマーフィルムからなるセパレータを介して正極板と負極板とが直接に接触しないように捲回又は積層して構成された内部電極体(以下、単に「電極体」ともいう)を備えている。
【0004】従来、図19に示すように、例えば、捲回型の内部電極体61には、正極板62と負極板63とをセパレータ64を介して、巻芯67を芯として捲回して作製され、正極板62及び負極板63(以下、「電極板62、63」ともいう)のそれぞれに、少なくとも1枚の正極用の集電タブ65及び負極用の集電タブ66(以下、「集電タブ65、66」ともいう)が配設される(例えば、特許文献1参照)。そして、図18に示すように、集電タブ65、66の、正極板62及び負極板63(図19参照)と接続された反対側の端部は、内部端子69A、69B等に取り付けられる。
【0005】なお、符号76は弾性体(パッキン)を、符号77は絶縁性ポリマーフィルムを、符号78は放圧弁を、符号79は金属箔を示す。また、その他の符号はそれぞれ後述する図3に記載の符号と同じものを示している。
【0006】電極板としては、正極板にアルミニウム等、負極板に銅、ニッケル等の金属箔体等を集電基板として用い、それぞれに電極活物質を塗布して形成されており、集電タブは、このような集電基板の少なくとも一辺に配設される。
【0007】しかし、集電タブは、電極体を捲回するときに、ひとつずつ電極板にスポット溶接等して取り付ける必要があるために、その工程は煩雑であるという問題があった。また、集電タブの、電極板と接続された反対側の端部は、それら複数の集電タブを揃えて束ね、内部端子にリベット等を用いて打ち込み接続等して取り付ける必要があるために、その工程も同様に煩雑であり、また低抵抗に接続することは容易ではないという問題があった。
【0008】
【特許文献1】
特開2001−85042号公報
【0009】
【発明が解決しようとする課題】本発明は、かかる従来の問題に鑑みてなされたものであり、その目的とするところは、各電極板の端部と集電部材を直接的に接続して内部電極体から電流を導出するという構成を採用し、各電極板と集電部材とを接続するときに、各接続面の表面粗さを所定の範囲とし、所定のエネルギー密度のレーザーを使用して各電極板と集電部材とを溶着することにより、生産性に優れたリチウム二次電池の製造方法を提供することにある。
【0010】
【課題を解決するための手段】上記目的を達成するために、本発明によって以下のリチウム二次電池の製造方法が提供される。
【0011】
[1] 少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回又は積層して捲回型内部電極体又は積層型内部電極体を形成し、前記正極板及び負極板の端部を、それらの端部から電流を導出するために、アルミニウム又はアルミニウム合金からなる正極集電部材、及び銅又は銅合金からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続するリチウム二次電池の製造方法であって、前記正極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記正極集電部材の接続部をパワー密度が5kW/mm以上のレーザーで溶融して、前記正極集電部材の接続部を前記正極板の端部に溶着することにより、前記正極板の端部を前記正極集電部材の接続部に接続することを特徴とするリチウム二次電池の製造方法(第1の発明ということがある)。
【0012】
[2] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方から電流を導出するための内部端子を、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に電極リード部材を用いて接続する[1]に記載のリチウム二次電池の製造方法。
【0013】
[3] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に、直接電池外部に電流を導出するように外部端子を配設する[1]に記載のリチウム二次電池の製造方法。
【0014】
[4] 前記正極集電部材の接続部を、前記正極集電部材の前記正極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記接続面と前記正極板の端部の狭幅端面とを対向させた状態で接続する[1]〜[3]のいずれかに記載のリチウム二次電池の製造方法。
【0015】
[5] 前記正極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記正極板の端部に溶着する[4]に記載のリチウム二次電池の製造方法。
【0016】
[6] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、十字形、Y字形、若しくはI字形の板状部材、又は一部に切り欠きを有する円板状部材とする[1]〜[5]のいずれかに記載のリチウム二次電池の製造方法。
【0017】
[7] 前記正極集電部材を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする[4]〜[6]のいずれかに記載のリチウム二次電池の製造方法。
【0018】
[8] 前記正極集電部材の前記平坦部の厚み(L)を0.4mm以上とする[7]に記載のリチウム二次電池の製造方法。
【0019】
[9] 前記正極集電部材における前記凸状の接続部の厚み(L)を0.6mm以上とする[7]又は[8]に記載のリチウム二次電池の製造方法。
【0020】
[10] 前記正極集電部材の前記凸状の接続部に、前記レーザーを照射して前記凸状の接続部を溶融するときに、前記正極板の端部の前記狭幅端面を含む面の法線に対して、角度θ(0<θ≦90°)で前記レーザーを照射する[5]〜[9]のいずれかに記載のリチウム二次電池の製造方法。
【0021】
[11] 前記レーザーが照射される範囲(照射点)の径を1mm以下とする[5]〜[10]のいずれかに記載のリチウム二次電池の製造方法。
【0022】
[12] 前記正極集電部材の前記接続部と前記正極板の端部との接続を補助する接続材を、前記正極板の端部及び前記正極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記正極板の端部と前記正極集電部材の前記接続部との間に挟時させて、前記正極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記正極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記正極集電部材の前記接続部及び前記接続材を、前記正極板の端部に溶着させる[1]〜[11]のいずれかに記載のリチウム二次電池の製造方法。
【0023】
[13] 前記負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、前記負極集電部材の接続部を前記負極板の端部に溶着することにより、前記負極板の端部を前記負極集電部材の接続部に接続する[1]〜[12]のいずれかに記載のリチウム二次電池の製造方法(第2の発明ということがある)。
【0024】
[14] 前記負極集電部材の接続部を、前記負極集電部材の前記負極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記負極板の端部近傍を屈曲させて前記負極板の端部近傍の側面部が前記負極集電部材の前記接続面に対向するようにし、前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続する[13]に記載のリチウム二次電池の製造方法。
【0025】
[15] 前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続するときに、前記負極板の端部近傍の側面部から前記負極集電部材の方向へ柱状晶が形成されるようにする[14]に記載のリチウム二次電池の製造方法。
【0026】
[16] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記負極板の端部に溶着する[14]又は[15]に記載のリチウム二次電池の製造方法。
【0027】
[17] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする[14]〜[16]のいずれかに記載のリチウム二次電池の製造方法。
【0028】
[18] 前記負極集電部材の前記平坦部の厚み(L)を0.2mm以上とする[17]に記載のリチウム二次電池の製造方法。
【0029】
[19] 前記負極集電部材の前記凸状の接続部の厚み(L)が0.4mm以上である[17]又は[18]に記載のリチウム二次電池の製造方法。
【0030】
[20] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記負極集電部材の前記接続面に対向するように形成した前記負極板の端部近傍の側面部を含む面の法線に対して、角度θ(0≦θ≦30°)で前記レーザーを照射する[16]〜[19]のいずれかに記載のリチウム二次電池の製造方法。
【0031】
[21] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記凸状の接続部の厚みをL(mm)、前記レーザーの前記パワー密度をE(kW/mm)としたときに、下記式(3)を満足する[16]〜[20]のいずれかに記載のリチウム二次電池の製造方法。
【0032】
【数3】
≦E/7 …(3)
【0033】
[22] 前記レーザーが照射される範囲(照射点)の径を1mm以下とする[16]〜[21]のいずれかに記載のリチウム二次電池の製造方法。
【0034】
[23] 前記負極集電部材の前記接続部と前記負極板の端部との接続を補助する接続材を、前記負極板の端部及び前記負極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記負極板の端部と前記負極集電部材の前記接続部との間に挟時させて、前記負極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記負極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記負極集電部材の前記接続部及び前記接続材を、前記負極板の端部に溶着させる[13]〜[22]のいずれかに記載のリチウム二次電池の製造方法。
【0035】
[24] 少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回又は積層して捲回型内部電極体又は積層型内部電極体を形成し、前記正極板及び負極板の端部を、それらの端部から電流を導出するために、アルミニウム又はアルミニウム合金からなる正極集電部材、及び銅又は銅合金からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続するリチウム二次電池の製造方法であって、前記負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、前記負極集電部材の接続部を前記負極板の端部に溶着することにより、前記負極板の端部を前記負極集電部材の接続部に接続することを特徴とするリチウム二次電池の製造方法。
【0036】
[25] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方から電流を導出するための内部端子を、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に電極リード部材を用いて接続する[24]に記載のリチウム二次電池の製造方法。
【0037】
[26] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に、直接電池外部に電流を導出するように外部端子を配設する[24]に記載のリチウム二次電池の製造方法。
【0038】
[27] 前記負極集電部材の接続部を、前記負極集電部材の前記負極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記負極板の端部近傍を屈曲させて前記負極板の端部近傍の側面部が前記負極集電部材の前記接続面に対向するようにし、前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続する[24]〜[26]のいずれかに記載のリチウム二次電池の製造方法。
【0039】
[28] 前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続するときに、前記負極板の端部近傍の側面部から前記負極集電部材の方向へ柱状晶が形成されるようにする[27]に記載のリチウム二次電池の製造方法。
【0040】
[29] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記負極板の端部に溶着する[27]又は[28]に記載のリチウム二次電池の製造方法。
【0041】
[30] 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、十字形、Y字形、若しくはI字形の板状部材、又は一部に切り欠きを有する円板状部材とする[24]〜[29]のいずれかに記載のリチウム二次電池の製造方法。
【0042】
[31] 前記負極集電部材を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする[27]〜[30]のいずれかに記載のリチウム二次電池の製造方法。
【0043】
[32] 前記負極集電部材の前記平坦部の厚み(L)を0.2mm以上とする[31]に記載のリチウム二次電池の製造方法。
【0044】
[33] 前記負極集電部材の前記凸状の接続部の厚み(L)が0.4mm以上である[31]又は[32]に記載のリチウム二次電池の製造方法。
【0045】
[34] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記負極集電部材の前記接続面に対向するように形成した前記負極板の端部近傍の側面部を含む面の法線に対して、角度θ(0≦θ≦30°)で前記レーザーを照射する[29]〜[33]のいずれかに記載のリチウム二次電池の製造方法。
【0046】
[35] 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記凸状の接続部の厚みをL(mm)、前記レーザーの前記パワー密度をE(kW/mm)としたときに、下記式(4)を満足する[29]〜[34]のいずれかに記載のリチウム二次電池の製造方法。
【0047】
【数4】
≦E/7 …(4)
【0048】
[36] 前記レーザーが照射される範囲(照射点)の径を1mm以下とする[29]〜[35]のいずれかに記載のリチウム二次電池の製造方法。
【0049】
[37] 前記負極集電部材の前記接続部と前記負極板の端部との接続を補助する接続材を、前記負極板の端部及び前記負極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記負極板の端部と前記負極集電部材の前記接続部との間に挟時させて、前記負極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記負極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記負極集電部材の前記接続部及び前記接続材を、前記負極板の端部に溶着させる[24]〜[36]のいずれかに記載のリチウム二次電池の製造方法。
【0050】
[38] 前記レーザーが連続波である[1]〜[37]のいずれかに記載のリチウム二次電池の製造方法。
【0051】
[39] 前記レーザーがYAGレーザーである[1]〜[38]のいずれかに記載のリチウム二次電池の製造方法。
【0052】
[40] 前記リチウム二次電池の電池容量が2Ah以上である[1]〜[39]のいずれかに記載のリチウム二次電池の製造方法。
【0053】
[41] 前記リチウム二次電池が車載用電池である[1]〜[40]のいずれかに記載のリチウム二次電池の製造方法。
【0054】
[42] 前記リチウム二次電池が電気自動車用又はハイブリッド電気自動車用電池である[41]に記載のリチウム二次電池の製造方法。
【0055】
[43] 前記リチウム二次電池がエンジン起動用電池である[41]又は[42]に記載のリチウム二次電池の製造方法。
【0056】このように、各電極板の端部と集電部材を直接的に接続して内部電極体から電流を導出するという構成を採用し、正極板と正極集電部材とを接続するときに、接続面の表面粗さを所定の範囲とし、所定のエネルギー密度のレーザーを使用して正極板と正極集電部材とを溶着するようにしたため(第1の発明)、生産性に優れたリチウム二次電池の製造方法を提供することができる。また、各電極板の端部と集電部材を直接的に接続して内部電極体から電流を導出するという構成を採用し、負極板と負極集電部材とを接続するときに、接続面の表面粗さを所定の範囲とし、所定のエネルギー密度のレーザーを使用して負極板と負極集電部材とを溶着するようにしたため(第2の発明)、生産性に優れたリチウム二次電池の製造方法を提供することができる。
【0057】
【発明の実施の形態】以下、本発明(第1の発明及び第2の発明)の実施の形態を図面を参照しながら具体的に説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜設計の変更、改良等が加えられることが理解されるべきである。
【0058】第1の発明のリチウム二次電池の製造方法は、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回して捲回型内部電極体を形成し、正極板及び負極板のそれぞれの端部を、それらの端部から電流を導出するために、アルミニウムからなる正極集電部材、及び銅からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続してリチウム二次電池を製造するものであって、正極板の端部を正極集電部材の接続部に接続するときに、正極集電部材の接続部をパワー密度が5kW/mm以上のレーザーで溶融して、その正極集電部材の接続部を正極板の端部に溶着し、更に、正極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとするものである。また、第2の発明のリチウム二次電池の製造方法は、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回して捲回型内部電極体を形成し、正極板及び負極板のそれぞれの端部を、それらの端部から電流を導出するために、アルミニウムからなる正極集電部材、及び銅からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続してリチウム二次電池を製造するものであって、負極板の端部を負極集電部材の接続部に接続するときに、負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、その負極集電部材の接続部を負極板の端部に溶着し、更に、負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとするものである。そして、第1の発明と第2の発明のそれぞれの要件を同時に満たすことが好ましい。
【0059】ここで、本発明にいうレーザーの「パワー密度」とは、レーザーのパワー(kW)を、正極又は負極集電部材の所定箇所(接続部)において当該レーザーが照射される照射点のスポット面積(mm)で除して得た値を意味する。また、捲回型内部電極体は、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して積層して形成する積層型内部電極体であってもよい。更に、正極集電部材はアルミニウム合金から形成されてもよいし、負極集電部材は銅合金から形成されてもよい。また、中心線平均表面粗さRaとは、JIS B 0601及び、ISO R 1101で規定している表面粗さである。
【0060】正極集電部材の接続部と正極板、及び負極集電部材の接続部と負極板を、それぞれ接続するときに、接続部に広範囲(例えば接続部からはみ出すぐらいに広い範囲)に渡って強いエネルギー線を照射すると、正極板を構成する正極金属箔体や負極板を構成する負極金属箔体を損傷して歩留まりが悪化し、また、損傷しない場合でも、仕上がり状態の悪いものとなるため、弱いエネルギーで必要な位置に集中的にエネルギー線等を照射する必要がある。しかし、エネルギーが弱過ぎると溶融させるべき箇所が溶融しないため、ある程度以上のエネルギーは必要になる。そこで、第1の発明では、エネルギー線をレーザーとし、正極集電部材をアルミニウムとして、そのアルミニウムを溶融して正極集電部材(の接続部)と正極板とを溶着させるためのレーザーのエネルギー密度を5kW/mm以上としたため、また、第2の発明では、負極集電部材を銅として、その銅を溶融して負極集電部材(の接続部)と負極板とを溶着させるためのレーザーのエネルギー密度を3kW/mm以上としたため、正極集電部材又は負極集電部材を確実に溶融させることができ、更に、これらレーザーのエネルギー密度の下限値を基準としてレーザーのエネルギー密度を最適化することができるため、弱いエネルギー密度で効果的に正極集電部材又は負極集電部材を溶融することができる。これにより、正極金属箔体又は負極金属箔体の損傷等が発生することなく、生産性に優れたリチウム二次電池の製造方法を得ることができる。また、第1の発明及び第2の発明のそれぞれの要件を同時に満たす場合には、正極集電部材及び負極集電部材の双方を確実に溶融させることができ、弱いエネルギー密度で効果的に正極集電部材及び負極集電部材の双方を溶融することができる。
【0061】正極集電部材(の接続部)と正極板とを溶着させるためのレーザーのエネルギー密度が5kW/mmより小さいとき(第1の発明の要件を満たさないとき)、及び負極集電部材(の接続部)と負極板とを溶着させるためのレーザーのエネルギー密度が3kW/mmより小さいとき(第2の発明の要件を満たさないとき)には、接続状態が良好ではなく、機械的強度が不充分となる。
【0062】正極集電部材(の接続部)と正極板とをレーザーで接続(溶着)する場合(第1の発明)、及び負極集電部材(の接続部)と負極板とをレーザーで接続(溶着)する場合(第2の発明)には、その接続面の表面粗さが影響するが、中心線平均表面粗さRaで0.05〜6.3μmRaとすることにより、レーザーによる接続を良好に行うことができる。
【0063】以下に、第1の発明のリチウム二次電池の製造方法の一の実施の形態について説明する。図1は、第1の発明のリチウム二次電池の製造方法の、一の実施の形態における、正極板と正極集電部材とを接続する方法を模式的に示す斜視図である。図1に示すように、本実施の形態のリチウム二次電池の製造方法では、正極集電部材4Aと正極板1Aとの接続は、少なくとも1枚の金属箔体から構成される正極板1Aの端部15の狭幅端面2と、正極集電部材4Aの接続部5の接続面9とを、所定の位置に配置し、所定のパワー密度のレーザー11で接続部5を溶融して、接続部5と正極板の端部15とを溶着することにより行う。このとき狭幅端面2上の複数箇所と接続面9とが溶着される。
【0064】図2は、本実施の形態のリチウム二次電池の製造方法における、負極板と負極集電部材とを接続する方法の一実施例を模式的に示す斜視図である。図2に示すように、本実施の形態のリチウム二次電池の製造方法では、負極集電部材4Bと負極板1Bとの接続は、少なくとも1枚の金属箔体から構成される負極板1Bの端部15の近傍を屈曲させて負極集電部材4Bの接続部5側(接続面9側)を向けた側面部13と、負極集電部材4Bの接続部5の接続面9と、を所定の位置に配置し、所定のパワー密度のレーザー11で接続部5を溶融して、接続部5と負極板の端部15とを溶着することにより行うことが好ましい。このとき側面部13上の複数箇所と接続面9とが溶着される。
