JPH1116577A - Nonaqueous electrolyte battery - Google Patents

Nonaqueous electrolyte battery

Info

Publication number
JPH1116577A
JPH1116577A JP9170034A JP17003497A JPH1116577A JP H1116577 A JPH1116577 A JP H1116577A JP 9170034 A JP9170034 A JP 9170034A JP 17003497 A JP17003497 A JP 17003497A JP H1116577 A JPH1116577 A JP H1116577A
Authority
JP
Japan
Prior art keywords
battery
electrode
active material
lead terminal
current collecting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9170034A
Other languages
Japanese (ja)
Inventor
Mitsunori Oda
光徳 織田
Takenori Ishizu
竹規 石津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Shin Kobe Electric Machinery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Kobe Electric Machinery Co Ltd filed Critical Shin Kobe Electric Machinery Co Ltd
Priority to JP9170034A priority Critical patent/JPH1116577A/en
Publication of JPH1116577A publication Critical patent/JPH1116577A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Secondary Cells (AREA)
  • Connection Of Batteries Or Terminals (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Primary Cells (AREA)

Abstract

PROBLEM TO BE SOLVED: To eliminate deterioration of an output characteristic caused by increase of internal resistance due to a shape of a lead terminal portion and a welding condition, or generation of internal short circuit in the case of forming an electrode group using a foil-like collector base body in a nonaqueous electrolye battery. SOLUTION: A lead terminal portion Ba of an electrode is formed to be projected from an electrode without applying an active material to a portion of a collector base body, and formed is a continuous curve line E (1 mm<= radius of curvature <=10 mm) ranging from a top side periphery C of an active material-applied portion A to a periphery of the lead terminal portion Ba. An effective collector terminal shape is provided thereby without impairing strength of the electrode to improve an output characteristic and reliability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電池に関し、特に
箔状の集電基体を用いた積層式あるいは捲回式の電極群
構造を有する非水電解液電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and more particularly to a non-aqueous electrolyte battery having a laminated or wound electrode group structure using a foil-like current collector.

【0002】[0002]

【従来の技術】従来、一般に広く用いられている二次電
池としては、鉛蓄電池、ニッケル・カドミウム電池等の
水溶液系二次電池が主流である。しかしこれらの水溶液
系二次電池は、水の分解電位を越える動作電圧を得られ
ないので、エネルギー密度が低いという欠点を有してい
た。そこで最近では、リチウムイオン電池に代表される
非水電解液二次電池の研究開発が盛んである。この非水
電解液二次電池は、動作電圧が高く、高エネルギー密度
を有し、サイクル特性に優れている。そのため、民生用
の小型電池のみならず、省エネルギー、環境保全の観点
から電力貯蔵用や電気自動車用として用いられる高電
圧、高エネルギー密度、高出力の電池への展開が期待さ
れている。
2. Description of the Related Art Conventionally, aqueous secondary batteries such as lead-acid batteries, nickel-cadmium batteries, and the like are mainly used as secondary batteries that are widely used. However, these aqueous secondary batteries have a drawback that the energy density is low because an operating voltage exceeding the decomposition potential of water cannot be obtained. Therefore, recently, research and development of non-aqueous electrolyte secondary batteries represented by lithium ion batteries have been actively conducted. This non-aqueous electrolyte secondary battery has a high operating voltage, a high energy density, and excellent cycle characteristics. Therefore, development is expected not only for small-sized batteries for consumer use but also for high-voltage, high-energy density, and high-output batteries used for power storage and electric vehicles from the viewpoint of energy saving and environmental conservation.

【0003】しかしながら、非水電解液二次電池は電解
液のイオン伝導性が低いため電池の内部抵抗が大きく、
水溶液系電池に比べ高出力を得ることは難しい。この点
を改善するため、一般に非水電解液二次電池において
は、電極面積をできるだけ大きくして電池の内部抵抗を
低減し、出力特性の向上を計っている。電極面積を大き
くするためには電極厚さを薄くする必要があり、従って
集電基体もできる限り薄くする必要がある。このため一
般には、例えば特公平4−52592号公報に開示され
ているように、厚さが1μmから100μm程度の箔状
の集電基体が用いられている。
However, a non-aqueous electrolyte secondary battery has a low internal conductivity due to the low ionic conductivity of the electrolyte.
It is difficult to obtain a high output compared to an aqueous battery. In order to improve this point, generally, in a non-aqueous electrolyte secondary battery, the electrode area is made as large as possible to reduce the internal resistance of the battery and to improve the output characteristics. In order to increase the electrode area, it is necessary to reduce the electrode thickness, and therefore, it is necessary to make the current collecting substrate as thin as possible. For this reason, a foil-shaped current collecting base having a thickness of about 1 μm to 100 μm is generally used, as disclosed in, for example, Japanese Patent Publication No. Hei 4-52592.

