JP2004172038A - Lithium secondary battery - Google Patents

Lithium secondary battery Download PDF

Info

Publication number
JP2004172038A
JP2004172038A JP2002339017A JP2002339017A JP2004172038A JP 2004172038 A JP2004172038 A JP 2004172038A JP 2002339017 A JP2002339017 A JP 2002339017A JP 2002339017 A JP2002339017 A JP 2002339017A JP 2004172038 A JP2004172038 A JP 2004172038A
Authority
JP
Japan
Prior art keywords
negative electrode
convex portion
electrode plate
positive electrode
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002339017A
Other languages
Japanese (ja)
Other versions
JP4532066B2 (en
Inventor
Hiroshi Nemoto
宏 根本
Masanobu Kito
賢信 鬼頭
Shinji Otsubo
真治 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2002339017A priority Critical patent/JP4532066B2/en
Publication of JP2004172038A publication Critical patent/JP2004172038A/en
Application granted granted Critical
Publication of JP4532066B2 publication Critical patent/JP4532066B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery with excellent productivity and space saving property and having reduced internal resistance. <P>SOLUTION: This lithium secondary battery is provided with a positive electrode current collecting member 4A and a negative electrode current collecting member connected with end parts 15 of a positive electrode plate 22 and a negative electrode plate constituting a wound-type inner electrode body or a laminated inner electrode body respectively to derive current. At least one of the positive electrode current collecting member 4A or the negative electrode current collecting member is provided with a main body part 12, a first protruded part 31 and a second protruded part 32. An energy beam 53 is irradiated to the second protruded part 32 in a condition where a protruding end surface of the first protruded part 31 is located at at least one of connection end edges 6 of the positive electrode plate 22 and the negative electrode plates. At least one of the positive electrode current collecting member 4A or the negative electrode current collecting member and at least one of the ends 15 of the positive electrode plate 22 and the negative electrode plate are connected by welding. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】本発明はリチウム二次電池に関し、更に詳しくは、生産性及び省スペース性に優れているとともに、内部抵抗が低減されたリチウム二次電池に関する。
【0002】
【従来の技術】リチウム二次電池は、近年、携帯型の通信機器やノート型パーソナルコンピュータ等の電子機器の電源を担う、小型でエネルギー密度の大きな充放電可能な二次電池として広く用いられている。また、国際的な地球環境の保護を背景として省資源化や省エネルギー化に対する関心が高まる中、リチウム二次電池は、自動車業界において積極的な市場導入が検討されている電気自動車(EV)、ハイブリッド電気自動車(HEV)用のモータ駆動用バッテリー、又は夜間電力の保存による電力の有効利用手段としても期待されており、これらの用途に適する大容量リチウム二次電池の実用化が急がれている。
【0003】リチウム二次電池には、一般的にリチウム遷移金属複合酸化物等が正極活物質として、またハードカーボンや黒鉛といった炭素質材料が負極活物質としてそれぞれ用いられる。リチウム二次電池の反応電位は約4.1Vと高いために、電解液として従来のような水系電解液を用いることができず、このため電解質であるリチウム化合物を有機溶媒に溶解した非水電解液が用いられる。そして、充電反応は正極活物質中のリチウムイオンが、非水電解液中を通って負極活物質へ移動して捕捉されることで起こり、放電時には逆の電池反応が起こる。
【0004】これらの中で、EV、HEV等に好適に用いられる比較的容量の大きいリチウム二次電池においては、内部電極体として図8に示すような、リード線として機能する集電タブ(正極集電タブ25、負極集電タブ26)が取り付けられた電極板(正極板22、負極板23)を、互いに接触しないように、間にセパレータ27を介しつつ、巻芯67の外周に捲回してなる捲回型内部電極体61が好適に用いられている。なお、正極板22及び負極板23は、金属箔体等の集電基板の両表面に電極活物質(正極活物質と負極活物質の両方を指す)層を形成したものであり、正極集電タブ25及び負極集電タブ26は、正極板22及び負極板23の端部の金属箔体が露出した部分に所定間隔で取り付けられている(例えば、特許文献1参照)。
【0005】しかしながら、これらの集電タブは、電極体を捲回又は積層するときに、一つずつ電極板にスポット溶接等して取り付ける必要があるために、その工程は煩雑であるという問題があった。また、集電タブの、電極板と接続された反対側の端部は、それら複数の集電タブを揃えて束ね、内部端子にリベット等を用いて打ち込み接続等して取り付ける必要があるために、その工程も同様に煩雑であり、また低抵抗に接続することは容易ではないという問題があった。更に、複数枚の集電タブを用いて内部電極体と内部端子とを接続するには、その分の、より大きなスペースが必要となり、電池自体が大型化してしまうといった問題があった。
【0006】
【特許文献1】
特開2001−85042号公報
【0007】
【発明が解決しようとする課題】本発明は、このような従来技術の有する問題点に鑑みてなされたものであり、その目的とするところは、生産性及び省スペース性に優れているとともに内部抵抗が低減されたリチウム二次電池を提供することにある。
【0008】
【課題を解決するための手段】即ち、本発明によれば、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、前記正極板及び前記負極板の端部に、その端部から電流を導出するためにそれぞれ接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であって、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方は、平板形状を有する本体部と、前記本体部の両表面から垂直で、互いに反対向きに列状に連続して突出する第一凸部及び第二凸部とを備えてなり、前記正極板及び前記負極板のうちの少なくとも一方の前記端部のうちの、接続されるべく配列された端縁(接続端縁)に、前記第一凸部の突出端面を位置させた状態で前記第二凸部にエネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方と、前記正極板及び前記負極板のうちの少なくとも一方の前記端部とを溶接によって接続してなることを特徴とするリチウム二次電池が提供される。
【0009】本発明においては、第一凸部の突出長さをL(mm)、第一凸部の突出端面から、本体部の両表面のうちの第二凸部が突出する側の表面までの長さをL(mm)、第二凸部の突出長さをL(mm)、第一凸部の幅をW(mm)、本体部の、第一凸部及び第二凸部と直交する幅をW(mm)、第二凸部の幅をW(mm)としたとき、下記(1)〜(7)の関係を全て満たすことが好ましい。
(1)L≧0.2
(2)L≧0.4
(3)L≧0.2
(4)(L−L)≧0.1
(5)0.2≦W≦5
(6)(W−W)≧1
(7)0.2≦W≦5
【0010】本発明においては、正極板の接続端縁の狭幅端面に、第一凸部の突出端面を位置させた状態で第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、正極集電部材と、正極板の端部とを溶接によって接続してなることが好ましい。本発明においては、正極板を構成する金属箔体及び正極集電部材が、アルミニウム又はアルミニウム合金からなることが好ましい。
【0011】本発明においては、負極板の接続端縁近傍の側面部に、第一凸部の突出端面に位置させた状態で第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、負極集電部材と、負極板の端部とを溶接によって接続してなることが好ましい。
【0012】本発明においては、負極板の接続端縁近傍の側面部を、接続端縁近傍を屈曲させることにより、第一凸部の突出端面に密着して位置させた状態で第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、負極集電部材と、負極板の端部とを溶接によって接続してなることが好ましい。本発明においては、負極板を構成する金属箔体及び負極集電部材が、銅又は銅合金からなることが好ましく、負極集電部材と、負極板の端部との接続部分において、負極板から負極集電部材の方向に延びる柱状晶が形成されてなることが好ましい。
【0013】本発明においては、正極集電部材及び負極集電部材のうちの少なくとも一方の形状が、十字形状、Y字形状、I字形状、又は一部に切り欠きを有する円板形状であることが好ましい。
【0014】本発明においては、正極板の狭幅端面を含む面の法線に対して、角度θ(0°<θ≦90°)で、正極集電部材の第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、正極集電部材と、正極板の端部とを溶接によって接続してなることが好ましい。
【0015】本発明においては、正極集電部材の第二凸部に照射されるエネルギー線のパワー密度が、5kW/mm以上であることが好ましい。
【0016】本発明においては、負極板の側面部を含む面の法線に対して、角度θ(0°≦θ≦30°)で、負極集電部材の第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、負極集電部材と、負極板の端部とを溶接によって接続してなることが好ましい。
【0017】本発明においては、負極集電部材の第二凸部に照射されるエネルギー線のパワー密度が、3kW/mm以上であることが好ましい。
【0018】本発明においては、負極集電部材の第二凸部に照射されるエネルギー線のパワー密度E(kW/mm)と、第一凸部の突出端面から第二凸部の突出端面までの長さ(L+L(mm))とが、下記式(2)を満たすことが好ましい。
【0019】
【数2】
(L+L)≦E/1 …(2)
【0020】本発明においては、負極集電部材の第二凸部のうちの、エネルギー線が照射される部分が平面状であることが好ましく、照射されるエネルギー線のスポット径が、1mm以下であることが好ましい。本発明においては、隣り合う正極板及び/又は負極板どうしが間隙を保持して配列されてなることが好ましい。
【0021】本発明のリチウム二次電池は、電池容量が2Ah以上の大型電池に好適に採用され、また、大電流の放電が頻繁に行われる電気自動車又はハイブリッド電気自動車のモータ駆動用電源等として好適に用いられる。
【0022】
【発明の実施の形態】以下、本発明の実施の形態について説明するが、本発明は以下の実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で、当業者の通常の知識に基づいて、適宜、設計の変更、改良等が加えられることが理解されるべきである。
【0023】本発明は、少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、正極板及び負極板の端部に、その端部から電流を導出するためにそれぞれ接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であり、正極集電部材及び負極集電部材のうちの少なくとも一方は、平板形状を有する本体部と、本体部の両表面から垂直で、互いに反対向きに列状に連続して突出する第一凸部及び第二凸部とを備えてなり、正極板及び負極板のうちの少なくとも一方の端部のうちの、接続されるべく配列された端縁(以下、「接続端縁」と記す)に、第一凸部の突出端面を位置させた状態で第二凸部にエネルギー線を照射し、第二凸部、本体部の一部、及び第一凸部を溶解して、正極集電部材及び負極集電部材のうちの少なくとも一方と、正極板及び負極板のうちの少なくとも一方の端部とを溶接によって接続してなることを特徴とするものである。以下、本発明の実施形態について、図面を参照しながら具体的に説明する。
【0024】図1は、本発明のリチウム二次電池に用いられる正極集電部材の、エネルギー線が照射される部分の一例を模式的に示す斜視図である。正極集電部材4Aは、平面形状の本体部12と、本体部12の両表面から垂直で、互いに反対向きに列状に連続して突出する第一凸部31、第二凸部32とを備えてなるものである。このような構造的特徴を有する正極集電部材4Aが使用され、この第一凸部31の突出端面を接続端縁6、より好ましくは接続端縁6の狭幅端面2に位置させた状態で第二凸部32にエネルギー線53を照射し、第二凸部32、本体部12の一部、及び第一凸部31が溶解することにより、正極集電部材4Aと正極板22(金属箔体1A)の端部15とが溶接によって接続される。
【0025】一方、図2は、本発明のリチウム二次電池に用いられる負極集電部材の、エネルギー線が照射される部分の一例を模式的に示す斜視図である。負極集電部材4Bは、平面形状の本体部12と、本体部12の両表面から垂直で、互いに反対向きに列状に連続して突出する第一凸部31、第二凸部32とを備えてなるものである。このような構造的特徴を有する負極集電部材4Bが使用され、この第一凸部31の突出端面を接続端縁6、より好ましくは接続端縁6近傍の側面部13に位置させた状態で第二凸部32にエネルギー線53を照射し、第二凸部32、本体部12の一部、及び第一凸部31が溶解することにより、負極集電部材4Bと負極板23(金属箔体1B)の端部15とが溶接によって接続される。なお、負極板23の接続端縁6近傍の側面部13を、第一凸部31の突出端面に密着して位置させるには、接続端縁6近傍を屈曲させればよい。
【0026】上述の如く、本発明のリチウム二次電池はその電流導出部が、正極集電部材4A(負極集電部材4B)と、正極板22(負極板23)の端部(金属箔体1A,1B)とをそれぞれ溶接することにより直接的に接続して電流を導出するという構成であるため、従来の電流導出手段である集電タブが不要である。従って、煩雑な集電タブの取り付け工程が不要となるために、生産性の向上が図られてなるものである。更に、正極集電部材4A(負極集電部材4B)と正極板22(負極板23)との間に設けられていた集電タブを収容するためのスペースを省くことができるために、電池全体がコンパクトである。また、第一凸部31は、接続端縁6の位置(突出位置)のバラツキを吸収して均一に揃える効果、及び照射されたエネルギー線による熱を拡散させる効果を奏するものである。
【0027】ここで、正極集電部材4A(負極集電部材4B)においてエネルギー線53が照射される箇所は第二凸部32であるとともに、エネルギー線53の照射に伴う発熱により溶解する箇所は、第二凸部32と、この直近の本体部12の一部、及び第一凸部31である。これらの部分が溶解(溶融)して生成した溶融部は、正極板22(負極板23)の端部15に相当する金属箔体1A,1Bに向かって垂れ下がるが、本実施形態では、正極集電部材4Aが、平板状の本体部12から突出した第一及び第二凸部31,32を備えた形状であるため、溶融部となるための十分な体積が確保されている。従って、例えば正極集電部材4A(負極集電部材4B)が過剰に溶融して穴が開いてしまう等の製品欠陥が生じ難い。なお、第二凸部32の大きさ(体積)を任意に設定することで、生成される溶融部の大きさ(体積)は適宜調整され得る。このように、本発明のリチウム二次電池は電極板と集電部材との接続状態が確実であり、電流の導出がスムーズであるために内部抵抗が低減されており、また、集電部材に穴等の製品欠陥が生じておらず、信頼性に優れた電池である。
【0028】また、本発明においては、図3(a)〜(c)に示すように、集電部材(正極集電部材4A、負極集電部材4B)の第一凸部31の突出長さ(L)(mm)、第一凸部31の突出端面から、本体部12の両表面のうちの第二凸部32が突出する側の表面までの長さをL(mm)、第二凸部32の突出長さをL(mm)、第一凸部31の幅をW(mm)、本体部12の、第一凸部31及び第二凸部32と直交する幅をW(mm)、第二凸部32の幅をW(mm)としたとき、下記(1)〜(7)の関係を全て満たすことが好ましい。
(1)L≧0.2
(2)L≧0.4
(3)L≧0.2
(4)(L−L)≧0.1
(5)0.2≦W≦5
(6)(W−W)≧1
(7)0.2≦W≦5
【0029】図3中、符号33は溶融部を示し、エネルギー線が第二凸部32に照射されることにより、第一凸部31の突出端面に配置される電極板を構成する金属箔体の方へと垂れ下がる部分である。前述の寸法規定を満足することで、電極板と集電部材との接続状態がより確実になるとともに、集電部材に穴等の製品欠陥が更に生じ難くなる。なお、本発明においては、集電部材の形状が、図3に示すように第一凸部31及び第二凸部32の両側に本体部12を有する形状であることが、照射されたエネルギー線が散乱することによる金属箔体への照射を抑制することができるために好ましい。
【0030】電極板と集電部材との接続状態をより確実とし、集電部材に穴等の製品欠陥を更に生じ難くするといった観点からは、L〜L及びW〜Wが、下記(8)〜(14)の関係を全て満たすことが更に好ましい。なお、本発明においては、L、L、L、(L−L)、及び(W−W)の上限値については特に限定されないが、実質的な製造可能性、作製される電池のサイズ等を考慮すると、Lは3mm以下、Lは5mm以下、Lは3mm以下、(L−L)は2mm以下、及び(W−W)は50mm以下であればよい。
(8)L≧0.3
(9)L≧0.5
(10)L≧0.3
(11)(L−L)≧0.2
(12)0.2≦W≦3
(13)(W−W)≧3
(14)0.2≦W≦3
【0031】また、本発明においては、リチウム二次電池の構成部材として良好な特性を発揮させるといった観点から、正極板を構成する金属箔体及び正極集電部材は、アルミニウム又はアルミニウム合金からなることが好ましく、負極板を構成する金属箔体及び負極集電部材は、銅又は銅合金からなることが好ましい。更に、負極集電部材と、負極板の端部との接続部分において、負極板から負極集電部材の方向に延びる柱状晶が形成されてなることが好ましい。一般に溶接金属は、溶融金属が母材(未溶融部)の結晶粒上に同一結晶方位をもって成長(エピタキシャル成長)する。このように形成された固相は熱源の移動に伴い、溶接ビード(溶融部分)内部へ成長する。この成長は、温度勾配の最も大きい方向に成長し易く、その方向へほぼ一方向に延びた形態で成長し、このように成長した結晶は柱状晶と呼ばれる。
【0032】負極集電部材から垂れ下がった溶融部は、冷却に伴い再結晶化するが、負極板(金属箔体)を通じて溶融部の熱が急速に拡散する。即ち、負極板に密着した部分の溶融部の温度が低下し、負極板と溶融部との界面が核となって負極板から負極集電部材の方向へと柱状晶が形成し易くなると考えられる。更に、本発明では負極板の接続端縁近傍の側面部が負極集電部材の第一凸部の突出端面と隙間なく密着して接触状態が良好であり、負極板を通じた冷却効果によって柱状晶が形成し易い状態である。従って、接続部分において、負極板から負極集電部材の方向に延びる柱状晶が形成されている場合には、負極板と負極集電部材との接続状態が良好、即ち、負極集電部材と負極板との接続に十分な強度が確保されているために好ましい。
【0033】本発明においては、正極集電部材4A及び負極集電部材4Bのうちの少なくとも一方の形状が、図4(a)、図4(e)に示すような十字形状、図4(b)、図4(f)に示すようなY字形状、図4(c)、図4(g)に示すようなI字形状、又は図4(d)、図4(h)に示すような、一部に切り欠きを有する円板形状であることが好ましい。正極集電部材4A、負極集電部材4Bの形状がこれらの形状である場合には、溶接により形成された接続部の、接続状態の検査がし易く、また余剰部ができるだけ含まれない形状であるために電池を軽量化することができる。また、電解液を充填する際等において、電解液が全体に回り易い構造であるために好ましい。図5に、捲回型内部電極体61と、図4(h)に示す正極集電部材4Aとを接続した電流導出部分の一例を示す写真のレプリカ図を示す。
【0034】本発明においては、図1に示すように、正極板22の狭幅端面を含む面の法線3Aに対して、角度θ(0°<θ≦90°)で、正極集電部材4Aの第二凸部32にエネルギー線53を照射し、第二凸部32、本体部12の一部、及び第一凸部31を溶解して、正極集電部材4Aと、正極板22の端部15とを溶接によって接続してなることが好ましい。このような状態でエネルギー線53が照射されることで、正極板22と正極集電部材4Aとの接続状態がより確実となり、正極集電部材4Aに穴等の製品欠陥が更に生じ難くなる。
【0035】なお、正極板と正極集電部材との接続状態をより確実とし、正極集電部材に穴等の製品欠陥を更に生じ難くするといった観点からは、前述の角度θは5°≦θ≦80°であることが更に好ましく、10°≦θ≦60°であることが特に好ましく、15°≦θ≦45°であることが最も好ましい。
【0036】更に、正極集電部材4Aを、その第一凸部31が狭幅端面2に略垂直に交差するように配置し、狭幅端面2に略垂直に交差するように、エネルギー線発生装置を用いて、第二凸部32を走査して照射することが好ましい。このとき、上述した、狭幅端面を含む面の法線3Aに対して角度θ(0°<θ≦90°)で第二凸部32にエネルギー線53を照射することに加え、エネルギー線53を、狭幅端面2に略垂直に交差する線に対して、角度が略垂直となるように第二凸部32に照射することが好ましい。このことにより、ろう材を用いることなく、簡易な操作によって正極板22の端部15と正極集電部材4Aとを接続することができる。また、正極板22を構成する金属箔体1Aに損傷を与えずに、正極集電部材4Aのみを溶解させて接続することができるために、正極集電部材4Aと正極板22との接続に十分な強度が確保される。
【0037】なお、本発明にいう「接続端縁」とは、1枚の電極板を構成する金属箔体における複数箇所の接続される端縁、又は複数枚の電極板を構成する金属箔体における複数箇所に渡る各金属箔体の接続される端縁を意味する。また、「狭幅端面に略垂直に交差する」とは、複数の接続端縁における狭幅端面の全てについて略垂直に交差することを意味する。
【0038】本発明においては、正極集電部材の第二凸部に照射されるエネルギー線のパワー密度が、5kW/mm以上であることが好ましく、6kW/mm以上であることが更に好ましく、7kW/mm以上であることが特に好ましい。3kW/mm未満であると、接続状態が良好ではなく、機械的強度が不十分となる場合が想定されるために好ましくない。なお、パワー密度の上限については特に限定されないが、使用する各部材への損傷発生を回避する等の観点から適宜決定すればよく、例えば60kW/mm以下であればよい。ここで、本発明にいうエネルギー線の「パワー密度」とは、エネルギー線のパワー(kW)を、エネルギー線が照射される照射点のスポット面積(mm)で除して得た値を意味する。
【0039】一方、本発明においては、図2に示すように、負極板23の側面部を含む面の法線3Bに対して、角度θ(0°≦θ≦30°)で、負極集電部材4Bの第二凸部32にエネルギー線53を照射し、第二凸部32、本体部12の一部、及び第一凸部31を溶解して、負極集電部材4Bと、負極板23の端部15とを溶接によって接続してなることが好ましい。このような状態でエネルギー線53が照射されることで、負極板23と負極集電部材4Bとの接続状態がより確実となり、負極集電部材4Bに穴等の製品欠陥が更に生じ難くなる。
【0040】なお、負極板と負極集電部材との接続状態をより確実とし、負極集電部材に穴等の製品欠陥を更に生じ難くするといった観点からは、前述の角度θは0°≦θ≦10°であることが更に好ましく、0°≦θ≦5°であることが特に好ましい。また、熱効率の観点からは、負極集電部材4Bの第二凸部32の表面又はその近傍にエネルギー線53を合焦させることが好ましく、更に、負極を構成する金属箔体1Bに対して、エネルギー線53が実質的に照射されないことが好ましい。
