JP6853762B2 - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP6853762B2
JP6853762B2 JP2017187645A JP2017187645A JP6853762B2 JP 6853762 B2 JP6853762 B2 JP 6853762B2 JP 2017187645 A JP2017187645 A JP 2017187645A JP 2017187645 A JP2017187645 A JP 2017187645A JP 6853762 B2 JP6853762 B2 JP 6853762B2
Authority
JP
Japan
Prior art keywords
positive electrode
negative electrode
tab portion
secondary battery
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017187645A
Other languages
Japanese (ja)
Other versions
JP2019061925A (en
Inventor
茂樹 齋藤
茂樹 齋藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primearth EV Energy Co Ltd
Original Assignee
Primearth EV Energy Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Primearth EV Energy Co Ltd filed Critical Primearth EV Energy Co Ltd
Priority to JP2017187645A priority Critical patent/JP6853762B2/en
Publication of JP2019061925A publication Critical patent/JP2019061925A/en
Application granted granted Critical
Publication of JP6853762B2 publication Critical patent/JP6853762B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

本発明は二次電池に関し、例えば、複数の正極シートと複数の負極シートを有し、正極シートと負極シートが交互に積層される構造を有する二次電池に関する。 The present invention relates to a secondary battery, for example, a secondary battery having a plurality of positive electrode sheets and a plurality of negative electrode sheets, and having a structure in which positive electrode sheets and negative electrode sheets are alternately laminated.

二次電池では、正極シートと負極シートとによりセパレータを挟み込む構造により発電体を形成する。また、二次電池は、発電体の面積の大きさにより電池容量が決まる。二次電池では、1つの電池セルの体積辺りの電池容量(以下容量効率と称す)を高めるために、発電体の電池セル内への収納方法が様々考えられている。収納方法の1つとして、広い面積のシート状の発電体を巻いて筒形状とする捲回体構造がある。また、別の収納方法として、複数の正極板と複数の負極板及び複数のセパレータを、正極シートと負極シートとの間にセパレータが挟まれる形態で積層する積層構造がある。 In the secondary battery, the power generator is formed by a structure in which the separator is sandwiched between the positive electrode sheet and the negative electrode sheet. In addition, the battery capacity of a secondary battery is determined by the size of the area of the generator. In the secondary battery, various methods of storing the generator in the battery cell have been considered in order to increase the battery capacity per volume of one battery cell (hereinafter referred to as capacity efficiency). As one of the storage methods, there is a wound body structure in which a sheet-shaped power generator having a large area is wound into a tubular shape. Further, as another storage method, there is a laminated structure in which a plurality of positive electrode plates, a plurality of negative electrode plates, and a plurality of separators are laminated so that the separator is sandwiched between the positive electrode sheet and the negative electrode sheet.

捲回体構造は、シート状の電極等を屈曲させなければならず、屈曲による活物質の脱落が発生しやすく大容量化には不向きな特徴がある。一方、積層構造では、発電体内で電極等の屈曲はないため大容量化に好適であるという特徴がある。しかしながら、積層構造の発電体を採用した場合、発電体で発電された電流を取り出す構造として、正極板と負極板それぞれに発電体から突出するようなタブ部を設け、このタブ部に集電板を取り付ける構造が必要になる。そのため、タブ部の形状及びタブ部への集電板の取り付け方法によって、電池セルの体積に示す発電体の大きさが制限される問題がある。特許文献1に集積構造の発電体を有する二次電池におけるタブ部の構造及びタブ部への集電板の取り付け方法の一例が開示されている。 The wound body structure has a feature that the sheet-shaped electrode or the like must be bent, and the active material is likely to fall off due to the bending, which is unsuitable for increasing the capacity. On the other hand, the laminated structure is characterized in that it is suitable for increasing the capacity because the electrodes and the like are not bent in the power generation body. However, when a power generator having a laminated structure is adopted, as a structure for extracting the current generated by the power generator, a tab portion is provided on each of the positive electrode plate and the negative electrode plate so as to protrude from the generator, and the current collecting plate is provided on this tab portion. A structure is required to attach the. Therefore, there is a problem that the size of the power generator indicated by the volume of the battery cell is limited by the shape of the tab portion and the method of attaching the current collector plate to the tab portion. Patent Document 1 discloses an example of a structure of a tab portion and a method of attaching a current collector plate to the tab portion in a secondary battery having a generator having an integrated structure.

特許文献1に記載の二次電池は、正負極板の少なくとも一方の極板の端縁部を他方の極板の端縁部より突出させ、セパレータを介して巻回あるいは積層してなる発電素子を有する非水電解質二次電池において、少なくとも該発電素子の突出した極板の端縁部の一方に設けられた1mm以上5cm以下の幅の活物質未塗布部が集電体とレーザー溶接される。 The secondary battery described in Patent Document 1 is a power generation element formed by projecting the edge portion of at least one electrode plate of the positive / negative electrode plate from the edge portion of the other electrode plate and winding or laminating the battery through a separator. In the non-aqueous electrolyte secondary battery having the above, at least one of the edge portions of the protruding electrode plate of the power generation element is laser-welded to the current collector with a width of 1 mm or more and 5 cm or less. ..

特開平10−106536号公報Japanese Unexamined Patent Publication No. 10-106536

しかしながら、特許文献1に記載の二次電池では、極板の端縁部を複数枚束ねて集電体とレーザー溶接する。そのため、集電体に複数の端縁部を束ねて差し込むための構造が必要であるため、集電体の厚みが大きくなる。つまり、特許文献1に記載の二次電池では、集電体の厚みに起因して電池セルの体積辺りの発電体の体積が制限され、電池容量の大容量化の妨げとなる問題がある。 However, in the secondary battery described in Patent Document 1, a plurality of edge portions of the electrode plate are bundled and laser welded to the current collector. Therefore, since a structure for bundling and inserting a plurality of edge portions into the current collector is required, the thickness of the current collector becomes large. That is, in the secondary battery described in Patent Document 1, there is a problem that the volume of the generator around the volume of the battery cell is limited due to the thickness of the current collector, which hinders the increase in the battery capacity.

本発明は、上記事情に鑑みてなされたものであり、集電板に要する体積を削減することを目的とするものである。 The present invention has been made in view of the above circumstances, and an object of the present invention is to reduce the volume required for a current collector plate.

本発明の二次電池の一態様は、正極シートの正極活物質充填部と負極シートの負極活物質充填部とが交互に複数枚積層され、かつ、前記正極活物質充填部と前記負極活物質充填部との間にセパレータが挟まれるように形成された積層発電体と前記正極シートの一部であって、前記積層発電体から突出するように前記積層発電体の側面に設けられた正極タブ部と、前記正極タブ部と接合される正極集電板と、前記負極シートの一部であって、前記積層発電体から突出するように前記積層発電体の側面に設けられた負極タブ部と、前記負極タブ部と接合される負極集電板と、を有し、前記正極タブ部及び前記負極タブ部は、それぞれ、前記積層発電体に対抗する辺に複数の凹凸が形成される凹凸辺を有し、前記正極集電板と前記負極集電板は、前記凹凸辺の凸部に対応した位置に設けられる複数のスリットが形成され、前記凹凸辺と前記複数のスリットは、前記凹凸辺の凸部が前記スリットに嵌め込まれた状態で固定される。
を有する。
In one aspect of the secondary battery of the present invention, a plurality of positive electrode active material filling portions and negative electrode active material filling portions of the negative electrode sheet are alternately laminated, and the positive electrode active material filling portion and the negative electrode active material are laminated. A laminated power generation body formed so that a separator is sandwiched between the filling portion and a part of the positive electrode sheet, and a positive electrode tab provided on a side surface of the laminated power generation body so as to protrude from the laminated power generation body. A positive electrode current collector plate joined to the positive electrode tab portion, and a negative electrode tab portion that is a part of the negative electrode sheet and is provided on the side surface of the laminated generator so as to protrude from the laminated generator. A negative electrode current collector plate to be joined to the negative electrode tab portion, and the positive electrode tab portion and the negative electrode tab portion each have an uneven side on which a plurality of irregularities are formed on a side facing the laminated generator. The positive electrode current collector plate and the negative electrode current collector plate are formed with a plurality of slits provided at positions corresponding to the convex portions of the concave-convex side, and the concave-convex side and the plurality of slits are formed on the concave-convex side. The convex portion of the above is fixed in a state of being fitted into the slit.
Have.