【0004】[0004]

【発明が解決しようとする課題】前記箔状集電基体を有
する電極を電池集電端子に接続するには、一般には電極
に活物質層を設けない無地部を確保し、そこにリード端
子を超音波溶接等により溶接し、更にこのリード端子を
電池集電端子へ溶接する、といった手段が用いられる。
しかし、この方法では溶接部における抵抗損失が懸念さ
れ、高出力特性を狙った電池への適用は難しい。また、
電極無地部へリード端子を溶接するとその箇所に鋭利な
突起部が形成されやすく、電極群を構成する際に短絡を
引き起こし易いといった構造上の欠点を有していた。更
に、これら箔状集電基体への活物質層の形成は、箔状集
電基体に切断分割される前の帯状の箔状体へ連続的に活
物質スラリを塗布して実施されるため、無地部を形成す
るには間欠塗布機能を有する特殊な塗布装置が必要とな
り、製造工程が複雑化し、生産速度が低下する。本発明
はこれらの問題を解決する手段を提供する。
In order to connect the electrode having the foil-shaped current collecting base to the battery current collecting terminal, generally, a solid portion where no active material layer is provided on the electrode is secured, and a lead terminal is provided there. Means such as welding by ultrasonic welding or the like and further welding the lead terminal to the battery current collecting terminal are used.
However, in this method, there is a concern about resistance loss in a welded portion, and it is difficult to apply the method to a battery aimed at high output characteristics. Also,
When the lead terminal is welded to the uncoated portion of the electrode, a sharp projection is easily formed at that portion, and there is a structural defect that a short circuit is easily caused when forming the electrode group. Further, the formation of the active material layer on these foil-like current collectors is carried out by continuously applying the active material slurry to the band-like foil before being cut and divided into the foil-like current collectors. In order to form the uncoated portion, a special coating device having an intermittent coating function is required, which complicates the manufacturing process and reduces the production speed. The present invention provides a means for solving these problems.

【0005】[0005]

【課題を解決するための手段】上記問題を解決するた
め、本発明は、正極板および負極板の内の少なくとも一
方が箔状の電極集電基体表面へ活物質層を形成した構造
を有し、正極板と負極板をセパレータを介して複数枚積
層、あるいは渦巻き状に捲回して電極群を構成する非水
電解液電池において、箔状集電基体の一部であって活物
質層の形成されていない無地部分を電極群より突出さ
せ、これを電池集電端子へ直接接続して集電する構造を
有し、かつ、突出した無地部分の周縁から活物質層を有
する部位の周縁へかけて連続した曲線を形成する。ま
た、上記箔状集電基体において、突出した無地部分の周
縁から活物質層を有する部位の周縁へかけて形成される
曲線の曲率半径を、1mm以上10mm以下とする。
In order to solve the above problems, the present invention has a structure in which at least one of a positive electrode plate and a negative electrode plate has an active material layer formed on the surface of a foil-like electrode current collecting substrate. In a non-aqueous electrolyte battery in which a positive electrode plate and a negative electrode plate are stacked with a separator interposed therebetween or spirally wound to form an electrode group, the active material layer is formed as a part of the foil-like current collecting base The uncoated solid portion is protruded from the electrode group, has a structure in which this is directly connected to the battery current collecting terminal to collect current, and extends from the periphery of the protruded solid portion to the periphery of the portion having the active material layer. To form a continuous curve. In the foil-like current collecting base, the radius of curvature of a curve formed from the periphery of the protruding solid portion to the periphery of the portion having the active material layer is 1 mm or more and 10 mm or less.

【0006】[0006]