【0065】本実施の形態のリチウム二次電池の製造方法においては、図3に示すように、前記構成に加えて内部端子69A,69B、外部端子70A,70B、及び電池蓋71A,71Bを有する電極蓋を作製し、上述の方法により捲回型内部電極体61の正極板1A(図1参照)に正極集電部材4Aを接続し負極板1B(図2参照)に負極集電部材4Bを接続したものの、正極集電部材4A及び負極集電部材4Bを、内部端子69A及び69Bに各々電極リード部材72を用いて接続する。このとき、電極リード部材72としては、接続される集電部材4A,4B及び内部端子69A,69Bと、その合金を含む同種金属から構成されることが好ましい。具体的には、正極内部端子69A及び正極集電部材4Aにはアルミニウム又はアルミニウム合金を用いているので、正極の電極リード部材にアルミニウム又はアルミニウム合金を採用し、負極内部端子69B及び負極集電部材4Bには銅又は銅合金を用いているので、負極の電極リード部材に銅又は銅合金を採用することが好ましい。
【0066】そして、本実施の形態のリチウム二次電池の製造方法では、上述の電極蓋を配設した捲回型内部電極体61を電池ケース73に挿入し、電池ケース73の両端部近傍をくびれ加工して、くびれ加工部を形成し、電解液を注入することによりリチウム二次電池68を得ることができる。図3において、符号67は巻芯、符号75は放圧弁である。
【0067】なお、本実施の形態では、電極リード部材72を用いなくとも、集電部材4A,4Bと内部端子69A,69Bとを直接的に接続し、通電させてもよい。また、上述のような電流導出部分としての電極蓋を、正極及び負極に用いてもよいし、正極又は負極のどちらか一方で用いてもよい。
【0068】また、本発明(第1の発明)においては、図6に示すように、集電部材54に直接外部端子を配設し、電池外部に直接電流を導出するように形成して、集電部材54を電極蓋と兼用するようにしてもよい。図6では、片端が開放された円筒形の電池ケース73を用い、その電池ケース73の片端にくびれ加工を形成した例を示しているが、集電部材54が電極蓋を兼用していれば、リチウム二次電池68の形状に特に制限はなく、電池ケース73の両端をくびれ加工しても、或いは電池ケース73の両端をくびれ加工しなくてもよい。また、図6では、正極側に放圧孔75を形成する例を示しているが、負極側に放圧孔を形成してもよい。図6において、符号61は捲回型内部電極体、符号67は巻芯を示す。
【0069】図3,6に示すように、内部電極体(捲回型内部電極体61)からの電流導出部分に、各電極板と集電部材4A,4B(図3参照),54(図6参照)を直接的に接続して電流を導出するという構成を採用することにより、従来の電流導出手段である集電タブを用いる必要がないために、煩雑な集電タブの取り付け工程を不要とすることにより、生産性の向上を図ることが出来、また、集電タブの長さの分のスペースを省くことが出来ることより、省スペース性の向上を図ることが出来る。
【0070】本実施の形態においては、図7に示すように、正極集電部材4Aの接続部5を、正極集電部材4Aの正極板1A側を向く面4Cから正極板1Aに向かって列状に連続して突出した凸状(突条)とし、凸状の接続部5の先端部分に接続面9を形成し、接続面9と正極板1Aの端部15の狭幅端面2とを対向させた状態で接続することが好ましい。そして、図7に示すように、正極板1Aの端部15と、正極集電部材4Aの接続部5とを接続するときには、凸状の接続部5にレーザー11を照射し、凸状の接続部5を溶融して、正極集電部材4Aの凸状の接続部5と正極板1Aの端部15とを溶着させることが好ましい。さらに、正極集電部材4Aにおいて接続部5が配設される位置は、正極集電部材4Aの先端部6であることが、接続面の確認をし易いことから好ましい。図7において、12は平坦部を示し、正極集電部材4Aは接続部5と平坦部12とを有する構造となっている。また、凸状の接続部としては、図1に示すように、正極集電部材4Aの正極板1A側を向く面4Cから正極板1Aに向かって凸状に突出し、且つ正極集電部材4Aを外側に延長する方向に延設するように形成した形状も含まれる。
【0071】また、図7に示す、正極集電部材4Aの凸状の接続部5の凸状の形状は特に制限はなく、正極板1Aの端部15と正極集電部材4Aとの溶着を容易にするために、凸状の接続部5の接続面9と正極金属箔体1Aの狭幅端面2との接触を確実に行うことが好ましく、例えば、上述の図1に示す接続部5のような形状にしてもよいし、また凸状の接続部5の接続面9と正極金属箔体1Aの狭幅端面2とが点接触するように形成することを好適例として挙げることが出来る。
【0072】正極集電部材4A及び負極集電部材4Bの凸状の接続部5の形状の具体的な例を図14,15に示す。本発明のリチウム二次電池に用いられる正極集電部材4A及び後述する負極集電部材4Bのそれぞれの凸状の接続部5の形状は、図14に示すような台形状であってもよく、図15に示すような尖塔状であってもよい。なお、図14,15においてLは平坦部12の厚み、Lは凸状の接続部5の厚みを示す。
【0073】本実施の形態のリチウム二次電池の製造方法においては、図14,15に示すように、正極集電部材4Aを凸状の接続部5とそれ以外の平坦部12とを有する形状とし、凸状の接続部5の厚み(L)と、平坦部12の厚み(L)との差を0.1mm以上とすることが好ましく、0.6mm以上とすることがさらに好ましく、0.8mm以上とすることが特に好ましい。凸状の接続部5と平坦部12との厚みの差が0.1mm未満である場合には、凸状の接続部5の形状的な特徴が発揮されず、凸状の接続部5と正極板1Aとの接触状態が不安定となるために好ましくない。また、本発明においては凸状の接続部5と平坦部12との厚みの差の上限値については特に限定されないが、正極集電部材の加工精度及び強度等から適宜設定されればよく、例えば3mm以下であればよい。
【0074】また、接続に際して正極板に正極集電部材を押さえ付けるときに、当該正極集電部材の変形や損傷等の発生を防止するといった観点からは、正極集電部材4Aの平坦部の厚み(L)を0.4mm以上とすることが好ましく、0.5mm以上とすることがさらに好ましく、0.6mm以上とすることが特に好ましい。なお、前記平坦部の厚みの上限値については特に限定されないが、溶接部分とは直接的には関係のない部分であるため正極集電部材の強度及び重量等から適宜設定されればよく、例えば2mm以下であればよい。
【0075】また、正極集電部材4Aの凸状の接続部5の厚み(L)を0.6mm以上とすることが好ましく、0.7mm以上とすることがさらに好ましく、0.8mm以上とすることが特に好ましい。このことにより、より強固に接続することが出来る。なお、凸状の接続部5の厚みの上限値については特に限定されないが、照射されるレーザーのパワーの限界から適宜設定されればよい。
【0076】本発明のリチウム二次電池に用いられる正極集電部材のレーザー照射部の形状に関して、以下に示す形状のものを好適な例として挙げることが出来る。
【0077】図7には、先端部6に凸状の接続部5を有する正極集電部材4Aを使用する例を示しているが、この場合には、正極集電部材4Aの上面側(面4Cの反対側)からレーザー11を照射することにより、正極集電部材4Aと正極板1Aの端部15とを溶着させて接続させることが出来る。
【0078】図9には、図7の正極集電部材4Aに比べ、凸状の接続部33に厚みを有する正極集電部材31Aを使用する例を示しているが、この場合には、正極集電部材31Aの上面側からレーザー34を照射することの他に、正極集電部材31Aの先端部32に形成された凸状の接続部33の側面へレーザー35を照射することによっても、正極集電部材31Aと正極板1Aの端部15とを溶着させて接続させることが出来る。図9において、2は狭幅端面、3Aは狭幅端面を含む面の法線を示す。
【0079】図10には、板状の正極集電部材41を、その端面が正極板1Aの端部15に接するように配置する例を示しているが、この場合には、正極集電部材41の側面側からレーザー42を照射することにより、正極集電部材41と正極板1Aの端部15とを溶着させて接続させることが出来る。このように、本発明のリチウム二次電池は、図10に示すような、凸状部を有しない板状の正極集電部材41と複数の正極板1Aとを接続させることによっても製造することが出来る。図10において、2は狭幅端面、3Aは狭幅端面を含む面の法線を示す。
【0080】図11には、正極集電部材51Aの先端部ではない、所定箇所に凸状の接続部52を有する例を示しているが、この場合には、その凸状の接続部52を設けた正極集電部材51Aの背面にレーザー53を照射して、その正極集電部材51Aと正極板1Aの端部15とを接続させることが出来る。図11において、2は狭幅端面を示す。
【0081】一方、本実施の形態においては、図8に示すように、負極集電部材4Bの接続部5を、負極集電部材4Bの負極板1B側を向く面4Dから負極板1Bに向かって列状に連続して突出した凸状とし、凸状の接続部5の先端部分に接続面9を形成し、負極板1Bの端部15近傍を屈曲させて負極板1Bの端部15近傍の側面部13が負極集電部材4Bの接続面9に対向するようにし、負極板1Bの端部15近傍の側面部13と負極集電部材4Bの接続面9(接続部5)とを接続することが好ましい。そして、図8に示すように、負極板1Bの端部15と、負極集電部材4Bの凸状の接続部5とを接続するときには、凸状の接続部5にレーザー11を照射し、凸状の接続部5を溶融して、負極集電部材4Bの凸状の接続部5と負極板1Bの端部15とを溶着させることが好ましい。さらに、負極集電部材4Bにおいて、接続部5が配設される位置は、負極集電部材4Bの先端部6であることが、接続面の確認のし易いことから好ましい。図8において、12は平坦部、Lは平坦部12の厚み、Lは接続部5の厚みを示す。負極集電部材4Bは接続部5と平坦部12とを有する構造となっている。また、凸状の接続部としては、図2に示すように、負極集電部材4Bの負極板1B側を向く面4Cから負極板1Bに向かって凸状に突出し、且つ負極集電部材4Bを外側に延長する方向に延設するように形成した形状も含まれる。
【0082】本実施の形態においては、図8に示すように、負極板1Bと負極集電部材4Bとを接続するときには、端部15近傍を屈曲することにより側面部13と、凸状の接続部5の接続面9とを密着させればよいが、このように側面部13と接続面9とを密着させる方法としては、例えば、図16に示すように、予め適当な方法により負極板1Bの端部15近傍を屈曲しておき(図16(a))、次いで、側面部13の上に負極集電部材4Bを配置する(図16(b))方法がある。また、図17に示すように、負極板1Bの端部15に負極集電部材4Bを適当な圧力で押さえ付けて、端部15近傍を屈曲し側面部13を密着させる方法(図17(a),(b),(c))を挙げることも出来る。
【0083】本実施の形態のリチウム二次電池の製造方法においては、負極板の端部近傍の側面部と負極集電部材の接続面とを接続するときに、負極板の端部近傍の側面部から負極集電部材の方向へ柱状晶が形成されるようにすることが好ましい。一般に溶接金属は、溶融金属が母材(未溶融部)の結晶粒上に同一結晶方位をもって成長(エピタキシャル成長)する。このように形成された固相は熱源の移動に伴い、溶接ビード(溶融部分)内部へ成長する。この成長は、温度勾配の最も大きい方向に成長し易く、その方向へほぼ一方向にのびた形態で成長し、このように成長した結晶は柱状晶と呼ばれる。
【0084】負極集電部材の溶融化した部分は、冷却されるにしたがって再結晶化するが、負極板1Bを通じて溶融部分の熱が急速に拡散する。すなわち、負極板に密着した部分の溶融金属の温度が低下し、負極板と溶融金属の界面が核となって負極板から負極集電部材の方向へ柱状晶が形成し易くなると考えられる。さらに、本実施の形態では負極板の端部近傍の側面部が負極集電部材と隙間なく密着して接触状態が良好であるために、負極板を通じた冷却効果により、柱状晶が形成し易い状態となる。このように、負極板と負極集電部材との接続部分において、負極板から負極集電部材の方向へ柱状晶を形成することにより、負極板と負極集電部材との接続状態が良好、すなわち、接続部分の機械的強度が強く信頼性に優れたリチウム二次電池を得ることができる。
【0085】本実施の形態のリチウム二次電池の製造方法に用いられる負極集電部材の凸状の接続部の形状には特に制限はない。ここで、凸状の接続部の形状の具体的な例を図14,15に示す。本実施の形態のリチウム二次電池の製造方法に用いられる負極集電部材4Bの凸状の接続部5の形状は、上述したように、図14に示すような台形状であってもよく、図15に示すような尖塔状であってもよい。
【0086】本実施の形態のリチウム二次電池においては、図14,15に示すように負極集電部材4Bは凸状の接続部5とそれ以外の平坦部12とを有する形状であり、凸状の接続部5の厚み(L)と、平坦部12の厚み(L)との差を0.1mm以上とすることが好ましく、0.6mm以上とすることがさらに好ましく、0.8mm以上とすることが特に好ましい。凸状の接続部5と平坦部12との厚みの差が0.1mm未満である場合には、凸状の接続部5の形状的な特徴が発揮されず、凸状の接続部5と負極板1Bとの接触状態が不安定となるために好ましくない。また、負極集電部材4Bの凸状の接続部5と平坦部12との厚みの差の上限値については特に限定されないが、負極集電部材の加工精度及び強度等から適宜設定されればよく、例えば3mm以下であればよい。
【0087】接続に際して負極板に負極集電部材を押さえ付けるときに、負極集電部材の変形や損傷等の発生を防止するといった観点からは、平坦部の厚み(L)を0.2mm以上とすることが好ましく、0.3mm以上とすることがさらに好ましく、0.4mm以上とすることが特に好ましい。なお、平坦部の厚みの上限値については特に限定されないが、溶接部分とは直接的には関係のない部分であるため負極集電部材の強度及び重量等から適宜設定されればよく、例えば2mm以下であればよい。
【0088】また、負極集電部材4Bの凸状の接続部の厚み(L)を0.4mm以上とすることが好ましく、0.5mm以上とすることがさらに好ましく、0.6mm以上とすることが特に好ましい。このことにより、より強固に接続することが出来る。なお、凸状の接続部の厚みの上限値については特に限定されないが、照射されるレーザーのパワーの限界から適宜設定されればよい。
【0089】本実施の形態のリチウム二次電池に用いられる負極集電部材のレーザー照射部(接続部)の形状に関して、以下に示す形状のものを好適な例として挙げることが出来る。
【0090】図8には、先端部6に凸状の接続部5を有する負極集電部材4Bの例を示しているが、この場合には、負極集電部材4Bの上面側からレーザー11を照射することにより、負極集電部材4Bと負極板1Bの端部15とを溶着させて接続させることが出来る。
【0091】図12には、図8の負極集電部材4Bに比べ、先端部32に形成された凸状の接続部33に厚みを有する負極集電部材31Bの例を示しているが、この場合には、負極集電部材31Bの上面側からレーザー34を照射することによって、負極集電部材31Bと負極板1Bの端部15(側面部13)とを溶着させて接続させることが出来る。3Bは側面部13を含む面の法線を示す。
【0092】図13には、負極集電部材51Bの先端部ではない、所定箇所に凸状の接続部52を有する例を示しているが、この場合には、その凸状の接続部52を設けた負極集電部材51Bの背面にレーザー53を照射して、その負極集電部材51Bと負極板1Bの端部15近傍の側面部13とを接続させることが出来る。図13において、12は平坦部を示す。
【0093】本実施の形態において、正極板に正極集電部材と同じ材質のアルミニウム又はアルミニウム合金を使用し、負極板に負極集電部材と同じ材質の銅又は銅合金を使用した場合には、金属板(金属箔体)と集電部材とが同種金属から構成されることとなるために、金属板(金属箔体)と集電部材とがよりよく溶着され、電流導出部分の機械的強度を強くすることが出来る。この場合、アルミニウム又はアルミニウム合金から構成される正極板(金属箔体)の厚みは15〜25μmであることが好ましく、銅又は銅合金から構成される負極板(金属箔体)の厚みは7〜15μmであることが好ましい。なお、図3、図6に示す電池では、厚みが20μmであるアルミニウム箔及び厚みが10μmである銅箔を用いている。
【0094】本実施の形態に用いられる正極集電部材4A及び負極集電部材4Bのうちの少なくとも一方を、図5(a)、図5(e)に示すように十字形の板状部材、図5(b)、図5(f)に示すようにY字形の板状部材、若しくは図5(c)、図5(g)に示すようにI字形の板状部材、又は図4、図5(d)、図5(h)に示すように一部に切り欠きを有する円板状部材とすることが好ましい。このことにより、接続部の検査がし易く、また軽量化することが出来、電解液充填時等に電解液が全体に回り易いこととなる。図4において、5は接続部、61は捲回型内部電極体、73は電池ケースを示す。
【0095】本実施の形態のリチウム二次電池製造方法において、正極集電部材と正極板とを接続するに際して、正極集電部材の凸状の接続部にレーザーを照射して凸状の接続部を溶解するときには、例えば図7に示すように、レーザー11を、正極板1Aの端部15の狭幅端面2を含む面の法線3Aに対して、角度θ(0°<θ≦90°)で凸状の接続部5に照射することが好ましく、角度θ(5°≦θ≦80°)で照射することがさらに好ましく、角度θ(10°≦θ≦60°)で照射することが特に好ましく、角度θ(15°≦θ≦45°)で照射することが最も好ましい。また、レーザー11を、正極集電部材4Aの凸状の接続部5の表面に又はその前後近傍に合焦させることが好ましく、レーザー11を、正極板1Aに直接照射しないことが好ましい。
【0096】更には、正極集電部材4Aを、その凸状の接続部5が狭幅端面2に略垂直に交差するように配置し、レーザー11を、狭幅端面2に略垂直に交差するようにレーザー発生装置により走査、すなわち正極集電部材4Aの凸状の接続部7を走査して照射することが好ましい。このとき、上述した、レーザー11を、正極板1Aの狭幅端面2を含む面の法線3Aに対して、角度θ(0°<θ≦90°)で凸状の接続部5に照射することに加え、レーザー11を、狭幅端面2に略垂直に交差する線に対して、角度が略垂直で凸状の接続部5に照射することが好ましい。これらにより、図1に示すようにろう材を必要とせずに、正極板1Aと正極集電部材4Aの溶融体とを溶着させて、正極板1Aと正極集電部材4Aとを接続することが出来る。また少なくとも1枚の正極板1Aを一度の照射によって正極集電部材4Aと接続することも出来る。さらに、正極板1Aに損傷を与えずに、正極集電部材4Aの所定箇所(凸状の接続部5)のみを溶融させて正極板1Aと正極集電部材4Aとを溶着・接続することが出来るために、接続の機械的強度を強いものとすることが出来る。
【0097】なお、本実施の形態でいう「狭幅端面に略垂直に交差する」とは、正(負)極集電部材の接続部と接続される部分に対応する、正(負)極板の端部における狭幅端面の全てについて略垂直に交差することを意味する。
【0098】本実施の形態のリチウム二次電池製造方法において、負極集電部材と負極板とを接続するに際して、負極集電部材の凸状の接続部にレーザーを照射して凸状の接続部を溶解するときには、例えば図8に示すように、レーザー11を、負極集電部材4Bの接続面9に対向するように形成した負極板1Bの端部15近傍の側面部13を含む面の法線3Bに対して、角度θ(0°≦θ≦30°)で凸状の接続部5に照射することが好ましく、角度θ(0°≦θ≦10°)で照射することがさらに好ましく、角度θ(0°≦θ≦5°)で照射することが特に好ましい。また、レーザー11を、負極集電部材4Bの凸状の接続部5の表面に又はその前後近傍に合焦することが好ましく、レーザー11を、負極金属箔体1Bに直接照射しないことが好ましい。
【0099】さらには、負極集電部材4Bを、その凸状の接続部5が側面部13に略垂直に交差するように配置し、レーザー11を、側面部13に略垂直に交差するようにレーザー発生装置により走査、すなわち負極集電部材4の凸状の接続部5を走査して照射することが好ましい。このとき、上述した、レーザー11を、負極板1Bの側面部13を含む面の法線3Bに対して、角度θ(0°≦θ≦30°)で凸状の接続部5に照射することに加え、レーザー11を、側面部13に略垂直に交差する線に対して、角度が略垂直で凸状の接続部5に照射することが好ましい。これらにより、図2に示すようにろう材を必要とせずに、負極板1Bと負極集電部材4Bの溶融体とを溶着させて、負極板1Bと負極集電部材4Bとを接続することが出来る。また少なくとも1枚の負極板1Bを一度の照射によって負極集電部材4Bと接続することも出来る。さらに、負極板1Bに損傷を与えずに、負極集電部材4Bの所定箇所(凸状の接続部5)のみを溶融させて負極板1Bと負極集電部材4Bとを溶着・接続することが出来るために、接続の機械的強度を強いものとすることが出来る。なお、「側面部に略垂直に交差する」とは、負極板1Bの端部15の側面部13のなかで、接続部5と接続する複数の箇所全てについて略垂直に交差することを意味している。
【0100】また、本実施の形態のリチウム二次電池の製造方法において、負極集電部材の凸状の接続部にレーザーを照射して凸状の接続部を溶融するときに、凸状の接続部の厚みをL(mm)、レーザーのパワー密度をE(kW/mm)としたときに、下記式(5)を満足することが好ましい。レーザーのパワー密度とは照射点におけるパワー密度をいう。下記式(5)を満足するような条件でレーザーを照射することにより、負極板への損傷を抑制し、負極集電部材と負極板との接続部分の機械的強度も強くなるという特性を有する。
【0101】
【数5】
≦E/7 …(5)
【0102】なお、更に負極板への損傷を抑制し、接続部分の機械的強度を強くするという観点からは、下記式(6),(7)を満足することが好ましい。
【0103】
【数6】
≦E/9 …(6)
【0104】
【数7】
≦E/10 …(7)
【0105】本実施の形態のリチウム二次電池の製造方法においては、レーザーの照射点のスポット径が1mm以下であることが好ましい。このことにより、不要な箇所へのレーザーの照射が抑制され、特に負極板の損傷を抑制することができるために、良好な接続状態にすることができる。なお、本発明のリチウム二次電池の製造方法では、隣り合う正極板どうし及び負極板どうしのうちの少なくとも一方が間隙を保持して配列することが好ましい。
【0106】また、本実施の形態においては、例えば、図7,8に示すレーザー11は、連続波であることが好ましい。このことにより、凸状の接続部5の表面にエネルギーを集中させて照射することが出来るために凸状の接続部5を効率的に溶融させることが出来、正極板1A、又は負極板1Bの損傷を抑制することが出来る。なお、レーザーの中でも、YAGレーザーは焦点をよりよく絞ることが出来、焦点からはずれた部分に配置された正極板1A、又は負極板1Bの位置ではエネルギー密度はより小さくなり、正極板1A、又は負極板1Bの損傷をよりよく抑制することが出来ることから、特に好ましい。
【0107】また、本実施の形態のリチウム二次電池の製造方法では、例えば、図7に示すレーザー11を、連続照射が可能なレーザー発生装置を用いて照射することが好ましく、レーザー11を、狭幅端面2を含む面に平行な面を走査可能なレーザー発生装置を用いて照射することが好ましい。なお、照射するレーザーの走査速度は、0.1〜100m/minであることが好ましく、1〜30m/minであることがさらに好ましく、2〜10m/minであることが特に好ましい。また、正極集電部材4Aの接続部5が凸状である場合には、レーザー11を、凸状の接続部5に沿って、レーザー発生装置により走査して照射することが好ましい。さらに、本発明においては、配列された正極板1Aの枚数に応じ、正極集電部材4Aを複数個用意し、複数の正極集電部材4Aを、それらの凸状の接続部5が狭幅端面2に略垂直に交差するようにして、連続的に配置することが好ましい。これらのことにより、複数枚の正極板1Aを一度の照射によって接続することが出来ることとなる。
【0108】一方、本実施の形態のリチウム二次電池の製造方法では、例えば、図8に示すレーザー11を、連続照射が可能なレーザー発生装置を用いて照射することが好ましく、レーザー11を、側面部13を含む面に平行な面を走査可能なレーザー発生装置を用いて照射することが好ましい。また、負極集電部材4Bの接続部5が凸状である場合には、レーザー11を、凸状の接続部5に沿って、レーザー発生装置により走査して照射することが好ましい。さらに、本発明においては、配列された負極板1Bの枚数に応じ、負極集電部材4Bを複数個用意し、複数の負極集電部材4Bを、それらの凸状の接続部5が側面部13に略垂直に交差するようにして、連続的に配置することが好ましい。これらのことにより、複数枚の負極板1Bを一度の照射によって接続することが出来ることとなる。