本発明にかかる二次電池は、積層発電体からの電流取り出し部となる正極タブ部及び負極タブ部が集電板のスリットに嵌め込まれた状態で固定される。これにより、本発明にかかる二次電池では、集電板の厚みを小さくすることができる。 The secondary battery according to the present invention is fixed in a state where the positive electrode tab portion and the negative electrode tab portion, which are the current extraction portions from the laminated generator, are fitted into the slits of the current collector plate. As a result, in the secondary battery according to the present invention, the thickness of the current collector plate can be reduced.

本発明の二次電池によれば、二次電池のセル体積あたりの発電体の体積を大きくすることができる。 According to the secondary battery of the present invention, the volume of the generator per cell volume of the secondary battery can be increased.

実施の形態1にかかる二次電池の組み立て工程の流れを説明するフローチャートである。It is a flowchart explaining the flow of the assembly process of the secondary battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる二次電池の正極シート及び負極シートの形状を説明する図である。It is a figure explaining the shape of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる二次電池の正極シート及び負極シートの積層状態を説明する図である。It is a figure explaining the laminated state of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる二次電池の集電板の形状を説明する図である。It is a figure explaining the shape of the current collector plate of the secondary battery which concerns on Embodiment 1. FIG. 実施の形態1にかかる二次電池の正極シート及び負極シートと集電板の接合方法を説明する図である。It is a figure explaining the method of joining the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 1, and a current collector plate. 実施の形態2にかかる二次電池の正極シート及び負極シートの形状を説明する図である。It is a figure explaining the shape of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 2. FIG. 実施の形態2にかかる二次電池の正極シート及び負極シートの積層状態と、集電板の形状と、を説明する図である。It is a figure explaining the laminated state of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 2, and the shape of the current collector plate. 実施の形態2にかかる二次電池の正極シート及び負極シートと集電板の接合状態を説明する図である。It is a figure explaining the bonding state of the positive electrode sheet and the negative electrode sheet, and the current collector plate of the secondary battery which concerns on Embodiment 2. FIG. 実施の形態3にかかる二次電池の正極シート及び負極シートの積層状態と、正極シート及び負極シートの形状と、を説明する図である。It is a figure explaining the laminated state of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 3, and the shape of the positive electrode sheet and the negative electrode sheet. 実施の形態3にかかる二次電池の正極シート及び負極シートのかしめ工程を説明する図である。It is a figure explaining the caulking process of the positive electrode sheet and the negative electrode sheet of the secondary battery which concerns on Embodiment 3. FIG.

実施の形態1
以下、図面を参照して本発明の実施の形態について説明する。説明の明確化のため、以下の記載及び図面は、適宜、省略、及び簡略化がなされている。各図面において、同一の要素には同一の符号が付されており、必要に応じて重複説明は省略されている。
Embodiment 1
Hereinafter, embodiments of the present invention will be described with reference to the drawings. In order to clarify the explanation, the following description and drawings have been omitted or simplified as appropriate. In each drawing, the same elements are designated by the same reference numerals, and duplicate explanations are omitted as necessary.

まず、図1に実施の形態1にかかる二次電池の組み立て工程の流れを説明するフローチャートを示す。そして、実施の形態1にかかる二次電池の組み立て方法について説明する。 First, FIG. 1 shows a flowchart illustrating a flow of a secondary battery assembly process according to the first embodiment. Then, the method of assembling the secondary battery according to the first embodiment will be described.

図1に示すように、実施の形態1にかかる二次電池では、まず、電極板となる部材の大きなシートからレーザーカッターにより、電極シートを切り出す(ステップS1)。このとき、切り出された電極シートは、導電性の金属シートであり、発電に必要な活物質の塗布はなされていない。また、電極板の部材は、例えば、負極シートはアルミニウムを主成分とするものであり、負極シートは銅を主成分とするものである。このステップS1の切り出し工程でレーザーカッターを用いる。このとき負極シートに関しては酸素雰囲気中でレーザーカッターによる切り出しを行う。これにより、切り出された負極シートの外周には酸化膜が形成される。負極シートの外周に酸化膜が形成されることで、集電板の溶接工程において溶接が容易になる効果を奏する。 As shown in FIG. 1, in the secondary battery according to the first embodiment, first, an electrode sheet is cut out from a large sheet of a member to be an electrode plate by a laser cutter (step S1). At this time, the cut-out electrode sheet is a conductive metal sheet, and the active material necessary for power generation is not applied. Further, as for the members of the electrode plate, for example, the negative electrode sheet is mainly composed of aluminum, and the negative electrode sheet is mainly composed of copper. A laser cutter is used in the cutting step of step S1. At this time, the negative electrode sheet is cut out by a laser cutter in an oxygen atmosphere. As a result, an oxide film is formed on the outer periphery of the cut out negative electrode sheet. By forming an oxide film on the outer periphery of the negative electrode sheet, it has the effect of facilitating welding in the welding process of the current collector plate.

次いで、ステップS1で切り出した電極シートに活物質を塗布する(ステップS2)。このとき、正極となる電極シート(以下、正極シートと称す)には電極シートを正極として機能させるために必要な活物質(例えば、LiCoO2、LiMn2O4、LiNiO2等)を塗布する。また、負極となる電極シート(以下、負極シートと称す)には電極シートを負極として機能させるために必要な活物質(例えば、黒鉛(LiC6)、チタネイト(Li4Ti5O12)等)を塗布する。また、この活物質塗布工程では、電極シートの一部については活物質を塗布せずに、電池からの電流取りだし電極、或いは、電池の充電時の電流注入電極として用いるタブ部とする。 Next, the active material is applied to the electrode sheet cut out in step S1 (step S2). At this time, the electrode sheet serving as the positive electrode (hereinafter referred to as the positive electrode sheet) is coated with an active material (for example, LiCoO 2 , LiMn 2 O 4 , LiNiO 2, etc.) necessary for the electrode sheet to function as the positive electrode. The electrode sheet (hereinafter, referred to as a negative electrode sheet) serving as the negative electrode is required to function the electrode sheet as a negative electrode active material (e.g., graphite (LiC 6), Chitaneito (Li 4 Ti 5 O1 2), etc.) Is applied. Further, in this active material coating step, a part of the electrode sheet is not coated with the active material, but is used as a current extraction electrode from the battery or a tab portion used as a current injection electrode when charging the battery.