【発明の実施の形態】本発明の実施の形態について説明
する。図1が本発明に係る電池に用いられる電極の構
造、図2、3が従来技術に係る電池に用いられる電極の
構造である。これらの図を用いて説明する。なお、以下
の説明は積層式電極群を形成することを前提としている
が、本発明は電極群の構造(積層式、捲回式など)を限
定するものではない。従来技術では、図2のように電極
Aへ無地部Fを設け、そこへリード端子Gを超音波溶接
等により溶接していた。この場合、溶接部Hが確実に導
通されないと電池特性、特に出力特性に大きな影響を及
ぼす。溶接機の稼働状態やワークの表面状態などで溶接
状態は容易に変化するので、量産時に安定した性能を確
保するためには極めて厳しい工程管理を行う必要があ
る。
Embodiments of the present invention will be described. FIG. 1 shows the structure of the electrode used in the battery according to the present invention, and FIGS. 2 and 3 show the structure of the electrode used in the battery according to the prior art. The description will be made with reference to these drawings. In the following description, it is assumed that a stacked electrode group is formed. However, the present invention does not limit the structure of the electrode group (such as a stacked type or a wound type). In the prior art, as shown in FIG. 2, an uncoated portion F was provided on an electrode A, and a lead terminal G was welded thereto by ultrasonic welding or the like. In this case, if the weld H is not reliably conducted, the battery characteristics, particularly the output characteristics, are greatly affected. Since the welding state easily changes depending on the operating state of the welding machine, the surface state of the work, and the like, it is necessary to perform extremely strict process control to ensure stable performance during mass production.

【0007】また、同図に示すように、無地部Fの表面
へリード端子Gを溶接すると、リード端子の形状によっ
ては鋭利な突起部Iが形成されてしまう。一般に非水電
解液二次電池に用いられるセパレータは厚さ数10ミク
ロンの樹脂フィルムであり、材質によってはこの突起部
Iによりセパレータを損傷し、短絡を引き起こす心配が
ある。従って従来はリード端子Gを溶接後、無地部Fの
表面にリード端子Gを被覆するように保護テープを貼り
短絡を防止していた。このため製造工程が更に複雑化し
ていた。
As shown in FIG. 1, when the lead terminal G is welded to the surface of the uncoated portion F, a sharp projection I is formed depending on the shape of the lead terminal. Generally, a separator used for a non-aqueous electrolyte secondary battery is a resin film having a thickness of several tens of microns, and depending on the material, there is a concern that the protrusion I may damage the separator and cause a short circuit. Therefore, conventionally, after welding the lead terminal G, a protective tape was applied to the surface of the uncoated portion F so as to cover the lead terminal G to prevent short circuit. For this reason, the manufacturing process has been further complicated.

【0008】これに代わる方法として、図3に示すよう
に集電基体の一部を突出させ、これをリード端子部Bと
して用いる方法が考えられる。これによれば、リード端
子部Bの溶接不良による電池特性低下の心配はなく、ま
たテープ被覆等の工程が省略できる。しかし、前述のよ
うに非水電解液二次電池に用いる集電基体は厚さが10
ミクロン程度と薄い。このため、例えば組立工程中にお
いてリード端子部Bを電池上蓋などに配置された電池集
電端子へ溶接する場合や、あるいは通常の使用状態にお
いて、電池外部より衝撃が加わった場合など、電極板A
より突出して形成されたリード端子部Bにねじれや引っ
張りの応力が集中しやすく、リード端子部Bが破断して
しまうといった欠点がある。このような問題は、同様の
リード端子部構造を有する従来の電池、例えば鉛蓄電池
やアルカリ蓄電池においては、集電体の厚さが数百ミク
ロン〜数ミリと厚いために議論されることはなく、箔体
を集電基体として用いる非水電解液電池に固有の問題と
なっている。
As an alternative method, a method of protruding a part of the current collecting base and using it as a lead terminal B as shown in FIG. According to this, there is no fear that the battery characteristics may be degraded due to poor welding of the lead terminal portion B, and the steps such as tape covering can be omitted. However, as described above, the current collecting base used for the non-aqueous electrolyte secondary battery has a thickness of 10
As thin as a micron. For this reason, for example, when the lead terminal portion B is welded to the battery current collecting terminal arranged on the battery upper cover or the like during the assembling process, or when a shock is applied from outside the battery in a normal use state, the electrode plate A
There is a disadvantage that torsional or tensile stress tends to concentrate on the protruding lead terminal portion B, and the lead terminal portion B is broken. Such a problem is not discussed in conventional batteries having a similar lead terminal structure, for example, in lead storage batteries and alkaline storage batteries, because the thickness of the current collector is as large as several hundred microns to several millimeters. This is a problem inherent to a non-aqueous electrolyte battery using a foil as a current collecting substrate.