【0041】更に、負極集電部材4Bを、その第一凸部31が側面部13に略垂直に交差するように配置し、側面部13に略垂直に交差するように、エネルギー線発生装置を用いて、第二凸部32を走査して照射することが好ましい。このとき、上述した、側面部を含む面の法線3Bに対して角度θ(0°≦θ≦30°)で第二凸部32にエネルギー線53を照射することに加え、エネルギー線53を、側面部13に略垂直に交差する線に対して、角度が略垂直となるように第二凸部32に照射することが好ましい。このことにより、ろう材を用いることなく、簡易な操作によって負極板23の端部15と負極集電部材4Bとを接続することができる。また、負極板23を構成する金属箔体1Bに損傷を与えずに、負極集電部材4Bのみを溶解させて接続することができるために、負極集電部材4Bと負極板23との接続に十分な強度が確保される。なお、「側面部に略垂直に交差する」とは、複数の接続端縁における側面部の全てについて略垂直に交差することを意味する。
【0042】本発明においては、負極集電部材の第二凸部に照射されるエネルギー線のパワー密度が、3kW/mm以上であることが好ましく、6kW/mm以上であることが更に好ましく、8kW/mm以上であることが特に好ましい。3kW/mm未満であると、接続状態が良好ではなく、機械的強度が不十分となる場合が想定されるために好ましくない。なお、パワー密度の上限については特に限定されないが、使用する各部材への損傷発生を回避する等の観点から適宜決定すればよく、例えば60kW/mm以下であればよい。
【0043】また、本発明においては、負極集電部材の第二凸部に照射されるエネルギー線のパワー密度E(kW/mm)と、第一凸部の突出端面から第二凸部の突出端面までの長さ(L+L(mm))とが、下記式(3)を満たすことが好ましい。下記式(3)を満足するような条件でエネルギー線が照射されることにより、負極板を構成する金属箔体への損傷が更に抑制され、負極集電部材と負極板との接続に十分な強度が確保される。
【0044】
【数3】
(L+L)≦E/1 …(3)
【0045】なお、より負極板を構成する金属箔体への損傷を更に抑制し、負極集電部材と負極板との接続に更なる強度を確保するためには、下記式(4)を満足することが更に好ましく、下記式(5)を満足することが特に好ましい。
【0046】
【数4】
(L+L)≦E/3 …(4)
【0047】
【数5】
(L+L)≦E/5 …(5)
【0048】本発明においては、エネルギー線の乱反射を抑制して負極板を構成する金属箔体への損傷発生を抑制する観点から、負極集電部材の第二凸部のうちの、エネルギー線が照射される部分が平面状であることが好ましく、少なくとも照射点よりも広い範囲が平面状であることが好ましい。
【0049】また、本発明においては、照射されるエネルギー線のスポット径が、1mm以下であることが好ましく、0.8mm以下であることが更に好ましい。このことにより、不要な箇所へのエネルギー線の照射が抑制され、特に負極を構成する金属箔体への損傷発生が抑制される。なお、本発明においては、隣り合う正極板及び/又は負極板どうしが間隙を保持して配列されていることが好ましい。
【0050】本発明においては、エネルギー線が、エネルギー密度が高く発熱量も小さい、レーザー又は電子ビームによるものであることが好ましく、エネルギー線が連続波であることが好ましい。このことにより、第二凸部の表面にエネルギーを集中させて照射することができるため、電極板を構成する金属箔体への損傷発生を抑制することができる。なお、レーザーの中でも、YAGレーザーは焦点を良好に絞ることができ、焦点以外に配置された金属箔体への損傷発生を更に抑制することができるために好ましい。
【0051】また、本発明においては、正極集電部材の第二凸部にエネルギー線を照射するに際し、連続照射が可能なエネルギー線発生装置を用いて照射することが好ましく、このときの走査速度は、0.1〜100m/minであることが好ましく、1〜30m/minであることが更に好ましく、2〜10m/minであることが特に好ましい。更に、本発明においては、配列された正極板の枚数に応じ、正極集電部材を複数個用意し、複数の正極集電部材を、それらの第一凸部が狭幅端面に略垂直に交差するようにして連続的に配置することが好ましく、このことにより複数枚の正極板を一度の照射によって接続することができる。
【0052】一方、本発明においては、負極集電部材の第二凸部にエネルギー線を照射するに際し、連続照射が可能なエネルギー線発生装置を用いて照射することが好ましい。更に、本発明においては、配列された負極板の枚数に応じ、負極集電部材を複数個用意し、複数の負極集電部材を、それらの第一凸部が側面部に略垂直に交差するようにして連続的に配置することが好ましく、このことにより、複数枚の負極板を一度の照射によって接続することができる。
【0053】本発明において、正極集電部材と正極板の端部が接続されるに際して、ろう材等の接合補助材料は不要ではあるが、使用されても構わない。使用される場合には、ろう材をはじめとする適当な接合補助材料が、正極板を構成する金属箔体及び/若しくは正極集電部材の所定箇所に塗布され、又は金属箔体と正極集電部材の所定箇所との間に挟持された状態でエネルギー線が照射されることが好ましい。
【0054】一方、本発明において、負極集電部材と負極板の端部が接続されるに際しても、ろう材等の接合補助材料は不要ではあるが、使用されても構わない。使用される場合には、ろう材をはじめとする適当な接合補助材料が、負極板を構成する金属箔体及び/若しくは負極集電部材の所定箇所に塗布され、又は金属箔体と負極集電部材の所定箇所との間に挟持された状態でエネルギー線が照射されることが好ましい。
【0055】次に、本発明のリチウム二次電池を構成する主要部材及び構造、並びに製造方法について、主として内部電極体が捲回型内部電極体である場合を例に挙げて説明する。
【0056】正極板は、集電基板となる金属箔体の両面に正極活物質を塗工することによって作製される。金属箔体を構成する金属としては、アルミニウムやチタン等の正極電気化学反応に対する耐蝕性が良好な金属が用いられる。正極活物質としては、マンガン酸リチウム(LiMn)やコバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)等のリチウム遷移金属複合酸化物が好適に用いられるが、立方晶スピネル構造を有するマンガン酸リチウムを用いると、他のリチウム遷移金属複合酸化物を用いた場合と比較して、内部電極体の抵抗を小さくすることができるために好ましい。なお、正極活物質には、アセチレンブラック等の炭素微粉末を導電助剤として加えることが好ましく、2〜10質量%の範囲で任意に添加すればよい。
【0057】マンガン酸リチウムの化学量論組成はLiMnで表されるが、このような化学量論組成のものに限られず、遷移元素Mnの一部を、Tiを含み、その他に、Li、Fe、Ni、Mg、Zn、B、Al、Co、Cr、Si、Sn、P、V、Sb、Nb、Ta、Mo及びWからなる群より選択される1種類以上の元素からなる、2種類以上の元素で置換してなるLiMMn2−X(但し、Mは置換元素で、Xは置換量を示す。)も好適に用いられる。
【0058】上述のような元素置換を行った場合には、そのリチウム(Li)/マンガン(Mn)比(モル比)は、マンガンをリチウムで置換したリチウム過剰の場合には(1+X)/(2−X)となる。一方、リチウム以外の置換元素Mで置換した場合には1/(2−X)となる。従って、いずれの場合であっても常にリチウム(Li)/マンガン(Mn)比>0.5となるが、本発明においてはこのようなマンガン酸リチウムを用いることが好ましく、化学量論組成(LiMn)のものを用いた場合と比較して結晶構造が更に安定化されているため、電池に優れたサイクル特性を付与することができる。
【0059】なお、置換元素Mにあっては、理論上、Liは+1価、Fe、Mn、Ni、Mg、Znは+2価、B、Al、Co、Crは+3価、Si、Ti、Snは+4価、P、V、Sb、Nb、Taは+5価、Mo、Wは+6価のイオンとなり、LiMn中に固溶する元素であるが、Co、Snについては+2価の場合、Fe、Sb及びTiについては+3価の場合、Mnについては+3価、+4価の場合、Crについては+4価、+6価の場合もあり得る。従って、各種の置換元素Mは混合原子価を有する状態で存在する場合があり、また、酸素の量については、必ずしも理論化学組成で表されるように4であることを必要とせず、結晶構造を維持するための範囲内で欠損して、又は過剰に存在していても構わない。
【0060】正極活物質の塗工は、正極活物質粉末に溶剤や結着剤等を添加して作製したスラリー又はペーストを、ロールコータ法等を用いて、集電基板に塗布・乾燥することで行われ、その後に必要に応じてプレス処理等が施される。
【0061】負極板は、正極板と同様にして作製することができる。負極板を構成する集電基板としては、銅箔又はニッケル箔等の負極電気化学反応に対する耐蝕性が良好な金属箔体が好適に用いられる。負極活物質としては、ソフトカーボンやハードカーボンといったアモルファス系炭素質材料や人造黒鉛や天然黒鉛等の高黒鉛化炭素材料が、更には、前記高黒鉛化炭素材料としては繊維状のものが好適に用いられる。
【0062】セパレータとしては、マイクロポアを有するリチウムイオン透過性のポリエチレンフィルム(PEフィルム)を、多孔性のリチウムイオン透過性のポリプロピレンフィルム(PPフィルム)で挟んだ三層構造としたものが好適に用いられる。これは、電極体の温度が上昇した場合に、PEフィルムが約130℃で軟化してマイクロポアが潰れ、リチウムイオンの移動、即ち電池反応を抑制する安全機構を兼ねたものである。そして、このPEフィルムをより軟化温度の高いPPフィルムで挟持することによって、PEフィルムが軟化した場合においても、PPフィルムが形状を保持して正極板と負極板の接触・短絡を防止し、電池反応の確実な抑制と安全性の確保が可能となる。
【0063】捲回型内部電極体を作製する場合には、セパレータを介して正極板と負極板とを巻芯の外周に捲回する。なお、積層型内部電極体を作製する場合には、巻芯を使用せず、セパレータを介して、正極板と負極板とを積層する。
【0064】次に、非水電解液について説明する。非水電解液を構成する溶媒(有機溶媒)としては、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、プロピレンカーボネート(PC)といった炭酸エステル系のものや、γ−ブチロラクトン、テトラヒドロフラン、アセトニトリル等の単独溶媒又は混合溶媒が好適に用いられる。
【0065】電解質としては、六フッ化リン酸リチウム(LiPF)やホウフッ化リチウム(LiBF)等のリチウム錯体フッ素化合物、又は過塩素酸リチウム(LiClO)といったリチウムハロゲン化物を挙げることができ、これらのうちの1又は2種類以上を上述した有機溶媒(混合溶媒)に溶解して用いることができる。なお、酸化分解が起こり難く非水電解液の導電性の高い六フッ化リン酸リチウム(LiPF)を用いることが好ましい。
【0066】集電部材と、電極板を構成する金属箔体との溶接方法(捲回型内部電極体の製造方法)は既述の通りであり、図6に示すように、製造した捲回型内部電極体61を電池ケース73に挿入し、電極リード部材72と集電部材(正極集電部材4A、負極集電部材4B)、及び電極内部端子(正極内部端子69A、負極内部端子69B)を接合して安定な位置にホールドする。その後、電池蓋(正極電池蓋71A、負極電池蓋71B)により電池ケース73を封ずるとともに前述の非水電解液を含浸することにより、本実施形態のリチウム二次電池(タブレス構造型のリチウム二次電池)を得ることができる。
【0067】図6において、電極リード部材72は、接続される正極集電部材4A、正極内部端子69A、及び負極集電部材4B、負極内部端子69Bと、同種金属又はその合金により構成されていることが好ましい。具体的には、正極内部端子69A及び正極集電部材4Aにアルミニウム又はアルミニウム合金を用いた場合には、正極の電極リード部材72にアルミニウム又はアルミニウム合金を採用し、負極内部端子69B及び負極集電部材4Bに銅又は銅合金を用いた場合には、負極の電極リード部材72に銅又は銅合金を採用することが好ましい。
【0068】電極リード部材72を用いなくとも、正極集電部材4Aと正極内部端子69A、負極集電部材4Bと負極内部端子69Bとを直接的に接続し、通電させてもよい。また、これまで述べてきたタブレス構造を有する部分を正極及び負極に用いてもよいし、正極又は負極のいずれかに用いてもよい。なお、図6中、符号70Aは正極外部端子、符号70Bは負極外部端子、符号74はくびれ加工部、及び符号75は放圧孔を示す。
【0069】また、図7に示すように、集電部材54が、電極蓋を兼用している構成であってもよい。図7では、片端が開放された円筒形の電池ケース73を用い、その電池ケース73の片端にくびれ加工を形成した例を示しているが、集電部材54が電極蓋を兼用している構成であれば電池の形状に特に制限はなく、例えば電池ケース73の両端がくびれ加工されているもの、電池ケース73の両端が開放されたもの等を使用しても構わない。また、図7においては、正極側に放圧孔75を有する例を示しているが、負極側に放圧孔を有する構成でも構わない。
【0070】図6、7に示すように、本実施形態のリチウム二次電池68は、捲回型内部電極体61からの電流導出部分に、電極板を構成する金属箔体と集電部材54(正極集電部材4A、負極集電部材4B)を直接的に接続した構成を採用することにより、従来の電流導出手段である集電タブを用いる必要がない。従って、煩雑な集電タブの取り付け工程が不要であり、生産性の向上を図ることができる。また、集電タブの長さの分のスペースを省くことができるため、電池全体がコンパクトである。
【0071】以上、本発明に係るリチウム二次電池について、その実施形態を示しながら説明してきたが、本発明が上記の実施形態に限定されるものでないことはいうまでもない。また、本発明に係るリチウム二次電池は、特に、電池容量が2Ah以上である大型の電池に好適に採用されるが、このような容量以下の電池に適用することを妨げるものではない。また、本発明のリチウム二次電池は、大容量でありながらも小型化されているため、特に省スペース性が要求される車載用電池として、更には、電気自動車又はハイブリッド電気自動車のモータ駆動用電源に用いることが好ましいとともに、高電圧を必要とされるエンジン起動用としても好適に用いることができる。
【0072】
【発明の効果】以上説明したように、本発明のリチウム二次電池は、正極集電部材及び負極集電部材のうちの少なくとも一方が第一及び第二凸部を有する所定形状であり、金属箔体の接続端縁に、第一凸部の突出端面を位置させた状態で第二凸部にエネルギー線を照射して、金属箔体の端部とを溶接によって接続してなるものであるため、集電部材と集電基板を構成する金属箔体との接続状態が良好であり、生産性及び省スペース性に優れているとともに内部抵抗の低減がなされたものである。
【図面の簡単な説明】
【図1】本発明のリチウム二次電池に用いられる正極集電部材の、エネルギー線が照射される部分の一例を模式的に示す斜視図である。
【図2】本発明のリチウム二次電池に用いられる負極集電部材のエネルギー線が照射される部分の一例を模式的に示す斜視図である。
【図3】本発明のリチウム二次電池を構成する集電部材の形状と、これらの溶融状態の例を示す断面図である。
【図4】本発明のリチウム二次電池を構成する集電部材の形状の例を示す模式図である。
【図5】本発明のリチウム二次電池における捲回型内部電極体と正極集電部材とを接続した電流導出部分の一例を示す写真のレプリカ図である。
【図6】本発明のリチウム二次電池の一実施形態を示す断面図である。
【図7】本発明のリチウム二次電池の別の実施形態を示す断面図である。
【図8】従来の捲回型内部電極体の一例を示す斜視図である。
【符号の説明】
1A,1B…金属箔体、2…狭幅端面、3A…狭幅端面を含む面の法線、3B…側面部を含む面の法線、4A…正極集電部材、4B…負極集電部材、6…接続端縁、12…本体部、13…側面部、15…端部、22…正極板、23…負極板、25…正極集電タブ、26…負極集電タブ、27…セパレータ、31…第一凸部、32…第二凸部、33…溶融部、53…エネルギー線、54…集電部材、61…捲回型内部電極体、67…巻芯、68…リチウム二次電池、69A…正極内部端子、69B…負極内部端子、70A…正極外部端子、70B…負極外部端子、71A…正極電池蓋、71B…負極電池蓋、72…電極リード部材、73…電池ケース、74…くびれ加工部、75…放圧孔。
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly, to a lithium secondary battery excellent in productivity and space saving and having a reduced internal resistance.
[0002]
2. Description of the Related Art In recent years, lithium secondary batteries have been widely used as small, chargeable / dischargeable secondary batteries having a large energy density and serving as power supplies for electronic devices such as portable communication devices and notebook personal computers. I have. Also, amid increasing interest in resource saving and energy saving against the background of international protection of the global environment, lithium secondary batteries are being considered for active market introduction in the automotive industry, such as electric vehicles (EV) and hybrid vehicles. It is also expected to be used as a motor driving battery for an electric vehicle (HEV) or as a means for effectively using electric power by storing electric power at night, and there is an urgent need to commercialize a large-capacity lithium secondary battery suitable for these uses. .
In a lithium secondary battery, a lithium transition metal composite oxide or the like is generally used as a positive electrode active material, and a carbonaceous material such as hard carbon or graphite is used as a negative electrode active material. Since the reaction potential of a lithium secondary battery is as high as about 4.1 V, a conventional aqueous electrolyte cannot be used as an electrolyte. Therefore, a non-aqueous electrolyte in which a lithium compound as an electrolyte is dissolved in an organic solvent is used. Liquid is used. Then, the charging reaction occurs when lithium ions in the positive electrode active material move to the negative electrode active material through the non-aqueous electrolyte and are captured, and the opposite battery reaction occurs during discharging.
Among these, in a lithium secondary battery having a relatively large capacity suitably used for an EV, an HEV, etc., a current collecting tab (a positive electrode) which functions as a lead wire as shown in FIG. The electrode plates (the positive electrode plate 22 and the negative electrode plate 23) to which the current collecting tabs 25 and the negative electrode current collecting tabs 26 are attached are wound around the outer periphery of the core 67 with a separator 27 interposed therebetween so as not to contact each other. The wound internal electrode body 61 is preferably used. The positive electrode plate 22 and the negative electrode plate 23 are formed by forming an electrode active material (both indicating both a positive electrode active material and a negative electrode active material) layers on both surfaces of a current collecting substrate such as a metal foil body. The tab 25 and the negative electrode current collecting tab 26 are attached at predetermined intervals to portions of the positive electrode plate 22 and the negative electrode plate 23 where the metal foil body is exposed (for example, see Patent Document 1).
However, these current collecting tabs need to be attached to the electrode plate by spot welding or the like at the time of winding or laminating the electrode body, so that the process is complicated. there were. In addition, the end of the current collecting tab on the opposite side connected to the electrode plate needs to be bundled by aligning the plurality of current collecting tabs, and to be attached to the internal terminals by driving connection using rivets or the like. However, there is a problem that the process is similarly complicated, and it is not easy to connect to a low resistance. Further, connecting the internal electrode body and the internal terminal using a plurality of current collecting tabs requires a larger space for the connection, and there is a problem that the battery itself becomes large.
[0006]
[Patent Document 1]
JP 2001-85042 A
[0007]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems of the prior art. An object of the present invention is to provide a lithium secondary battery with reduced resistance.
[0008]