次いで、ステップS2で形成した正極シートと負極シートとにセパレータを加え、正極シートと負極シートとの間にセパレータが挟まれるように、正極シートと負極シートとを複数枚積層して、積層発電体を形成する(ステップS3)。この積層工程では、電極シートのタブ部については、積層発電体から突出するように、各シートを積層する。また、以下の説明では、正極シートのタブ部を正極タブ部と称し、負極シートのタブ部を負極タブ部と称す。複数の正極シートは、正極タブ部が積層発電体の一辺の所定の位置で積層発電体から突出するように積層される。複数の負極シートは、負極タブ部が積層発電体の一辺の所定の位置で積層発電体から突出するように積層される。 Next, a separator is added to the positive electrode sheet and the negative electrode sheet formed in step S2, and a plurality of positive electrode sheets and negative electrode sheets are laminated so that the separator is sandwiched between the positive electrode sheet and the negative electrode sheet to form a laminated power generator. (Step S3). In this laminating step, each sheet is laminated so that the tab portion of the electrode sheet protrudes from the laminated power generator. Further, in the following description, the tab portion of the positive electrode sheet is referred to as a positive electrode tab portion, and the tab portion of the negative electrode sheet is referred to as a negative electrode tab portion. The plurality of positive electrode sheets are laminated so that the positive electrode tab portion protrudes from the laminated generator at a predetermined position on one side of the laminated generator. The plurality of negative electrode sheets are laminated so that the negative electrode tab portion protrudes from the laminated generator at a predetermined position on one side of the laminated generator.

次いで、積層発電体から突出したタブ部に集電板を嵌め込む(ステップS4)。この集電板はめ込み工程では、正極タブ部には正極集電板が嵌め込まれ、負極タブ部には負極集電板が嵌め込まれる。また、集電板は、例えば、アルミニウムを主成分とするものである。 Next, the current collector plate is fitted into the tab portion protruding from the laminated power generator (step S4). In this current collector fitting step, the positive electrode current collector plate is fitted into the positive electrode tab portion, and the negative electrode current collector plate is fitted into the negative electrode tab portion. Further, the current collector plate contains, for example, aluminum as a main component.

次いで、レーザー溶接により、集電板とタブ部とを接合する(ステップS5)。その後、集電板が取り付けられた積層発電体をセルケースに収納し(ステップS6)、セルケース内に電解液を注入して(ステップS7)、その状態でセルケースを封止する(ステップS8)。これにより、電池セルの組み立てが完了する。 Next, the current collector plate and the tab portion are joined by laser welding (step S5). After that, the laminated power generator to which the current collector is attached is housed in the cell case (step S6), the electrolytic solution is injected into the cell case (step S7), and the cell case is sealed in that state (step S8). ). This completes the assembly of the battery cell.

実施の形態1にかかる二次電池では、電極シートの形状、及び、集電板の取り付け方法に特徴の1つを有する。そこで、以下では、電極シートの形状、及び、集電板の取り付け方法について詳細に説明する。 The secondary battery according to the first embodiment has one of the features in the shape of the electrode sheet and the method of attaching the current collector plate. Therefore, in the following, the shape of the electrode sheet and the method of attaching the current collector plate will be described in detail.

図2に実施の形態1にかかる二次電池の正極シート及び負極シートの形状を説明する図を示す。図2では、上図に正極シート10を示し、下図に負極シート20を示した。図2に示すように、正極シート10は、正極活物質充填部11と正極タブ部12とを有する。正極活物質充填部11は、正極シート10のうち活物質が塗布された領域である。正極タブ部12は、正極シート10のうち活物質が未塗布の領域である。また、負極シート20は、負極活物質充填部21と負極タブ部22とを有する。負極活物質充填部21は、負極シート20のうち活物質が塗布された領域である。正極タブ部12は、正極シート10のうち活物質が未塗布の領域である。 FIG. 2 shows a diagram illustrating the shapes of the positive electrode sheet and the negative electrode sheet of the secondary battery according to the first embodiment. In FIG. 2, the positive electrode sheet 10 is shown in the upper figure, and the negative electrode sheet 20 is shown in the lower figure. As shown in FIG. 2, the positive electrode sheet 10 has a positive electrode active material filling portion 11 and a positive electrode tab portion 12. The positive electrode active material filling portion 11 is a region of the positive electrode sheet 10 to which the active material is applied. The positive electrode tab portion 12 is a region of the positive electrode sheet 10 where the active material has not been applied. Further, the negative electrode sheet 20 has a negative electrode active material filling portion 21 and a negative electrode tab portion 22. The negative electrode active material filling portion 21 is a region of the negative electrode sheet 20 to which the active material is applied. The positive electrode tab portion 12 is a region of the positive electrode sheet 10 where the active material has not been applied.

正極活物質充填部11及び負極活物質充填部21は、この後の積層工程において重ね合わせられる。また、正極タブ部12及び負極タブ部22は、正極活物質充填部11及び負極活物質充填部21から突出するように設けられる。正極タブ部12は、正極活物質充填部11と正極タブ部12との境界線に対向する辺に複数の凹凸が形成される凹凸辺を有する。また、負極タブ部22は、負極活物質重点部21と負極タブ部22との境界線に対向する辺に複数の凹凸が形成される凹凸辺を有する。正極タブ部12及び負極タブ部22は、電極シートを重ね合わせた際に互いに重なり合わない位置(対向する位置)に形成される。一方、同じ極性のタブ部は、電極シートを重ね合わせた際に互いに重なり合う位置に形成される。 The positive electrode active material filling portion 11 and the negative electrode active material filling portion 21 are overlapped in the subsequent laminating step. Further, the positive electrode tab portion 12 and the negative electrode tab portion 22 are provided so as to protrude from the positive electrode active material filling portion 11 and the negative electrode active material filling portion 21. The positive electrode tab portion 12 has an uneven side on which a plurality of irregularities are formed on the side facing the boundary line between the positive electrode active material filling portion 11 and the positive electrode tab portion 12. Further, the negative electrode tab portion 22 has an uneven side on which a plurality of irregularities are formed on the side facing the boundary line between the negative electrode active material priority portion 21 and the negative electrode tab portion 22. The positive electrode tab portion 12 and the negative electrode tab portion 22 are formed at positions where the electrode sheets do not overlap each other (opposite positions) when the electrode sheets are overlapped. On the other hand, the tab portions having the same polarity are formed at positions where they overlap each other when the electrode sheets are overlapped.

図2に示す例では、タブ部の凹凸形状として、連続した山形形状とされる。しかし、凹凸形状は、先端が尖った山形形状に限らず後述する集電板のスリットに嵌め込む形状の凸部が形成されるものであれば櫛形状であっても構わない。 In the example shown in FIG. 2, the uneven shape of the tab portion is a continuous chevron shape. However, the uneven shape is not limited to the chevron shape with a sharp tip, and may be a comb shape as long as a convex portion having a shape to be fitted into the slit of the current collector plate described later is formed.

続いて、電極シートの積層状態について説明する。そこで、図3に実施の形態1にかかる二次電池の正極シート10及び負極シート20の積層状態を説明する図を示す。なお、実際には、正極シート10と負極シート20は、セパレータを挟んで重ね合わせられるが、図3ではセパレータの図示は省略した。 Subsequently, the laminated state of the electrode sheets will be described. Therefore, FIG. 3 shows a diagram illustrating a laminated state of the positive electrode sheet 10 and the negative electrode sheet 20 of the secondary battery according to the first embodiment. Actually, the positive electrode sheet 10 and the negative electrode sheet 20 are overlapped with each other sandwiching the separator, but the separator is not shown in FIG.