【0009】図1に示す本発明の実施形態では、リード
端子部Baとして用いる基体突起部の周縁Dから電極板
の周縁Cへかけて連続した曲線Eを形成している。この
ような形状を得るには、予めリード端子部として用いる
突起形状を有した形状に金型で打ち抜くか、カッターや
レーザ、超音波等で連続的に曲線を形成しながら切断す
る等の方法が考えられる。いずれの方法でも、連続した
曲線を形成して切断することで突出したリード部Baの
強度が増し該リード部を電池集電端子へ溶接したり、あ
るいは完成電池へ外部から衝撃が加わった場合でも破断
や亀裂を生じる恐れがない。また、加工形状は電極切断
時に決定されるため、活物質の連続塗布が可能となり、
工程が簡略化され、生産性が向上する。
In the embodiment of the present invention shown in FIG. 1, a continuous curve E is formed from the periphery D of the base projection used as the lead terminal Ba to the periphery C of the electrode plate. In order to obtain such a shape, there is a method of punching out with a mold in a shape having a projection shape used in advance as a lead terminal portion, or cutting while continuously forming a curve with a cutter, laser, ultrasonic wave or the like. Conceivable. In either method, the strength of the protruding lead portion Ba is increased by forming and cutting a continuous curve, and the lead portion is welded to the battery current collecting terminal, or even when an external impact is applied to the completed battery. There is no risk of breaking or cracking. Also, since the processing shape is determined at the time of cutting the electrode, continuous application of the active material becomes possible,
The process is simplified, and the productivity is improved.

【0010】[0010]

【実施例】本発明の実施例を説明する。以下に詳述する
電池の種別、形状、寸法はあくまで一例であり、本発明
を限定するものではない。なお、以下の記述において、
電解箔など表面に凹凸を有する箔体の利用を考慮し、集
電基体の「厚さ」は以下の式で算出するものとした。 厚さ=集電基体単位面積当たりの重量÷集電基体の真密
度 正極板として、厚さ20μmのアルミニウム箔の両面へ
コバルト酸リチウムを主体とする活物質層を形成したも
のと、負極板として、厚さ20μmの銅箔の両面へ炭素
を主体とする活物質層を形成したものを用いてリチウム
二次電池を作製する。電極寸法はいずれも縦100m
m、横200mm、厚さ0.18mmである。両極板
を、厚さ0.02mmのポリエチレン多孔性フィルムを
介して交互に積層し、電極群を構成する。積層枚数は正
極80枚、負極81枚である。以上のように構成される
電極群に用いる電極として、図1に示す形状を有するも
のを両極に用い、本発明電池aを作製した。この時の図
1中の半径rの値は4mmとした。
An embodiment of the present invention will be described. The types, shapes, and dimensions of the batteries described below are merely examples, and do not limit the present invention. In the following description,
In consideration of the use of a foil having an uneven surface such as an electrolytic foil, the “thickness” of the current collector was calculated by the following formula. Thickness = weight per unit area of current collecting substrate / true density of current collecting substrate As a positive electrode plate, an aluminum foil with a thickness of 20 µm was formed on both sides with an active material layer mainly composed of lithium cobalt oxide, and as a negative electrode plate A lithium secondary battery is manufactured using a copper foil having a thickness of 20 μm and an active material layer mainly composed of carbon formed on both sides. Each electrode is 100m long
m, width 200 mm, thickness 0.18 mm. The bipolar plates are alternately laminated via a 0.02 mm-thick polyethylene porous film to form an electrode group. The number of layers is 80 positive electrodes and 81 negative electrodes. The battery a of the present invention was manufactured by using electrodes having the shape shown in FIG. 1 for both electrodes as the electrodes used for the electrode group configured as described above. At this time, the value of the radius r in FIG. 1 was 4 mm.

【0011】また、図2に示すように、予め活物質の間
欠塗布により無地部を設けた電極へ、リード端子(厚さ
20μm、材質は正極用がAl、負極用がNi)を超音
波溶接により溶接した形状の電極を両極に用い、従来電
池bを作製した。この電池に限り、電極横寸法を210
mmとし、無地部幅は10mmとした。また、図3に示
す形状を有する電極を両極に用い、従来電池cを作製し
た。この時の電極上辺周縁Cとリード端子部周縁Dのな
す角度は90度とし、周縁Cから周縁Dへかけて連続し
た曲線が形成されていない。上記各電池a、b、cの形
状は図4の通りで、電極群Mを電池容器J内に収納後、
電池a、cはリード端子部Ba、Bを、又電池bはリー
ド端子Gを電池集電端子Kに接続し、上蓋Lで電池容器
Jの開口を閉じる。電極群Mと電池集電端子Kの接続形
状や電池外形(上蓋L、電池容器J)、電解液の種類・
量はすべて同一とした。
As shown in FIG. 2, a lead terminal (thickness: 20 μm, material: Al for a positive electrode, Ni for a negative electrode) is ultrasonically welded to an electrode provided with a solid portion in advance by intermittent application of an active material. A conventional battery "b" was manufactured using electrodes of a shape welded by the method for both electrodes. For this battery only, the electrode lateral dimension is 210
mm and the uncoated part width was 10 mm. A conventional battery c was manufactured using electrodes having the shape shown in FIG. 3 for both electrodes. At this time, the angle between the upper edge C of the electrode and the outer edge D of the lead terminal portion is 90 degrees, and no continuous curve is formed from the outer edge C to the outer edge D. The shape of each of the batteries a, b, and c is as shown in FIG.
The batteries a and c connect the lead terminal portions Ba and B, and the battery b connects the lead terminal G to the battery current collecting terminal K. The opening of the battery container J is closed by the upper lid L. The connection shape between the electrode group M and the battery current collecting terminal K, the battery outer shape (top cover L, battery container J), the type of electrolyte,
All amounts were the same.