In other words, according to the present invention, a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound or laminated with a separator interposed therebetween. Lithium comprising an electrode body or a laminated internal electrode body, and a positive electrode current collecting member and a negative electrode current collecting member connected to ends of the positive electrode plate and the negative electrode plate, respectively, to derive current from the ends. In a secondary battery, at least one of the positive electrode current collecting member and the negative electrode current collecting member has a flat plate-shaped main body, and is perpendicular to both surfaces of the main body, and is arranged in a row in opposite directions. The first projection and the second projection are continuously protruded, and the edge of at least one of the positive electrode plate and the negative electrode plate, which is arranged to be connected ( Connection edge), the protruding end surface of the first convex portion The second convex portion is irradiated with energy rays in a state where it is positioned, and the second convex portion, a part of the main body portion, and the first convex portion are melted, and the positive current collector and the negative electrode current collector are melted. A lithium secondary battery is provided, wherein at least one of the electrical members and the end of at least one of the positive electrode plate and the negative electrode plate are connected by welding.
In the present invention, the projection length of the first projection is L 1 (Mm), the length from the protruding end surface of the first convex portion to the surface of the both surfaces of the main body portion on the side where the second convex portion protrudes is L 2 (Mm), the projection length of the second convex portion is L 3 (Mm), the width of the first convex portion is W 1 (Mm), the width of the main body perpendicular to the first convex portion and the second convex portion is W 2 (Mm), the width of the second convex portion is W 3 (Mm), it is preferable to satisfy all of the following relationships (1) to (7).
(1) L 1 ≧ 0.2
(2) L 2 ≧ 0.4
(3) L 3 ≧ 0.2
(4) (L 2 -L 1 ) ≧ 0.1
(5) 0.2 ≦ W 1 ≦ 5
(6) (W 2 -W 3 ) ≧ 1
(7) 0.2 ≦ W 3 ≦ 5
In the present invention, the second convex portion is irradiated with energy rays while the protruding end surface of the first convex portion is located on the narrow end surface of the connection edge of the positive electrode plate. It is preferable that a part of the portion and the first convex portion are melted, and the positive electrode current collector and the end of the positive electrode plate are connected by welding. In the present invention, the metal foil body and the positive electrode current collector constituting the positive electrode plate are preferably made of aluminum or an aluminum alloy.
In the present invention, the second convex portion is irradiated with energy rays on the side surface near the connection edge of the negative electrode plate while being positioned on the protruding end surface of the first convex portion. It is preferable that a part of the portion and the first convex portion are melted, and the negative electrode current collector and the end of the negative electrode plate are connected by welding.
In the present invention, the side surface of the negative electrode plate near the connection edge is bent in the vicinity of the connection edge so that the side surface of the negative electrode plate is in close contact with the protruding end surface of the first protrusion. It is preferable that the second convex portion, a part of the main body portion, and the first convex portion are melted, and the negative current collecting member and the end portion of the negative electrode plate are connected by welding. . In the present invention, the metal foil body and the negative electrode current collector constituting the negative electrode plate are preferably made of copper or a copper alloy, and at a connection portion between the negative electrode current collector and the end of the negative electrode plate, It is preferable that columnar crystals extending in the direction of the negative electrode current collector are formed.
In the present invention, at least one of the positive electrode current collecting member and the negative electrode current collecting member has a cross shape, a Y-shape, an I-shape, or a disk shape having a cutout in a part thereof. Is preferred.
In the present invention, the angle θ with respect to the normal to the plane including the narrow end face of the positive electrode plate 1 (0 ° <θ 1 ≦ 90 °), the second convex portion of the positive electrode current collector is irradiated with energy rays to dissolve the second convex portion, a part of the main body, and the first convex portion, and the positive current collector and the positive electrode It is preferable that the end of the plate is connected by welding.
In the present invention, the power density of the energy beam applied to the second projection of the positive electrode current collector is 5 kW / mm. 2 It is preferable that it is above.
In the present invention, the angle θ with respect to the normal to the surface including the side surface of the negative electrode plate is set. 2 (0 ° ≦ θ 2 ≦ 30 °), irradiating the second convex portion of the negative electrode current collecting member with an energy beam to dissolve the second convex portion, a part of the main body portion, and the first convex portion, thereby forming the negative electrode current collecting member and the negative electrode. It is preferable that the end of the plate is connected by welding.
In the present invention, the power density of the energy beam applied to the second projection of the negative electrode current collector is 3 kW / mm. 2 It is preferable that it is above.
In the present invention, the power density E (kW / mm) of the energy beam applied to the second convex portion of the negative electrode current collector is applied. 2 ) And the length (L) from the protruding end surface of the first convex portion to the protruding end surface of the second convex portion. 2 + L 3 (Mm)) preferably satisfies the following expression (2).
[0019]
(Equation 2)
(L 2 + L 3 ) ≦ E / 1 (2)
In the present invention, it is preferable that the portion of the second convex portion of the negative electrode current collector to be irradiated with the energy beam is flat, and the spot diameter of the irradiated energy beam is 1 mm or less. Preferably, there is. In the present invention, it is preferable that adjacent positive electrode plates and / or negative electrode plates are arranged with a gap therebetween.
The lithium secondary battery of the present invention is suitably used for a large battery having a battery capacity of 2 Ah or more, and is used as a power source for driving a motor of an electric vehicle or a hybrid electric vehicle in which a large current is frequently discharged. It is preferably used.
[0022]
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The embodiments of the present invention will be described below, but the present invention is not limited to the following embodiments, and is within the scope of the present invention. It should be understood that design changes, improvements, etc. may be made as appropriate based on the knowledge of.
[0023] The present invention provides a wound internal electrode or a laminated internal electrode in which a positive electrode plate and a negative electrode plate each composed of at least one metal foil are wound or laminated with a separator interposed therebetween. A lithium secondary battery including a positive electrode current collector and a negative electrode current collector connected to ends of a positive electrode plate and a negative electrode plate to derive current from the ends, respectively. At least one of the current collecting members includes a main body having a flat plate shape, and a first convex portion and a second convex portion that are perpendicular to both surfaces of the main body portion and continuously project in rows in opposite directions. A protruding end face of the first convex portion is provided at an edge (hereinafter, referred to as a “connection edge”) of at least one end of the positive electrode plate and the negative electrode plate which is arranged to be connected. Irradiate the second convex portion with energy rays in a state where is positioned, The two convex portions, a part of the main body, and the first convex portion are dissolved, at least one of the positive electrode current collecting member and the negative electrode current collecting member, and at least one end of the positive electrode plate and the negative electrode plate. Are connected by welding. Hereinafter, embodiments of the present invention will be specifically described with reference to the drawings.
FIG. 1 is a perspective view schematically showing one example of a portion of the positive electrode current collector used in the lithium secondary battery of the present invention, which is irradiated with energy rays. The positive electrode current collecting member 4A includes a main body 12 having a planar shape, and a first convex portion 31 and a second convex portion 32 which are vertically protruded from both surfaces of the main body portion 12 and continuously protrude in opposite directions. It is provided. The positive current collector 4A having such a structural characteristic is used, and the protruding end surface of the first convex portion 31 is located at the connection edge 6, more preferably, at the narrow end surface 2 of the connection edge 6. The second convex portion 32 is irradiated with the energy beam 53, and the second convex portion 32, a part of the main body portion 12, and the first convex portion 31 are dissolved, so that the positive current collector 4A and the positive electrode plate 22 (metal foil) are melted. The end 15 of the body 1A) is connected by welding.
FIG. 2 is a perspective view schematically showing one example of a portion of the negative electrode current collector used in the lithium secondary battery of the present invention, which is irradiated with energy rays. The negative electrode current collecting member 4 </ b> B includes a planar main body 12, and first and second convex portions 31 and 32 that are vertically protruded from both surfaces of the main body 12 in a row in opposite directions. It is provided. The negative electrode current collecting member 4B having such a structural feature is used, and the protruding end surface of the first convex portion 31 is positioned on the connection edge 6, more preferably on the side surface portion 13 near the connection edge 6. The second convex portion 32 is irradiated with the energy beam 53, and the second convex portion 32, a part of the main body portion 12, and the first convex portion 31 are dissolved, so that the negative electrode current collecting member 4B and the negative electrode plate 23 (metal foil) are melted. The end 15 of the body 1B) is connected by welding. In order to position the side surface portion 13 near the connection edge 6 of the negative electrode plate 23 in close contact with the protruding end surface of the first convex portion 31, the vicinity of the connection edge 6 may be bent.
As described above, in the lithium secondary battery of the present invention, the current deriving portions are composed of the positive current collector 4A (negative current collector 4B) and the end (metal foil body) of the positive electrode plate 22 (negative electrode plate 23). 1A and 1B), and the current is derived by directly connecting them by welding, so that a current collecting tab as a conventional current deriving means is unnecessary. Therefore, since a complicated current collecting tab mounting step is not required, productivity is improved. Furthermore, since the space for accommodating the current collecting tab provided between the positive electrode current collecting member 4A (negative electrode current collecting member 4B) and the positive electrode plate 22 (negative electrode plate 23) can be omitted, the entire battery Is compact. In addition, the first convex portion 31 has an effect of absorbing variations in the position (projection position) of the connection edge 6 to make it uniform, and an effect of diffusing heat due to the irradiated energy rays.