図3に示すように、実施の形態1にかかる二次電池では、正極活物質充填部11及び負極活物質充填部21が重なり合うように正極シート10及び正極タブ部12が積層される。そして、正極板11及び負極板21が重なり合って積層されている部分が積層発電体1となる。一方、正極タブ部12は、積層発電体1が形成される領域の一辺で重なり合う。また、負極タブ部22は、積層発電体1が形成される領域の一辺であって、正極タブ部12が突出する辺と対向する辺側で重なり合う。 As shown in FIG. 3, in the secondary battery according to the first embodiment, the positive electrode sheet 10 and the positive electrode tab portion 12 are laminated so that the positive electrode active material filling portion 11 and the negative electrode active material filling portion 21 overlap each other. Then, the portion where the positive electrode plate 11 and the negative electrode plate 21 are overlapped and laminated is the laminated power generator 1. On the other hand, the positive electrode tab portions 12 overlap on one side of the region where the laminated power generator 1 is formed. Further, the negative electrode tab portion 22 is one side of the region where the laminated power generation body 1 is formed, and overlaps with the side on which the positive electrode tab portion 12 protrudes and faces the side.

続いて、集電板の形状について説明する。そこで、図4に実施の形態1にかかる二次電池の集電板の形状を説明する図を示す。実施の形態1にかかる二次電池では、正極タブ部12に対応する正極集電板13と、負極タブ部22に対応する負極集電板23とを用いる。正極集電板13及び正極集電板13は、タブ部の凹凸辺の凸部分に対応する位置にスリットを有する。そして、このスリットにタブ部の凸部を嵌め込むようにして、正極集電板13及び負極集電板23は、正極タブ部12及び正極集電板13に取り付けられる。 Subsequently, the shape of the current collector plate will be described. Therefore, FIG. 4 shows a diagram illustrating the shape of the current collector plate of the secondary battery according to the first embodiment. In the secondary battery according to the first embodiment, the positive electrode current collector plate 13 corresponding to the positive electrode tab portion 12 and the negative electrode current collector plate 23 corresponding to the negative electrode tab portion 22 are used. The positive electrode current collector plate 13 and the positive electrode current collector plate 13 have slits at positions corresponding to the convex portions of the uneven sides of the tab portion. Then, the positive electrode current collector plate 13 and the negative electrode current collector plate 23 are attached to the positive electrode tab portion 12 and the positive electrode current collector plate 13 so that the convex portion of the tab portion is fitted into the slit.

続いて、正極シート10及び負極シート20と、正極集電板13及び負極集電板23の接合方法について説明する。図5に実施の形態1にかかる二次電池の正極シート10及び負極シート20と集電板の接合方法を説明する図を示す。 Subsequently, a method of joining the positive electrode sheet 10 and the negative electrode sheet 20 to the positive electrode current collector plate 13 and the negative electrode current collector plate 23 will be described. FIG. 5 shows a diagram illustrating a method of joining the positive electrode sheet 10 and the negative electrode sheet 20 of the secondary battery according to the first embodiment and the current collector plate.

図5に示すように、実施の形態1にかかる二次電池では、正極タブ部12の凸部に正極集電板13が嵌め込まれた状態で正極集電板13のスリット部分にレーザーを照射してレーザー溶接を行うことで、正極集電板13を正極タブ部12と接合する。負極タブ部22及び負極集電板23についても、正極タブ部12及び正極集電板13と同様にレーザー溶接を行うことで、負極タブ部22と負極集電板23とを接合する。 As shown in FIG. 5, in the secondary battery according to the first embodiment, the slit portion of the positive electrode current collector plate 13 is irradiated with a laser in a state where the positive electrode current collector plate 13 is fitted in the convex portion of the positive electrode tab portion 12. The positive electrode current collector plate 13 is joined to the positive electrode tab portion 12 by performing laser welding. The negative electrode tab portion 22 and the negative electrode current collector plate 23 are also joined to the negative electrode tab portion 22 and the negative electrode current collector plate 23 by performing laser welding in the same manner as the positive electrode tab portion 12 and the positive electrode current collector plate 13.

ここで、実施の形態1にかかる二次電池では、正極集電板13及び負極集電板23のスリットに正極タブ部12及び負極タブ部22の凸部が嵌合した状態でレーザー溶接を行う。正極タブ部12及び負極タブ部22の凸部は集電板から突出していても、していなくても良い。 Here, in the secondary battery according to the first embodiment, laser welding is performed in a state where the convex portions of the positive electrode tab portion 12 and the negative electrode tab portion 22 are fitted into the slits of the positive electrode current collector plate 13 and the negative electrode current collector plate 23. .. The convex portions of the positive electrode tab portion 12 and the negative electrode tab portion 22 may or may not protrude from the current collector plate.

また、実施の形態1にかかる二次電池では、負極シート20となる銅箔から酸素雰囲気中でレーザーカッターを用いて切り出すことで負極シート20の外周に酸化膜が形成される。レーザー溶接を行う際には、この酸化膜によりレーザーの吸収率が高まる。そのため、実施の形態1にかかる二次電池では、アルミニウムを主成分とする正極側とほぼ同じ速度及びレーザー強度でタブ部と集電板とを溶接することができる。レーザー光の波長λは400〜600μm程度とすることで、負極シート20の酸化膜によるレーザー吸収率の向上効果を一層高めることができる。 Further, in the secondary battery according to the first embodiment, an oxide film is formed on the outer periphery of the negative electrode sheet 20 by cutting out from the copper foil to be the negative electrode sheet 20 using a laser cutter in an oxygen atmosphere. When performing laser welding, this oxide film enhances the absorption rate of the laser. Therefore, in the secondary battery according to the first embodiment, the tab portion and the current collector plate can be welded at substantially the same speed and laser intensity as the positive electrode side containing aluminum as a main component. By setting the wavelength λ of the laser light to about 400 to 600 μm, the effect of improving the laser absorption rate by the oxide film of the negative electrode sheet 20 can be further enhanced.

また、実施の形態1にかかる二次電池では、タブ部に直接レーザーが照射されるので、タブ部の凹凸部の凸部がレーザー溶接時の溶融開始点となり、トップハット分布レーザーによる溶接が容易になる。また、タブ部の凹凸部の凸部が溶融開始点となることでスパッタの発生を防止することができる。また、タブ部に直接レーザーが照射され、上記のような態様で容易に溶接されるので、前述の特許文献1のようにタブ部を集電板により固定しなくても、好適に溶接が可能である。 Further, in the secondary battery according to the first embodiment, since the tab portion is directly irradiated with the laser, the convex portion of the uneven portion of the tab portion becomes the melting start point at the time of laser welding, and welding by the top hat distribution laser is easy. become. Further, since the convex portion of the uneven portion of the tab portion serves as the melting start point, it is possible to prevent the occurrence of spatter. Further, since the tab portion is directly irradiated with the laser and easily welded in the above manner, welding can be suitably performed without fixing the tab portion with the current collector plate as in Patent Document 1 described above. Is.