【0109】第1の発明のリチウム二次電池の製造方法において、正極集電部材の接続部と正極板の端部とを接続するに際して、ろう材等の接続補助材料(接続材)は必要としないが、もちろん使用しても構わない。その場合には、正極集電部材の接続部と正極板の端部との接続を補助する接続材を、正極板の端部及び正極集電部材の接続部のうちの少なくとも一方に塗布し、又は正極板の端部と正極集電部材の接続部との間に挟時させて、正極集電部材の接続部及び接続材にレーザーを照射し、正極集電部材の接続部及び接続材を溶融させて、溶融した正極集電部材の接続部及び接続材を、正極板の端部に溶着させることが好ましい。
【0110】また、第1の発明のリチウム二次電池の製造方法において、負極集電部材と負極板とを接続するに際して、ろう材等の接続補助材料(接続材)は必要としないが、もちろん使用しても構わない。その場合には、負極集電部材の接続部と負極板の端部との接続を補助する接続材を、負極板の端部及び負極集電部材の接続部のうちの少なくとも一方に塗布し、又は負極板の端部と負極集電部材の接続部との間に挟時させて、負極集電部材の接続部及び接続材にレーザーを照射し、負極集電部材の接続部及び接続材を溶融させて、溶融した負極集電部材の接続部及び接続材を、負極板の端部に溶着させることが好ましい。
【0111】次に、第2の発明のリチウム二次電池の製造方法について説明する。第2の発明のリチウム二次電池の製造方法は、上述したように、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回して捲回型内部電極体を形成し、正極板及び負極板のそれぞれの端部を、それらの端部から電流を導出するために、アルミニウムからなる正極集電部材、及び銅からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続してリチウム二次電池を製造するものであって、負極板の端部を負極集電部材の接続部に接続するときに、負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、その負極集電部材の接続部を負極板の端部に溶着し、更に、負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとするものである。
【0112】第2の発明のリチウム二次電池の製造方法の一の実施の形態では、上述した第1の発明の実施の形態における場合と同様に、図2に示すように、負極集電部材4Bと負極板1Bとの接続は、少なくとも1枚の金属箔体から構成される負極板1Bの端部15の近傍を屈曲させて負極集電部材4Bの接続部5側(接続面9側)を向けた側面部13と、負極集電部材4Bの接続部5の接続面9と、を所定の位置に配置し、所定のパワー密度のレーザー11で接続部5を溶融して、接続部5と負極板の端部15とを溶着することにより行うことが好ましい。このとき側面部13上の複数箇所と接続面9とが溶着される。
【0113】本実施の形態においては、上述した第1の発明の実施の形態における場合と同様に、図8に示すように、負極集電部材4Bの接続部5を、負極集電部材4Bの負極板1B側を向く面4Dから負極板1Bに向かって列状に連続して突出した凸状とし、凸状の接続部5の先端部分に接続面9を形成し、負極板1Bの端部15近傍を屈曲させて負極板1Bの端部15近傍の側面部13が負極集電部材4Bの接続面9に対向するようにし、負極板1Bの端部15近傍の側面部13と負極集電部材4Bの接続面9(接続部5)とを接続することが好ましい。そして、図8に示すように、負極板1Bの端部15と、負極集電部材4Bの凸状の接続部5とを接続するときには、凸状の接続部5にレーザー11を照射し、凸状の接続部5を溶融して、負極集電部材4Bの凸状の接続部5と負極板1Bの端部15とを溶着させることが好ましい。さらに、負極集電部材4Bにおいて、接続部5が配設される位置は、負極集電部材4Bの先端部6であることが、接続面の確認のし易いことから好ましい。図8において、12は平坦部、Lは平坦部12の厚み、Lは接続部5の厚みを示す。負極集電部材4Bは接続部5と平坦部12とを有する構造となっている。また、凸状の接続部としては、図2に示すように、負極集電部材4Bの負極板1B側を向く面4Cから負極板1Bに向かって凸状に突出し、且つ負極集電部材4Bを外側に延長する方向に延設するように形成した形状も含まれる。
【0114】本実施の形態においては、上述した第1の発明の実施の形態における場合と同様に、図8に示すように、負極板1Bと負極集電部材4Bとを接続するときには、端部15近傍を屈曲することにより側面部13と、凸状の接続部5の接続面9とを密着させればよいが、このように側面部13と接続面9との密着は、上述した第1の発明における「(負極板の)側面部と(負極集電部材の)接続面とを密着させる方法(図16,17により説明したもの)」と同様の方法で行うことができる。
【0115】本実施の形態のリチウム二次電池の製造方法においては、負極板の端部近傍の側面部と負極集電部材の接続面とを接続するときには、上述した第1の発明の実施の形態における「負極板の端部近傍の側面部と負極集電部材の接続面とを接続するとき」と同様に、負極板の端部近傍の側面部から負極集電部材の方向へ柱状晶が形成されるようにすることが好ましい。
【0116】そして、上述した第1の発明の実施の形態における場合と同様に、負極板と負極集電部材との接続部分において、負極板から負極集電部材の方向へ柱状晶を形成することにより、負極板と負極集電部材との接続状態が良好、すなわち、接続部分の機械的強度が強く信頼性に優れたリチウム二次電池を得ることができる。
【0117】本実施の形態のリチウム二次電池の製造方法に用いられる負極集電部材の凸状の接続部の形状には、上述した第1の発明の実施の形態における「負極集電部材の凸状の接続部の形状」と同様に、特に制限はない。
【0118】本実施の形態のリチウム二次電池においては、上述した第1の発明の実施の形態における場合と同様に、図14,15に示すように、負極集電部材4Bは凸状の接続部5とそれ以外の平坦部12とを有する形状であり、凸状の接続部5の厚み(L)と、平坦部12の厚み(L)との差を0.1mm以上とすることが好ましく、0.6mm以上とすることがさらに好ましく、0.8mm以上とすることが特に好ましい。凸状の接続部5と平坦部12との厚みの差が0.1mm未満である場合には、凸状の接続部5の形状的な特徴が発揮されず、凸状の接続部5と負極板1Bとの接触状態が不安定となるために好ましくない。また、負極集電部材4Bの凸状の接続部5と平坦部12との厚みの差の上限値については特に限定されないが、負極集電部材の加工精度及び強度等から適宜設定されればよく、例えば3mm以下であればよい。
【0119】接続に際して負極板に負極集電部材を押さえ付けるときに、負極集電部材の変形や損傷等の発生を防止するといった観点からは、平坦部の厚み(L)を0.2mm以上とすることが好ましく、0.3mm以上とすることがさらに好ましく、0.4mm以上とすることが特に好ましい。なお、平坦部の厚みの上限値については特に限定されないが、溶接部分とは直接的には関係のない部分であるため負極集電部材の強度及び重量等から適宜設定されればよく、例えば2mm以下であればよい。
【0120】また、負極集電部材4Bの凸状の接続部の厚み(L)を0.4mm以上とすることが好ましく、0.5mm以上とすることがさらに好ましく、0.6mm以上とすることが特に好ましい。このことにより、より強固に接続することが出来る。なお、凸状の接続部の厚みの上限値については特に限定されないが、照射されるレーザーのパワーの限界から適宜設定されればよい。
【0121】本実施の形態のリチウム二次電池に用いられる負極集電部材のレーザー照射部(接続部)の形状は、第1の発明の実施の形態において、図8,12,13により説明した形状と同様の形状を好適な例として挙げることが出来る。
【0122】本実施の形態においては、上述した第1の発明の実施の形態における場合と同様に、正極板に正極集電部材と同じ材質のアルミニウム又はアルミニウム合金を使用し、負極板に負極集電部材と同じ材質の銅又は銅合金を使用した場合には、金属板(金属箔体)と集電部材とが同種金属から構成されることとなるために、金属板(金属箔体)と集電部材とがよりよく溶着され、電流導出部分の機械的強度を強くすることが出来る。この場合、アルミニウム又はアルミニウム合金から構成される正極板(金属箔体)の厚みは15〜25μmであることが好ましく、銅又は銅合金から構成される負極板(金属箔体)の厚みは7〜15μmであることが好ましい。
【0123】本実施の形態においては、上述した第1の発明の実施の形態における場合と同様に、図5(a)、図5(e)に示すように、負極集電部材4Bを、十字形の板状部材にすることが好ましい。また、図5(b)、図5(f)に示すように負極集電部材4BをY字形の板状部材とするか、又は、図5(c)、図5(g)に示すように負極集電部材4BをI字形の板状部材にすることが好ましい。また、図4、図5(d)、図5(h)に示すように、負極集電部材4Bを、一部に切り欠きを有する円板状部材とすることが好ましい。このことにより、接続部の検査がし易く、また軽量化することが出来、電解液充填時等に電解液が全体に回り易いこととなる。
【0124】本実施の形態のリチウム二次電池製造方法においては、負極集電部材と負極板とを接続するに際して、負極集電部材の凸状の接続部にレーザーを照射して凸状の接続部を溶解するときには、上述した第1の発明の実施の形態における場合と同様に、例えば図8に示すように、レーザー11を、負極集電部材4Bの接続面9に対向するように形成した負極板1Bの端部15近傍の側面部13を含む面の法線3Bに対して、角度θ(0°≦θ≦30°)で凸状の接続部5に照射することが好ましく、角度θ(0°≦θ≦10°)で照射することがさらに好ましく、角度θ(0°≦θ≦5°)で照射することが特に好ましい。また、レーザー11を、負極集電部材4Bの凸状の接続部5の表面に又はその前後近傍に合焦することが好ましく、レーザー11を、負極金属箔体1Bに直接照射しないことが好ましい。
【0125】さらには、上述した第1の発明の実施の形態における場合と同様に、負極集電部材4Bを、その凸状の接続部5が側面部13に略垂直に交差するように配置し、レーザー11を、側面部13に略垂直に交差するようにレーザー発生装置により走査、すなわち負極集電部材4の凸状の接続部5を走査して照射することが好ましい。このとき、上述した、レーザー11を、負極板1Bの側面部13を含む面の法線3Bに対して、角度θ(0°≦θ≦30°)で凸状の接続部5に照射することに加え、レーザー11を、側面部13に略垂直に交差する線に対して、角度が略垂直で凸状の接続部5に照射することが好ましい。これらにより、図2に示すようにろう材を必要とせずに、負極板1Bと負極集電部材4Bの溶融体とを溶着させて、負極板1Bと負極集電部材4Bとを接続することが出来る。また少なくとも1枚の負極板1Bを一度の照射によって負極集電部材4Bと接続することも出来る。さらに、負極板1Bに損傷を与えずに、負極集電部材4Bの所定箇所(凸状の接続部5)のみを溶融させて負極板1Bと負極集電部材4Bとを溶着・接続することが出来るために、接続の機械的強度を強いものとすることが出来る。
【0126】また、本実施の形態のリチウム二次電池の製造方法において、負極集電部材の凸状の接続部にレーザーを照射して凸状の接続部を溶融するときに、凸状の接続部の厚みをL(mm)、レーザーのパワー密度をE(kW/mm)としたときに、下記式(8)を満足することが好ましい。レーザーのパワー密度とは照射点におけるパワー密度をいう。下記式(8)を満足するような条件でレーザーを照射することにより、負極板への損傷を抑制し、負極集電部材と負極板との接続部分の機械的強度も強くなるという特性を有する。
【0127】
【数8】
≦E/7 …(8)
【0128】なお、更に負極板への損傷を抑制し、接続部分の機械的強度を強くするという観点からは、下記式(9),(10)を満足することが好ましい。
【0129】
【数9】
≦E/9 …(9)
【0130】
【数10】
≦E/10 …(10)
【0131】本実施の形態のリチウム二次電池の製造方法においては、レーザーの照射点のスポット径が1mm以下であることが好ましい。このことにより、不要な箇所へのレーザーの照射が抑制され、特に負極板の損傷を抑制することができるために、良好な接続状態にすることができる。なお、本発明のリチウム二次電池の製造方法では、隣り合う正極板どうし及び負極板どうしのうちの少なくとも一方が間隙を保持して配列することが好ましい。
【0132】また、本実施の形態においては、例えば、上述した第1の発明の実施の形態における場合と同様に、図8に示すレーザー11は、連続波であることが好ましい。このことにより、凸状の接続部5の表面にエネルギーを集中させて照射することが出来るために凸状の接続部5を効率的に溶融させることが出来、負極板1Bの損傷を抑制することが出来る。なお、レーザーの中でも、YAGレーザーは焦点をよりよく絞ることが出来、焦点からはずれた部分に配置された負極板1Bの位置ではエネルギー密度はより小さくなり、負極板1Bの損傷をよりよく抑制することが出来ることから、特に好ましい。
【0133】一方、本実施の形態のリチウム二次電池の製造方法では、上述した第1の発明の実施の形態における場合と同様に、例えば、図8に示すレーザー11を、連続照射が可能なレーザー発生装置を用いて照射することが好ましく、レーザー11を、側面部13を含む面に平行な面を走査可能なレーザー発生装置を用いて照射することが好ましい。また、負極集電部材4Bの接続部5が凸状である場合には、レーザー11を、凸状の接続部5に沿って、レーザー発生装置により走査して照射することが好ましい。さらに、本発明においては、配列された負極板1Bの枚数に応じ、負極集電部材4Bを複数個用意し、複数の負極集電部材4Bを、それらの凸状の接続部5が側面部13に略垂直に交差するようにして、連続的に配置することが好ましい。これらのことにより、複数枚の負極板1Bを一度の照射によって接続することが出来ることとなる。
【0134】また、第2の発明のリチウム二次電池の製造方法において、負極集電部材と負極板とを接続するに際して、ろう材等の接続補助材料(接続材)は必要としないが、もちろん使用しても構わない。その場合には、負極集電部材の接続部と負極板の端部との接続を補助する接続材を、負極板の端部及び負極集電部材の接続部のうちの少なくとも一方に塗布し、又は負極板の端部と負極集電部材の接続部との間に挟時させて、負極集電部材の接続部及び接続材にレーザーを照射し、負極集電部材の接続部及び接続材を溶融させて、溶融した負極集電部材の接続部及び接続材を、負極板の端部に溶着させることが好ましい。
【0135】本実施の形態のリチウム二次電池の製造方法においては、上述した第1の発明の実施の形態における場合と同様に、図3に示すように、内部端子69A,69B、外部端子70A,70B、及び電池蓋71A,71Bを有する電極蓋を作製し、捲回型内部電極体61の正極板1Aに正極集電部材4Aを接続し負極板1Bに負極集電部材4Bを接続したものの、正極集電部材4A及び負極集電部材4Bを、内部端子69A及び69Bに各々電極リード部材72を用いて接続することが好ましい。
【0136】また、第2の発明においては、上述した第1の発明の実施の形態における場合と同様に、図6に示すように、集電部材54に直接外部端子を配設し、電池外部に直接電流を導出するように形成して、集電部材54を電極蓋と兼用するようにしてもよい。
【0137】上述した第2の発明の一の実施の形態において、上述した条件以外の、正極板、正極集電部材、これらの接続方法、その他リチウム二次電池製造方法に関する各条件は、第1の発明の実施の形態と同様にすることが好ましい。
【0138】上述した第1の発明及び第2の発明は、具体的には、捲回型或いは積層型の内部電極体に好適に用いられ、その中でも2Ah以上の容量を有するものに好適に用いられる。電池の用途としても特に制限はないが、電池を直列に接続して大きな出力を出すことを目的とし、多数の電池を積載するために省スペース性が要求される車載用大容量電池として、エンジン起動用に、電気自動車又はハイブリッド電気自動車のモータ駆動用に特に好適に用いることが出来る。
【0139】
【実施例】以下、本発明(第1の発明及び第2の発明)を実施例により具体的に説明するが、本発明はこれら実施例に限定されるものではない。
【0140】
(実施例1〜9、比較例1,2)
レーザーとして連続波のYAGレーザーを使用し、縦50mm、横100mm、厚み10mmのアルミニウム角板をサンプルとして、YAGレーザーによるアルミニウム角板の溶融試験(溶融体積測定)を行った。YAGレーザーの照射点におけるエネルギー密度(レーザーパワー密度)として、表1に示すように2〜12(kW/mm)の間の11種類を採用し(実施例1〜9、比較例1,2)、各レーザーパワー密度において、表1に示すように、走査速度(m/min)及び接続面の状態を変化させて、アルミニウム角板の溶融体積(単位:mm/s)を測定した。結果を表1に示す。
【0141】YAGレーザーとしては、HAAS HLD3504を使用した。また、レーザーはサンプルに対して直角に入射させた。
【0142】サンプルの表面において、標準面とは、表面粗さが中心線平均表面粗さRaで0.41μmRaの面をいい、鏡面とは、表面粗さが中心線平均表面粗さRaで:0.06μmRaの面をいい、酸化面とはアルミニウムの表面が酸化されることにより表面粗さが中心線平均表面粗さRaで:6.18μmになった面をいう。
【0143】中心線平均表面粗さRaは以下の方法で測定した。
【0144】Taylor Hobson社製 フォームタリサーフS5で、JIS B 0601及び、ISO R 1101に基づき測定した。
【0145】
(実施例10〜18、比較例3,4)
サンプルとして、縦50mm、横100mm、厚み10mmの銅角板を使用した以外は、上記実施例1〜9、比較例1,2と同様の条件で、銅角板の溶融体積(単位:mm/s)を測定した。結果を表2に示す。
【0146】
【表1】

Figure 2004220953
【0147】
【表2】
Figure 2004220953
【0148】以上より、アルミニウム角板をYAGレーザーで溶融する場合には、標準面、鏡面及び酸化面のそれぞれにおいて、5kW/mm以上のパワー密度を必要とすることがわかる。
【0149】また、銅角板をYAGレーザーで溶融する場合には、標準面、鏡面及び酸化面のそれぞれにおいて、3kW/mm以上のパワー密度を必要とすることがわかる。
【0150】これらにより、アルミニウム又はアルミニウム合金からなる正極集電部材の接続部をレーザーで溶融して、正極板に溶着(接続)する場合には、5kW/mm以上のパワー密度を必要とすることがわかる。また、銅又は銅号金からなる負極集電部材の接続部をレーザーで溶融して、負極板に溶着(接続)する場合には、3kW/mm以上のパワー密度を必要とすることがわかる。そして、接続面の表面粗さは、中心線平均表面粗さRaで0.05〜6.3μmRaである。これらの条件を基準に、パワー密度の低いレーザーで上記溶着を行うことにより、正極板や負極板の損傷を防止することができるため、歩留まりを向上させることができ、仕上がり状態も良好になる
【0151】
【発明の効果】以上説明したように、本発明によって、各電極板の端部と集電部材を直接的に接続して内部電極体から電流を導出するという構成を採用し、各電極板と集電部材とを接続するときに、各接続面の表面粗さを所定の範囲とし、所定のエネルギー密度のレーザーを使用して各電極板と集電部材とを溶着するようにしたため、生産性に優れたリチウム二次電池の製造方法を提供することができる。
【図面の簡単な説明】
【図1】第1の発明のリチウム二次電池の製造方法における正極板と正極集電部材との接続の一実施例を模式的に示す斜視図である。
【図2】第1の発明及び第2の発明のリチウム二次電池の製造方法における負極板と負極集電部材との接続の一実施例を模式的に示す斜視図である。
【図3】第1の発明及び第2の発明のリチウム二次電池の製造方法により得られるリチウム二次電池の一実施形態を示す断面図である。
【図4】第1の発明及び第2の発明のリチウム二次電池の製造方法における捲回型電極体と正極集電部材とを示す斜視図である。
【図5】第1の発明及び第2の発明のリチウム二次電池の製造方法に用いられる集電部材の例を示す模式図である。
【図6】第1の発明及び第2の発明のリチウム二次電池の製造方法により得られるリチウム二次電池の別の実施形態を示す断面図である。
【図7】第1の発明のリチウム二次電池の製造方法において正極集電部材と正極板とをレーザーにより溶着する方法を模式的に示す斜視図である。
【図8】第1の発明及び第2の発明のリチウム二次電池の製造方法において負極集電部材と負極板とをレーザーにより溶着する方法を模式的に示す斜視図である。
【図9】第1の発明のリチウム二次電池の製造方法において正極集電部材と正極板とをレーザーにより溶着する別の方法を模式的に示す斜視図である。
【図10】第1の発明のリチウム二次電池の製造方法において正極集電部材と正極板とをレーザーにより溶着する別の方法を模式的に示す斜視図である。
【図11】第1の発明のリチウム二次電池の製造方法において正極集電部材と正極板とをレーザーにより溶着する別の方法を模式的に示す斜視図である。
【図12】第1の発明及び第2の発明のリチウム二次電池の製造方法において負極集電部材と負極板とをレーザーにより溶着する別の方法を模式的に示す斜視図である。
【図13】第1の発明及び第2の発明のリチウム二次電池の製造方法において負極集電部材と負極板とをレーザーにより溶着する別の方法を模式的に示す斜視図である。
【図14】第1の発明及び第2の発明のリチウム二次電池の製造方法に用いられる集電部材の、凸状の接続部の形状の一例を示す模式図である。
【図15】第1の発明及び第2の発明のリチウム二次電池の製造方法に用いられる集電部材の、凸状の接続部の形状の別の例を示す模式図である。
【図16】金属板(金属箔体)を屈曲させる方法の一例を説明する模式図である。
【図17】金属板(金属箔体)を屈曲させる方法の別の例を説明する模式図である。
【図18】従来のリチウム二次電池の製造方法により得られるリチウム二次電池の一実施形態を示す断面図である。
【図19】捲回型の内部電極体の一例を示す斜視図である。
【符号の説明】
1A…正極板、1B…負極板、2…狭幅端面、3A…狭幅端面を含む面の法線、3B…側面部を含む面の法線、4A…正極集電部材、4B…負極集電部材、4C…正極集電部材の正極板側を向く面、4D…負極集電部材の負極板側を向く面、5…接続部、6…先端部、9…接続面、11…レーザー、12…平坦部、13…側面部、15…端部、31A…正極集電部材、31B…負極集電部材、32…先端部、33…接続部、34…レーザー、35…レーザー、41…正極集電部材、42…レーザー、51A…正極集電部材、51B…負極集電部材、52…接続部、53…レーザー、54…集電部材、61…捲回型内部電極体、62…正極板、63…負極板、64…セパレータ、65…正極用集電タブ、66…負極用集電タブ、67…巻芯、68…リチウム二次電池、69A…正極内部端子、69B…負極内部端子、70A…正極外部端子、70B…負極外部端子、71A…正極電池蓋、71B…負極電池蓋、72…電極リード部材、73…電池ケース、74…くびれ加工部、75…放圧孔、76…弾性体(パッキン)、77…絶縁性ポリマーフィルム、78…放圧弁、79…金属箔、L…平坦部の厚み、L…凸状の接続部の厚み、θ…レーザーと法線3A又は法線3Bとにより形成される角度。[0001]
The present invention relates to a method for manufacturing a lithium secondary battery (hereinafter, also simply referred to as "battery"), and more particularly, to a method for manufacturing a lithium secondary battery having excellent productivity.