【0012】図5は本発明電池、及び従来電池の放電レ
ート特性を示した図である。本発明電池aは、従来電池
bに比べて高率放電特性に優れていて、従来電池cとほ
ぼ同一レベルであることがわかる。図6は本発明電池
a、及び従来電池b、cの内部抵抗をインピーダンス測
定法(周囲温度20℃、周波数10kHz)により測定
した結果である。本発明電池aは、従来電池bに比べて
内部抵抗が低いことがわかる。また、従来電池cは、本
発明電池aとほぼ同じ内部抵抗であるが、本発明電池a
に比べばらつきが大きい。電池を解体して更に詳細に調
べた結果、従来電池cのリード端子部の幾つかには、本
発明電池aでは認められない亀裂や破断が生じているこ
とがわかった。このため導通性が損なわれ内部抵抗にば
らつきが生じたものと考えられる。
FIG. 5 is a diagram showing the discharge rate characteristics of the battery of the present invention and the conventional battery. It can be seen that the battery a of the present invention is superior to the conventional battery b in high-rate discharge characteristics, and is almost at the same level as the conventional battery c. FIG. 6 shows the results of measuring the internal resistance of the battery a of the present invention and the conventional batteries b and c by an impedance measurement method (ambient temperature: 20 ° C., frequency: 10 kHz). It can be seen that the battery a of the present invention has lower internal resistance than the conventional battery b. The conventional battery c has substantially the same internal resistance as the battery a of the present invention, but the battery a of the present invention
The variation is large compared to. As a result of disassembling the battery and examining it in more detail, it was found that some of the lead terminals of the conventional battery c had cracks or breaks which were not observed in the battery a of the present invention. It is considered that the conductivity was impaired and the internal resistance varied.

【0013】正極板の集電基体として用いたアルミニウ
ム箔について、図7のような試験片を作製し、図中の半
径rを変えて引っ張り強度を調べた。この試験は、例え
ば電池集電端子への溶接時にリード端子部位置を機械的
に矯正するなど、電池組立工程中にリード端子へ力が加
えられることを想定したものである。図8はその結果で
ある。r=0では強度が極端に低下し、またばらつきも
大きいことがわった。安定した強度を得るにはr≧1m
mとすることが必要である。図9は本発明電池aで、電
極形状を示す図1においてリード端子部の曲率半径rの
値を変えたものを数種類用意し、振幅1mm、周波数5
0Hzで一定方向に60分間振動を与えた後の内部抵抗
の変化を調べた結果である。この試験は、通常の電池使
用中に外部より加わる振動を想定したものである。r=
0でばらつきが大きい点は図6と同傾向であるが、rの
値が大きくなるとばらつきが増大し、抵抗零の電池が発
生することがわかる。これはリード端子部の強度が増し
たために外部からの振動が活物質塗布部へ伝わり易くな
り、活物質の脱落に伴うショートが発生しやすくなった
ものと考えられる。このことから、半径rの値は10m
m以内に収める必要がある。
With respect to the aluminum foil used as the current collecting base of the positive electrode plate, test pieces as shown in FIG. 7 were prepared, and the tensile strength was examined by changing the radius r in the figure. This test assumes that a force is applied to the lead terminal during the battery assembly process, such as mechanically correcting the position of the lead terminal during welding to the battery current collecting terminal. FIG. 8 shows the result. At r = 0, it was found that the strength was extremely reduced and the variation was large. R ≧ 1m to obtain stable strength
m. FIG. 9 shows a battery a of the present invention prepared by changing the value of the radius of curvature r of the lead terminal in FIG.
It is a result of examining a change in internal resistance after applying vibration in a fixed direction at 0 Hz for 60 minutes. This test is based on the assumption that external vibration is applied during normal battery use. r =
The fact that the variation is large at 0 is the same as in FIG. 6, but it can be seen that the variation increases as the value of r increases, and a battery with zero resistance is generated. This is presumably because the strength of the lead terminal portion was increased, so that vibration from the outside was easily transmitted to the active material application portion, and a short circuit was likely to occur due to the falling off of the active material. From this, the value of the radius r is 10 m
m.