上記説明より、実施の形態1にかかる二次電池では、タブ部の集積板を取り付ける辺に凹凸を設け、凸部を集積板に形成されたスリットに嵌合した状態でレーザー溶接を行うことで、積層発電体と集電板とを接合する。これにより、実施の形態1にかかる二次電池では、積層発電体と集電板との距離を狭くし、セルケースの体積辺りの積層発電体の体積の割合を大きくすることができる。つまり、実施の形態1にかかる二次電池では、積層発電体と集電板との距離を従来よりも小さくすることでセルケース辺りの電池容量を高めることができる。 From the above description, in the secondary battery according to the first embodiment, unevenness is provided on the side where the integrated plate of the tab portion is attached, and laser welding is performed in a state where the convex portion is fitted into the slit formed in the integrated plate. , Join the laminated power generator and the current collector plate. As a result, in the secondary battery according to the first embodiment, the distance between the laminated power generation body and the current collector plate can be narrowed, and the volume ratio of the laminated power generation body around the volume of the cell case can be increased. That is, in the secondary battery according to the first embodiment, the battery capacity around the cell case can be increased by making the distance between the laminated generator and the current collector plate smaller than before.

また、実施の形態1にかかる二次電池では、溶接の対象となるタブ部が集電板に形成されたスリットに集められているため、金属泊のみが急激に溶融せず、良好な熱伝導溶接が可能となる。 Further, in the secondary battery according to the first embodiment, since the tab portion to be welded is collected in the slit formed in the current collector plate, only the metal anchor does not melt rapidly and good heat conduction. Welding is possible.

また、実施の形態1にかかる二次電池では、酸素雰囲気中で負極シート20をレーザーカッターにより部材シート(例えば銅箔シート)から切り出す。これにより、負極シート20の外周には酸化膜が形成される。そして、この酸化膜により、負極シート20と正極シート10とをほぼ同一のスキャン速度、レーザー強度で溶接することが可能になる。また、負極板21に塗布された活物質は熱により特性が劣化する傾向があるが、負極シート20の外周に酸化膜を形成することで、溶接に要する時間を短縮できる。これにより、実施の形態1にかかる二次電池では、負極板21に塗布された活物質の特性劣化を防いで、電池容量の減少を防ぐことができる。 Further, in the secondary battery according to the first embodiment, the negative electrode sheet 20 is cut out from the member sheet (for example, a copper foil sheet) by a laser cutter in an oxygen atmosphere. As a result, an oxide film is formed on the outer periphery of the negative electrode sheet 20. The oxide film makes it possible to weld the negative electrode sheet 20 and the positive electrode sheet 10 at substantially the same scanning speed and laser intensity. Further, although the characteristics of the active material applied to the negative electrode plate 21 tend to deteriorate due to heat, the time required for welding can be shortened by forming an oxide film on the outer periphery of the negative electrode sheet 20. As a result, in the secondary battery according to the first embodiment, it is possible to prevent deterioration of the characteristics of the active material applied to the negative electrode plate 21 and prevent a decrease in battery capacity.

なお、実施の形態1にかかる二次電池の構造及び組み立て方法は、リチウムイオン電池を組み立てる際により効果を奏する。リチウムイオン電池では、正極シート10及び負極シート20の板厚がニッケル水素電池等の他の電池よりも薄く、0.2mm以下程度の厚みしかない。そのため、レーザー溶接において溶接速度を高めるためにレーザー強度を強くするとタブ部のシートが飛んでしまい、溶接ができなくなる問題がある。しかしながら、実施の形態1にかかる二次電池の構造によれば、集電板のスリット内にまとまってタブ部となるシートが収まるため、シートの塊に対してレーザーが照射され、上記のような問題は発生しない。また、負極シート20の外周の酸化膜により、レーザー強度を落としても溶接速度を高めることができる。 The structure and assembly method of the secondary battery according to the first embodiment are more effective when assembling the lithium ion battery. In the lithium ion battery, the thickness of the positive electrode sheet 10 and the negative electrode sheet 20 is thinner than that of other batteries such as nickel-metal hydride batteries, and the thickness is only about 0.2 mm or less. Therefore, in laser welding, if the laser intensity is increased in order to increase the welding speed, the sheet of the tab portion will fly off, and there is a problem that welding cannot be performed. However, according to the structure of the secondary battery according to the first embodiment, since the sheet that becomes the tab portion is housed in the slit of the current collector plate, the laser is irradiated to the mass of the sheet, as described above. No problem occurs. Further, the oxide film on the outer periphery of the negative electrode sheet 20 makes it possible to increase the welding speed even if the laser intensity is lowered.

実施の形態2
実施の形態2では、正極シート10及び負極シート20のシート形状の別の例となる正極シート30及び負極シート40を用いた二次電池について説明する。実施の形態1にかかる二次電池では、積層発電体1の対向する二辺の一方に正極タブ部12を設け、他方に負極タブ部22を設けた。一方、実施の形態2にかかる二次電池では、積層発電体1の辺の一辺に正極タブ部及び負極タブ部を設ける。そこで、図6に実施の形態2にかかる二次電池の正極シート及び負極シートの形状を説明する図を示す。図6では、上図に正極シート30を示し、下図に負極シート40を示す。
Embodiment 2
In the second embodiment, a secondary battery using the positive electrode sheet 30 and the negative electrode sheet 40, which are other examples of the sheet shapes of the positive electrode sheet 10 and the negative electrode sheet 20, will be described. In the secondary battery according to the first embodiment, the positive electrode tab portion 12 is provided on one of the two opposing sides of the laminated power generator 1, and the negative electrode tab portion 22 is provided on the other side. On the other hand, in the secondary battery according to the second embodiment, a positive electrode tab portion and a negative electrode tab portion are provided on one side of the side of the laminated power generator 1. Therefore, FIG. 6 shows a diagram illustrating the shapes of the positive electrode sheet and the negative electrode sheet of the secondary battery according to the second embodiment. In FIG. 6, the positive electrode sheet 30 is shown in the upper figure, and the negative electrode sheet 40 is shown in the lower figure.

図6に示すように、実施の形態2では、正極シート30が正極活物質充填部31及び正極タブ部32を有し、負極シート40が負極活物質充填部41及び負極タブ部42を有する。そして、正極活物質充填部31及び負極活物質充填部41は、同一形状を有する。そして、正極活物質充填部31及び負極活物質充填部41の同一の辺に正極タブ部32及び負極タブ部42が形成される。また、正極タブ部32及び負極タブ部42は、積層発電体を構成する正極活物質充填部31及び負極活物質充填部41の同一辺に形成されるが、正極シート30及び負極シート40を重ね合わせた際に互いに異なる位置になるように形成される。 As shown in FIG. 6, in the second embodiment, the positive electrode sheet 30 has a positive electrode active material filling portion 31 and a positive electrode tab portion 32, and the negative electrode sheet 40 has a negative electrode active material filling portion 41 and a negative electrode tab portion 42. The positive electrode active material filling portion 31 and the negative electrode active material filling portion 41 have the same shape. Then, the positive electrode tab portion 32 and the negative electrode tab portion 42 are formed on the same side of the positive electrode active material filling portion 31 and the negative electrode active material filling portion 41. Further, the positive electrode tab portion 32 and the negative electrode tab portion 42 are formed on the same side of the positive electrode active material filling portion 31 and the negative electrode active material filling portion 41 constituting the laminated power generator, but the positive electrode sheet 30 and the negative electrode sheet 40 are overlapped with each other. They are formed so that they are in different positions when combined.