[0002]
2. Description of the Related Art In recent years, there has been an increasing demand for resource saving and energy saving for the protection of the global environment, and for driving motors of electric vehicles and hybrid electric vehicles (hereinafter, also simply referred to as "electric vehicles, etc."). A lithium secondary battery is being developed as a power supply.
[0003] This lithium secondary battery is constructed by winding or laminating a positive electrode plate and a negative electrode plate inside thereof through a separator made of a porous polymer film so that the positive electrode plate and the negative electrode plate do not come into direct contact with each other. (Hereinafter, simply referred to as an “electrode body”).
Conventionally, as shown in FIG. 19, for example, a wound internal electrode body 61 is produced by winding a positive electrode plate 62 and a negative electrode plate 63 with a winding core 67 as a core via a separator 64. Each of the positive electrode plate 62 and the negative electrode plate 63 (hereinafter, also referred to as “electrode plates 62, 63”) has at least one positive electrode current collecting tab 65 and a negative electrode current collecting tab 66 (hereinafter, “collecting electrode”). (Also referred to as “electric tabs 65 and 66”) (for example, see Patent Document 1). Then, as shown in FIG. 18, the opposite ends of the current collecting tabs 65 and 66 connected to the positive electrode plate 62 and the negative electrode plate 63 (see FIG. 19) are attached to the internal terminals 69A and 69B and the like.
Reference numeral 76 denotes an elastic body (packing), reference numeral 77 denotes an insulating polymer film, reference numeral 78 denotes a pressure relief valve, and reference numeral 79 denotes a metal foil. In addition, other reference numerals indicate the same reference numerals as those described later with reference to FIG.
The electrode plate is formed by using a metal foil such as aluminum or the like for the positive electrode plate and copper or nickel or the like for the negative electrode plate as a current collecting substrate and applying an electrode active material to each of them. Is disposed on at least one side of such a current collecting substrate.
However, since the current collecting tabs need to be attached one by one to the electrode plate when winding the electrode body, there is a problem that the process is complicated. In addition, the end of the current collecting tab on the opposite side connected to the electrode plate needs to be bundled by aligning the plurality of current collecting tabs, and to be attached to the internal terminals by driving connection using rivets or the like. However, there is a problem that the process is similarly complicated, and it is not easy to connect to a low resistance.
[0008]
[Patent Document 1]
JP 2001-85042 A
[0009]
SUMMARY OF THE INVENTION The present invention has been made in view of such a conventional problem, and an object thereof is to directly connect an end of each electrode plate to a current collecting member. By adopting a configuration that derives current from the internal electrode body, when connecting each electrode plate and the current collecting member, the surface roughness of each connection surface is within a predetermined range, and a laser with a predetermined energy density is used. It is an object of the present invention to provide a method for manufacturing a lithium secondary battery having excellent productivity by welding each electrode plate and a current collecting member.
[0010]
In order to achieve the above object, the present invention provides the following method for manufacturing a lithium secondary battery.
[0011]
[1] A positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound or laminated via a separator to form a wound internal electrode body or a laminated internal electrode body, In order to derive a current from the ends of the positive electrode current collector and the negative electrode current collector made of aluminum or an aluminum alloy and a negative electrode current collector made of copper or a copper alloy, respectively, ), Wherein the surface roughness of the surface (connection surface) of the connection portion of the positive electrode current collector is 0.05 to 6.3 μm Ra as a center line average surface roughness Ra. And the power density of the connection portion of the positive electrode current collector is 5 kW / mm. 2 The above laser is melted, and the end of the positive electrode plate is connected to the connection of the positive electrode current collector by welding the connection of the positive electrode current collector to the end of the positive electrode plate. Manufacturing method for a lithium secondary battery (hereinafter, sometimes referred to as a first invention).
[0012]
[2] An internal terminal for deriving a current from at least one of the positive electrode current collecting member and the negative electrode current collecting member, and an electrode lead member provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member. The method for producing a lithium secondary battery according to [1], wherein the lithium secondary battery is connected using:
[0013]
[3] The method for producing a lithium secondary battery according to [1], wherein an external terminal is provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member so as to directly draw a current outside the battery. .
[0014]
[4] The connecting portion of the positive electrode current collecting member is formed in a convex shape that continuously protrudes in a line toward the positive electrode plate of the positive electrode current collecting member, and the connecting surface is provided at the tip of the convex connecting portion. The method for manufacturing a lithium secondary battery according to any one of [1] to [3], wherein the connection surface and the narrow end face of the end of the positive electrode plate are connected to each other.
[0015]
[5] The convex connection portion of the positive electrode current collecting member is irradiated with the laser to melt the convex connection portion, so that the convex connection portion is welded to an end of the positive electrode plate. The method for producing a lithium secondary battery according to [4].
[0016]
[6] At least one of the positive electrode current collecting member and the negative electrode current collecting member is a cross-shaped, Y-shaped, or I-shaped plate-shaped member, or a disk-shaped member partially cutout [ The method for producing a lithium secondary battery according to any one of [1] to [5].
[0017]
[7] The positive electrode current collecting member has a shape having the convex connection portion and the other flat portion, and the thickness (L 2 ) And the thickness of the flat portion (L 1 The method for producing a lithium secondary battery according to any one of [4] to [6], wherein the difference from the above is 0.1 mm or more.
[0018]
[8] The thickness (L) of the flat portion of the positive electrode current collector 1 ) Is set to 0.4 mm or more.
[0019]
[9] The thickness (L) of the convex connection portion in the positive electrode current collecting member 2 ) Is set to 0.6 mm or more, the method for producing a lithium secondary battery according to [7] or [8].
[0020]
[10] When irradiating the laser to the convex connecting portion of the positive electrode current collecting member to melt the convex connecting portion, the surface of the positive electrode plate including the narrow end surface of the end portion of the positive electrode plate is formed. The method for producing a lithium secondary battery according to any one of [5] to [9], wherein the laser is irradiated at an angle θ (0 <θ ≦ 90 °) with respect to a normal line.
[0021]
[11] The method for producing a lithium secondary battery according to any one of [5] to [10], wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less.
[0022]
[12] At least one of an end portion of the positive electrode plate and the connection portion of the positive electrode current collector includes a connecting member that assists connection between the connection portion of the positive electrode current collector and an end of the positive electrode plate. Applied, or sandwiched between the end portion of the positive electrode plate and the connection portion of the positive electrode current collector, irradiating the laser to the connection portion and the connection material of the positive electrode current collector, Melting the connection portion and the connection material of the positive electrode current collector, and welding the melted connection portion and the connection material of the positive electrode current collector to an end of the positive electrode plate [1] to [11] ] The method for producing a lithium secondary battery according to any one of the above items.
[0023]
[13] The surface roughness of the surface (connection surface) of the connection portion of the negative electrode current collecting member is set to 0.05 to 6.3 μm Ra as a center line average surface roughness Ra, and the connection portion of the negative electrode current collecting member is subjected to power density. Is 3 kW / mm 2 The end of the negative electrode plate is connected to the connection portion of the negative electrode current collector by melting with the above laser and welding the connection portion of the negative electrode current collector to the end of the negative electrode plate [1]. [12] The method for producing a lithium secondary battery according to any one of [12] to (12).
[0024]
[14] The connecting portion of the negative electrode current collecting member is formed in a convex shape that continuously protrudes in a line toward the negative electrode plate of the negative electrode current collecting member, and the connecting surface is provided at a tip portion of the convex connecting portion. Is formed, and the vicinity of the end of the negative electrode plate is bent so that the side surface near the end of the negative electrode plate faces the connection surface of the negative electrode current collecting member, and the side surface near the end of the negative electrode plate is formed. The method for manufacturing a lithium secondary battery according to [13], wherein the unit and the connection surface of the negative electrode current collector are connected.
[0025]
[15] When connecting the side surface near the end of the negative electrode plate to the connection surface of the negative electrode current collector, a columnar shape is formed from the side surface near the end of the negative electrode current collector toward the negative electrode current collector. The method for producing a lithium secondary battery according to [14], wherein a crystal is formed.
[0026]
[16] By irradiating the laser to the convex connection portion of the negative electrode current collecting member and melting the convex connection portion, the convex connection portion is welded to an end of the negative electrode plate. The method for producing a lithium secondary battery according to [14] or [15].
[0027]
[17] At least one of the positive electrode current collecting member and the negative electrode current collecting member has a shape having the convex connection portion and another flat portion, and the thickness of the convex connection portion (L 2 ) And the thickness of the flat portion (L 1 The method for producing a lithium secondary battery according to any one of [14] to [16], wherein the difference from the above is 0.1 mm or more.
[0028]
[18] The thickness (L) of the flat portion of the negative electrode current collector 1 ) Is 0.2 mm or more.
[0029]
[19] The thickness (L) of the convex connection portion of the negative electrode current collector 2 ) Is 0.4 mm or more, the method for producing a lithium secondary battery according to [17] or [18].
[0030]
[20] The negative electrode current collector is formed so as to face the connection surface of the negative electrode current collector when the convex connection is melted by irradiating the convex connection with the laser. The lithium according to any one of [16] to [19], wherein the laser is irradiated at an angle θ (0 ≦ θ ≦ 30 °) with respect to a normal to a surface including a side surface near the end of the negative electrode plate. A method for manufacturing a secondary battery.
[0031]
[21] When irradiating the laser to the convex connection portion of the negative electrode current collector and melting the convex connection portion, the thickness of the convex connection portion is set to L. 2 (Mm), the power density of the laser is E (kW / mm). 2 ), The method for producing a lithium secondary battery according to any one of [16] to [20], which satisfies the following expression (3).
[0032]
[Equation 3]
L 2 ≦ E / 7 (3)
[0033]
[22] The method for producing a lithium secondary battery according to any one of [16] to [21], wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less.
[0034]
[23] At least one of an end portion of the negative electrode plate and the connection portion of the negative electrode current collecting member may include a connecting material that assists connection between the connection portion of the negative electrode current collecting member and an end portion of the negative electrode plate. Applied, or sandwiched between the end portion of the negative electrode plate and the connection portion of the negative electrode current collector, irradiating the laser to the connection portion and the connection material of the negative electrode current collector, Melting the connection part and the connection material of the negative electrode current collector, and welding the melted connection part and the connection material of the negative electrode current collector to an end of the negative electrode plate [13] to [22] ] The method for producing a lithium secondary battery according to any one of the above items.
[0035]
[24] The positive electrode plate and the negative electrode plate each composed of at least one metal foil body are wound or laminated with a separator interposed therebetween to form a wound internal electrode body or a laminated internal electrode body, In order to derive a current from the ends of the positive electrode current collector and the negative electrode current collector made of aluminum or an aluminum alloy and a negative electrode current collector made of copper or a copper alloy, respectively, ), Wherein the surface roughness of the surface (connection surface) of the connection portion of the negative electrode current collector is defined as a center line average surface roughness Ra of 0.05 to 6.3 μm Ra. The power density of the connection portion of the negative electrode current collector is 3 kW / mm. 2 The above laser is melted, and a connection portion of the negative electrode current collector is welded to an end of the negative electrode plate to thereby connect an end of the negative electrode plate to a connection portion of the negative electrode current collector. Of manufacturing a lithium secondary battery.
[0036]
[25] An internal terminal for deriving a current from at least one of the positive electrode current collecting member and the negative electrode current collecting member, and an electrode lead member provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member. The method for producing a lithium secondary battery according to [24], wherein the lithium secondary battery is connected using:
[0037]
[26] The method for manufacturing a lithium secondary battery according to [24], wherein an external terminal is provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member so as to directly lead a current to the outside of the battery. .
[0038]
[27] The connecting portion of the negative electrode current collecting member has a convex shape that continuously protrudes in a row toward the negative electrode plate of the negative electrode current collecting member, and the connecting surface is provided at the tip of the convex connecting portion. Is formed, and the vicinity of the end of the negative electrode plate is bent so that the side surface near the end of the negative electrode plate faces the connection surface of the negative electrode current collecting member, and the side surface near the end of the negative electrode plate is formed. The method for producing a lithium secondary battery according to any one of [24] to [26], wherein the connecting part connects the connection surface of the negative electrode current collecting member.
[0039]
[28] When connecting the side surface near the end of the negative electrode plate to the connection surface of the negative electrode current collecting member, a columnar shape is formed from the side surface near the end of the negative electrode plate toward the negative electrode current collecting member. The method for producing a lithium secondary battery according to [27], wherein a crystal is formed.
[0040]
[29] The laser is applied to the convex connection portion of the negative electrode current collecting member to melt the convex connection portion, thereby welding the convex connection portion to an end of the negative electrode plate. The method for producing a lithium secondary battery according to [27] or [28].
[0041]
[30] At least one of the positive electrode current collecting member and the negative electrode current collecting member is a cross-shaped, Y-shaped, or I-shaped plate-shaped member, or a disk-shaped member having a cutout in a part thereof [ 24] The method for producing a lithium secondary battery according to any one of [29].
[0042]
[31] The negative electrode current collector is formed into a shape having the convex connection portion and the other flat portion, and the thickness (L 2 ) And the thickness of the flat portion (L 1 The method according to any one of [27] to [30], wherein the difference from the lithium secondary battery is 0.1 mm or more.
[0043]
[32] The thickness (L) of the flat portion of the negative electrode current collector 1 ) Is 0.2 mm or more.
[0044]
[33] The thickness (L) of the convex connection portion of the negative electrode current collector 2 ) Is at least 0.4 mm, the method for producing a lithium secondary battery according to [31] or [32].
[0045]
[34] When the convex connection portion of the negative electrode current collector is irradiated with the laser to melt the convex connection portion, it is formed so as to face the connection surface of the negative electrode current collector. The lithium according to any one of [29] to [33], wherein the laser is irradiated at an angle θ (0 ≦ θ ≦ 30 °) with respect to a normal to a surface including a side surface near the end of the negative electrode plate. A method for manufacturing a secondary battery.
[0046]
[35] When irradiating the laser to the convex connection portion of the negative electrode current collector to melt the convex connection portion, the thickness of the convex connection portion is set to L. 2 (Mm), the power density of the laser is E (kW / mm). 2 ), The method for producing a lithium secondary battery according to any one of [29] to [34], which satisfies the following expression (4).
[0047]
(Equation 4)
L 2 ≦ E / 7 (4)
[0048]
[36] The method for manufacturing a lithium secondary battery according to any one of [29] to [35], wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less.
[0049]
[37] At least one of an end portion of the negative electrode plate and the connection portion of the negative electrode current collecting member may include a connecting member that assists connection between the connection portion of the negative electrode current collecting member and an end portion of the negative electrode current collecting member. Applied, or sandwiched between the end portion of the negative electrode plate and the connection portion of the negative electrode current collector, irradiating the laser to the connection portion and the connection material of the negative electrode current collector, Melting the connection part and the connection material of the negative electrode current collector, and welding the melted connection part and the connection material of the negative electrode current collector to an end of the negative electrode plate [24] to [36] ] The method for producing a lithium secondary battery according to any one of the above items.
[0050]
[38] The method for producing a lithium secondary battery according to any one of [1] to [37], wherein the laser is a continuous wave.
[0051]
[39] The method for producing a lithium secondary battery according to any one of [1] to [38], wherein the laser is a YAG laser.
[0052]
[40] The method for producing a lithium secondary battery according to any one of [1] to [39], wherein a battery capacity of the lithium secondary battery is 2 Ah or more.
[0053]
[41] The method for producing a lithium secondary battery according to any one of [1] to [40], wherein the lithium secondary battery is a vehicle-mounted battery.
[0054]
[42] The method for producing a lithium secondary battery according to [41], wherein the lithium secondary battery is a battery for an electric vehicle or a hybrid electric vehicle.
[0055]
[43] The method for producing a lithium secondary battery according to [41] or [42], wherein the lithium secondary battery is an engine starting battery.
As described above, the configuration in which the end portion of each electrode plate is directly connected to the current collecting member to derive a current from the internal electrode body is adopted, and when the positive electrode plate and the positive electrode current collecting member are connected. In addition, since the surface roughness of the connection surface is set to a predetermined range, and the laser having a predetermined energy density is used to weld the positive electrode plate and the positive electrode current collecting member (first invention), the productivity is excellent. A method for manufacturing a lithium secondary battery can be provided. In addition, by adopting a configuration in which an end of each electrode plate and the current collecting member are directly connected to derive a current from the internal electrode body, when connecting the negative electrode plate and the negative electrode current collecting member, Since the negative electrode plate and the negative electrode current collecting member are welded to each other using a laser having a predetermined surface roughness and a predetermined energy density (second invention), a lithium secondary battery excellent in productivity can be obtained. A manufacturing method can be provided.
[0057]
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention (first and second inventions) will be specifically described below with reference to the drawings, but the present invention is not limited to the following embodiments. However, it should be understood that design changes, improvements, and the like can be made appropriately based on ordinary knowledge of those skilled in the art without departing from the spirit of the present invention.