【0014】なお、上記実施例では集電基体の厚さを2
0μmとしたが、これ以外の厚さの箔を用いた場合でも
本発明の効果が発揮されることは言うまでもない。但
し、厚さが薄過ぎると出力特性は低下する恐れがあり、
また製造上の取扱いを考慮すると、集電基体厚さは1μ
m以上とするのが望ましい。また、厚過ぎると電池エネ
ルギー密度が低下し、箔基体の利用意義がないため、上
限は100μm以下とするのが望ましい。また、集電基
体の材質については、非水電解液電池の平均的な動作電
位の範囲(約2V〜5V)で安定であり、電極形成が可
能な材質であれば限定しない。また、箔の表面形状(凹
凸や穿孔の有無など)に関しても限定しない。
In the above embodiment, the thickness of the current collecting base is 2
Although the thickness is set to 0 μm, it goes without saying that the effects of the present invention can be exerted even when a foil having any other thickness is used. However, if the thickness is too thin, the output characteristics may deteriorate,
In consideration of the handling in manufacturing, the thickness of the current collecting substrate is 1 μm.
m or more. On the other hand, if the thickness is too large, the energy density of the battery decreases, and there is no significance in using the foil substrate. Therefore, the upper limit is desirably 100 μm or less. The material of the current collecting base is not limited as long as it is stable in the average operating potential range of the nonaqueous electrolyte battery (about 2 V to 5 V) and can form electrodes. Further, there is no limitation on the surface shape of the foil (such as the presence or absence of irregularities and perforations).

【0015】更には、上記実施例では、短冊状の電極を
積層して角形電池容器へ収納する構造の電池に関する結
果を示したが、長尺の電極を渦巻き状の捲回して電極群
を構成する電池においても同様の効果が得られる。電極
群は略真円状であっても、また楕円状に捲回されたもの
であっても構わない。更に又、上記実施例では、電極1
枚あたり1つのリード端子部が形成された例を示した
が、集電性能向上等を目的に複数のリード端子部を形成
した電池に対しても、上記に開示された本発明技術が適
用可能である。
Further, in the above-described embodiment, results regarding a battery having a structure in which strip-shaped electrodes are stacked and accommodated in a rectangular battery container are shown. However, a long electrode is spirally wound to form an electrode group. A similar effect can be obtained in a battery that performs the same. The electrode group may be substantially circular, or may be wound in an elliptical shape. Furthermore, in the above embodiment, the electrode 1
Although an example in which one lead terminal portion is formed per sheet is shown, the technology of the present invention disclosed above can be applied to a battery in which a plurality of lead terminal portions are formed for the purpose of improving current collection performance and the like. It is.

【0016】[0016]

【発明の効果】本発明によれば、非水電解液電池におい
て、出力特性を改善でき、かつ、製造工程を簡略化して
生産性を向上できるので、高性能で信頼性の高い電池を
提供することができる。
According to the present invention, in a non-aqueous electrolyte battery, the output characteristics can be improved, and the production process can be simplified to improve the productivity, thereby providing a high-performance and highly reliable battery. be able to.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明電池の電極構造を示す図である。FIG. 1 is a view showing an electrode structure of a battery of the present invention.

【図2】従来電池の電極構造で、(イ)は正面、(ロ)
は上面を示す図である。
FIG. 2 is an electrode structure of a conventional battery, (a) is a front view, (b)
FIG.

【図3】従来電池の電極構造を示す図である。FIG. 3 is a view showing an electrode structure of a conventional battery.

【図4】本発明電池および従来電池の組立て説明図であ
る。
FIG. 4 is an explanatory view for assembling the battery of the present invention and a conventional battery.

【図5】本発明電池および従来電池の放電レート特性を
示す図である。
FIG. 5 is a diagram showing discharge rate characteristics of the battery of the present invention and a conventional battery.

【図6】本発明電池および従来電池の内部抵抗を示す図
である。
FIG. 6 is a diagram showing the internal resistance of the battery of the present invention and the conventional battery.

【図7】引っ張り試験のための試験片形状を示す図であ
る。
FIG. 7 is a view showing a test piece shape for a tensile test.

【図8】アルミニウム箔の形状と引っ張り強度の関係を
示す図である。
FIG. 8 is a diagram showing the relationship between the shape of aluminum foil and tensile strength.