続いて、図7に実施の形態2にかかる二次電池の正極シート30及び負極シート40の積層状態と、集電板の形状と、を説明する図を示す。図7に示すように、実施の形態2にかかる二次電池では、正極シート30の正極活物質充填部31、負極シート40の負極活物質充填部41及びセパレータ(不図示)が積層されて積層発電体が形成される。また、実施の形態2にかかる二次電池では、積層発電体の一辺で、正極タブ部32及び負極タブ部42が重ね合わされる。このとき、正極タブ部32が重ね合わせられる位置と、負極タブ部42が重ね合わされる位置は、異なる位置(例えば、正極タブ部32が図面右側、負極タブ部42が図面左側)となる。 Subsequently, FIG. 7 shows a diagram illustrating a laminated state of the positive electrode sheet 30 and the negative electrode sheet 40 of the secondary battery according to the second embodiment and the shape of the current collector plate. As shown in FIG. 7, in the secondary battery according to the second embodiment, the positive electrode active material filling portion 31 of the positive electrode sheet 30, the negative electrode active material filling portion 41 of the negative electrode sheet 40, and the separator (not shown) are laminated and laminated. A generator is formed. Further, in the secondary battery according to the second embodiment, the positive electrode tab portion 32 and the negative electrode tab portion 42 are overlapped on one side of the laminated power generator. At this time, the position where the positive electrode tab portion 32 is overlapped and the position where the negative electrode tab portion 42 is overlapped are different positions (for example, the positive electrode tab portion 32 is on the right side of the drawing and the negative electrode tab portion 42 is on the left side of the drawing).

そして、実施の形態2にかかる二次電池においても、タブ部の凸部に対応した位置にスリットを有する集電板がタブ部に嵌め込まれる。図7に示す例では、正極集電板33に正極集電板33が嵌め込まれ、負極集電板43には負極タブ部42が嵌め込まれる。 Then, also in the secondary battery according to the second embodiment, a current collector plate having a slit at a position corresponding to the convex portion of the tab portion is fitted into the tab portion. In the example shown in FIG. 7, the positive electrode current collector plate 33 is fitted into the positive electrode current collector plate 33, and the negative electrode tab portion 42 is fitted into the negative electrode current collector plate 43.

続いて、図8に実施の形態2にかかる二次電池の正極シート30及び負極シート40と集電板の接合状態を説明する図を示す。図8に示すように、実施の形態1にかかる二次電池では、正極タブ部32の凸部に正極集電板33が嵌め込まれた状態で正極集電板33のスリット部分にレーザーを照射してレーザー溶接を行うことで、正極集電板33を正極タブ部32と接合する。負極タブ部42及び負極集電板43についても、正極タブ部32及び正極集電板33と同様にレーザー溶接を行うことで、負極タブ部42と負極集電板43とを接合する。 Subsequently, FIG. 8 shows a diagram illustrating a bonding state between the positive electrode sheet 30 and the negative electrode sheet 40 and the current collector plate of the secondary battery according to the second embodiment. As shown in FIG. 8, in the secondary battery according to the first embodiment, the slit portion of the positive electrode current collector plate 33 is irradiated with a laser in a state where the positive electrode current collector plate 33 is fitted in the convex portion of the positive electrode tab portion 32. The positive electrode current collector plate 33 is joined to the positive electrode tab portion 32 by performing laser welding. The negative electrode tab portion 42 and the negative electrode current collector plate 43 are also joined to the negative electrode tab portion 42 and the negative electrode current collector plate 43 by performing laser welding in the same manner as the positive electrode tab portion 32 and the positive electrode current collector plate 33.

ここで、実施の形態2にかかる二次電池においても、正極集電板33及び負極集電板43のスリットに正極タブ部32及び負極タブ部42の凸部が嵌合した状態でレーザー溶接を行う。正極タブ部32及び負極タブ部42の凸部は集電板から突出していても、していなくても良い。 Here, also in the secondary battery according to the second embodiment, laser welding is performed in a state where the convex portions of the positive electrode tab portion 32 and the negative electrode tab portion 42 are fitted into the slits of the positive electrode current collector plate 33 and the negative electrode current collector plate 43. Do. The convex portions of the positive electrode tab portion 32 and the negative electrode tab portion 42 may or may not protrude from the current collector plate.

上記説明より、実施の形態2にかかる二次電池においても、タブ部に凸部を設け、この凸部を集電板のスリットに嵌め込んだ状態でレーザー溶接を行うことで、積層発電体との距離が近い位置に集電板を設けることができる。また、実施の形態2にかかる二次電池においても、タブ部に凸部を設け、この凸部を集電板のスリットに嵌め込んだ状態でレーザー溶接を行うことで、実施の形態1と同様に、金属泊のみが急激に溶融せず、良好な熱伝導溶接を実現できる。 From the above description, also in the secondary battery according to the second embodiment, a convex portion is provided on the tab portion, and laser welding is performed with the convex portion fitted in the slit of the current collector plate to form a laminated power generator. The current collector plate can be provided at a position where the distance between the two is short. Further, also in the secondary battery according to the second embodiment, the same as that of the first embodiment is performed by providing a convex portion on the tab portion and performing laser welding with the convex portion fitted in the slit of the current collector plate. In addition, only the metal stay does not melt rapidly, and good heat conduction welding can be realized.

実施の形態3
実施の形態3では、タブ部の形状の変形例について説明する。そこで、図9に実施の形態3にかかる二次電池の正極シート及び負極シートの積層状態と、正極シート及び負極シートの形状と、を説明する図を示す。
Embodiment 3
In the third embodiment, a modified example of the shape of the tab portion will be described. Therefore, FIG. 9 shows a diagram illustrating a laminated state of the positive electrode sheet and the negative electrode sheet of the secondary battery and the shapes of the positive electrode sheet and the negative electrode sheet according to the third embodiment.

図9では、積層発電体のシート積層方向と直交する方向から積層発電体を見たものである。図9に示すように、実施の形態3では、積層発電体の高さHaは一定である。一方、正極シート10については、積層方向の中心に位置する正極シート10のタブ高さHb1が最も低く、積層位置が外に行くほどタブ高さHb2が最も高くなるように形成される。なお、前述した通り、正極シート及び負極シートは、レーザーカッターにより切り出されるものであるため、本実施の形態のような形状の異なるシートも容易に作成可能である。 In FIG. 9, the laminated power generation body is viewed from a direction orthogonal to the sheet stacking direction of the laminated power generation body. As shown in FIG. 9, in the third embodiment, the height Ha of the laminated power generator is constant. On the other hand, the positive electrode sheet 10 is formed so that the tab height Hb1 of the positive electrode sheet 10 located at the center in the stacking direction is the lowest, and the tab height Hb2 becomes the highest as the stacking position goes outward. As described above, since the positive electrode sheet and the negative electrode sheet are cut out by a laser cutter, sheets having different shapes as in the present embodiment can be easily produced.