In the method of manufacturing a lithium secondary battery according to the first invention, a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound via a separator to form a wound internal electrode. Then, in order to derive a current from each of the ends of the positive electrode plate and the negative electrode plate, a predetermined portion (connecting portion) of each of a positive electrode current collecting member made of aluminum and a negative electrode current collecting member made of copper is connected. ) To manufacture a lithium secondary battery. When the end of the positive electrode plate is connected to the connection of the positive electrode current collector, the power density of the connection of the positive electrode current collector is 5 kW / mm 2 It is melted by the above laser, the connection part of the positive electrode current collector is welded to the end of the positive electrode plate, and the surface roughness (connection surface) of the connection part of the positive electrode current collector is measured by the center line average surface. The roughness Ra is 0.05 to 6.3 μm Ra. Further, in the method for manufacturing a lithium secondary battery according to the second invention, a positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound via a separator to form a wound type internal electrode body. In order to derive a current from each end of the positive electrode plate and the negative electrode plate, a predetermined portion (connection portion) of each of a positive electrode current collecting member made of aluminum and a negative electrode current collecting member made of copper is used. Respectively, to manufacture a lithium secondary battery. When the end of the negative electrode plate is connected to the connection of the negative electrode current collector, the power density of the connection of the negative electrode current collector is 3 kW / mm. 2 The laser is melted by the above laser, and the connection portion of the negative electrode current collector is welded to the end of the negative electrode plate. Further, the surface roughness (connection surface) of the connection portion of the negative electrode current collector is measured by the center line average surface. The roughness Ra is 0.05 to 6.3 μm Ra. It is preferable that the requirements of the first invention and the second invention are simultaneously satisfied.
Here, the “power density” of the laser according to the present invention means that the power (kW) of the laser is determined by measuring the irradiation point of the laser at a predetermined position (connection portion) of the positive or negative electrode current collecting member. Spot area (mm 2 ) Means the value obtained. Further, the wound internal electrode body may be a laminated internal electrode body formed by laminating a positive electrode plate and a negative electrode plate each composed of at least one metal foil body via a separator. Further, the positive electrode current collector may be formed of an aluminum alloy, and the negative electrode current collector may be formed of a copper alloy. The center line average surface roughness Ra is a surface roughness defined in JIS B 0601 and ISO R 1101.
When the connection portion of the positive electrode current collector and the positive electrode plate and the connection portion of the negative electrode current collector and the negative electrode plate are respectively connected, the connection portion covers a wide area (for example, a wide area as soon as protruding from the connection portion). Irradiation with strong energy rays damages the positive electrode metal foil constituting the positive electrode plate and the negative electrode metal foil constituting the negative electrode plate, thereby deteriorating the yield, and even if not damaged, the finished state is poor. Therefore, it is necessary to irradiate energy rays or the like intensively to a required position with weak energy. However, if the energy is too weak, a portion to be melted does not melt, so a certain amount of energy is required. Therefore, in the first invention, the energy ray is a laser, the positive electrode current collecting member is aluminum, and the energy density of the laser for melting the aluminum and welding (the connection portion of) the positive electrode current collecting member to the positive electrode plate is welded. Is 5 kW / mm 2 As described above, in the second invention, the energy density of the laser for melting the copper and welding the negative electrode current collector to the negative electrode plate is set to 3 kW by using copper as the negative electrode current collector. / Mm 2 As described above, the positive electrode current collector or the negative electrode current collector can be reliably melted, and furthermore, the energy density of the laser can be optimized based on the lower limit of the energy density of these lasers. The positive electrode current collector or the negative electrode current collector can be effectively melted at a high density. This makes it possible to obtain a method for manufacturing a lithium secondary battery having excellent productivity without causing any damage to the positive electrode metal foil or the negative electrode metal foil. Further, when the requirements of the first invention and the second invention are simultaneously satisfied, both the positive electrode current collecting member and the negative electrode current collecting member can be reliably melted, and the positive electrode current collector can be effectively formed at a low energy density. Both the current collecting member and the negative electrode current collecting member can be melted.
The energy density of the laser for welding the (positive connection part) of the positive electrode current collector and the positive electrode plate is 5 kW / mm. 2 Smaller (when the requirements of the first invention are not satisfied), and the energy density of the laser for welding the negative electrode current collector to the negative electrode plate is 3 kW / mm. 2 When smaller (when the requirement of the second invention is not satisfied), the connection state is not good and the mechanical strength is insufficient.
When connecting (welding) the positive current collector to the positive electrode plate with the laser (first invention), and connecting the negative current collector to the negative electrode with the laser. In the case of (welding) (second invention), the surface roughness of the connection surface affects the connection. By setting the center line average surface roughness Ra to 0.05 to 6.3 μm Ra, the connection by the laser can be performed. Can be performed well.
Hereinafter, one embodiment of the method of manufacturing the lithium secondary battery of the first invention will be described. FIG. 1 is a perspective view schematically showing a method for connecting a positive electrode plate and a positive electrode current collector in one embodiment of the method for manufacturing a lithium secondary battery of the first invention. As shown in FIG. 1, in the method of manufacturing a lithium secondary battery according to the present embodiment, the connection between the positive electrode current collector 4A and the positive electrode plate 1A is made by connecting the positive electrode plate 1A made of at least one metal foil. The narrow end surface 2 of the end portion 15 and the connection surface 9 of the connection portion 5 of the positive electrode current collecting member 4A are arranged at predetermined positions, and the connection portion 5 is melted by a laser 11 having a predetermined power density to be connected. This is performed by welding the portion 5 and the end portion 15 of the positive electrode plate. At this time, a plurality of locations on the narrow end face 2 and the connection surface 9 are welded.
FIG. 2 is a perspective view schematically showing one example of a method of connecting a negative electrode plate and a negative electrode current collecting member in the method of manufacturing a lithium secondary battery according to the present embodiment. As shown in FIG. 2, in the method for manufacturing a lithium secondary battery according to the present embodiment, the connection between negative electrode current collector 4B and negative electrode plate 1B is made by connecting negative electrode plate 1B composed of at least one metal foil body. The vicinity of the end portion 15 is bent so that the side surface portion 13 facing the connection portion 5 side (connection surface 9 side) of the negative electrode current collecting member 4B and the connection surface 9 of the connection portion 5 of the negative electrode current collecting member 4B are fixed. It is preferable that the connection portion 5 is melted by the laser 11 having a predetermined power density, and the connection portion 5 is welded to the end portion 15 of the negative electrode plate. At this time, the connection surface 9 is welded to a plurality of locations on the side surface portion 13.
In the method of manufacturing a lithium secondary battery according to the present embodiment, as shown in FIG. 3, in addition to the above configuration, internal terminals 69A and 69B, external terminals 70A and 70B, and battery lids 71A and 71B are provided. An electrode lid is manufactured, and the positive electrode current collector 4A is connected to the positive electrode plate 1A (see FIG. 1) of the wound internal electrode body 61 by the above-described method, and the negative electrode current collector 4B is connected to the negative electrode plate 1B (see FIG. 2). Although connected, the positive electrode current collecting member 4A and the negative electrode current collecting member 4B are connected to the internal terminals 69A and 69B using the electrode lead members 72, respectively. At this time, it is preferable that the electrode lead member 72 is formed of the same kind of metal including the current collecting members 4A and 4B and the internal terminals 69A and 69B to be connected, and an alloy thereof. Specifically, since aluminum or an aluminum alloy is used for the positive electrode internal terminal 69A and the positive electrode current collecting member 4A, aluminum or an aluminum alloy is adopted for the positive electrode lead member, and the negative electrode internal terminal 69B and the negative electrode current collecting member are used. Since copper or copper alloy is used for 4B, it is preferable to use copper or copper alloy for the electrode lead member of the negative electrode.
In the method of manufacturing a lithium secondary battery according to the present embodiment, the wound internal electrode body 61 provided with the above-mentioned electrode cover is inserted into the battery case 73 and the vicinity of both ends of the battery case 73 is removed. A constricted portion is formed by constricting, and a lithium secondary battery 68 can be obtained by injecting an electrolytic solution. In FIG. 3, reference numeral 67 denotes a winding core, and reference numeral 75 denotes a pressure relief valve.
In the present embodiment, the current collectors 4A, 4B and the internal terminals 69A, 69B may be directly connected and energized without using the electrode lead members 72. In addition, the above-described electrode lid as a current deriving portion may be used for the positive electrode and the negative electrode, or may be used for either the positive electrode or the negative electrode.
In the present invention (first invention), as shown in FIG. 6, an external terminal is provided directly on the current collecting member 54 and formed so as to directly draw a current outside the battery. The current collecting member 54 may also be used as the electrode cover. FIG. 6 shows an example in which a cylindrical battery case 73 having one open end is used, and necking is formed on one end of the battery case 73. However, if the current collecting member 54 also serves as an electrode cover, The shape of the lithium secondary battery 68 is not particularly limited, and both ends of the battery case 73 may be constricted or both ends of the battery case 73 may not be constricted. FIG. 6 shows an example in which the pressure release holes 75 are formed on the positive electrode side, but pressure release holes may be formed on the negative electrode side. 6, reference numeral 61 denotes a wound internal electrode body, and reference numeral 67 denotes a winding core.
As shown in FIGS. 3 and 6, each electrode plate and current collecting members 4A, 4B (see FIG. 3), 54 (see FIG. 3) are provided at a portion where current is drawn from the internal electrode body (the wound internal electrode body 61). 6) is directly connected to derive the current, so that there is no need to use a current collecting tab as a conventional current deriving means, and thus a complicated current collecting tab mounting step is not required. By doing so, the productivity can be improved, and the space for the length of the current collecting tab can be omitted, so that the space saving can be improved.
In this embodiment, as shown in FIG. 7, the connecting portions 5 of the positive electrode current collecting member 4A are arranged in a row from the surface 4C of the positive electrode current collecting member 4A facing the positive electrode plate 1A toward the positive electrode plate 1A. A connecting surface 9 is formed at the tip end of the connecting portion 5 having a continuous shape, and the connecting surface 9 and the narrow end surface 2 of the end portion 15 of the positive electrode plate 1A are formed. It is preferable that the connection be made in a state of facing. Then, as shown in FIG. 7, when connecting the end portion 15 of the positive electrode plate 1A and the connecting portion 5 of the positive electrode current collecting member 4A, the convex connecting portion 5 is irradiated with the laser 11 to form the convex connecting portion. It is preferable that the portion 5 is melted and the convex connection portion 5 of the positive electrode current collector 4A and the end 15 of the positive electrode plate 1A are welded. Furthermore, it is preferable that the position where the connecting portion 5 is provided in the positive electrode current collecting member 4A be the distal end portion 6 of the positive electrode current collecting member 4A because the connection surface can be easily confirmed. In FIG. 7, reference numeral 12 denotes a flat portion, and the positive electrode current collecting member 4A has a structure having the connection portion 5 and the flat portion 12. As shown in FIG. 1, the convex connection portion protrudes from the surface 4C of the positive electrode current collector 4A facing the positive electrode plate 1A toward the positive electrode plate 1A, and the positive current collector 4A is A shape formed so as to extend in a direction extending outward is also included.
The convex shape of the convex connecting portion 5 of the positive electrode current collecting member 4A shown in FIG. 7 is not particularly limited, and the welding between the end 15 of the positive electrode plate 1A and the positive electrode current collecting member 4A is performed. In order to facilitate the connection, it is preferable that the connection surface 9 of the convex connection portion 5 and the narrow end surface 2 of the positive electrode metal foil body 1A be reliably contacted. For example, the connection portion 5 shown in FIG. Such a shape may be employed, and a preferable example is that the connection surface 9 of the convex connection portion 5 and the narrow end surface 2 of the positive electrode metal foil body 1A are in point contact with each other.
FIGS. 14 and 15 show specific examples of the shapes of the convex connecting portions 5 of the positive electrode current collecting member 4A and the negative electrode current collecting member 4B. The shape of each convex connecting portion 5 of the positive electrode current collecting member 4A and the negative electrode current collecting member 4B described later used in the lithium secondary battery of the present invention may be trapezoidal as shown in FIG. It may have a spire shape as shown in FIG. 14 and 15, L 1 Is the thickness of the flat portion 12, L 2 Indicates the thickness of the convex connection portion 5.
In the method of manufacturing a lithium secondary battery according to the present embodiment, as shown in FIGS. 14 and 15, a positive current collector 4A is formed into a shape having a convex connecting portion 5 and a flat portion 12 other than the connecting portion 5. And the thickness (L 2 ) And the thickness of the flat portion 12 (L 1 ) Is preferably 0.1 mm or more, more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more. When the difference in thickness between the convex connecting portion 5 and the flat portion 12 is less than 0.1 mm, the shape characteristics of the convex connecting portion 5 are not exhibited, and the convex connecting portion 5 and the positive electrode This is not preferable because the contact state with the plate 1A becomes unstable. Further, in the present invention, the upper limit of the difference in thickness between the convex connection portion 5 and the flat portion 12 is not particularly limited, but may be appropriately set in view of the processing accuracy, strength, and the like of the positive electrode current collector. What is necessary is just 3 mm or less.
When pressing the positive electrode current collector against the positive electrode plate at the time of connection, from the viewpoint of preventing the positive electrode current collector from being deformed or damaged, the thickness of the flat portion of the positive electrode current collector 4A may be reduced. (L 1 ) Is preferably at least 0.4 mm, more preferably at least 0.5 mm, particularly preferably at least 0.6 mm. The upper limit of the thickness of the flat portion is not particularly limited, but may be appropriately set based on the strength and weight of the positive electrode current collector because the portion is not directly related to the welded portion. What is necessary is just 2 mm or less.
The thickness (L) of the convex connecting portion 5 of the positive electrode current collecting member 4A 2 ) Is preferably 0.6 mm or more, more preferably 0.7 mm or more, and particularly preferably 0.8 mm or more. As a result, the connection can be made stronger. The upper limit of the thickness of the convex connection portion 5 is not particularly limited, but may be set as appropriate from the limit of the power of the laser to be irradiated.
Regarding the shape of the laser-irradiated portion of the positive electrode current collector used in the lithium secondary battery of the present invention, the following shapes can be mentioned as preferred examples.
FIG. 7 shows an example in which the positive electrode current collector 4A having the convex connecting portion 5 at the front end 6 is used. In this case, the upper surface side (surface) of the positive electrode current collector 4A is used. By irradiating the laser 11 from the side opposite to 4C), the positive electrode current collector 4A and the end 15 of the positive electrode plate 1A can be welded and connected.
FIG. 9 shows an example in which a positive current collector 31A having a greater thickness is used for the convex connecting portion 33 than the positive current collector 4A shown in FIG. In addition to irradiating the laser 34 from the upper surface side of the current collecting member 31A, it is also possible to irradiate the laser 35 to the side surface of the convex connecting portion 33 formed at the tip portion 32 of the positive electrode current collecting member 31A. The current collecting member 31A and the end 15 of the positive electrode plate 1A can be connected by welding. In FIG. 9, reference numeral 2 denotes a narrow end face, and 3A denotes a normal line of a plane including the narrow end face.
FIG. 10 shows an example in which the plate-shaped positive current collector 41 is arranged so that its end surface is in contact with the end 15 of the positive electrode plate 1A. By irradiating the laser 42 from the side surface of the cathode 41, the cathode current collector 41 and the end 15 of the cathode plate 1A can be welded and connected. As described above, the lithium secondary battery of the present invention can also be manufactured by connecting the plate-shaped positive current collector 41 having no convex portion and the plurality of positive plates 1A as shown in FIG. Can be done. In FIG. 10, reference numeral 2 denotes a narrow end face, and 3A denotes a normal line of a plane including the narrow end face.
FIG. 11 shows an example in which a convex connecting portion 52 is provided at a predetermined position, not at the tip end of the positive electrode current collecting member 51A. In this case, the convex connecting portion 52 is provided. By irradiating the laser 53 to the rear surface of the provided positive electrode current collecting member 51A, the positive electrode current collecting member 51A can be connected to the end 15 of the positive electrode plate 1A. In FIG. 11, reference numeral 2 denotes a narrow end face.
On the other hand, in the present embodiment, as shown in FIG. 8, the connecting portion 5 of the negative electrode current collecting member 4B is connected from the surface 4D of the negative electrode current collecting member 4B facing the negative electrode plate 1B to the negative electrode plate 1B. And a connecting surface 9 is formed at the end of the convex connecting portion 5 and the vicinity of the end 15 of the negative electrode plate 1B is bent to form a connecting surface 9 at the end of the convex connecting portion 5. Is connected to the connection surface 9 of the negative electrode current collector 4B, and the side surface 13 near the end 15 of the negative electrode plate 1B is connected to the connection surface 9 (connection portion 5) of the negative electrode current collector 4B. Is preferred. Then, as shown in FIG. 8, when connecting the end portion 15 of the negative electrode plate 1B and the convex connection portion 5 of the negative electrode current collecting member 4B, the convex connection portion 5 is irradiated with the laser 11, It is preferable to melt the connection part 5 in a shape and weld the convex connection part 5 of the negative electrode current collecting member 4B and the end part 15 of the negative electrode plate 1B. Further, in the negative electrode current collecting member 4B, it is preferable that the position where the connecting portion 5 is provided is the distal end portion 6 of the negative electrode current collecting member 4B because the connection surface can be easily confirmed. In FIG. 8, 12 is a flat portion, L 1 Is the thickness of the flat portion 12, L 2 Indicates the thickness of the connection portion 5. The negative electrode current collecting member 4B has a structure having a connection portion 5 and a flat portion 12. Further, as shown in FIG. 2, the convex connection portion protrudes from the surface 4C of the negative electrode current collector 4B facing the negative electrode plate 1B toward the negative electrode plate 1B in a convex shape. A shape formed so as to extend in a direction extending outward is also included.
In the present embodiment, as shown in FIG. 8, when connecting the negative electrode plate 1B and the negative electrode current collecting member 4B, the vicinity of the end 15 is bent so that the side surface portion 13 is connected to the convex connection. The contact surface 9 of the portion 5 may be brought into close contact with the side surface portion 13 and the connection surface 9 may be brought into close contact with each other, for example, as shown in FIG. Is bent in the vicinity of the end 15 (FIG. 16A), and then the negative electrode current collecting member 4B is arranged on the side surface 13 (FIG. 16B). Also, as shown in FIG. 17, a method of pressing the negative electrode current collecting member 4B against the end portion 15 of the negative electrode plate 1B with an appropriate pressure, bending the vicinity of the end portion 15 and bringing the side surface portion 13 into close contact (FIG. ), (B), and (c)).
In the method of manufacturing a lithium secondary battery according to the present embodiment, when the side surface near the end of the negative electrode plate and the connection surface of the negative electrode current collector are connected, the side surface near the end of the negative electrode plate is connected. It is preferable that columnar crystals are formed in the direction from the portion toward the negative electrode current collector. Generally, in a weld metal, a molten metal grows (epitaxial growth) with the same crystal orientation on crystal grains of a base material (unmelted portion). The solid phase thus formed grows inside the weld bead (molten portion) as the heat source moves. This growth is easy to grow in the direction of the largest temperature gradient, and grows in a form extending almost in one direction in that direction. The crystal thus grown is called a columnar crystal.
The melted portion of the negative electrode current collector recrystallizes as it is cooled, but the heat of the molten portion rapidly diffuses through the negative electrode plate 1B. That is, it is considered that the temperature of the molten metal in the portion in close contact with the negative electrode plate decreases, and the interface between the negative electrode plate and the molten metal serves as a nucleus to easily form columnar crystals from the negative electrode plate toward the negative electrode current collector. Furthermore, in the present embodiment, since the side portion near the end portion of the negative electrode plate is in close contact with the negative electrode current collecting member without any gap and the contact state is good, columnar crystals are easily formed by the cooling effect through the negative electrode plate. State. As described above, by forming columnar crystals in the direction from the negative electrode plate to the negative electrode current collecting member at the connection portion between the negative electrode plate and the negative electrode current collecting member, the connection state between the negative electrode plate and the negative electrode current collecting member is good, Thus, a lithium secondary battery having high mechanical strength at the connection portion and excellent reliability can be obtained.
The shape of the convex connecting portion of the negative electrode current collector used in the method of manufacturing a lithium secondary battery according to the present embodiment is not particularly limited. Here, specific examples of the shape of the convex connection portion are shown in FIGS. As described above, the shape of the convex connecting portion 5 of the negative electrode current collecting member 4B used in the method for manufacturing a lithium secondary battery of the present embodiment may be a trapezoidal shape as shown in FIG. It may have a spire shape as shown in FIG.