Here, in the positive electrode current collecting member 4A (negative electrode current collecting member 4B), the location where the energy beam 53 is irradiated is the second convex portion 32, and the location where the heat generated by the irradiation with the energy beam 53 is melted. , The second convex portion 32, a part of the main body portion 12 in the immediate vicinity, and the first convex portion 31. The melted portion generated by melting (melting) these portions hangs down toward the metal foil bodies 1A and 1B corresponding to the end portions 15 of the positive electrode plate 22 (negative electrode plate 23). Since the electrical member 4A has the first and second convex portions 31 and 32 protruding from the flat plate-shaped main body portion 12, a sufficient volume to serve as a fusion portion is secured. Therefore, for example, a product defect such as excessive melting of the positive electrode current collecting member 4A (negative electrode current collecting member 4B) and opening of a hole hardly occurs. In addition, the size (volume) of the generated fused portion can be appropriately adjusted by arbitrarily setting the size (volume) of the second convex portion 32. As described above, in the lithium secondary battery of the present invention, the connection state between the electrode plate and the current collecting member is reliable, the current is smoothly led out, the internal resistance has been reduced, and the current collecting member has The battery has no defects, such as holes, and has excellent reliability.
Further, in the present invention, as shown in FIGS. 3A to 3C, the protruding length of the first convex portion 31 of the current collecting members (the positive current collecting member 4A and the negative current collecting member 4B). (L 1 ) (Mm), the length from the protruding end face of the first convex portion 31 to the surface of the both surfaces of the main body portion 12 on the side where the second convex portion 32 protrudes is L. 2 (Mm), the projecting length of the second convex portion 32 is L 3 (Mm), the width of the first convex portion 31 is W 1 (Mm), the width of the main body 12 perpendicular to the first convex portion 31 and the second convex portion 32 is W 2 (Mm), the width of the second convex portion 32 is W 3 (Mm), it is preferable to satisfy all of the following relationships (1) to (7).
(1) L 1 ≧ 0.2
(2) L 2 ≧ 0.4
(3) L 3 ≧ 0.2
(4) (L 2 -L 1 ) ≧ 0.1
(5) 0.2 ≦ W 1 ≦ 5
(6) (W 2 -W 3 ) ≧ 1
(7) 0.2 ≦ W 3 ≦ 5
In FIG. 3, reference numeral 33 denotes a molten portion, and a metal foil body constituting an electrode plate disposed on the protruding end face of the first convex portion 31 by irradiating the second convex portion 32 with energy rays. This is the part that hangs down. By satisfying the above-mentioned dimensional rule, the connection state between the electrode plate and the current collecting member becomes more reliable, and product defects such as holes in the current collecting member hardly occur. Note that, in the present invention, the irradiation of the energy beam may be such that the shape of the current collecting member is a shape having the main body portion 12 on both sides of the first convex portion 31 and the second convex portion 32 as shown in FIG. This is preferable because it is possible to suppress irradiation of the metal foil body due to scattering.
From the viewpoint of making the connection state between the electrode plate and the current collecting member more reliable and making it more difficult for product defects such as holes to occur in the current collecting member, L 1 ~ L 3 And W 1 ~ W 3 However, it is more preferable that all of the following relationships (8) to (14) are satisfied. In the present invention, L 1 , L 2 , L 3 , (L 2 -L 1 ) And (W 2 -W 3 The upper limit of () is not particularly limited, but considering the practical manufacturability, the size of the battery to be manufactured, and the like, L 1 Is 3 mm or less, L 2 Is 5 mm or less, L 3 Is 3 mm or less, (L 2 -L 1 ) Is 2 mm or less, and (W 2 -W 3 ) May be 50 mm or less.
(8) L 1 ≧ 0.3
(9) L 2 ≧ 0.5
(10) L 3 ≧ 0.3
(11) (L 2 -L 1 ) ≧ 0.2
(12) 0.2 ≦ W 1 ≦ 3
(13) (W 2 -W 3 ) ≧ 3
(14) 0.2 ≦ W 3 ≦ 3
In the present invention, the metal foil and the positive electrode current collector constituting the positive electrode plate are preferably made of aluminum or an aluminum alloy from the viewpoint of exhibiting good characteristics as a component of the lithium secondary battery. Preferably, the metal foil body and the negative electrode current collector constituting the negative electrode plate are preferably made of copper or a copper alloy. Further, it is preferable that columnar crystals extending in the direction from the negative electrode plate toward the negative electrode current collector be formed at a connection portion between the negative electrode current collector and the end of the negative electrode plate. Generally, in a weld metal, a molten metal grows (epitaxial growth) with the same crystal orientation on crystal grains of a base material (unmelted portion). The solid phase thus formed grows inside the weld bead (molten portion) as the heat source moves. This growth is easy to grow in the direction of the largest temperature gradient, and grows in a form extending in almost one direction in that direction. The crystal thus grown is called a columnar crystal.
The melted portion hanging down from the negative electrode current collector recrystallizes with cooling, but the heat of the melted portion diffuses rapidly through the negative electrode plate (metal foil). That is, it is considered that the temperature of the molten portion of the portion in close contact with the negative electrode plate decreases, and the interface between the negative electrode plate and the molten portion becomes a nucleus and columnar crystals are easily formed from the negative electrode plate toward the negative electrode current collector. . Furthermore, in the present invention, the side surface portion near the connection edge of the negative electrode plate is in close contact with the protruding end surface of the first convex portion of the negative electrode current collector without any gap, and the contact state is good. Are easy to form. Therefore, when columnar crystals extending in the direction from the negative electrode plate to the negative electrode current collecting member are formed at the connection portion, the connection state between the negative electrode plate and the negative electrode current collecting member is good, that is, the negative electrode current collecting member and the negative electrode This is preferable because sufficient strength is secured for connection with the plate.
In the present invention, at least one of the positive electrode current collecting member 4A and the negative electrode current collecting member 4B has a cross shape as shown in FIGS. 4 (a) and 4 (e), and FIG. ), A Y-shape as shown in FIG. 4 (f), an I-shape as shown in FIGS. 4 (c) and 4 (g), or as shown in FIGS. 4 (d) and 4 (h). It is preferable to have a disk shape having a notch in a part. When the shape of the positive electrode current collecting member 4A and the shape of the negative electrode current collecting member 4B are these shapes, it is easy to inspect the connection state of the connection portion formed by welding, and the shape is such that the surplus portion is not included as much as possible. Because of this, the weight of the battery can be reduced. In addition, when the electrolyte is filled or the like, it is preferable because the electrolyte has a structure that can easily go around the whole. FIG. 5 is a replica view of a photograph showing an example of a current lead-out portion in which the wound internal electrode body 61 and the positive electrode current collector 4A shown in FIG. 4H are connected.
In the present invention, as shown in FIG. 1, an angle θ with respect to a normal line 3A of the surface including the narrow end face of the positive electrode plate 22 is shown. 1 (0 ° <θ 1 (≦ 90 °), the energy beam 53 is applied to the second convex portion 32 of the positive electrode current collecting member 4A to dissolve the second convex portion 32, a part of the main body portion 12, and the first convex portion 31. It is preferable that the current collecting member 4A and the end 15 of the positive electrode plate 22 be connected by welding. By irradiating the energy rays 53 in such a state, the connection state between the positive electrode plate 22 and the positive electrode current collecting member 4A becomes more reliable, and product defects such as holes in the positive electrode current collecting member 4A are less likely to occur.
From the viewpoint that the connection state between the positive electrode plate and the positive electrode current collecting member is made more reliable and the product defects such as holes are more unlikely to occur in the positive electrode current collecting member, the above-described angle θ is used. 1 Is 5 ° ≦ θ 1 ≦ 80 °, more preferably 10 ° ≦ θ 1 ≦ 60 ° is particularly preferable, and 15 ° ≦ θ 1 It is most preferred that ≦ 45 °.
Further, the positive electrode current collecting member 4A is disposed so that the first convex portion 31 intersects the narrow end surface 2 substantially perpendicularly, and the energy beam is generated so as to intersect the narrow end surface 2 substantially perpendicularly. It is preferable to scan and irradiate the second convex portion 32 using an apparatus. At this time, the angle θ with respect to the normal line 3A of the surface including the narrow end surface described above. 1 (0 ° <θ 1 In addition to irradiating the energy beam 53 to the second convex portion 32 at ≦ 90 °), the energy beam 53 is irradiated with the energy beam 53 so that the angle becomes substantially perpendicular to a line that intersects the perpendicularly to the narrow end face 2. It is preferable to irradiate the two convex portions 32. Thus, the end 15 of the positive electrode plate 22 and the positive electrode current collector 4A can be connected by a simple operation without using a brazing material. Further, since only the positive electrode current collector 4A can be melted and connected without damaging the metal foil body 1A constituting the positive electrode plate 22, the connection between the positive electrode current collector 4A and the positive electrode plate 22 can be made. Sufficient strength is secured.
In the present invention, the term "connection edge" refers to an edge to be connected at a plurality of locations in a metal foil body constituting one electrode plate, or a metal foil body constituting a plurality of electrode plates. Means the connected edge of each metal foil body over a plurality of locations. Further, “intersects substantially narrowly with the narrow end face” means that all of the narrow end faces at the plurality of connection edges intersect substantially vertically.
In the present invention, the power density of the energy beam applied to the second projection of the positive electrode current collector is 5 kW / mm. 2 And more preferably 6 kW / mm 2 More preferably, it is 7 kW / mm 2 It is particularly preferable that the above is satisfied. 3 kW / mm 2 If it is less than 1, the connection state is not good and the mechanical strength may be insufficient, which is not preferable. The upper limit of the power density is not particularly limited, but may be appropriately determined from the viewpoint of avoiding the occurrence of damage to each member used, for example, 60 kW / mm. 2 The following may be sufficient. Here, the “power density” of the energy ray referred to in the present invention means that the power (kW) of the energy ray is determined by changing the spot area (mm) of the irradiation point irradiated with the energy ray. 2 ) Means the value obtained.