【図9】電極リード部形状と電池の内部抵抗の関係を示
す図である。
FIG. 9 is a diagram showing the relationship between the shape of an electrode lead and the internal resistance of a battery.

【符号の説明】[Explanation of symbols]

Aは電極(活物質塗布部)、Baはリード端子部、Cは
電極(活物質塗布部)の上辺の周縁、Dはリード端子部
の周縁、Eはリード部立ち上がりに設けられた曲線、F
は無地部(活物質未塗布部)Jは電池容器、Kは電池集
電端子、Lは上蓋、Mは電極群
A is an electrode (active material application portion), Ba is a lead terminal portion, C is a peripheral edge of the upper side of the electrode (active material application portion), D is a peripheral edge of the lead terminal portion, E is a curve provided at the lead portion rising, F
Is a solid portion (active material-uncoated portion), J is a battery container, K is a battery collecting terminal, L is a top cover, and M is an electrode group.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極板および負極板の内の少なくとも一方
が箔状の電極集電基体表面へ活物質層を形成した構造を
有し、正極板と負極板をセパレータを介して複数枚積
層、あるいは渦巻き状に捲回して電極群を構成する非水
電解液電池において、箔状集電基体の一部であって活物
質層の形成されていない無地部分を電極群より突出さ
せ、これを電池集電端子へ直接接続して集電する構造を
有し、かつ、突出した無地部分の周縁から活物質層を有
する部位の周縁へかけて連続した曲線が形成されている
ことを特徴とする、非水電解液電池。
At least one of a positive electrode plate and a negative electrode plate has a structure in which an active material layer is formed on a surface of a foil-like electrode current collecting base, and a plurality of positive electrode plates and negative electrode plates are laminated via a separator. Alternatively, in a non-aqueous electrolyte battery that is spirally wound to form an electrode group, a plain portion that is a part of the foil-shaped current collecting base and has no active material layer formed thereon is protruded from the electrode group, and It has a structure for directly collecting power by directly connecting to the current collecting terminal, and is characterized in that a continuous curve is formed from the periphery of the protruding solid portion to the periphery of the portion having the active material layer, Non-aqueous electrolyte battery.
【請求項2】上記箔状集電基体において、突出した無地
部分の周縁から活物質層を有する部位の周縁へかけて形
成される曲線の曲率半径は、1mm以上10mm以下で
あることを特徴とする、請求項1記載の非水電解液電
池。
2. The foil-shaped current collecting base according to claim 1, wherein a radius of curvature of a curve formed from the periphery of the protruding solid portion to the periphery of the portion having the active material layer is 1 mm or more and 10 mm or less. The non-aqueous electrolyte battery according to claim 1, wherein
JP9170034A 1997-06-26 1997-06-26 Nonaqueous electrolyte battery Pending JPH1116577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9170034A JPH1116577A (en) 1997-06-26 1997-06-26 Nonaqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9170034A JPH1116577A (en) 1997-06-26 1997-06-26 Nonaqueous electrolyte battery

Publications (1)