In the lithium secondary battery of the present embodiment, as shown in FIGS. 14 and 15, the negative electrode current collector 4B has a shape having a convex connecting portion 5 and a flat portion 12 other than the convex connecting portion 5. Thickness (L 2 ) And the thickness of the flat portion 12 (L 1 ) Is preferably 0.1 mm or more, more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more. When the difference in thickness between the convex connecting portion 5 and the flat portion 12 is less than 0.1 mm, the shape characteristics of the convex connecting portion 5 are not exhibited, and the convex connecting portion 5 and the negative electrode This is not preferable because the contact state with the plate 1B becomes unstable. The upper limit of the difference in thickness between the convex connection portion 5 and the flat portion 12 of the negative electrode current collecting member 4B is not particularly limited, but may be set as appropriate from the processing accuracy and strength of the negative electrode current collecting member. For example, it may be 3 mm or less.
When the negative electrode current collector is pressed against the negative electrode plate at the time of connection, from the viewpoint of preventing the negative electrode current collector from being deformed or damaged, the thickness of the flat portion (L 1 ) Is preferably at least 0.2 mm, more preferably at least 0.3 mm, particularly preferably at least 0.4 mm. The upper limit of the thickness of the flat portion is not particularly limited, but may be appropriately set based on the strength and weight of the negative electrode current collector because the portion is not directly related to the welded portion. The following may be sufficient.
The thickness (L) of the convex connection portion of the negative electrode current collecting member 4B 2 ) Is preferably at least 0.4 mm, more preferably at least 0.5 mm, particularly preferably at least 0.6 mm. As a result, the connection can be made stronger. The upper limit of the thickness of the convex connection portion is not particularly limited, but may be set as appropriate from the limit of the power of the laser to be irradiated.
Regarding the shape of the laser irradiation portion (connection portion) of the negative electrode current collector used in the lithium secondary battery of the present embodiment, the following shapes can be mentioned as preferred examples.
FIG. 8 shows an example of the negative electrode current collecting member 4B having the convex connecting portion 5 at the tip end portion 6. In this case, the laser 11 is applied from the upper surface side of the negative electrode current collecting member 4B. By irradiating, the negative electrode current collecting member 4B and the end 15 of the negative electrode plate 1B can be welded and connected.
FIG. 12 shows an example of a negative electrode current collector 31B having a thicker connecting portion 33 formed at the tip end portion 32 than the negative electrode current collector 4B of FIG. In this case, by irradiating the laser 34 from the upper surface side of the negative electrode current collecting member 31B, the negative electrode current collecting member 31B and the end portion 15 (side surface portion 13) of the negative electrode plate 1B can be welded and connected. 3B indicates a normal line of a surface including the side surface portion 13.
FIG. 13 shows an example in which a convex connecting portion 52 is provided at a predetermined position, not at the tip end of the negative electrode current collecting member 51B. In this case, the convex connecting portion 52 is formed. By irradiating the laser 53 to the back surface of the provided negative electrode current collecting member 51B, the negative electrode current collecting member 51B can be connected to the side surface portion 13 near the end 15 of the negative electrode plate 1B. In FIG. 13, reference numeral 12 denotes a flat portion.
In this embodiment, when aluminum or aluminum alloy of the same material as the positive electrode current collector is used for the positive electrode plate and copper or copper alloy of the same material as the negative electrode current collector is used for the negative electrode plate, Since the metal plate (metal foil) and the current collecting member are made of the same kind of metal, the metal plate (metal foil) and the current collecting member are better welded to each other, and the mechanical strength of the current lead-out portion is improved. Can be strengthened. In this case, the thickness of the positive electrode plate (metal foil body) made of aluminum or aluminum alloy is preferably 15 to 25 μm, and the thickness of the negative electrode plate (metal foil body) made of copper or copper alloy is 7 to 25 μm. It is preferably 15 μm. In the batteries shown in FIGS. 3 and 6, an aluminum foil having a thickness of 20 μm and a copper foil having a thickness of 10 μm are used.
As shown in FIGS. 5 (a) and 5 (e), at least one of the positive electrode current collecting member 4A and the negative electrode current collecting member 4B used in this embodiment is a cross-shaped plate-like member. 5 (b) and 5 (f), a Y-shaped plate member, or an I-shaped plate member as shown in FIGS. 5 (c) and 5 (g), or FIGS. As shown in FIG. 5 (d) and FIG. 5 (h), it is preferable to use a disk-shaped member having a cutout in a part. As a result, the connection portion can be easily inspected and the weight can be reduced, and the electrolyte can easily flow around when the electrolyte is filled. In FIG. 4, 5 indicates a connection portion, 61 indicates a wound internal electrode body, and 73 indicates a battery case.
In the method of manufacturing a lithium secondary battery according to the present embodiment, when connecting the positive current collector to the positive electrode plate, a laser is applied to the convex connection of the positive current collector to irradiate the convex connection. For example, as shown in FIG. 7, the laser 11 is irradiated with the laser 11 at an angle θ (0 ° <θ ≦ 90 °) with respect to a normal 3A to the surface including the narrow end face 2 of the end 15 of the positive electrode plate 1A. ), The irradiation is preferably performed at an angle θ (5 ° ≦ θ ≦ 80 °), and more preferably at an angle θ (10 ° ≦ θ ≦ 60 °). Irradiation at an angle θ (15 ° ≦ θ ≦ 45 °) is particularly preferable. In addition, it is preferable that the laser 11 is focused on the surface of the convex connection portion 5 of the positive electrode current collecting member 4A or in the vicinity thereof, and it is preferable that the laser 11 is not directly irradiated on the positive electrode plate 1A.
Further, the positive electrode current collecting member 4A is arranged so that the convex connecting portion 5 thereof intersects the narrow end face 2 substantially perpendicularly, and the laser 11 intersects the narrow end face 2 substantially perpendicularly. As described above, it is preferable to perform scanning by the laser generator, that is, scan and irradiate the convex connection portion 7 of the positive electrode current collector 4A. At this time, the above-described laser 11 is irradiated to the convex connecting portion 5 at an angle θ (0 ° <θ ≦ 90 °) with respect to a normal 3A to the surface including the narrow end face 2 of the positive electrode plate 1A. In addition, it is preferable that the laser 11 is irradiated on the convex connection portion 5 having a substantially perpendicular angle with respect to a line that intersects substantially perpendicularly with the narrow end face 2. As a result, as shown in FIG. 1, the positive electrode plate 1A and the melt of the positive electrode current collecting member 4A can be welded to each other to connect the positive electrode plate 1A and the positive electrode current collecting member 4A without using a brazing material. I can do it. Further, at least one positive electrode plate 1A can be connected to the positive electrode current collecting member 4A by a single irradiation. Further, it is possible to melt and connect only the positive electrode plate 1A and the positive electrode current collecting member 4A by melting only a predetermined portion (convex connecting portion 5) of the positive electrode current collecting member 4A without damaging the positive electrode plate 1A. For this reason, the mechanical strength of the connection can be increased.
[0097] The term "intersects substantially perpendicularly to the narrow end face" in the present embodiment means that the positive (negative) electrode corresponding to the portion connected to the connection portion of the positive (negative) current collecting member. This means that all of the narrow end faces at the ends of the plate intersect substantially perpendicularly.
In the method of manufacturing a lithium secondary battery according to the present embodiment, when connecting the negative electrode current collecting member and the negative electrode plate, the convex connecting portion of the negative electrode current collecting member is irradiated with a laser to project the convex connecting portion. For example, as shown in FIG. 8, the laser 11 is applied to a surface of the negative electrode plate 1B formed so as to face the connecting surface 9 of the negative electrode current collecting member 4B, including a side surface portion 13 near the end portion 15 as shown in FIG. With respect to the line 3B, it is preferable to irradiate the convex connection portion 5 at an angle θ (0 ° ≦ θ ≦ 30 °), and it is more preferable to irradiate the line 3B at an angle θ (0 ° ≦ θ ≦ 10 °). Irradiation at an angle θ (0 ° ≦ θ ≦ 5 °) is particularly preferred. Further, it is preferable that the laser 11 is focused on the surface of the convex connection portion 5 of the negative electrode current collecting member 4B or in the vicinity thereof, and it is preferable that the laser 11 is not directly irradiated on the negative electrode metal foil 1B.
Further, the negative electrode current collecting member 4B is arranged so that the convex connection portion 5 thereof intersects the side surface 13 substantially perpendicularly, and the laser 11 is arranged so that the laser 11 intersects the side surface approximately perpendicularly. It is preferable to scan with a laser generator, that is, scan and irradiate the convex connection portion 5 of the negative electrode current collector 4. At this time, the above-described laser 11 is applied to the convex connection portion 5 at an angle θ (0 ° ≦ θ ≦ 30 °) with respect to a normal 3B to the surface including the side surface portion 13 of the negative electrode plate 1B. In addition, it is preferable to irradiate the laser 11 to the convex connection portion 5 having a substantially perpendicular angle with respect to a line substantially perpendicular to the side surface portion 13. Thus, the negative electrode plate 1B and the melt of the negative electrode current collecting member 4B can be welded to each other to connect the negative electrode plate 1B and the negative electrode current collecting member 4B without the need for a brazing material as shown in FIG. I can do it. In addition, at least one negative electrode plate 1B can be connected to the negative electrode current collecting member 4B by a single irradiation. Furthermore, it is possible to melt and connect the negative electrode plate 1B and the negative electrode current collecting member 4B by melting only a predetermined portion (the convex connection portion 5) of the negative electrode current collecting member 4B without damaging the negative electrode plate 1B. For this reason, the mechanical strength of the connection can be increased. Note that “intersects substantially perpendicularly to the side surface” means that all of the plurality of locations connected to the connection portion 5 intersect approximately vertically in the side surface portion 13 of the end portion 15 of the negative electrode plate 1B. ing.
In the method of manufacturing a lithium secondary battery according to the present embodiment, when the convex connecting portion of the negative electrode current collector is irradiated with a laser to melt the convex connecting portion, the convex connecting portion is formed. Part thickness L 2 (Mm), the power density of the laser is E (kW / mm 2 ), It is preferable to satisfy the following expression (5). The power density of the laser means the power density at the irradiation point. By irradiating the laser under the condition satisfying the following formula (5), damage to the negative electrode plate is suppressed, and the mechanical strength of the connection portion between the negative electrode current collector and the negative electrode plate is increased. .
[0101]
(Equation 5)
L 2 ≦ E / 7 (5)
It is preferable to satisfy the following expressions (6) and (7) from the viewpoint of further suppressing damage to the negative electrode plate and increasing the mechanical strength of the connection portion.
[0103]
(Equation 6)
L 2 ≦ E / 9 (6)
[0104]
(Equation 7)
L 2 ≦ E / 10 (7)
In the method of manufacturing a lithium secondary battery according to the present embodiment, it is preferable that the spot diameter at the laser irradiation point is 1 mm or less. This suppresses laser irradiation to unnecessary portions, and in particular, it is possible to suppress damage to the negative electrode plate, so that a favorable connection state can be obtained. In the method for manufacturing a lithium secondary battery according to the present invention, it is preferable that at least one of the adjacent positive electrode plates and the adjacent negative electrode plates be arranged while maintaining a gap.
In this embodiment, for example, the laser 11 shown in FIGS. 7 and 8 is preferably a continuous wave. Thereby, since the energy can be concentrated and irradiated on the surface of the convex connection portion 5, the convex connection portion 5 can be efficiently melted, and the positive electrode plate 1A or the negative electrode plate 1B can be melted. Damage can be suppressed. In addition, among lasers, the YAG laser can narrow the focus better, and the energy density becomes smaller at the position of the positive electrode plate 1A or the negative electrode plate 1B arranged at a part out of focus, and the positive electrode plate 1A or It is particularly preferable because damage to the negative electrode plate 1B can be more effectively suppressed.
In the method of manufacturing a lithium secondary battery according to the present embodiment, for example, it is preferable to irradiate the laser 11 shown in FIG. 7 using a laser generator capable of continuous irradiation. Irradiation is preferably performed using a laser generator capable of scanning a plane parallel to the plane including the narrow end face 2. In addition, the scanning speed of the laser to be irradiated is preferably 0.1 to 100 m / min, more preferably 1 to 30 m / min, and particularly preferably 2 to 10 m / min. When the connecting portion 5 of the positive electrode current collecting member 4A is convex, it is preferable that the laser 11 is scanned and irradiated along the convex connecting portion 5 by a laser generator. Further, in the present invention, a plurality of positive electrode current collecting members 4A are prepared in accordance with the number of the arranged positive electrode plates 1A, and the plurality of positive electrode current collecting members 4A are connected to each other so that their convex connecting portions 5 have narrow end faces. It is preferable to arrange them continuously so as to intersect approximately perpendicularly with 2. Thus, a plurality of positive plates 1A can be connected by a single irradiation.
On the other hand, in the method of manufacturing the lithium secondary battery of the present embodiment, for example, it is preferable to irradiate the laser 11 shown in FIG. 8 using a laser generator capable of continuous irradiation. Irradiation is preferably performed using a laser generator capable of scanning a surface parallel to the surface including the side surface portion 13. When the connecting portion 5 of the negative electrode current collecting member 4B is convex, it is preferable that the laser 11 is scanned and irradiated by the laser generator along the convex connecting portion 5. Further, in the present invention, a plurality of negative electrode current collecting members 4B are prepared according to the number of the arranged negative electrode plates 1B, and the plurality of negative electrode current collecting members 4B are connected to the convex connection portions 5 by the side portions 13. It is preferable to arrange them continuously so as to intersect approximately vertically. Thus, a plurality of negative electrode plates 1B can be connected by a single irradiation.
In the method of manufacturing a lithium secondary battery according to the first aspect of the invention, a connection auxiliary material (connecting material) such as a brazing material is required when connecting the connecting portion of the positive electrode current collector to the end of the positive electrode plate. No, but of course you can. In that case, a connecting material that assists the connection between the connection part of the positive electrode current collector and the end of the positive electrode plate is applied to at least one of the end part of the positive electrode plate and the connection part of the positive electrode current collector, Or, by sandwiching between the end portion of the positive electrode plate and the connection portion of the positive electrode current collector, and irradiating a laser to the connection portion and the connection material of the positive electrode current collector, the connection portion and the connection material of the positive electrode current collection member It is preferable that the connecting portion and the connecting material of the positive electrode current collecting member be melted and welded to an end portion of the positive electrode plate.
In the method of manufacturing a lithium secondary battery according to the first invention, when connecting the negative electrode current collector to the negative electrode plate, a connection auxiliary material (connecting material) such as a brazing material is not required. You can use it. In that case, a connection material for assisting connection between the connection portion of the negative electrode current collector and the end of the negative electrode plate is applied to at least one of the end portion of the negative electrode plate and the connection portion of the negative electrode current collector, Or, by sandwiching between the end portion of the negative electrode plate and the connection portion of the negative electrode current collecting member, and irradiating the laser to the connection portion and the connection material of the negative electrode current collection member, the connection portion and the connection material of the negative electrode current collection member It is preferable that the connection portion and the connection material of the negative electrode current collecting member are melted and welded to the end portion of the negative electrode plate.
Next, a method for manufacturing the lithium secondary battery of the second invention will be described. As described above, in the method for manufacturing a lithium secondary battery according to the second invention, a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound via a separator to form a wound internal electrode. Are formed, and in order to derive a current from the ends of the positive electrode plate and the negative electrode plate, predetermined positions of each of a positive electrode current collector made of aluminum and a negative electrode current collector made of copper ( Connection part) to manufacture a lithium secondary battery. When the end of the negative electrode plate is connected to the connection part of the negative electrode current collector, the connection part of the negative electrode current collector has a lower power density. 3 kW / mm 2 The laser is melted by the above laser, and the connection portion of the negative electrode current collector is welded to the end of the negative electrode plate. Further, the surface roughness (connection surface) of the connection portion of the negative electrode current collector is measured by the center line average surface. The roughness Ra is 0.05 to 6.3 μm Ra.
In one embodiment of the method of manufacturing the lithium secondary battery of the second invention, as in the case of the above-described first embodiment, as shown in FIG. The connection between the negative electrode plate 1B and the negative electrode plate 1B is made by bending the vicinity of the end portion 15 of the negative electrode plate 1B formed of at least one metal foil to the connection portion 5 side (connection surface 9 side) of the negative electrode current collecting member 4B. Are arranged in a predetermined position, and the connection portion 5 is melted by a laser 11 having a predetermined power density, and the connection portion 5 is formed. And the end portion 15 of the negative electrode plate. At this time, the connection surface 9 is welded to a plurality of locations on the side surface portion 13.
In the present embodiment, as in the case of the above-described first embodiment, as shown in FIG. 8, the connecting portion 5 of the negative electrode current collecting member 4B is connected to the negative electrode current collecting member 4B. A connecting surface 9 is formed at the tip of the convex connecting portion 5 to form a convex shape that continuously protrudes in a row from the surface 4D facing the negative electrode plate 1B toward the negative electrode plate 1B. 15 is bent so that the side portion 13 near the end portion 15 of the negative electrode plate 1B faces the connection surface 9 of the negative electrode current collecting member 4B. It is preferable to connect the connection surface 9 (connection portion 5) of the member 4B. Then, as shown in FIG. 8, when connecting the end portion 15 of the negative electrode plate 1B and the convex connection portion 5 of the negative electrode current collecting member 4B, the convex connection portion 5 is irradiated with the laser 11, It is preferable to melt the connection part 5 in a shape and weld the convex connection part 5 of the negative electrode current collecting member 4B and the end part 15 of the negative electrode plate 1B. Further, in the negative electrode current collecting member 4B, it is preferable that the position where the connecting portion 5 is provided is the distal end portion 6 of the negative electrode current collecting member 4B because the connection surface can be easily confirmed. In FIG. 8, 12 is a flat portion, L 1 Is the thickness of the flat portion 12, L 2 Indicates the thickness of the connection portion 5. The negative electrode current collecting member 4B has a structure having a connection portion 5 and a flat portion 12. Further, as shown in FIG. 2, the convex connection portion protrudes from the surface 4C of the negative electrode current collector 4B facing the negative electrode plate 1B toward the negative electrode plate 1B in a convex shape. A shape formed so as to extend in a direction extending outward is also included.
In the present embodiment, as in the case of the above-described first embodiment, as shown in FIG. The side surface portion 13 and the connection surface 9 of the convex connection portion 5 may be brought into close contact with each other by bending the vicinity of the connection portion 15, and the close contact between the side surface portion 13 and the connection surface 9 is made in the first manner described above. The invention can be carried out by the same method as the “method of bringing the side surface portion (of the negative electrode plate) into close contact with the connection surface (of the negative electrode current collector)” (described with reference to FIGS. 16 and 17).
In the method of manufacturing a lithium secondary battery according to the present embodiment, when the side surface near the end of the negative electrode plate is connected to the connection surface of the negative electrode current collecting member, the above-described first embodiment of the present invention is used. As in the case of “when connecting the side surface near the end of the negative electrode plate and the connection surface of the negative electrode current collector” in the form, columnar crystals are formed from the side surface near the end of the negative electrode plate toward the negative electrode current collector. Preferably, it is formed.
As in the case of the first embodiment, columnar crystals are formed in the connecting portion between the negative electrode plate and the negative electrode current collecting member in the direction from the negative electrode plate to the negative electrode current collecting member. Accordingly, a lithium secondary battery in which the connection state between the negative electrode plate and the negative electrode current collecting member is good, that is, the connection portion has high mechanical strength and excellent reliability.
The shape of the convex connecting portion of the negative electrode current collector used in the method of manufacturing a lithium secondary battery of the present embodiment is the same as that of the above-described first embodiment of the present invention. Like the “shape of the convex connection portion”, there is no particular limitation.
In the lithium secondary battery of the present embodiment, similarly to the case of the above-described first embodiment, as shown in FIGS. 14 and 15, the negative electrode current collector 4B has a convex connection. Part 5 and the other flat part 12, and the thickness (L 2 ) And the thickness of the flat portion 12 (L 1 ) Is preferably 0.1 mm or more, more preferably 0.6 mm or more, and particularly preferably 0.8 mm or more. When the difference in thickness between the convex connecting portion 5 and the flat portion 12 is less than 0.1 mm, the shape characteristics of the convex connecting portion 5 are not exhibited, and the convex connecting portion 5 and the negative electrode This is not preferable because the contact state with the plate 1B becomes unstable. The upper limit of the difference in thickness between the convex connection portion 5 and the flat portion 12 of the negative electrode current collecting member 4B is not particularly limited, but may be set as appropriate from the processing accuracy and strength of the negative electrode current collecting member. For example, it may be 3 mm or less.