On the other hand, in the present invention, as shown in FIG. 2, an angle θ with respect to a normal line 3B of the surface including the side surface of the negative electrode plate 23. 2 (0 ° ≦ θ 2 ≦ 30 °), the energy beam 53 is irradiated to the second convex portion 32 of the negative electrode current collecting member 4B to dissolve the second convex portion 32, a part of the main body portion 12, and the first convex portion 31. It is preferable that the current collecting member 4B and the end 15 of the negative electrode plate 23 be connected by welding. By irradiating the energy beam 53 in such a state, the connection state between the negative electrode plate 23 and the negative electrode current collecting member 4B becomes more reliable, and product defects such as holes in the negative electrode current collecting member 4B further hardly occur.
From the viewpoint that the connection state between the negative electrode plate and the negative electrode current collecting member is made more reliable and the product defects such as holes are more unlikely to occur in the negative electrode current collecting member, the above-mentioned angle θ is used. 2 Is 0 ° ≦ θ 2 ≦ 10 °, more preferably 0 ° ≦ θ 2 It is particularly preferred that ≦ 5 °. Further, from the viewpoint of thermal efficiency, it is preferable to focus the energy ray 53 on or near the surface of the second convex portion 32 of the negative electrode current collecting member 4B, and further, with respect to the metal foil 1B constituting the negative electrode, It is preferable that the energy beam 53 is not substantially irradiated.
Further, the negative electrode current collecting member 4B is disposed so that the first convex portion 31 thereof intersects the side portion 13 substantially perpendicularly. It is preferable to scan and irradiate the second convex portion 32 by using this. At this time, the angle θ with respect to the normal line 3B of the surface including the side surface portion described above. 2 (0 ° ≦ θ 2 ≦ 30 °), the energy beam 53 is irradiated onto the second convex portion 32 and the energy beam 53 is irradiated with the energy beam 53 so that the angle is substantially perpendicular to the line that intersects the surface portion 13 substantially perpendicularly. It is preferable to irradiate the projection 32. Thus, the end 15 of the negative electrode plate 23 and the negative electrode current collecting member 4B can be connected by a simple operation without using a brazing material. Further, since only the negative electrode current collecting member 4B can be melted and connected without damaging the metal foil body 1B constituting the negative electrode plate 23, the connection between the negative electrode current collecting member 4B and the negative electrode plate 23 can be made. Sufficient strength is secured. Note that “intersects substantially perpendicularly to the side surface” means that all of the side surfaces at the plurality of connection edges intersect approximately perpendicularly.
In the present invention, the power density of the energy beam applied to the second convex portion of the negative electrode current collector is 3 kW / mm 2 And more preferably 6 kW / mm 2 More preferably, it is 8 kW / mm 2 It is particularly preferable that the above is satisfied. 3 kW / mm 2 If it is less than 1, the connection state is not good and the mechanical strength may be insufficient, which is not preferable. The upper limit of the power density is not particularly limited, but may be appropriately determined from the viewpoint of avoiding the occurrence of damage to each member used, for example, 60 kW / mm. 2 The following may be sufficient.
Further, in the present invention, the power density E (kW / mm) of the energy beam applied to the second convex portion of the negative electrode current collecting member. 2 ) And the length (L) from the protruding end surface of the first convex portion to the protruding end surface of the second convex portion. 2 + L 3 (Mm)) preferably satisfies the following expression (3). By irradiating the energy ray under the condition satisfying the following formula (3), damage to the metal foil body constituting the negative electrode plate is further suppressed, and the connection between the negative electrode current collector and the negative electrode plate is sufficient. Strength is ensured.
[0044]
[Equation 3]
(L 2 + L 3 ) ≦ E / 1 (3)
In order to further suppress damage to the metal foil constituting the negative electrode plate and to secure further strength in the connection between the negative electrode current collector and the negative electrode plate, the following expression (4) must be satisfied. It is more preferable to satisfy the following expression (5).
[0046]
(Equation 4)
(L 2 + L 3 ) ≦ E / 3 (4)
[0047]
(Equation 5)
(L 2 + L 3 ) ≦ E / 5 (5)
In the present invention, from the viewpoint of suppressing the irregular reflection of the energy rays and suppressing the occurrence of damage to the metal foil body constituting the negative electrode plate, the energy rays of the second convex portions of the negative electrode current collecting member are reduced. The irradiated portion is preferably flat, and at least a range wider than the irradiation point is preferably flat.
In the present invention, the spot diameter of the irradiated energy beam is preferably 1 mm or less, more preferably 0.8 mm or less. Thus, irradiation of unnecessary parts with energy rays is suppressed, and in particular, occurrence of damage to the metal foil body constituting the negative electrode is suppressed. In the present invention, it is preferable that adjacent positive electrode plates and / or negative electrode plates are arranged with a gap therebetween.
In the present invention, the energy beam is preferably a laser or an electron beam having a high energy density and a small calorific value, and the energy beam is preferably a continuous wave. Thereby, since the energy can be concentrated and applied to the surface of the second convex portion, the occurrence of damage to the metal foil body constituting the electrode plate can be suppressed. Among the lasers, a YAG laser is preferable because the focus can be satisfactorily narrowed, and the occurrence of damage to the metal foil disposed outside the focus can be further suppressed.
In the present invention, when irradiating the energy beam to the second convex portion of the positive electrode current collecting member, it is preferable to use an energy beam generator capable of continuously irradiating the energy beam. Is preferably 0.1 to 100 m / min, more preferably 1 to 30 m / min, and particularly preferably 2 to 10 m / min. Further, in the present invention, a plurality of positive electrode current collecting members are prepared according to the number of arranged positive electrode plates, and the plurality of positive electrode current collecting members are substantially perpendicularly intersected by the first projections of the narrow end surfaces. It is preferable to arrange the positive electrodes in a continuous manner so that a plurality of positive plates can be connected by a single irradiation.
On the other hand, in the present invention, when irradiating the energy beam to the second convex portion of the negative electrode current collector, it is preferable to use an energy beam generator capable of continuous irradiation. Furthermore, in the present invention, according to the number of arranged negative electrode plates, a plurality of negative electrode current collecting members are prepared, and the plurality of negative electrode current collecting members have their first convex portions substantially perpendicularly intersect the side surface. It is preferable to arrange them continuously in this manner, whereby a plurality of negative electrode plates can be connected by a single irradiation.
In the present invention, when the positive electrode current collecting member and the end of the positive electrode plate are connected, a joining auxiliary material such as a brazing material is not necessary, but may be used. When used, an appropriate joining auxiliary material such as a brazing material is applied to a predetermined portion of the metal foil body and / or the positive electrode current collector constituting the positive electrode plate, or the metal foil body and the positive electrode current collector are coated. It is preferable that the energy beam is irradiated while being sandwiched between predetermined portions of the member.
On the other hand, in the present invention, when the negative electrode current collector is connected to the end of the negative electrode plate, a joining auxiliary material such as a brazing material is not necessary, but may be used. When used, a suitable joining auxiliary material such as a brazing material is applied to a predetermined portion of the metal foil body and / or the negative electrode current collector constituting the negative electrode plate, or the metal foil body and the negative electrode current collector are applied. It is preferable that the energy beam is irradiated while being sandwiched between predetermined portions of the member.
Next, the main members and structure of the lithium secondary battery of the present invention, and the manufacturing method thereof will be described mainly with reference to an example in which the internal electrode is a wound internal electrode.
The positive electrode plate is manufactured by applying a positive electrode active material to both surfaces of a metal foil body serving as a current collecting substrate. As the metal constituting the metal foil, a metal having good corrosion resistance to a positive electrode electrochemical reaction, such as aluminum or titanium, is used. As the positive electrode active material, lithium manganate (LiMn 2 O 4 ) Or lithium cobaltate (LiCoO) 2 ), Lithium nickelate (LiNiO) 2 ) Is preferably used. However, when lithium manganate having a cubic spinel structure is used, the use of a lithium transition metal composite oxide as compared with the case where other lithium transition metal composite oxides are used is preferred. This is preferable because the resistance can be reduced. In addition, it is preferable to add carbon fine powder such as acetylene black to the positive electrode active material as a conductive auxiliary agent, and it may be arbitrarily added in the range of 2 to 10% by mass.
The stoichiometric composition of lithium manganate is LiMn 2 O 4 Is not limited to such a stoichiometric composition, a part of the transition element Mn contains Ti, and in addition, Li, Fe, Ni, Mg, Zn, B, Al, Co, LiM substituted by two or more elements consisting of one or more elements selected from the group consisting of Cr, Si, Sn, P, V, Sb, Nb, Ta, Mo and W X Mn 2-X O 4 (However, M is a substitution element and X shows a substitution amount.).
When the element substitution as described above is performed, the lithium (Li) / manganese (Mn) ratio (molar ratio) is (1 + X) / ( 2-X). On the other hand, when it is substituted with a substitution element M other than lithium, it becomes 1 / (2-X). Therefore, in any case, the ratio of lithium (Li) / manganese (Mn) is always> 0.5. However, in the present invention, it is preferable to use such lithium manganate, and the stoichiometric composition (LiMn) 2 O 4 Since the crystal structure is further stabilized as compared with the case of using (1), excellent cycle characteristics can be imparted to the battery.