続いて、図10に実施の形態3にかかる二次電池の正極シート及び負極シートのかしめ工程を説明する図を示す。図10に示すように、実施の形態3では、シートの積層方向の中心位置の正極シート10をかしめ中心として、積層方向の両側から均等に複数枚の正極シート10をかしめ治具50によりかしめる。このとき、かしめ中心に位置する正極シート10以外の正極シート10は、積層発電体に沿って折り曲げられるように複数の正極シート10が束ねられる。 Subsequently, FIG. 10 shows a diagram illustrating a caulking step of the positive electrode sheet and the negative electrode sheet of the secondary battery according to the third embodiment. As shown in FIG. 10, in the third embodiment, a plurality of positive electrode sheets 10 are evenly crimped from both sides in the stacking direction by the crimping jig 50 with the positive electrode sheet 10 at the center position in the stacking direction of the sheets as the caulking center. .. At this time, the positive electrode sheets 10 other than the positive electrode sheet 10 located at the center of caulking are bundled with a plurality of positive electrode sheets 10 so as to be bent along the laminated generator.

このようなかしめ工程を行う場合、図9に示したように、かしめた場合の折り曲げ距離を考慮して、シートの積層位置に応じたタブ部の高さHbを設定することで、かしめた後のタブ部の高さはシートによらずかしめ中心となる正極シート10のタブ高さHb1に揃えられる。つまり、このかしめ工程により、実施の形態3にかかる二次電池では、正極タブ部12及び負極タブ部22は、同一極性の複数のタブ部が密着するように束ねられた状態で凹凸辺と積層発電体の辺との距離Hbが積層発電体の積層方向において一定となる。なお、タブ高さHb1は、タブ部の凹部の底辺で測定すると誤差が少なくなる。 When performing such a caulking step, as shown in FIG. 9, by setting the height Hb of the tab portion according to the stacking position of the sheets in consideration of the bending distance at the time of caulking, after caulking. The height of the tab portion of the positive electrode sheet 10 is aligned with the tab height Hb1 of the positive electrode sheet 10 which is the center of caulking regardless of the sheet. That is, by this caulking step, in the secondary battery according to the third embodiment, the positive electrode tab portion 12 and the negative electrode tab portion 22 are laminated with the uneven side in a state where a plurality of tab portions having the same polarity are bundled so as to be in close contact with each other. The distance Hb from the side of the generator is constant in the stacking direction of the stacked generator. The tab height Hb1 has less error when measured at the bottom of the concave portion of the tab portion.

そして、実施の形態3では、タブ部をかしめた状態で、タブ部に対してレーザー溶接による仮止めを行い、仮止め後に集電板をタブ部の凸部に嵌め込む。その後、タブ部と集電板とをレーザー溶接により接合する。 Then, in the third embodiment, with the tab portion crimped, the tab portion is temporarily fixed by laser welding, and after the temporary fixing, the current collector plate is fitted into the convex portion of the tab portion. After that, the tab portion and the current collector plate are joined by laser welding.

上記説明より、実施の形態3にかかる二次電池では、タブ部をかしめ治具50により束ねた後にタブ部と集電板とを溶接する。これにより、実施の形態3にかかる二次電池では、他の実施の形態よりも溶接時のタブ部の密度が高くなり、他の実施形態よりも金属泊のみが急激に溶融せず、良好な熱伝導溶接を行うことができる。 From the above description, in the secondary battery according to the third embodiment, the tab portions and the current collector plate are welded after the tab portions are bundled by the caulking jig 50. As a result, in the secondary battery according to the third embodiment, the density of the tab portion at the time of welding is higher than that of the other embodiments, and only the metal residue does not melt rapidly as compared with the other embodiments, which is good. Heat conduction welding can be performed.

また、実施の形態3にかかる二次電池では、かしめた状態での折り曲げ距離を考慮してタブの高さを調節する。これにより、実施の形態3では、かしめた後のタブ部の高さを抑えながら、均一にすることができる。つまり、実施の形態3にかかる二次電池では、タブ部をかしめることによって、集電板と積層発電体との距離が大きくなることはなく、他の実施の形態と同様にセルケース辺りの積層発電体の体積の割合を高くすることができる。 Further, in the secondary battery according to the third embodiment, the height of the tab is adjusted in consideration of the bending distance in the crimped state. Thereby, in the third embodiment, the height of the tab portion after crimping can be suppressed and made uniform. That is, in the secondary battery according to the third embodiment, the distance between the current collector plate and the laminated power generator is not increased by crimping the tab portion, and the cell case area is the same as in the other embodiments. The volume ratio of the laminated power generator can be increased.

なお、本発明は上記実施の形態に限られたものではなく、趣旨を逸脱しない範囲で適宜変更することが可能である。 The present invention is not limited to the above embodiment, and can be appropriately modified without departing from the spirit.

1 積層発電体
10 正極シート
11 正極活物質充填部
12 正極タブ部
13 正極集電板
20 負極シート
21 負極活物質充填部
22 負極タブ部
23 負極集電板
30 正極シート
31 正極活物質充填部
32 正極タブ部
33 正極集電板
40 負極シート
41 負極活物質充填部
42 負極タブ部
43 負極集電板
50 かしめ治具
1 Laminated generator 10 Positive electrode sheet 11 Positive electrode active material filling part 12 Positive electrode tab part 13 Positive electrode current collector plate 20 Negative electrode sheet 21 Negative electrode active material filling part 22 Negative electrode tab part 23 Negative electrode current collector plate 30 Positive electrode sheet 31 Positive electrode active material filling part 32 Positive electrode tab 33 Positive electrode current collector 40 Negative electrode sheet 41 Negative electrode active material filling 42 Negative electrode tab 43 Negative electrode current collector 50 Caulking jig

Claims (8)