When pressing the negative electrode current collector against the negative electrode plate during connection, from the viewpoint of preventing the negative electrode current collector from being deformed or damaged, the thickness of the flat portion (L 1 ) Is preferably at least 0.2 mm, more preferably at least 0.3 mm, particularly preferably at least 0.4 mm. The upper limit of the thickness of the flat portion is not particularly limited, but may be appropriately set based on the strength and weight of the negative electrode current collector because the portion is not directly related to the welded portion. The following may be sufficient.
The thickness (L) of the convex connecting portion of the negative electrode current collecting member 4B 2 ) Is preferably at least 0.4 mm, more preferably at least 0.5 mm, particularly preferably at least 0.6 mm. As a result, the connection can be made stronger. The upper limit of the thickness of the convex connection portion is not particularly limited, but may be set as appropriate from the limit of the power of the laser to be irradiated.
The shape of the laser irradiation portion (connection portion) of the negative electrode current collector used in the lithium secondary battery of the present embodiment has been described in the first embodiment of the present invention with reference to FIGS. A shape similar to the shape can be mentioned as a preferable example.
In this embodiment, as in the case of the first embodiment, aluminum or aluminum alloy of the same material as the positive electrode current collector is used for the positive electrode plate, and the negative electrode current collector is used for the negative electrode plate. When copper or a copper alloy of the same material as the current member is used, the metal plate (metal foil) and the current collecting member are composed of the same kind of metal. The current collecting member is welded better, and the mechanical strength of the current lead-out portion can be increased. In this case, the thickness of the positive electrode plate (metal foil body) made of aluminum or aluminum alloy is preferably 15 to 25 μm, and the thickness of the negative electrode plate (metal foil body) made of copper or copper alloy is 7 to 25 μm. It is preferably 15 μm.
In this embodiment, as in the case of the above-described first embodiment, as shown in FIGS. 5A and 5E, the negative electrode current collector 4B is It is preferable to form a letter-shaped plate-like member. Further, the negative electrode current collecting member 4B may be a Y-shaped plate-shaped member as shown in FIGS. 5 (b) and 5 (f), or as shown in FIGS. 5 (c) and 5 (g). It is preferable that the negative electrode current collecting member 4B be an I-shaped plate-shaped member. Further, as shown in FIGS. 4, 5D, and 5H, it is preferable that the negative electrode current collecting member 4B is a disk-shaped member having a cutout in a part. As a result, the connection portion can be easily inspected and the weight can be reduced, and the electrolyte can easily flow around when the electrolyte is filled.
In the method of manufacturing a lithium secondary battery according to the present embodiment, when connecting the negative electrode current collector to the negative electrode plate, the convex connection portion of the negative electrode current collector is irradiated with a laser to form the convex connection. When dissolving the portion, the laser 11 was formed so as to face the connection surface 9 of the negative electrode current collecting member 4B, for example, as shown in FIG. 8, as in the case of the above-described first embodiment of the invention. It is preferable to irradiate the convex connecting portion 5 at an angle θ (0 ° ≦ θ ≦ 30 °) with respect to a normal line 3B of the surface including the side surface portion 13 near the end portion 15 of the negative electrode plate 1B. (0 ° ≦ θ ≦ 10 °), and more preferably, at an angle θ (0 ° ≦ θ ≦ 5 °). Further, it is preferable that the laser 11 is focused on the surface of the convex connection portion 5 of the negative electrode current collecting member 4B or in the vicinity thereof, and it is preferable that the laser 11 is not directly irradiated on the negative electrode metal foil 1B.
Further, as in the case of the above-described first embodiment, the negative electrode current collecting member 4B is arranged so that the convex connection portion 5 thereof intersects the side surface portion 13 substantially perpendicularly. The laser 11 is preferably scanned by a laser generator so as to intersect the side surface 13 substantially perpendicularly, that is, by scanning the convex connecting portion 5 of the negative electrode current collecting member 4 for irradiation. At this time, the above-described laser 11 is applied to the convex connection portion 5 at an angle θ (0 ° ≦ θ ≦ 30 °) with respect to a normal 3B to the surface including the side surface portion 13 of the negative electrode plate 1B. In addition, it is preferable to irradiate the laser 11 to the convex connection portion 5 having a substantially perpendicular angle with respect to a line substantially perpendicular to the side surface portion 13. Thus, the negative electrode plate 1B and the melt of the negative electrode current collecting member 4B can be welded to each other to connect the negative electrode plate 1B and the negative electrode current collecting member 4B without the need for a brazing material as shown in FIG. I can do it. In addition, at least one negative electrode plate 1B can be connected to the negative electrode current collecting member 4B by a single irradiation. Furthermore, it is possible to melt and connect the negative electrode plate 1B and the negative electrode current collecting member 4B by melting only a predetermined portion (the convex connection portion 5) of the negative electrode current collecting member 4B without damaging the negative electrode plate 1B. For this reason, the mechanical strength of the connection can be increased.
In the method of manufacturing a lithium secondary battery according to the present embodiment, when the convex connecting portion of the negative electrode current collector is irradiated with laser to melt the convex connecting portion, the convex connecting portion is melted. Part thickness L 2 (Mm), the power density of the laser is E (kW / mm 2 ), It is preferable to satisfy the following expression (8). The power density of the laser means the power density at the irradiation point. By irradiating the laser under the condition satisfying the following formula (8), damage to the negative electrode plate is suppressed, and the mechanical strength of the connection portion between the negative electrode current collector and the negative electrode plate is increased. .
[0127]
(Equation 8)
L 2 ≦ E / 7 (8)
From the viewpoint of further suppressing damage to the negative electrode plate and increasing the mechanical strength of the connection portion, it is preferable that the following expressions (9) and (10) are satisfied.
[0129]
(Equation 9)
L 2 ≦ E / 9 (9)
[0130]
(Equation 10)
L 2 ≦ E / 10 (10)
In the method of manufacturing a lithium secondary battery according to the present embodiment, it is preferable that the spot diameter at the laser irradiation point is 1 mm or less. This suppresses laser irradiation to unnecessary portions, and in particular, it is possible to suppress damage to the negative electrode plate, so that a favorable connection state can be obtained. In the method for manufacturing a lithium secondary battery according to the present invention, it is preferable that at least one of the adjacent positive electrode plates and the adjacent negative electrode plates be arranged while maintaining a gap.
In the present embodiment, for example, as in the case of the above-described first embodiment, the laser 11 shown in FIG. 8 is preferably a continuous wave. Thereby, since the energy can be concentrated and irradiated on the surface of the convex connection portion 5, the convex connection portion 5 can be efficiently melted, and the damage of the negative electrode plate 1B can be suppressed. Can be done. Among the lasers, the YAG laser can narrow the focus better, and the energy density becomes smaller at the position of the negative electrode plate 1B located at a part out of focus, thereby better suppressing the damage of the negative electrode plate 1B. It is particularly preferable because it can be used.
On the other hand, in the method of manufacturing a lithium secondary battery according to the present embodiment, for example, the laser 11 shown in FIG. Irradiation is preferably performed using a laser generator, and it is preferable to irradiate the laser 11 using a laser generator capable of scanning a surface parallel to a surface including the side surface portion 13. When the connecting portion 5 of the negative electrode current collecting member 4B is convex, it is preferable that the laser 11 is scanned and irradiated by the laser generator along the convex connecting portion 5. Further, in the present invention, a plurality of negative electrode current collecting members 4B are prepared according to the number of the arranged negative electrode plates 1B, and the plurality of negative electrode current collecting members 4B are connected to the convex connection portions 5 by the side portions 13. It is preferable to arrange them continuously so as to intersect approximately vertically. Thus, a plurality of negative electrode plates 1B can be connected by a single irradiation.
In the method for manufacturing a lithium secondary battery according to the second invention, when connecting the negative electrode current collector to the negative electrode plate, a connection auxiliary material (connecting material) such as a brazing material is not required, but it is needless to say. You can use it. In that case, a connection material for assisting connection between the connection portion of the negative electrode current collector and the end of the negative electrode plate is applied to at least one of the end portion of the negative electrode plate and the connection portion of the negative electrode current collector, Or, by sandwiching between the end portion of the negative electrode plate and the connection portion of the negative electrode current collecting member, and irradiating the laser to the connection portion and the connection material of the negative electrode current collection member, the connection portion and the connection material of the negative electrode current collection member It is preferable that the connection portion and the connection material of the negative electrode current collecting member are melted and welded to the end portion of the negative electrode plate.
In the method of manufacturing the lithium secondary battery of this embodiment, as shown in FIG. 3, internal terminals 69A and 69B and external terminals 70A , 70B and an electrode lid having battery lids 71A, 71B, a positive current collector 4A is connected to the positive electrode 1A of the wound internal electrode body 61, and a negative current collector 4B is connected to the negative electrode 1B. Preferably, the positive electrode current collecting member 4A and the negative electrode current collecting member 4B are connected to the internal terminals 69A and 69B using the electrode lead members 72, respectively.
Further, in the second invention, as in the case of the first embodiment described above, as shown in FIG. The current collecting member 54 may also be used as an electrode cover.
In one embodiment of the second invention described above, except for the above-described conditions, the respective conditions relating to the positive electrode plate, the positive electrode current collector, the connection method thereof, and the method of manufacturing the lithium secondary battery are the same as those of the first embodiment. It is preferable to make the same as the embodiment of the present invention.
The first and second inventions described above are preferably used for a wound or laminated internal electrode body, and are particularly preferably used for those having a capacity of 2 Ah or more. Can be There are no particular restrictions on the use of batteries, but engines are used as high-capacity on-board batteries, which are designed to connect batteries in series and produce a large output and require a large amount of batteries to save space. For start-up, it can be particularly suitably used for driving a motor of an electric vehicle or a hybrid electric vehicle.
[0139]
EXAMPLES Hereinafter, the present invention (first and second inventions) will be described specifically with reference to examples, but the present invention is not limited to these examples.
[0140]
(Examples 1 to 9, Comparative Examples 1 and 2)
A continuous wave YAG laser was used as a laser, and an aluminum square plate having a length of 50 mm, a width of 100 mm and a thickness of 10 mm was used as a sample, and a melting test (melt volume measurement) of the aluminum square plate was performed with the YAG laser. As shown in Table 1, the energy density (laser power density) at the irradiation point of the YAG laser was 2 to 12 (kW / mm). 2 ) Are employed (Examples 1 to 9, Comparative Examples 1 and 2), and the scanning speed (m / min) and the state of the connection surface are changed at each laser power density as shown in Table 1. Then, the molten volume of the aluminum square plate (unit: mm 3 / S) was measured. Table 1 shows the results.
HAAS HLD3504 was used as the YAG laser. The laser was incident on the sample at right angles.
In the surface of the sample, the standard surface refers to a surface having a surface roughness of 0.41 μm Ra as a center line average surface roughness Ra, and the mirror surface refers to a surface having a center line average surface roughness Ra as follows: The surface of 0.06 μm Ra is referred to as an oxidized surface, and the surface of aluminum is oxidized to have a surface roughness of 6.18 μm as a center line average surface roughness Ra.
The center line average surface roughness Ra was measured by the following method.
The measurement was carried out using Taylor Hobson's Form Talysurf S5 in accordance with JIS B 0601 and ISO R 1101.
[0145]
(Examples 10 to 18, Comparative Examples 3 and 4)
Except for using a copper square plate having a length of 50 mm, a width of 100 mm, and a thickness of 10 mm as a sample, the molten volume of the copper square plate (unit: mm 3 / S) was measured. Table 2 shows the results.
[0146]
[Table 1]
Figure 2004220953
[0147]
[Table 2]
Figure 2004220953
As described above, when the aluminum square plate is melted by the YAG laser, the standard surface, the mirror surface and the oxidized surface are each 5 kW / mm. 2 It can be seen that the above power density is required.
When the copper square plate is melted by the YAG laser, the standard surface, the mirror surface, and the oxidized surface are each 3 kW / mm. 2 It can be seen that the above power density is required.
Thus, when the connection portion of the positive electrode current collector made of aluminum or an aluminum alloy is melted by a laser and welded (connected) to the positive electrode plate, 5 kW / mm 2 It can be seen that the above power density is required. In addition, when the connection portion of the negative electrode current collector made of copper or copper gold is melted with a laser and welded (connected) to the negative electrode plate, 3 kW / mm 2 It can be seen that the above power density is required. The surface roughness of the connection surface is 0.05 to 6.3 μm Ra as the center line average surface roughness Ra. Based on these conditions, by performing the welding with a laser having a low power density, damage to the positive electrode plate and the negative electrode plate can be prevented, so that the yield can be improved and the finished state can be improved.
[0151]
As described above, according to the present invention, an arrangement is employed in which the end of each electrode plate is directly connected to the current collecting member to derive a current from the internal electrode body. When connecting the current collecting member, the surface roughness of each connection surface is set to a predetermined range, and a laser having a predetermined energy density is used to weld each electrode plate and the current collecting member, thereby improving productivity. It is possible to provide a method of manufacturing a lithium secondary battery having excellent characteristics.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing one embodiment of connection between a positive electrode plate and a positive electrode current collector in a method for manufacturing a lithium secondary battery of the first invention.
FIG. 2 is a perspective view schematically showing one embodiment of a connection between a negative electrode plate and a negative electrode current collecting member in the method for producing a lithium secondary battery according to the first and second inventions.
FIG. 3 is a cross-sectional view showing one embodiment of a lithium secondary battery obtained by the method for manufacturing a lithium secondary battery according to the first invention and the second invention.
FIG. 4 is a perspective view showing a wound electrode body and a positive electrode current collector in the method for manufacturing a lithium secondary battery according to the first and second inventions.
FIG. 5 is a schematic view showing an example of a current collecting member used in the method for manufacturing a lithium secondary battery according to the first invention and the second invention.
FIG. 6 is a cross-sectional view showing another embodiment of the lithium secondary battery obtained by the method for manufacturing a lithium secondary battery according to the first invention and the second invention.
FIG. 7 is a perspective view schematically showing a method for welding a positive electrode current collector and a positive electrode plate by laser in the method of manufacturing a lithium secondary battery of the first invention.
FIG. 8 is a perspective view schematically showing a method of welding a negative electrode current collector and a negative electrode plate with a laser in the lithium secondary battery manufacturing methods of the first invention and the second invention.
FIG. 9 is a perspective view schematically showing another method of welding the positive electrode current collector and the positive electrode plate with a laser in the method of manufacturing the lithium secondary battery of the first invention.
FIG. 10 is a perspective view schematically showing another method of welding the positive electrode current collector and the positive electrode plate by laser in the method of manufacturing a lithium secondary battery of the first invention.
FIG. 11 is a perspective view schematically showing another method of welding the positive electrode current collector and the positive electrode plate by laser in the method of manufacturing the lithium secondary battery of the first invention.
FIG. 12 is a perspective view schematically showing another method of welding a negative electrode current collector and a negative electrode plate by laser in the method of manufacturing a lithium secondary battery of the first invention and the second invention.
FIG. 13 is a perspective view schematically showing another method of welding the negative electrode current collector and the negative electrode plate by laser in the method of manufacturing the lithium secondary battery of the first invention and the second invention.
FIG. 14 is a schematic view showing an example of a shape of a convex connecting portion of a current collecting member used in the method of manufacturing a lithium secondary battery according to the first and second inventions.
FIG. 15 is a schematic view showing another example of the shape of the convex connection portion of the current collector used in the method of manufacturing the lithium secondary battery according to the first invention and the second invention.
FIG. 16 is a schematic diagram illustrating an example of a method of bending a metal plate (metal foil body).
FIG. 17 is a schematic diagram illustrating another example of a method of bending a metal plate (metal foil body).
FIG. 18 is a cross-sectional view showing one embodiment of a lithium secondary battery obtained by a conventional method for manufacturing a lithium secondary battery.
FIG. 19 is a perspective view showing an example of a wound internal electrode body.
[Explanation of symbols]
1A: Positive electrode plate, 1B: Negative electrode plate, 2: Narrow end surface, 3A: Normal line of the surface including the narrow end surface, 3B: Normal line of the surface including the side portion, 4A: Positive electrode current collector, 4B: Negative electrode collector 4C: Surface of the positive electrode current collector facing the positive electrode plate side, 4D: Surface of the negative electrode current collector facing the negative electrode plate side, 5 ... Connection portion, 6 ... Tip, 9 ... Connection surface, 11 ... Laser, Reference numeral 12: flat portion, 13: side portion, 15: end portion, 31A: positive electrode current collecting member, 31B: negative electrode current collecting member, 32: tip portion, 33: connection portion, 34: laser, 35: laser, 41: positive electrode Current collecting member, 42: Laser, 51A: Positive current collecting member, 51B: Negative current collecting member, 52: Connection portion, 53: Laser, 54: Current collecting member, 61: Wound internal electrode body, 62: Positive electrode plate , 63 ... negative electrode plate, 64 ... separator, 65 ... positive electrode current collecting tab, 66 ... negative electrode current collecting tab, 67 ... winding core, 6 ... lithium secondary battery, 69A ... positive electrode internal terminal, 69B ... negative electrode internal terminal, 70A ... positive electrode external terminal, 70B ... negative electrode external terminal, 71A ... positive electrode battery cover, 71B ... negative electrode battery cover, 72 ... electrode lead member, 73 ... Battery case, 74: constricted portion, 75: pressure release hole, 76: elastic body (packing), 77: insulating polymer film, 78: pressure release valve, 79: metal foil, L 1 ... Thickness of flat part, L 2 ... Thickness of the convex connection portion, θ: Angle formed by laser and normal line 3A or normal line 3B.

Claims (43)

少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回又は積層して捲回型内部電極体又は積層型内部電極体を形成し、前記正極板及び負極板の端部を、それらの端部から電流を導出するために、アルミニウム又はアルミニウム合金からなる正極集電部材、及び銅又は銅合金からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続するリチウム二次電池の製造方法であって、
前記正極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記正極集電部材の接続部をパワー密度が5kW/mm以上のレーザーで溶融して、前記正極集電部材の接続部を前記正極板の端部に溶着することにより、前記正極板の端部を前記正極集電部材の接続部に接続することを特徴とするリチウム二次電池の製造方法。
A positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound or laminated via a separator to form a wound internal electrode body or a laminated internal electrode body, and the positive electrode plate and the negative electrode plate are formed. In order to derive a current from those ends, a positive current collector made of aluminum or an aluminum alloy, and a negative current collector made of copper or a copper alloy at predetermined locations (connections), respectively. A method for manufacturing a lithium secondary battery to be connected,
The surface roughness of the surface (connection surface) of the connection portion of the positive electrode current collector is set to 0.05 to 6.3 μm Ra as a center line average surface roughness Ra, and the power density of the connection portion of the positive electrode current collector is 5 kW / The end of the positive electrode plate is connected to the connection of the positive electrode current collector by melting with a laser having a diameter of 2 mm or more and welding the connection of the positive electrode current collector to the end of the positive electrode plate. A method for producing a lithium secondary battery.