In the substitution element M, Li is +1 valent, Li, Mn, Ni, Mg and Zn are +2 valence, B, Al, Co and Cr are +3 valence, Si, Ti, Sn Is +4, P, V, Sb, Nb and Ta are +5, Mo and W are +6, and LiMn 2 O 4 It is an element that forms a solid solution therein, but Co and Sn have +2 valence, Fe, Sb and Ti have +3 valence, Mn has +3 valence and +4 valence, and Cr has +4 valence and +6. It can be valuable. Accordingly, the various substitution elements M may exist in a state having a mixed valence, and the amount of oxygen does not necessarily need to be 4 as represented by the theoretical chemical composition, and the crystal structure May be deficient or excessive in the range for maintaining the above.
The coating of the positive electrode active material is performed by applying a slurry or paste prepared by adding a solvent, a binder and the like to the positive electrode active material powder to a current collecting substrate by using a roll coater method or the like and drying. Then, a pressing process or the like is performed as necessary.
The negative electrode plate can be manufactured in the same manner as the positive electrode plate. As the current collecting substrate constituting the negative electrode plate, a metal foil having good corrosion resistance to a negative electrode electrochemical reaction, such as a copper foil or a nickel foil, is preferably used. As the negative electrode active material, amorphous carbonaceous materials such as soft carbon and hard carbon, and highly graphitized carbon materials such as artificial graphite and natural graphite, and more preferably, the highly graphitized carbon material is preferably a fibrous material. Used.
The separator preferably has a three-layer structure in which a lithium ion permeable polyethylene film (PE film) having micropores is sandwiched between porous lithium ion permeable polypropylene films (PP films). Used. When the temperature of the electrode body rises, the PE film softens at about 130 ° C. and the micropores are crushed, which also serves as a safety mechanism for suppressing the movement of lithium ions, that is, the battery reaction. By sandwiching the PE film with a PP film having a higher softening temperature, even when the PE film is softened, the PP film retains its shape to prevent contact and short circuit between the positive electrode plate and the negative electrode plate, It is possible to reliably suppress the reaction and ensure safety.
When manufacturing a wound type internal electrode body, a positive electrode plate and a negative electrode plate are wound around the outer periphery of a core through a separator. When a laminated internal electrode body is manufactured, a positive electrode plate and a negative electrode plate are laminated via a separator without using a core.
Next, the non-aqueous electrolyte will be described. Solvents (organic solvents) constituting the non-aqueous electrolyte include carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC) and propylene carbonate (PC), and γ-butyrolactone. A single solvent such as tetrahydrofuran and acetonitrile or a mixed solvent is suitably used.
As the electrolyte, lithium hexafluorophosphate (LiPF) 6 ) And lithium borofluoride (LiBF) 4 ) Or lithium perchlorate (LiClO) 4 ), And one or more of them can be used by dissolving them in the above-mentioned organic solvent (mixed solvent). It should be noted that lithium hexafluorophosphate (LiPF), which is unlikely to undergo oxidative decomposition and has high conductivity in the nonaqueous electrolyte, 6 ) Is preferably used.
The method of welding the current collecting member and the metal foil body constituting the electrode plate (the method of manufacturing the wound internal electrode body) is as described above, and as shown in FIG. The internal electrode body 61 is inserted into the battery case 73, and the electrode lead member 72, the current collecting members (the positive current collecting member 4A, the negative current collecting member 4B), and the electrode internal terminals (the positive internal terminal 69A, the negative internal terminal 69B). And hold in a stable position. Thereafter, the battery case 73 is sealed with a battery cover (a positive battery cover 71A, a negative battery cover 71B) and impregnated with the above-described non-aqueous electrolytic solution, whereby the lithium secondary battery (tabless structure type lithium Battery).
In FIG. 6, the electrode lead member 72 is made of the same kind of metal or an alloy thereof as the positive electrode current collecting member 4A, the positive electrode internal terminal 69A, the negative electrode current collecting member 4B, and the negative electrode internal terminal 69B to be connected. Is preferred. Specifically, when aluminum or an aluminum alloy is used for the positive electrode internal terminal 69A and the positive electrode current collecting member 4A, aluminum or an aluminum alloy is used for the positive electrode lead member 72, and the negative electrode internal terminal 69B and the negative electrode current collecting member are used. When copper or a copper alloy is used for the member 4B, it is preferable to use copper or a copper alloy for the electrode lead member 72 of the negative electrode.
Instead of using the electrode lead member 72, the positive current collector 4A may be directly connected to the positive internal terminal 69A, and the negative current collector 4B may be directly connected to the negative internal terminal 69B, and may be energized. Further, the portion having the tabless structure described above may be used for the positive electrode and the negative electrode, or may be used for either the positive electrode or the negative electrode. In FIG. 6, reference numeral 70A denotes a positive electrode external terminal, reference numeral 70B denotes a negative electrode external terminal, reference numeral 74 denotes a constricted portion, and reference numeral 75 denotes a pressure release hole.
Further, as shown in FIG. 7, the current collecting member 54 may be configured to also serve as an electrode cover. FIG. 7 shows an example in which a cylindrical battery case 73 having one open end is used, and one end of the battery case 73 is formed with a constricted portion. However, a configuration in which the current collecting member 54 also serves as an electrode cover. If so, the shape of the battery is not particularly limited. For example, a battery case 73 in which both ends are constricted, a battery case 73 in which both ends are open, and the like may be used. Although FIG. 7 shows an example in which the pressure release hole 75 is provided on the positive electrode side, a configuration having a pressure release hole on the negative electrode side may be employed.
As shown in FIGS. 6 and 7, in the lithium secondary battery 68 of the present embodiment, a metal foil body constituting an electrode plate and a current collecting member 54 are provided at a portion where current is drawn from the wound internal electrode body 61. By employing a configuration in which the (positive current collecting member 4A and the negative current collecting member 4B) are directly connected, it is not necessary to use a current collecting tab which is a conventional current deriving means. Therefore, a complicated current collecting tab mounting step is not required, and productivity can be improved. Further, since the space corresponding to the length of the current collecting tab can be omitted, the whole battery is compact.
As described above, the lithium secondary battery according to the present invention has been described with reference to the embodiments, but it goes without saying that the present invention is not limited to the above embodiments. In addition, the lithium secondary battery according to the present invention is particularly preferably used for a large battery having a battery capacity of 2 Ah or more, but does not prevent application to a battery having such a capacity or less. In addition, the lithium secondary battery of the present invention has a large capacity but is miniaturized, so that it is particularly used as an on-vehicle battery that requires space saving, and further for driving a motor of an electric vehicle or a hybrid electric vehicle. It is preferably used for a power supply, and can also be suitably used for starting an engine that requires a high voltage.
[0072]
As described above, in the lithium secondary battery of the present invention, at least one of the positive electrode current collecting member and the negative electrode current collecting member has a predetermined shape having first and second projections, and The connection edge of the foil body is irradiated with energy rays to the second projection in a state where the protruding end face of the first projection is located, and the end of the metal foil body is connected by welding. Therefore, the connection state between the current collecting member and the metal foil constituting the current collecting substrate is good, and the productivity and space saving are excellent, and the internal resistance is reduced.
[Brief description of the drawings]
FIG. 1 is a perspective view schematically showing an example of a portion of a positive electrode current collector used in a lithium secondary battery of the present invention, to which an energy beam is applied.
FIG. 2 is a perspective view schematically showing an example of a part of the negative electrode current collector used in the lithium secondary battery of the present invention, which is irradiated with energy rays.
FIG. 3 is a cross-sectional view showing a shape of a current collecting member constituting the lithium secondary battery of the present invention and an example of a molten state thereof.
FIG. 4 is a schematic view showing an example of a shape of a current collecting member constituting the lithium secondary battery of the present invention.
FIG. 5 is a replica view of a photograph showing an example of a current lead-out portion connecting a wound internal electrode body and a positive electrode current collector in a lithium secondary battery of the present invention.
FIG. 6 is a cross-sectional view showing one embodiment of the lithium secondary battery of the present invention.
FIG. 7 is a sectional view showing another embodiment of the lithium secondary battery of the present invention.
FIG. 8 is a perspective view showing an example of a conventional wound internal electrode body.
[Explanation of symbols]
1A, 1B: Metal foil body, 2: Narrow end surface, 3A: Normal line of the surface including the narrow end surface, 3B: Normal line of the surface including the side portion, 4A: Positive current collecting member, 4B: Negative current collecting member , 6 ... connection edge, 12 ... body part, 13 ... side surface part, 15 ... end part, 22 ... positive electrode plate, 23 ... negative electrode plate, 25 ... positive electrode current collecting tab, 26 ... negative electrode current collecting tab, 27 ... separator, DESCRIPTION OF SYMBOLS 31 ... 1st convex part, 32 ... 2nd convex part, 33 ... fusion | melting part, 53 ... energy ray, 54 ... current collection member, 61 ... wound internal electrode body, 67 ... winding core, 68 ... lithium secondary battery , 69A: Positive internal terminal, 69B: Negative internal terminal, 70A: Positive external terminal, 70B: Negative external terminal, 71A: Positive battery cover, 71B: Negative battery cover, 72: Electrode lead member, 73: Battery case, 74 ... Constricted part, 75 ... pressure release hole.