正極シートの正極活物質充填部と負極シートの負極活物質充填部とが交互に複数枚積層され、かつ、前記正極活物質充填部と前記負極活物質充填部との間にセパレータが挟まれるように形成された積層発電体と
前記正極シートの一部であって、前記積層発電体から突出するように前記積層発電体の側面に設けられた正極タブ部と、
前記正極タブ部と接合される正極集電板と、
前記負極シートの一部であって、前記積層発電体から突出するように前記積層発電体の側面に設けられた負極タブ部と、
前記負極タブ部と接合される負極集電板と、を有し、
前記正極タブ部及び前記負極タブ部は、それぞれ、前記積層発電体に対向する辺に複数の凹凸が形成される凹凸辺を有し、
前記正極集電板と前記負極集電板は、前記凹凸辺の凸部に対応した位置に、前記積層発電体を構成するシートの積層方向に複数枚の対応するタブ部が填め込まれる長さで設けられる複数のスリットが形成され、
前記正極タブ部及び前記負極タブ部は、同一極性の複数のタブ部が束ねられた状態で前記スリットに嵌め込まれるように固定される二次電池。
A plurality of positive electrode active material filling portions and negative electrode active material filling portions of the negative electrode sheet are alternately laminated, and a separator is sandwiched between the positive electrode active material filling portion and the negative electrode active material filling portion. a stacked power generating body formed,
A positive electrode tab portion that is a part of the positive electrode sheet and is provided on the side surface of the laminated power generation body so as to protrude from the laminated power generation body.
A positive electrode current collector plate joined to the positive electrode tab portion and
A negative electrode tab portion that is a part of the negative electrode sheet and is provided on the side surface of the laminated power generation body so as to protrude from the laminated power generation body.
It has a negative electrode current collector plate to be joined to the negative electrode tab portion, and has.
The positive electrode tab portion and the negative electrode tab portion each have an uneven side on which a plurality of irregularities are formed on the side facing the laminated power generator.
The positive electrode current collector plate and the negative electrode current collector plate have a length in which a plurality of corresponding tab portions are fitted in the positions corresponding to the convex portions of the uneven side in the laminating direction of the sheets constituting the laminated power generator. a plurality of slits provided in are formed,
The positive electrode tab portion and the negative electrode tab portion are secondary batteries fixed so as to be fitted into the slit in a state where a plurality of tab portions having the same polarity are bundled.
前記凹凸辺と前記複数のスリットは、溶接により固定される請求項1に記載の二次電池。 The secondary battery according to claim 1, wherein the uneven side and the plurality of slits are fixed by welding. 前記正極タブ部は、前記積層発電体の一辺に設けられ、
前記負極タブ部は、前記積層発電体の一辺のうち前記正極タブ部が設けられる辺と対向する辺に設けられる請求項1又は2に記載の二次電池。
The positive electrode tab portion is provided on one side of the laminated power generator.
The secondary battery according to claim 1 or 2, wherein the negative electrode tab portion is provided on one side of the laminated power generator that faces the side on which the positive electrode tab portion is provided.
前記正極タブ部と前記負極タブ部は、前記積層発電体の辺のうち同一の辺に設けられる請求項1又は2に記載の二次電池。 The secondary battery according to claim 1 or 2, wherein the positive electrode tab portion and the negative electrode tab portion are provided on the same side of the laminated power generator. 前記正極タブ部及び前記負極タブ部は、同一極性の複数のタブ部が密着するように束ねられた状態で前記凹凸辺と前記積層発電体の辺との距離が前記積層発電体の積層方向において一定となる請求項1乃至4のいずれか1項に記載の二次電池。 The positive electrode tab portion and the negative electrode tab portion are bundled so that a plurality of tab portions having the same polarity are in close contact with each other, and the distance between the uneven side and the side of the laminated power generation body is in the stacking direction of the laminated power generation body. The secondary battery according to any one of claims 1 to 4, which is constant. 前記正極シートと、前記負極シートは、外周部に電極材が酸化したことで形成される酸化膜を有する請求項1乃至5のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 5, wherein the positive electrode sheet and the negative electrode sheet have an oxide film formed by oxidizing an electrode material on an outer peripheral portion thereof. 前記積層発電体を構成する前記正極活物質充填部及び前記負極活物質充填部には、活物質が塗装されおり、
前記正極タブ部及び前記負極タブ部には、活物質が塗装されていない請求項1乃至6のいずれか1項に記載の二次電池。
The positive electrode active material filling portion and the negative electrode active material filling portion constituting the laminated power generator are coated with an active material.
The secondary battery according to any one of claims 1 to 6, wherein the positive electrode tab portion and the negative electrode tab portion are not coated with an active material.
前記積層発電体は、リチウムイオン電池として機能する請求項1乃至7のいずれか1項に記載の二次電池。 The secondary battery according to any one of claims 1 to 7, wherein the laminated power generator functions as a lithium ion battery.
JP2017187645A 2017-09-28 2017-09-28 Secondary battery Active JP6853762B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017187645A JP6853762B2 (en) 2017-09-28 2017-09-28 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017187645A JP6853762B2 (en) 2017-09-28 2017-09-28 Secondary battery

Publications (2)

Publication Number Publication Date
JP2019061925A JP2019061925A (en) 2019-04-18
JP6853762B2 true JP6853762B2 (en) 2021-03-31

Family

ID=66177598

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017187645A Active JP6853762B2 (en) 2017-09-28 2017-09-28 Secondary battery

Country Status (1)

Country Link
JP (1) JP6853762B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7019548B2 (en) * 2018-11-29 2022-02-15 プライムアースEvエナジー株式会社 Method of manufacturing secondary batteries and secondary batteries
CN113728457A (en) * 2019-04-26 2021-11-30 三洋电机株式会社 Electrode plate, nonaqueous electrolyte secondary battery, and method for manufacturing electrode plate
KR20210037390A (en) * 2019-09-27 2021-04-06 주식회사 엘지화학 Electrode assembly comprising Electrode Tab having uneven surface, Guide member for stacking the electrode assembly, Method of making stacked type battery using the guide member and Stacked type battery manufactured therefrom
CN112615061B (en) * 2021-01-12 2022-12-30 深圳市格林晟科技有限公司 Preparation method and stacking device of battery cell
CN116565339A (en) * 2023-07-10 2023-08-08 宁德新能源科技有限公司 Battery core and electric equipment

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54107843U (en) * 1978-01-17 1979-07-30
JPS5821958U (en) * 1981-08-05 1983-02-10 古河電池株式会社 square alkaline storage battery
JPS5981865A (en) * 1982-11-01 1984-05-11 Furukawa Battery Co Ltd:The Formation method of strap for lead storage battery
DE4240338C1 (en) * 1992-12-01 1993-12-09 Deutsche Automobilgesellsch Arrester vane of battery electrically welded to connecting strap - has bent end region with welded knubs, and intermediate spaces or material returns
JPH1125951A (en) * 1997-07-07 1999-01-29 Sanyo Electric Co Ltd Battery
JP2000133241A (en) * 1998-10-30 2000-05-12 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery and manufacture of nonaqueous electrolyte battery
JP4513124B2 (en) * 2004-05-31 2010-07-28 Tdk株式会社 ELECTROCHEMICAL DEVICE, ITS MANUFACTURING METHOD, AND ELECTRODE USED FOR THE DEVICE
JP2012230846A (en) * 2011-04-27 2012-11-22 Hitachi Vehicle Energy Ltd Nonaqueous electrolyte battery
JP2014022116A (en) * 2012-07-13 2014-02-03 Shin Kobe Electric Mach Co Ltd Electrode plate for secondary battery, and method for manufacturing electrode plate for secondary battery
JP6696487B2 (en) * 2017-08-29 2020-05-20 トヨタ自動車株式会社 Power storage device

Also Published As

Publication number Publication date
JP2019061925A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6853762B2 (en) Secondary battery
JP6657843B2 (en) Rechargeable battery
US8568916B2 (en) Lithium ion secondary battery
JP4661257B2 (en) Current collecting terminal and power storage device including the terminal
JP4444989B2 (en) Lithium ion secondary battery
JP6582443B2 (en) Secondary battery and manufacturing method thereof
US20120079713A1 (en) Manufacturing method of prismatic sealed cell
JP2009110751A (en) Secondary battery
JP6725351B2 (en) Electric storage element and method for manufacturing electric storage element
JP2009277643A (en) Secondary cell collector terminal board, the secondary cell, and secondary cell manufacturing method
JP2016225117A (en) Secondary battery
US10749204B2 (en) Electric power storage device and method of manufacturing the same
JP2004241150A (en) Battery
JP6965587B2 (en) Electrode assembly
JP5125438B2 (en) Lithium ion secondary battery and battery pack using the same
JP5892170B2 (en) Lithium ion secondary battery and method for producing lithium ion secondary battery
JP4120353B2 (en) Secondary battery and manufacturing method thereof
JP2001118561A (en) Current-collecting structure and secondary battery
JP2018073767A (en) Manufacturing method of secondary battery
JP6731182B2 (en) Electric storage element and method for manufacturing electric storage element
JP6201795B2 (en) Method for manufacturing power storage device
JP2003059487A (en) Welding method
JP7073239B2 (en) Secondary battery
US20230163424A1 (en) Energy storage apparatus and method for manufacturing energy storage apparatus
US20240088529A1 (en) Bonding method, bonding structure, and battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210215

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210312

R150 Certificate of patent or registration of utility model

Ref document number: 6853762

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250