前記正極集電部材及び前記負極集電部材のうちの少なくとも一方から電流を導出するための内部端子を、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に電極リード部材を用いて接続する請求項1に記載のリチウム二次電池の製造方法。An internal terminal for deriving a current from at least one of the positive current collecting member and the negative current collecting member, using an electrode lead member for at least one of the positive current collecting member and the negative current collecting member. The method for manufacturing a lithium secondary battery according to claim 1, wherein the connection is established. 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に、直接電池外部に電流を導出するように外部端子を配設する請求項1に記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to claim 1, wherein an external terminal is provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member so as to directly lead a current to the outside of the battery. 前記正極集電部材の接続部を、前記正極集電部材の前記正極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記接続面と前記正極板の端部の狭幅端面とを対向させた状態で接続する請求項1〜3のいずれかに記載のリチウム二次電池の製造方法。The connecting portion of the positive electrode current collecting member has a convex shape that continuously protrudes in a line toward the positive electrode plate of the positive electrode current collecting member, and the connecting surface is formed at a tip portion of the convex connecting portion. 4. The method for producing a lithium secondary battery according to claim 1, wherein the connection is performed in a state where the connection surface and the narrow end surface of the end of the positive electrode plate face each other. 前記正極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記正極板の端部に溶着する請求項4に記載のリチウム二次電池の製造方法。The laser is applied to the convex connection portion of the positive electrode current collecting member, and the convex connection portion is melted, so that the convex connection portion is welded to an end of the positive electrode plate. 5. The method for producing a lithium secondary battery according to 4. 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、十字形、Y字形、若しくはI字形の板状部材、又は一部に切り欠きを有する円板状部材とする請求項1〜5のいずれかに記載のリチウム二次電池の製造方法。At least one of the positive electrode current collecting member and the negative electrode current collecting member is a cross-shaped, Y-shaped, or I-shaped plate-shaped member, or a disk-shaped member having a cutout in part. 5. The method for producing a lithium secondary battery according to any one of 5. 前記正極集電部材を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする請求項4〜6のいずれかに記載のリチウム二次電池の製造方法。The positive electrode current collecting member has a shape having the convex connection portion and the other flat portion, and the thickness (L 2 ) of the convex connection portion and the thickness (L 1 ) of the flat portion The method for producing a lithium secondary battery according to any one of claims 4 to 6, wherein the difference is 0.1 mm or more. 前記正極集電部材の前記平坦部の厚み(L)を0.4mm以上とする請求項7に記載のリチウム二次電池の製造方法。Method for producing a lithium secondary battery according to claim 7, wherein the flat portion of the thickness of the positive electrode current collecting member (L 1) of 0.4mm or more. 前記正極集電部材における前記凸状の接続部の厚み(L)を0.6mm以上とする請求項7又は8に記載のリチウム二次電池の製造方法。9. The method for manufacturing a lithium secondary battery according to claim 7, wherein a thickness (L 2 ) of the convex connection portion in the positive electrode current collector is 0.6 mm or more. 前記正極集電部材の前記凸状の接続部に、前記レーザーを照射して前記凸状の接続部を溶融するときに、前記正極板の端部の前記狭幅端面を含む面の法線に対して、角度θ(0<θ≦90°)で前記レーザーを照射する請求項5〜9のいずれかに記載のリチウム二次電池の製造方法。When irradiating the laser to the convex connection portion of the positive electrode current collecting member to melt the convex connection portion, a normal to a surface including the narrow end surface of the end portion of the positive electrode plate is formed. The method for producing a lithium secondary battery according to claim 5, wherein the laser is irradiated at an angle θ (0 <θ ≦ 90 °). 前記レーザーが照射される範囲(照射点)の径を1mm以下とする請求項5〜10のいずれかに記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to any one of claims 5 to 10, wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less. 前記正極集電部材の前記接続部と前記正極板の端部との接続を補助する接続材を、前記正極板の端部及び前記正極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記正極板の端部と前記正極集電部材の前記接続部との間に挟時させて、前記正極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記正極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記正極集電部材の前記接続部及び前記接続材を、前記正極板の端部に溶着させる請求項1〜11のいずれかに記載のリチウム二次電池の製造方法。A connection material for assisting connection between the connection portion of the positive electrode current collector and the end of the positive electrode plate is applied to at least one of the end of the positive electrode plate and the connection portion of the positive electrode current collector. Alternatively, the laser is applied to the connection portion and the connection material of the positive electrode current collector while being sandwiched between an end portion of the positive electrode plate and the connection portion of the positive electrode current collector, and the positive electrode current collector is irradiated with the laser. 12. The method according to claim 1, wherein the connection part and the connection material of the electrical member are melted, and the melted connection part and the connection material of the positive electrode current collector are welded to an end of the positive electrode plate. 13. A method for producing the lithium secondary battery according to the above. 前記負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、前記負極集電部材の接続部を前記負極板の端部に溶着することにより、前記負極板の端部を前記負極集電部材の接続部に接続する請求項1〜12のいずれかに記載のリチウム二次電池の製造方法。The surface roughness of the surface (connection surface) of the connection portion of the negative electrode current collecting member is set to 0.05 to 6.3 μm Ra as a center line average surface roughness Ra, and the power density of the connection portion of the negative electrode current collecting member is 3 kW / The end portion of the negative electrode plate is connected to the connection portion of the negative electrode current collector by melting with a laser having a diameter of 2 mm or more and welding the connection portion of the negative electrode current collector to the end portion of the negative electrode plate. Item 13. The method for producing a lithium secondary battery according to any one of Items 1 to 12. 前記負極集電部材の接続部を、前記負極集電部材の前記負極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記負極板の端部近傍を屈曲させて前記負極板の端部近傍の側面部が前記負極集電部材の前記接続面に対向するようにし、前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続する請求項13に記載のリチウム二次電池の製造方法。The connecting portion of the negative electrode current collecting member has a convex shape that continuously protrudes in a row toward the negative electrode plate of the negative electrode current collecting member, and the connecting surface is formed at a tip portion of the convex connecting portion. Bending the vicinity of the end of the negative electrode plate so that the side surface near the end of the negative electrode plate faces the connection surface of the negative electrode current collector, and the side surface portion near the end of the negative electrode plate and The method for manufacturing a lithium secondary battery according to claim 13, wherein the connection surface of the negative electrode current collector is connected to the connection surface. 前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続するときに、前記負極板の端部近傍の側面部から前記負極集電部材の方向へ柱状晶が形成されるようにする請求項14に記載のリチウム二次電池の製造方法。When connecting the side surface near the end of the negative electrode plate and the connection surface of the negative electrode current collecting member, columnar crystals are formed from the side surface near the end of the negative electrode current collector toward the negative electrode current collecting member. The method for manufacturing a lithium secondary battery according to claim 14, wherein: 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記負極板の端部に溶着する請求項14又は15に記載のリチウム二次電池の製造方法。The laser is applied to the convex connection portion of the negative electrode current collecting member, and the convex connection portion is melted, so that the convex connection portion is welded to an end of the negative electrode plate. 16. The method for producing a lithium secondary battery according to 14 or 15. 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする請求項14〜16のいずれかに記載のリチウム二次電池の製造方法。At least one of the positive electrode current collecting member and the negative electrode current collecting member has a shape having the convex connection portion and the other flat portion, and the thickness (L 2 ) of the convex connection portion; method for producing a lithium secondary battery according to any one of claims 14 to 16 wherein the flat portion of the thickness (L 1) the difference between 0.1mm or more. 前記負極集電部材の前記平坦部の厚み(L)を0.2mm以上とする請求項17に記載のリチウム二次電池の製造方法。The method of manufacturing a lithium secondary battery according to claim 17, wherein the thickness of the flat portion of the negative electrode current collector member (L 1) of 0.2mm or more. 前記負極集電部材の前記凸状の接続部の厚み(L)が0.4mm以上である請求項17又は18に記載のリチウム二次電池の製造方法。Method for producing a lithium secondary battery according to the negative electrode current collector the convex connection portion of the thickness of the member (L 2) is according to claim 17 or 18 is 0.4mm or more. 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記負極集電部材の前記接続面に対向するように形成した前記負極板の端部近傍の側面部を含む面の法線に対して、角度θ(0≦θ≦30°)で前記レーザーを照射する請求項16〜19のいずれかに記載のリチウム二次電池の製造方法。The negative electrode plate formed so as to face the connection surface of the negative electrode current collecting member when the convex connection portion of the negative electrode current collecting member is irradiated with the laser to melt the convex connection portion. 20. The lithium secondary battery according to claim 16, wherein the laser is irradiated at an angle θ (0 ≦ θ ≦ 30 °) with respect to a normal to a surface including a side surface near an end of the lithium secondary battery. Method. 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記凸状の接続部の厚みをL(mm)、前記レーザーの前記パワー密度をE(kW/mm)としたときに、下記式(1)を満足する請求項16〜20のいずれかに記載のリチウム二次電池の製造方法。
Figure 2004220953
When the convex connecting portion of the negative electrode current collector is irradiated with the laser to melt the convex connecting portion, the thickness of the convex connecting portion is set to L 2 (mm), 21. The method for producing a lithium secondary battery according to claim 16, wherein the following expression (1) is satisfied when the power density is E (kW / mm 2 ).
Figure 2004220953
前記レーザーが照射される範囲(照射点)の径を1mm以下とする請求項16〜21のいずれかに記載のリチウム二次電池の製造方法。22. The method for manufacturing a lithium secondary battery according to claim 16, wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less. 前記負極集電部材の前記接続部と前記負極板の端部との接続を補助する接続材を、前記負極板の端部及び前記負極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記負極板の端部と前記負極集電部材の前記接続部との間に挟時させて、前記負極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記負極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記負極集電部材の前記接続部及び前記接続材を、前記負極板の端部に溶着させる請求項13〜22のいずれかに記載のリチウム二次電池の製造方法。A connection material for assisting connection between the connection part of the negative electrode current collector and the end of the negative electrode plate is applied to at least one of the end part of the negative electrode plate and the connection part of the negative electrode current collector. Or by irradiating the laser to the connection portion and the connection material of the negative electrode current collection member while being sandwiched between an end portion of the negative electrode plate and the connection portion of the negative electrode current collection member, 23. The method according to claim 13, wherein the connecting portion and the connecting material of the electrical member are melted, and the melted connecting portion and the connecting material of the negative electrode current collecting member are welded to an end of the negative electrode plate. A method for producing the lithium secondary battery according to the above. 少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板をセパレータを介して捲回又は積層して捲回型内部電極体又は積層型内部電極体を形成し、前記正極板及び負極板の端部を、それらの端部から電流を導出するために、アルミニウム又はアルミニウム合金からなる正極集電部材、及び銅又は銅合金からなる負極集電部材のそれぞれの所定箇所(接続部)にそれぞれ接続するリチウム二次電池の製造方法であって、
前記負極集電部材の接続部の表面(接続面)の表面粗さを中心線平均表面粗さRaで0.05〜6.3μmRaとし、前記負極集電部材の接続部をパワー密度が3kW/mm以上のレーザーで溶融して、前記負極集電部材の接続部を前記負極板の端部に溶着することにより、前記負極板の端部を前記負極集電部材の接続部に接続することを特徴とするリチウム二次電池の製造方法。
A positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound or laminated via a separator to form a wound internal electrode body or a laminated internal electrode body, and the positive electrode plate and the negative electrode plate are formed. In order to derive a current from those ends, a positive current collector made of aluminum or an aluminum alloy, and a negative current collector made of copper or a copper alloy at predetermined locations (connections), respectively. A method for manufacturing a lithium secondary battery to be connected,
The surface roughness of the surface (connection surface) of the connection portion of the negative electrode current collecting member is set to 0.05 to 6.3 μm Ra as a center line average surface roughness Ra, and the power density of the connection portion of the negative electrode current collecting member is 3 kW / The end of the negative electrode plate is connected to the connection portion of the negative electrode current collector by melting with a laser having a diameter of 2 mm or more and welding the connection portion of the negative electrode current collector to the end of the negative electrode plate. A method for producing a lithium secondary battery.
前記正極集電部材及び前記負極集電部材のうちの少なくとも一方から電流を導出するための内部端子を、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に電極リード部材を用いて接続する請求項24に記載のリチウム二次電池の製造方法。An internal terminal for deriving a current from at least one of the positive current collecting member and the negative current collecting member, using an electrode lead member for at least one of the positive current collecting member and the negative current collecting member. The method for manufacturing a lithium secondary battery according to claim 24, wherein the connection is established. 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方に、直接電池外部に電流を導出するように外部端子を配設する請求項24に記載のリチウム二次電池の製造方法。25. The method for manufacturing a lithium secondary battery according to claim 24, wherein an external terminal is provided on at least one of the positive electrode current collecting member and the negative electrode current collecting member so as to directly draw a current to the outside of the battery. 前記負極集電部材の接続部を、前記負極集電部材の前記負極板に向かって列状に連続して突出した凸状とし、凸状の前記接続部の先端部分に前記接続面を形成し、前記負極板の端部近傍を屈曲させて前記負極板の端部近傍の側面部が前記負極集電部材の前記接続面に対向するようにし、前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続する請求項24〜26のいずれかに記載のリチウム二次電池の製造方法。The connecting portion of the negative electrode current collecting member has a convex shape that continuously protrudes in a row toward the negative electrode plate of the negative electrode current collecting member, and the connecting surface is formed at a tip portion of the convex connecting portion. Bending the vicinity of the end of the negative electrode plate so that the side surface near the end of the negative electrode plate faces the connection surface of the negative electrode current collector, and the side surface portion near the end of the negative electrode plate and The method for manufacturing a lithium secondary battery according to any one of claims 24 to 26, wherein the lithium secondary battery is connected to the connection surface of a negative electrode current collector. 前記負極板の端部近傍の側面部と前記負極集電部材の前記接続面とを接続するときに、前記負極板の端部近傍の側面部から前記負極集電部材の方向へ柱状晶が形成されるようにする請求項27に記載のリチウム二次電池の製造方法。When connecting the side surface near the end of the negative electrode plate and the connection surface of the negative electrode current collecting member, columnar crystals are formed from the side surface near the end of the negative electrode current collector toward the negative electrode current collecting member. 28. The method for manufacturing a lithium secondary battery according to claim 27, wherein: 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して、前記凸状の接続部を溶融することにより、前記凸状の接続部を前記負極板の端部に溶着する請求項27又は28に記載のリチウム二次電池の製造方法。The laser is applied to the convex connection portion of the negative electrode current collecting member, and the convex connection portion is melted, so that the convex connection portion is welded to an end of the negative electrode plate. 29. The method for producing a lithium secondary battery according to 27 or 28. 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方を、十字形、Y字形、若しくはI字形の板状部材、又は一部に切り欠きを有する円板状部材とする請求項24〜29のいずれかに記載のリチウム二次電池の製造方法。25. At least one of the positive electrode current collecting member and the negative electrode current collecting member is a cross-shaped, Y-shaped, or I-shaped plate-shaped member, or a disk-shaped member having a cutout in part. 30. The method for producing a lithium secondary battery according to any one of the items 29. 前記負極集電部材を、前記凸状の接続部とそれ以外の平坦部とを有する形状とし、前記凸状の接続部の厚み(L)と、前記平坦部の厚み(L)との差を0.1mm以上とする請求項27〜30のいずれかに記載のリチウム二次電池の製造方法。The negative electrode current collector has a shape having the convex connection portion and the other flat portion, and a thickness (L 2 ) of the convex connection portion and a thickness (L 1 ) of the flat portion 31. The method for manufacturing a lithium secondary battery according to claim 27, wherein the difference is 0.1 mm or more. 前記負極集電部材の前記平坦部の厚み(L)を0.2mm以上とする請求項31に記載のリチウム二次電池の製造方法。The method of manufacturing a lithium secondary battery according to claim 31, wherein the thickness of the flat portion of the negative electrode current collector member (L 1) of 0.2mm or more. 前記負極集電部材の前記凸状の接続部の厚み(L)が0.4mm以上である請求項31又は32に記載のリチウム二次電池の製造方法。Method for producing a lithium secondary battery according to the negative electrode current collector the convex connection portion of the thickness of the member (L 2) according to claim 31 or 32 is 0.4mm or more. 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記負極集電部材の前記接続面に対向するように形成した前記負極板の端部近傍の側面部を含む面の法線に対して、角度θ(0≦θ≦30°)で前記レーザーを照射する請求項29〜33のいずれかに記載のリチウム二次電池の製造方法。The negative electrode plate formed so as to face the connection surface of the negative electrode current collecting member when the convex connection portion of the negative electrode current collecting member is irradiated with the laser to melt the convex connection portion. 34. The lithium secondary battery according to claim 29, wherein the laser is irradiated at an angle [theta] (0≤ [theta] ≤30 [deg.]) With respect to a normal to a surface including a side surface near the end of the lithium secondary battery. Method. 前記負極集電部材の前記凸状の接続部に前記レーザーを照射して前記凸状の接続部を溶融するときに、前記凸状の接続部の厚みをL(mm)、前記レーザーの前記パワー密度をE(kW/mm)としたときに、下記式(2)を満足する請求項29〜34のいずれかに記載のリチウム二次電池の製造方法。
Figure 2004220953
When the convex connecting portion of the negative electrode current collector is irradiated with the laser to melt the convex connecting portion, the thickness of the convex connecting portion is set to L 2 (mm), 35. The method for producing a lithium secondary battery according to claim 29, wherein the following formula (2) is satisfied when the power density is E (kW / mm 2 ).
Figure 2004220953
前記レーザーが照射される範囲(照射点)の径を1mm以下とする請求項29〜35のいずれかに記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to any one of claims 29 to 35, wherein a diameter of a range (irradiation point) irradiated with the laser is 1 mm or less. 前記負極集電部材の前記接続部と前記負極板の端部との接続を補助する接続材を、前記負極板の端部及び前記負極集電部材の前記接続部のうちの少なくとも一方に塗布し、又は前記負極板の端部と前記負極集電部材の前記接続部との間に挟時させて、前記負極集電部材の前記接続部及び前記接続材に前記レーザーを照射し、前記負極集電部材の前記接続部及び前記接続材を溶融させて、溶融した前記負極集電部材の前記接続部及び前記接続材を、前記負極板の端部に溶着させる請求項24〜36のいずれかに記載のリチウム二次電池の製造方法。A connection material for assisting connection between the connection part of the negative electrode current collector and the end of the negative electrode plate is applied to at least one of the end part of the negative electrode plate and the connection part of the negative electrode current collector. Or by irradiating the laser to the connection portion and the connection material of the negative electrode current collection member while being sandwiched between an end portion of the negative electrode plate and the connection portion of the negative electrode current collection member, 37. The method according to claim 24, wherein the connection portion and the connection material of the electrical member are melted, and the melted connection portion and the connection material of the negative electrode current collection member are welded to an end of the negative electrode plate. A method for producing the lithium secondary battery according to the above. 前記レーザーが連続波である請求項1〜37のいずれかに記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to claim 1, wherein the laser is a continuous wave. 前記レーザーがYAGレーザーである請求項1〜38のいずれかに記載のリチウム二次電池の製造方法。The method for producing a lithium secondary battery according to any one of claims 1 to 38, wherein the laser is a YAG laser. 前記リチウム二次電池の電池容量が2Ah以上である請求項1〜39のいずれかに記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to any one of claims 1 to 39, wherein a battery capacity of the lithium secondary battery is 2 Ah or more. 前記リチウム二次電池が車載用電池である請求項1〜40のいずれかに記載のリチウム二次電池の製造方法。The method for manufacturing a lithium secondary battery according to any one of claims 1 to 40, wherein the lithium secondary battery is a vehicle-mounted battery. 前記リチウム二次電池が電気自動車用又はハイブリッド電気自動車用電池である請求項41に記載のリチウム二次電池の製造方法。42. The method for manufacturing a lithium secondary battery according to claim 41, wherein the lithium secondary battery is a battery for an electric vehicle or a hybrid electric vehicle. 前記リチウム二次電池がエンジン起動用電池である請求項41又は42に記載のリチウム二次電池の製造方法。43. The method for manufacturing a lithium secondary battery according to claim 41, wherein the lithium secondary battery is an engine starting battery.
JP2003007921A 2003-01-16 2003-01-16 Manufacturing method of lithium secondary battery Pending JP2004220953A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007921A JP2004220953A (en) 2003-01-16 2003-01-16 Manufacturing method of lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007921A JP2004220953A (en) 2003-01-16 2003-01-16 Manufacturing method of lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2004220953A true JP2004220953A (en) 2004-08-05

Family

ID=32897873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007921A Pending JP2004220953A (en) 2003-01-16 2003-01-16 Manufacturing method of lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2004220953A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035495A1 (en) * 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008035495A1 (en) * 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
US7976979B2 (en) 2006-09-20 2011-07-12 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
KR101057954B1 (en) 2006-09-20 2011-08-18 파나소닉 주식회사 Secondary Battery and Manufacturing Method of Secondary Battery
US8142922B2 (en) 2006-09-20 2012-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery

Similar Documents

Publication Publication Date Title
US7214250B2 (en) Lithium secondary cell
KR102144945B1 (en) Battery module
JP3594555B2 (en) Manufacturing method of sealed battery and sealed battery
JP5587061B2 (en) Energizing block for resistance welding, sealed battery manufacturing method using the energizing block, and sealed battery
JP5207046B2 (en) Sealed battery and manufacturing method thereof
JP3066338B2 (en) Battery
JP2000268781A (en) Sealing plate for sealed battery, sealed battery and manufacture thereof
US11139519B2 (en) Sealed cell and method for manufacturing same
JP2014212012A (en) Method of manufacturing secondary battery and secondary battery
JP6853762B2 (en) Secondary battery
JP2018010815A (en) Power storage element and method for manufacturing power storage element
US10615447B2 (en) Secondary cell and manufacturing method thereof
JPH1116577A (en) Nonaqueous electrolyte battery
US20240021965A1 (en) Battery and manufacturing method for battery
JP2004172038A (en) Lithium secondary battery
JP2001283824A (en) Lithium secondary battery
JP2004220953A (en) Manufacturing method of lithium secondary battery
JP2020004643A (en) Power storage device
JP2001118561A (en) Current-collecting structure and secondary battery
JP3568387B2 (en) Manufacturing method of sealed battery
EP3105802B1 (en) Electrical storage device and manufacturing method for electrical storage device
CN220574982U (en) Ultrasonic welding equipment
JP3568378B2 (en) Manufacturing method of sealed battery
JP3828805B2 (en) Bonded body of metal foil and metal member and method for manufacturing the same
CN219832960U (en) Battery and battery pack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090728

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100105