Publication Number Publication Date
JPH1116577A true JPH1116577A (en) 1999-01-22

Family

ID=15897391

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9170034A Pending JPH1116577A (en) 1997-06-26 1997-06-26 Nonaqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JPH1116577A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188115A (en) * 2008-02-05 2009-08-20 Nissan Diesel Motor Co Ltd Electrical double-layer capacitor
JP2010080392A (en) * 2008-09-29 2010-04-08 Toshiba Corp Electrode for battery and method of manufacturing the same
WO2012026443A1 (en) * 2010-08-26 2012-03-01 日立マクセルエナジー株式会社 Stacked cell
WO2012042881A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Battery electrode structure and nonaqueous electrolyte rechargeable battery
WO2013031891A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
US8642209B2 (en) 2008-09-29 2014-02-04 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
JP2014026867A (en) * 2012-07-27 2014-02-06 Toyota Industries Corp Power storage device
CN106207070A (en) * 2015-01-28 2016-12-07 三星Sdi株式会社 Secondary cell
JP2018133306A (en) * 2017-02-17 2018-08-23 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
WO2021118209A1 (en) * 2019-12-12 2021-06-17 주식회사 엘지에너지솔루션 Electrode assembly, secondary battery, and method of manufacturing same
EP4254642A1 (en) 2022-03-29 2023-10-04 Prime Planet Energy & Solutions, Inc. Power storage device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009188115A (en) * 2008-02-05 2009-08-20 Nissan Diesel Motor Co Ltd Electrical double-layer capacitor
JP2010080392A (en) * 2008-09-29 2010-04-08 Toshiba Corp Electrode for battery and method of manufacturing the same
US8642209B2 (en) 2008-09-29 2014-02-04 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
US8808910B2 (en) 2008-09-29 2014-08-19 Kabushiki Kaisha Toshiba Non-aqueous electrolyte secondary battery, electrode used for secondary battery, and method of manufacturing electrode
WO2012026443A1 (en) * 2010-08-26 2012-03-01 日立マクセルエナジー株式会社 Stacked cell
JP2012048989A (en) * 2010-08-26 2012-03-08 Hitachi Maxell Energy Ltd Laminated type battery
US9017856B2 (en) 2010-08-26 2015-04-28 Hitachi Maxell, Ltd. Stacked battery with electrode having break portion
CN103069615A (en) * 2010-08-26 2013-04-24 日立麦克赛尔株式会社 Stacked cell
KR101318824B1 (en) * 2010-08-26 2013-10-15 히다치 막셀 가부시키가이샤 Stacked cell
WO2012042881A1 (en) * 2010-09-30 2012-04-05 三洋電機株式会社 Battery electrode structure and nonaqueous electrolyte rechargeable battery
CN103858254A (en) * 2011-08-31 2014-06-11 Nec能源元器件株式会社 Non-aqueous electrolyte secondary battery
JPWO2013031891A1 (en) * 2011-08-31 2015-03-23 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
WO2013031891A1 (en) * 2011-08-31 2013-03-07 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
JP2014026867A (en) * 2012-07-27 2014-02-06 Toyota Industries Corp Power storage device
CN106207070A (en) * 2015-01-28 2016-12-07 三星Sdi株式会社 Secondary cell
CN106207070B (en) * 2015-01-28 2020-12-04 三星Sdi株式会社 Secondary battery
JP2018133306A (en) * 2017-02-17 2018-08-23 リチウム エナジー アンド パワー ゲゼルシャフト ミット ベシュレンクテル ハフッング ウント コンパニー コマンディトゲゼルシャフトLithium Energy and Power GmbH & Co. KG Power storage element
WO2021118209A1 (en) * 2019-12-12 2021-06-17 주식회사 엘지에너지솔루션 Electrode assembly, secondary battery, and method of manufacturing same
JP2022552500A (en) * 2019-12-12 2022-12-16 エルジー エナジー ソリューション リミテッド Electrode assembly, secondary battery, and manufacturing method thereof
EP4254642A1 (en) 2022-03-29 2023-10-04 Prime Planet Energy & Solutions, Inc. Power storage device
KR20230140354A (en) 2022-03-29 2023-10-06 프라임 플래닛 에너지 앤드 솔루션즈 가부시키가이샤 Power storage device

Similar Documents

Publication Publication Date Title
JP3804702B2 (en) Nonaqueous electrolyte secondary battery
US8025202B2 (en) Method for manufacturing sealed battery
JP4485217B2 (en) Jerry roll type battery unit, winding method and lithium secondary battery including the same
KR20040058918A (en) Battery unit and the winding method thereof and lithum secondary battery using the same
KR20090132500A (en) Electrode assembly and secondary battery with the same and method of thereof
KR102366429B1 (en) Electrodes with Improved Welding Characteristics of Electrode Tabs and Secondary Battery Using the same
JP6757499B2 (en) Rechargeable battery
JP2014022116A (en) Electrode plate for secondary battery, and method for manufacturing electrode plate for secondary battery
US7943253B2 (en) Sealed battery and manufacturing method therefor
JPH10106536A (en) Non-aqueous electrolyte secondary battery
WO2023088433A1 (en) Plate and battery
KR101116533B1 (en) Secondary battery and method of manufacturing the same
JP2009259697A (en) Battery and its manufacturing method
JPH1116577A (en) Nonaqueous electrolyte battery
JP3221324B2 (en) Thin battery and manufacturing method thereof
US10158107B2 (en) Battery comprising insulative films
KR20220118897A (en) Electrode Assembly and Method for Manufacturing the same, Cylindrical battery cell including the Electrode Assembly, and Battery pack and Vehicle including the Cylindrical batter Cell
JP4273369B2 (en) Battery with frame
US10873068B2 (en) Secondary battery and method for manufacturing the same
KR20230076745A (en) Electrode Assembly, Method and Apparatus for Manufacturing the same, Cylindrical battery including the Electrode Assembly, and Battery pack and Vehicle including the Cylindrical batter
CN212434666U (en) Anode plate and lithium ion battery
JP2002050343A (en) Manufacturing method of secondary cell and secondary cell
JP2023032515A (en) battery
JP2001118561A (en) Current-collecting structure and secondary battery
JPH11219720A (en) Battery and lithium ion battery