Claims (21)

少なくとも1枚の金属箔体からそれぞれ構成された正極板及び負極板がセパレータを介して捲回又は積層されてなる捲回型内部電極体又は積層型内部電極体と、前記正極板及び前記負極板の端部に、その端部から電流を導出するためにそれぞれ接続された正極集電部材及び負極集電部材とを備えたリチウム二次電池であって、
前記正極集電部材及び前記負極集電部材のうちの少なくとも一方は、平板形状を有する本体部と、前記本体部の両表面から垂直で、互いに反対向きに列状に連続して突出する第一凸部及び第二凸部とを備えてなり、
前記正極板及び前記負極板のうちの少なくとも一方の前記端部のうちの、接続されるべく配列された端縁(接続端縁)に、前記第一凸部の突出端面を位置させた状態で前記第二凸部にエネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記正極集電部材及び前記負極集電部材のうちの少なくとも一方と、前記正極板及び前記負極板のうちの少なくとも一方の前記端部とを溶接によって接続してなることを特徴とするリチウム二次電池。
A wound internal electrode body or a laminated internal electrode body in which a positive electrode plate and a negative electrode plate each composed of at least one metal foil body are wound or laminated via a separator, and the positive electrode plate and the negative electrode plate A lithium secondary battery including a positive electrode current collector and a negative electrode current collector connected to each other to derive a current from the end,
At least one of the positive electrode current collecting member and the negative electrode current collecting member has a plate-shaped main body, and a first projecting from both surfaces of the main body perpendicularly and continuously in a row in opposite directions. Comprising a convex portion and a second convex portion,
A state in which the protruding end surface of the first convex portion is located at an edge (connection edge) arranged to be connected among at least one of the ends of the positive electrode plate and the negative electrode plate. The second convex portion is irradiated with energy rays, the second convex portion, a part of the main body, and the first convex portion are dissolved, and the positive current collecting member and the negative current collecting member are dissolved. At least one of the positive electrode plate and the end portion of at least one of the negative electrode plate is connected by welding.
前記第一凸部の突出長さをL(mm)、前記第一凸部の突出端面から、前記本体部の両表面のうちの前記第二凸部が突出する側の表面までの長さをL(mm)、前記第二凸部の突出長さをL(mm)、前記第一凸部の幅をW(mm)、前記本体部の、前記第一凸部及び前記第二凸部と直交する幅をW(mm)、前記第二凸部の幅をW(mm)としたとき、下記(1)〜(7)の関係を全て満たす請求項1に記載のリチウム二次電池。
(1)L≧0.2
(2)L≧0.4
(3)L≧0.2
(4)(L−L)≧0.1
(5)0.2≦W≦5
(6)(W−W)≧1
(7)0.2≦W≦5
The projection length of the first projection is L 1 (mm), and the length from the projection end surface of the first projection to the surface of the two surfaces of the main body on the side where the second projection projects. the L 2 (mm), the projecting length of the second projecting portion L 3 (mm), width W 1 of the first protrusion (mm), of the body portion, said first protrusion and said second 2. The relationship according to claim 1, wherein when the width orthogonal to the two convex portions is W 2 (mm) and the width of the second convex portion is W 3 (mm), all of the following relationships (1) to (7) are satisfied. Lithium secondary battery.
(1) L 1 ≧ 0.2
(2) L 2 ≧ 0.4
(3) L 3 ≧ 0.2
(4) (L 2 −L 1 ) ≧ 0.1
(5) 0.2 ≦ W 1 ≦ 5
(6) (W 2 −W 3 ) ≧ 1
(7) 0.2 ≦ W 3 ≦ 5
前記正極板の前記接続端縁の狭幅端面に、前記第一凸部の突出端面を位置させた状態で前記第二凸部にエネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記正極集電部材と、前記正極板の前記端部とを溶接によって接続してなる請求項1又は2に記載のリチウム二次電池。On the narrow end surface of the connection edge of the positive electrode plate, the second projection is irradiated with energy rays in a state where the projection end surface of the first projection is located, and the second projection, the main body 3. The lithium secondary battery according to claim 1, wherein a part of the first convex portion is melted, and the positive current collecting member and the end of the positive electrode plate are connected by welding. 4. 前記正極板を構成する前記金属箔体及び前記正極集電部材が、アルミニウム又はアルミニウム合金からなる請求項1〜3のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 3, wherein the metal foil body and the positive electrode current collector constituting the positive electrode plate are made of aluminum or an aluminum alloy. 前記負極板の前記接続端縁近傍の側面部に、前記第一凸部の突出端面に位置させた状態で前記第二凸部にエネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記負極集電部材と、前記負極板の前記端部とを溶接によって接続してなる請求項1〜4のいずれか一項に記載のリチウム二次電池。On the side surface portion near the connection edge of the negative electrode plate, the second convex portion is irradiated with energy rays while being positioned on the protruding end surface of the first convex portion, and the second convex portion, the main body portion The lithium according to any one of claims 1 to 4, wherein a part and the first convex portion are melted, and the negative electrode current collector and the end of the negative electrode plate are connected by welding. Secondary battery. 前記負極板の前記接続端縁近傍の前記側面部を、前記接続端縁近傍を屈曲させることにより、前記第一凸部の突出端面に密着して位置させた状態で前記第二凸部にエネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記負極集電部材と、前記負極板の前記端部とを溶接によって接続してなる請求項5に記載のリチウム二次電池。By bending the side portion in the vicinity of the connection edge of the negative electrode plate near the connection edge, energy is applied to the second projection in a state where the side portion is in close contact with the projection end surface of the first projection. By irradiating a line, the second convex portion, a part of the main body portion, and the first convex portion are melted, and the negative electrode current collecting member and the end portion of the negative electrode plate are connected by welding. The lithium secondary battery according to claim 5. 前記負極板を構成する前記金属箔体及び前記負極集電部材が、銅又は銅合金からなる請求項1〜6のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 6, wherein the metal foil body and the negative electrode current collector constituting the negative electrode plate are made of copper or a copper alloy. 前記負極集電部材と、前記負極板の前記端部との接続部分において、前記負極板から前記負極集電部材の方向に延びる柱状晶が形成されてなる請求項7に記載のリチウム二次電池。8. The lithium secondary battery according to claim 7, wherein a columnar crystal extending from the negative electrode plate toward the negative electrode current collector is formed at a connection portion between the negative electrode current collector and the end of the negative electrode plate. . 前記正極集電部材及び前記負極集電部材のうちの少なくとも一方の形状が、十字形状、Y字形状、I字形状、又は一部に切り欠きを有する円板形状である請求項1〜8のいずれか一項に記載のリチウム二次電池。The shape of at least one of the positive electrode current collecting member and the negative electrode current collecting member is a cross shape, a Y-shape, an I-shape, or a disc shape having a cutout in a part thereof. The lithium secondary battery according to claim 1. 前記正極板の前記狭幅端面を含む面の法線に対して、角度θ(0°<θ≦90°)で、前記正極集電部材の前記第二凸部に前記エネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記正極集電部材と、前記正極板の前記端部とを溶接によって接続してなる請求項3〜9のいずれか一項に記載のリチウム二次電池。The energy beam is applied to the second convex portion of the positive electrode current collector at an angle θ 1 (0 ° <θ 1 ≦ 90 °) with respect to a normal to a surface including the narrow end surface of the positive electrode plate. The second convex portion, a part of the main body portion, and the first convex portion are melted, and the positive current collector and the end of the positive electrode plate are connected by welding. The lithium secondary battery according to any one of claims 3 to 9. 前記正極集電部材の前記第二凸部に照射される前記エネルギー線のパワー密度が、5kW/mm以上である請求項1〜10のいずれか一項に記載のリチウム二次電池。The power density of the energy beam irradiated to the second convex portion of the positive electrode current collector member, the lithium secondary battery according to any one of claims 1 to 10 is 5 kW / mm 2 or more. 前記負極板の前記側面部を含む面の法線に対して、角度θ(0°≦θ≦30°)で、前記負極集電部材の前記第二凸部に前記エネルギー線を照射し、前記第二凸部、前記本体部の一部、及び前記第一凸部を溶解して、前記負極集電部材と、前記負極板の前記端部とを溶接によって接続してなる請求項5〜11のいずれか一項に記載のリチウム二次電池。The energy beam is irradiated on the second convex portion of the negative electrode current collector at an angle θ 2 (0 ° ≦ θ 2 ≦ 30 °) with respect to a normal to a surface including the side surface portion of the negative electrode plate. The second convex portion, a part of the main body portion, and the first convex portion are melted, and the negative electrode current collector and the end portion of the negative electrode plate are connected by welding. 12. The lithium secondary battery according to any one of claims 11 to 11. 前記負極集電部材の前記第二凸部に照射される前記エネルギー線のパワー密度が、3kW/mm以上である請求項1〜12のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 12, wherein a power density of the energy beam applied to the second protrusion of the negative electrode current collector is 3 kW / mm 2 or more. 前記負極集電部材の前記第二凸部に照射される前記エネルギー線のパワー密度E(kW/mm)と、前記第一凸部の突出端面から前記第二凸部の突出端面までの長さ(L+L(mm))とが、下記式(1)を満たす請求項1〜13のいずれか一項に記載のリチウム二次電池。
Figure 2004172038
The power density E (kW / mm 2 ) of the energy beam applied to the second convex portion of the negative electrode current collecting member and the length from the protruding end surface of the first convex portion to the protruding end surface of the second convex portion. is (L 2 + L 3 (mm )) and, but rechargeable lithium battery according to any one of claims 1 to 13 which satisfies the following formula (1).
Figure 2004172038
前記負極集電部材の前記第二凸部のうちの、前記エネルギー線が照射される部分が平面状である請求項1〜14のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 14, wherein a portion of the second convex portion of the negative electrode current collector, to which the energy ray is irradiated, is planar. 照射される前記エネルギー線のスポット径が、1mm以下である請求項1〜15のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to claim 1, wherein a spot diameter of the irradiated energy beam is 1 mm or less. 隣り合う前記正極板及び/又は前記負極板どうしが間隙を保持して配列されてなる請求項1〜16のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 16, wherein adjacent ones of the positive electrode plates and / or the negative electrode plates are arranged with a gap therebetween. 電池容量が2Ah以上である請求項1〜17のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 17, wherein the battery capacity is 2 Ah or more. 車載用電池である請求項1〜18のいずれか一項に記載のリチウム二次電池。The lithium secondary battery according to any one of claims 1 to 18, which is a vehicle-mounted battery. 電気自動車用又はハイブリッド電気自動車用である請求項19に記載のリチウム二次電池。20. The lithium secondary battery according to claim 19, which is for an electric vehicle or a hybrid electric vehicle. エンジン起動用である請求項19又は20に記載のリチウム二次電池。21. The lithium secondary battery according to claim 19, which is for starting an engine.
JP2002339017A 2002-11-22 2002-11-22 Lithium secondary battery Expired - Fee Related JP4532066B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002339017A JP4532066B2 (en) 2002-11-22 2002-11-22 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002339017A JP4532066B2 (en) 2002-11-22 2002-11-22 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2004172038A true JP2004172038A (en) 2004-06-17
JP4532066B2 JP4532066B2 (en) 2010-08-25

Family

ID=32702063

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002339017A Expired - Fee Related JP4532066B2 (en) 2002-11-22 2002-11-22 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP4532066B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006351376A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Battery and its manufacturing method
JP2007324015A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
WO2008035495A1 (en) 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
EP1995805A1 (en) 2007-05-22 2008-11-26 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
EP2003716A1 (en) 2007-06-11 2008-12-17 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
JP2009123440A (en) * 2007-11-13 2009-06-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2010023869A1 (en) * 2008-08-25 2010-03-04 パナソニック株式会社 Method for manufacturing secondary battery and secondary battery
US7867644B2 (en) 2007-01-31 2011-01-11 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
US7955736B2 (en) 2004-06-23 2011-06-07 Samsung Sdi Co., Ltd. Secondary battery
CN101401248B (en) * 2006-03-07 2011-07-06 丰田自动车株式会社 Battery, and battery manufacturing method
JP2018137166A (en) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 Lithium ion secondary battery

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160387A (en) * 1999-09-21 2001-06-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery and manufacturing method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7955736B2 (en) 2004-06-23 2011-06-07 Samsung Sdi Co., Ltd. Secondary battery
JP2006351376A (en) * 2005-06-16 2006-12-28 Toyota Motor Corp Battery and its manufacturing method
CN101401248B (en) * 2006-03-07 2011-07-06 丰田自动车株式会社 Battery, and battery manufacturing method
JP2007324015A (en) * 2006-06-02 2007-12-13 Matsushita Electric Ind Co Ltd Secondary battery and its manufacturing method
US7976979B2 (en) 2006-09-20 2011-07-12 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
WO2008035495A1 (en) 2006-09-20 2008-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
US8142922B2 (en) 2006-09-20 2012-03-27 Panasonic Corporation Secondary battery and method for manufacturing secondary battery
KR101057954B1 (en) 2006-09-20 2011-08-18 파나소닉 주식회사 Secondary Battery and Manufacturing Method of Secondary Battery
US7867644B2 (en) 2007-01-31 2011-01-11 Hitachi Vehicle Energy, Ltd. Secondary battery and secondary battery manufacturing method
EP1995805A1 (en) 2007-05-22 2008-11-26 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
US8053105B2 (en) 2007-05-22 2011-11-08 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
EP2003716A1 (en) 2007-06-11 2008-12-17 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
US7989107B2 (en) 2007-06-11 2011-08-02 Hitachi Vehicle Energy, Ltd. Lithium-ion secondary battery
JP2008305731A (en) * 2007-06-11 2008-12-18 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
JP2009123440A (en) * 2007-11-13 2009-06-04 Hitachi Vehicle Energy Ltd Lithium-ion secondary battery
WO2010023869A1 (en) * 2008-08-25 2010-03-04 パナソニック株式会社 Method for manufacturing secondary battery and secondary battery
JP2018137166A (en) * 2017-02-23 2018-08-30 トヨタ自動車株式会社 Lithium ion secondary battery

Also Published As

Publication number Publication date
JP4532066B2 (en) 2010-08-25

Similar Documents

Publication Publication Date Title
KR100973173B1 (en) Assembled battery
JP5336698B2 (en) Non-aqueous electrolyte battery
US20140170451A1 (en) Electrode
JP2008078008A (en) Battery pack and its manufacturing method
US20120079713A1 (en) Manufacturing method of prismatic sealed cell
JP2005123183A (en) Non-aqueous electrolyte secondary battery and composite batteries
JP5100082B2 (en) Flat battery
US20140302366A1 (en) Nonaqueous electrolyte secondary cell
JP2003208924A (en) Lithium secondary battery
JP3526786B2 (en) Lithium secondary battery
JP4532066B2 (en) Lithium secondary battery
JP2001085042A (en) Lithium secondary battery and fabrication of wound electrode
JP5150095B2 (en) Non-aqueous electrolyte battery
JP2003007346A (en) Secondary lithium battery and manufacturing method of the same
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JP2004247192A (en) Lithium secondary battery
JP7443579B2 (en) Nonaqueous electrolyte batteries and battery packs
JP4326818B2 (en) Lithium secondary battery and manufacturing method thereof
JP4805545B2 (en) Lithium secondary battery
JP6735036B2 (en) Lithium ion secondary battery
JP4318905B2 (en) Lithium secondary battery
JP2005116321A (en) Lithium secondary battery and its low-temperature characteristic evaluation method
JP2004288405A (en) Lithium secondary battery
JP2004253252A (en) Lithium secondary battery
JP2000182656A (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090417

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090616

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100216

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100608

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100610

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4532066

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130618

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140618

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees