【0001】
【発明の属する技術分野】
本発明はリチウムイオン電池、ニッケル水素電池などに好適な電池に関する。
【0002】
【従来の技術】
負極および正極を構成する金属箔を扁平形状に巻回した発電要素を積層した電池がある。図15は、一般的な電池1を示す。この電池1は、積層された複数の発電要素11と、各発電要素11から発生する電流を集電するべく各発電要素11の端部に接続された一対の箔集電板12とを有している。箔集電板12には、正極端子13および負極端子14が設けられている。
【0003】
発電要素11は、図16および図17に示すように、帯状のセパレータ15と正極および負極を構成する金属箔16とが交互に積層されて、巻回されている。なお、セパレータ15の最外周の端部はテープ18で止められている。
箔集電板12は、図18に示すように、発電要素11の端部にレーザ光19を照射することによって溶接されている。すなわち、図19に示すように、レーザ光19を箔集電板12に照射すると、レーザ光19による熱が箔集電板12を介して発電要素11の金属箔16に伝達される。これによって、金属箔16の一部が溶融されて箔集電板12に溶着される。
【0004】
ところで、電池1は、一般に、金属箔16の厚さ寸法が15μmないし20μmであるものの、箔集電板12の厚さ寸法が0.4mmを超えていることが多い。
そして、これらのような金属箔16および箔集電板12を互いの面方向が直交するように配置し、次いで箔集電板12の表面にレーザ光19を照射するレーザ溶接により金属箔16および箔集電板12を相互接続する場合、レーザ光19のエネルギーが熱となって箔集電板12を表面から裏面まで厚さ方向に沿って短時間で伝播するような高い出力でレーザ溶接を行う傾向にある。
【0005】
しかしながら、電池1は、金属箔16の厚さ寸法と箔集電板12の厚さ寸法とが大きく異なるため、箔集電板12を厚さ方向に沿って伝播した熱が金属箔16に対して過大となる。
【0006】
このため、電池1は、金属箔16と箔集電板12とのレーザ溶接にあたって、金属箔16の幅方向端縁が幅方向に沿ってスリット状に溶解し、融解痕跡がセパレータ15を貫通して正極を構成する金属箔16と負極を構成する金属箔16とが短絡する虞れがある。
また、金属箔16の幅方向端縁がスリット状に溶解しない場合であっても、金属箔16に対する過大な熱により、金属箔が白熱化して生じた金属粒がセパレータ15や活物質に飛散すれば、同様に正極を構成する金属箔16と負極を構成する金属箔16とを短絡させる虞れがある。
【0007】
さらに、金属箔16の幅方向端縁が活物質に達するまで溶解すると、金属箔の表面に生じた突起がセパレータ15を貫通して結果的に正極を構成する金属箔16と負極を構成する金属箔16とを短絡させる遠因となる虞れもある。
そのため、金属箔16の端部を直交する箔集電板12に溶接しないですむ電池が望まれていた。そこで、従来は、図20に示すように、巻回されたセパレータおよび金属箔の端部を一対の板状集電板20によって狭持する電池が提案されている(例えば、特許文献1参照。)。
【0008】
【特許文献1】
特開2000−331716号公報
【0009】
【発明が解決しようとする課題】
しかしながら、従来の特許文献1に記載された電池のように、セパレータおよび金属箔の端部を、一対の板状集電板20によって挟む方法は、一個の発電要素からのみ集電する場合には端子を前記板状集電板20に設けることができるので問題ないが、複数の発電要素を積層し、各電池から一括して集電するように接合する際には不都合が生じる。
【0010】
すなわち、特許文献1に記載された電池を複数用いる場合には、各電池における一対の板状集電板20を箔集電板12に類似の形状を有した集電板(以下、「極集電板」という)に溶接する必要があるが、この場合、一対の板状集電板20および極集電板が両方とも平板状であるので、極集電板に対して一対の板状集電板20における双方の板面に対して直角方向の力を加えて押さえた状態で溶接を行わなければならない。このとき、極集電板と一対の板状集電板20とは、溶接個所となる個所、すなわち極集電板と一対の板状集電板20における長手方向両端部とが特に密着するように押さえる必要がある。
このような溶接工程は一工程でも困難であるが、困難性を備えた複数の溶接工程を順次行うのは至難である。
【0011】
本発明は、前述した問題点に鑑みてなされたものであり、その目的は発電要素の端部を挟んだ集電板を極集電板に溶接する際に、集電板を押さえて集電板と極集電板とを密着させるのが容易な電池を提供することを技術的課題とする。
【0012】
【課題を解決するための手段】
本発明は、セパレータを介して負極および正極を構成する金属箔が積層された発電要素と、前記発電要素の面方向端部に接続された集電板と、前記集電板に接続されるとともに端子が立設された極集電板とを有する電池であって、
前記極集電板が、前記金属箔端部を複数枚重ねた状態で挾持する略帯状の第1挾持部および第2挾持部と、前記第1挾持部から厚さ方向に沿って突出する突出部とを有することを特徴とする。
【0013】
本発明においては、第1挾持部から厚さ方向に沿って突出部が突出しているため、突出部を第1挾持部の長手方向に沿って押圧すれば、突出部が極集電板の端面に密着し、突出部の端部と極集電板とを溶接すれば集電板と極集電板とを接合できることになる。
すなわち、このような本発明においては、従来のように、互いに平板状の一対の集電板および極集電板を双方の板面に対して直角方向の力を加えて押さえることにより、溶接個所となる個所、すなわち極集電板と一対の集電板における長手方向両端部とが特に密着するように押さえる場合に比較して容易、かつ、確実に溶接個所を密着させることができ、溶接工程を簡略化できることになる。
【0014】
ここで、前記突出部を前記第1挾持部の長手方向両端部に設けることができる。この場合は、両方の突出部を極集電板に溶接することにより、第1狭持部を極集電板に確実に固定できる。
【0015】
ところで、電気化学的に同一容量の発電要素を巻回方式によって形成しようとするとき、その電気化学的容量に対応する帯状電極(金属箔)を全て一軸の周囲に扁平状に巻回して巻回式発電要素を得る場合に比べて、その電気化学的容量に対応する帯状電極(金属箔)を長さ寸法的に複数分割し複数個の偏平状巻回式発電要素としそれら複数個の巻回式発電要素を積層する方がデッドスペースを少なくできる。特に、電池容量が大きい場合、具体的には電池容量が10Ah以上の発電要素を1セル中に収納する大容量電池の場合には、上記したような、扁平形状に巻回した発電要素を複数個積層してなる電池とすることが体積効率に及ぼす効果が顕著に現れる。本発明は、このような大容量電池に適用することが有効であり、好ましい。
【0016】
【発明の実施の形態】
以下、本発明に係る実施の形態を図面に基づいて詳細に説明する。
【0017】
(第1実施形態)
図1は、本発明に係る第1実施形態の電池を適用したリチウムイオン電池5を示す。このリチウムイオン電池5は、複数の発電要素51と、これらの発電要素51の両端部に接続された一対の極集電板52と、該一対の極集電板52に設けられた正極端子53および負極端子54とを有している。
【0018】
上記の発電要素51は、図2に示すように、セパレータ55を介して負極および正極となる金属箔56が、断面略長円状の扁平形状に巻回されている。セパレータ55の外周側の端部は、テープ58によって止められている。
また、負極および正極を構成する金属箔56は、巻回軸線に沿って互いに離れる方向にずらして巻回されているため、発電要素51の軸線方向両端部のうちの一方はセパレータ55から負極を構成する金属箔56がはみ出し、発電要素51の軸線方向両端部のうちの他方は正極を構成する金属箔56がはみ出している。
これによって、発電要素51には、図3に示すように、直線積層部60および、この直線積層部60に隣り合う一対の円弧積層部61が形成されている。また、この発電要素51には、円弧積層部61の両端に切欠部62が形成されている。
【0019】
この切欠部62は、図4に示すように、上記の円弧積層部61の円弧中心61aを通過するとともに扁平方向に沿い、かつ、発電要素51の軸線方向51aに沿って所定位置まで延びる第1平面63と、この第1平面63に連続するとともに円弧積層部61の断面方向に沿う第2平面64に沿って切開部を形成することにより、円弧積層部61における金属箔のセパレータからの露出部60bの一部を削除することによって形成されている。
このようにして、発電要素51に切欠部62が形成された後、図5に示すように、直線積層部60(図3、4参照)における露出部60bを、その厚さ方向の略中心から両側に折り曲げる。
【0020】
そして、上下に折り曲げられた一対の露出部60bをそれぞれ一対の略コ字形の導電性を有する第1および第2狭持部65a,65bによって図6に示すように挟む。次いで、第1および第2狭持部65a,65bによって挟まれた露出部60bの開放端部側の余剰分を切り落とした後、図6中に矢印で示すように第1および第2狭持部65a,65bの向きを90度変える。
これで、図7に示すように、第1狭持65aおよび第2狭持部65bが略密着し、その間に露出部60bが狭持される。この状態で、第1および第2狭持部65a,65b同士が例えば溶接66によって固定される。
【0021】
図1の極集電板52は、図8〜図10に示すように、発電要素51の集電板65内に挿入され、集電板65に溶接67によって固定される。
すなわち、極集電板52は、図8に示すように、略逆L字状に形成されている。この極集電板52の縦辺部分52aが、積層された発電要素51(一個のみ図示)の集電板65内に挿入される。次に、図9に示すように、極集電板52と集電板65の一対の突出部65c間の境界部分が溶接67によって固定される。
【0022】
この際、適宜な工具,治具等を用いて、集電板65における一対の突出部65cを第1狭持部65aの長手方向に沿って互いに近付くように押圧することにより、極集電板52の両端面にそれぞれ一対の突出部65cを密着させる。そして、一対の突出部65cにおける端部と極集電板52との間に溶接67が施される。
なお、以上のように発電要素51の集電板65を極集電板52に接合するリチウムイオン電池5の構成は、発電要素51を複数備えることによる必然的な構成となっている。
【0023】
このように、本発明のリチウムイオン電池5によれば、集電板65の第1狭持部65aの突出部65c,65cを極集電板52に溶接する際に、極集電板52の面に対して水平方向の力を加えることによって極集電板52を押さえることができるので、集電板65と極集電板52とを密着させるのが容易である。
【0024】
特に、前述したリチウムイオン電池5によれば、集電板65における一対の突出部65cを第1狭持部65aの長手方向に沿って互いに近付くように押圧することにより、極集電板52の両端面にそれぞれ一対の突出部65cを密着させて当該個所を溶接するため、従来のように、互いに平板状の一対の集電板および極集電板を双方の板面に対して直角方向の力を加えて押さえることにより、溶接個所となる個所、すなわち極集電板と一対の集電板における長手方向両端部とが特に密着するように押さえる場合に比較して容易、かつ、確実に溶接個所を密着させることができ、溶接工程を簡略化できる。
【0025】
そして、このような効果は、発電要素51を複数有するリチウムイオン電池5において、作業性および容積効率の効果が発電要素51の数に応じて顕著な効果となる。
【0026】
また、本例では、突出部65cを第1挾持部65の長手方向両端部に設けたので、これらの両方の突出部65cを極集電板52に溶接することにより、集電板65を極集電板62に確実に固定できる。
また、この場合には、第2の狭持部65bを薄く形成できるので、小電流で第1狭持部65aに溶接できる。これによって、金属箔56に及ぼす溶接熱の影響を抑制できる。
【0027】
なお、上述の実施形態では、本発明をリチウムイオン電池に適用した場合について説明したが、本発明はこれに限らず、リチウムポリマー電池,ニッケル水素電池等にも適用できる。
【0028】
また、本発明は、巻回式電池に限らず、複数枚の金属箔とセパレータとが平坦状に積層された電池にも適用できる。
また、第1狭持部65aおよび第2狭持部65b間の溶接は摩擦圧接溶接等によって行うことができる。摩擦溶接の場合は、周知のように回転数をはじめ種々の条件を調整することによって、任意の溶接が可能である。あるいは、電子ビーム加工機を用いて溶接してもよい。
【0029】
(第2実施形態)
以下に説明する第2実施形態は、本発明の電池に用いられる集電板の形態についての変形である。
図10〜図14は第2実施形態の集電板70〜73を示す。図10の集電板70は、第1狭持部70aと第2狭持部70bとを有している。そして、第1狭持部70aの片側にのみ突出部70cが形成されている。
図11の集電板71は、第1狭持部71aと第2狭持部71bとを有している。第1狭持部70aには、その両側にそれぞれ突出部71cが形成されている。そして、第1狭持部71aの外側に第2狭持部71bが配置されている。
【0030】
図12の集電板72は、略コ字状の第1狭持部72aと、略コ字状の第2狭持部72bとを有している。これらの第1および第2狭持部72a,72bには、突出部72c,72dが形成されている。
これらの第1および第2狭持部72a,72bは、向きを同一にした状態で嵌め込み、その間に発電要素51の端部60bを挟むことができる。
【0031】
図13の集電板73は、第1狭持部73aと、第2狭持部73bとを有している。第1狭持部73aは、その両端に設けられた一対の突出部73cと、該一対の突出部73cの反対側に設けられ第2狭持部73bと略同一の大きさを有する受け板73dとを有している。
この集電板73は、図14に示すように、第1狭持部73aの受け板73dと第2狭持部73bとの間に発電要素51の端部60bを挟むように構成されている。
【0032】
なお、上述の各実施形態では、本発明をリチウムイオン電池に適用した場合について説明したが、本発明はこれに限らず、リチウムポリマー電池,ニッケル水素電池等にも適用できる。
【0033】
【発明の効果】
以上説明したように、本発明によれば、第1狭持部の突出部を極集電板に溶接できるので、従来のように平板状の集電板を極集電板に溶接する場合に比べて手間を省くことができる(請求項1)。
また、突出部を第1挾持部の長手方向両端部に設けたので、両方の突出部を極集電板に溶接することにより、第1狭持部を極集電板に確実に固定できる(請求項2)。
【図面の簡単な説明】
【図1】本発明に係る第1実施形態を示す斜視図である。
【図2】発電要素の製造方法を示す図である。
【図3】発電要素の切欠部を示す図である。
【図4】切欠部の形成方法を示す図である。
【図5】発電要素の端部を折り曲げた状態および集電板を示す図である。
【図6】発電要素の折り曲げた端部を集電板で挟む方法を示す図である。
【図7】発電要素に集電板を取り付けた状態を示す図である。
【図8】極集電板を集電板に取り付ける方法を示す図である。
【図9】極集電板を集電板に取り付ける方法を示す図である。
【図10】本発明に係る第2実施形態の集電板を示す図である。
【図11】本発明に係る第2実施形態の集電板を示す図である。
【図12】本発明に係る第2実施形態の集電板を示す図である。
【図13】本発明に係る第2実施形態の集電板を示す図である。
【図14】本発明に係る第2実施形態の集電板を示す図である。
【図15】従来例を示す図である。
【図16】従来例を示す図である。
【図17】従来例を示す図である。
【図18】従来例を示す図である。
【図19】従来例を示す図である。
【図20】従来例を示す図である。
【符号の説明】
1 巻回式電池
5 リチウムイオン電池
8 発電要素
11 発電要素
12 箔集電板
13 正極端子
14 負極端子
15 セパレータ
16 金属箔
17 軸
18 テープ
19 レーザ光
20 板状集電板
51 発電要素
51a 軸線方向
52 極集電板
52a 縦辺部分
55 セパレータ
56 金属箔
58 テープ
53 正極端子
54 負極端子
57 軸
61 円弧積層部
60 直線積層部
60a 円弧中心
60b 露出部
61 円弧積層部
62 切欠部
63 第1平面
64 第2平面
65 集電板
65a 第1挾持部
65b 第2挾持部
65c 突出部
66,67 溶接
70 集電板
70a 第1狭持部
70b 第2狭持部
70c 突出部
71 集電板
71a 第1狭持部
71b 第2狭持部
71c 突出部
72 集電板
72a 第1狭持部
72b 第2狭持部
72c 突出部
73 集電板
73a 第1狭持部
73b 第2狭持部
73c 突出部
73d 受け板[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a battery suitable for a lithium ion battery, a nickel hydride battery, and the like.
[0002]
[Prior art]
There is a battery in which a power generating element in which metal foils constituting a negative electrode and a positive electrode are wound in a flat shape is laminated. FIG. 15 shows a general battery 1. The battery 1 includes a plurality of power generation elements 11 stacked, and a pair of foil current collectors 12 connected to an end of each power generation element 11 to collect current generated from each power generation element 11. ing. A positive electrode terminal 13 and a negative electrode terminal 14 are provided on the foil current collector 12.
[0003]
As shown in FIG. 16 and FIG. 17, the power generating element 11 is formed by alternately laminating and winding a strip-shaped separator 15 and metal foils 16 constituting a positive electrode and a negative electrode. The outermost end of the separator 15 is fixed with a tape 18.
As shown in FIG. 18, the foil current collector 12 is welded by irradiating an end of the power generating element 11 with a laser beam 19. That is, as shown in FIG. 19, when the laser light 19 is irradiated on the foil current collector 12, heat generated by the laser light 19 is transmitted to the metal foil 16 of the power generation element 11 via the foil current collector 12. Thereby, a part of the metal foil 16 is melted and welded to the foil current collector 12.
[0004]
In the battery 1, the thickness of the metal foil 16 is generally 15 μm to 20 μm, but the thickness of the foil current collector 12 often exceeds 0.4 mm.
Then, the metal foil 16 and the foil current collector 12 are arranged so that their plane directions are orthogonal to each other, and then the metal foil 16 and the foil current collector 12 are irradiated with laser light 19 by irradiating the surface of the foil current collector 12 with laser light 19. When the foil current collectors 12 are interconnected, laser welding is performed at such a high output that the energy of the laser beam 19 becomes heat and propagates from the front surface to the back surface in a short time along the thickness direction. Tend to do.
[0005]
However, in the battery 1, since the thickness dimension of the metal foil 16 and the thickness dimension of the foil current collector 12 are greatly different, heat propagated along the thickness direction of the foil current collector 12 causes the heat to the metal foil 16. Too large.
[0006]
For this reason, in laser welding of the metal foil 16 and the foil current collector 12, the edge of the metal foil 16 in the width direction is melted in a slit shape along the width direction, and the trace of melting penetrates the separator 15. There is a possibility that the metal foil 16 forming the positive electrode and the metal foil 16 forming the negative electrode may be short-circuited.
Further, even when the width direction edge of the metal foil 16 does not melt in a slit shape, the excessive heat applied to the metal foil 16 causes the metal particles generated by incandescence of the metal foil to scatter to the separator 15 and the active material. For example, there is a possibility that the metal foil 16 forming the positive electrode and the metal foil 16 forming the negative electrode may be short-circuited.
[0007]
Further, when the width direction edge of the metal foil 16 is melted until reaching the active material, a projection formed on the surface of the metal foil penetrates through the separator 15 and consequently the metal foil 16 forming the positive electrode and the metal forming the negative electrode. There is a possibility that it may cause a short circuit with the foil 16.
Therefore, a battery that does not require welding the end of the metal foil 16 to the orthogonal foil current collector 12 has been desired. Therefore, conventionally, as shown in FIG. 20, there has been proposed a battery in which ends of a wound separator and a metal foil are sandwiched between a pair of plate-shaped current collectors 20 (for example, see Patent Document 1). ).
[0008]
[Patent Document 1]
JP 2000-331716 A
[Problems to be solved by the invention]
However, the method of sandwiching the ends of the separator and the metal foil between the pair of plate-like current collectors 20 as in the battery described in the conventional patent document 1 is a method for collecting power from only one power generation element. There is no problem because the terminals can be provided on the plate-shaped current collector plate 20, but a problem arises when a plurality of power generation elements are stacked and joined to collectively collect power from each battery.
[0010]
That is, when a plurality of batteries described in Patent Literature 1 are used, a pair of plate-like current collectors 20 in each battery is replaced with a current collector having a shape similar to the foil current collector 12 (hereinafter, “electrode collector”). In this case, since the pair of plate-shaped current collectors 20 and the pole current collector are both flat, the pair of plate-shaped current collectors 20 and the pole current collector are flat. Welding must be performed in a state where a force in a direction perpendicular to both plate surfaces of the electric plate 20 is applied and pressed. At this time, the pole current collector plate and the pair of plate-shaped current collector plates 20 are formed so that a portion to be welded, that is, both ends in the longitudinal direction of the pair of plate current collector plates 20 and the pair of plate-shaped current collector plates 20 particularly adhere to each other. It is necessary to hold down.
Such a welding step is difficult even in one step, but it is extremely difficult to sequentially perform a plurality of welding steps having difficulty.
[0011]
SUMMARY OF THE INVENTION The present invention has been made in view of the above-mentioned problems, and has as its object to hold down a current collector when welding a current collector sandwiching an end of a power generating element to a pole current collector. It is a technical object to provide a battery in which a plate and an electrode current collector can be easily brought into close contact with each other.
[0012]
[Means for Solving the Problems]
The present invention provides a power generating element in which metal foils constituting a negative electrode and a positive electrode are stacked via a separator, a current collector connected to a surface direction end of the power generator, and a power collector connected to the current collector. A battery having an electrode current collector plate having terminals erected,
A first band-like portion and a second band-like portion, each of which has a plurality of end portions of the metal foil, and protrudes from the first portion along the thickness direction; And a part.
[0013]
In the present invention, since the projecting portion protrudes from the first holding portion along the thickness direction, if the projecting portion is pressed along the longitudinal direction of the first holding portion, the projecting portion becomes the end face of the pole current collector plate. Then, if the end of the protruding portion is welded to the pole current collector, the current collector and the pole current collector can be joined.
That is, in the present invention, a pair of current collector plates and a pole current collector plate having a flat plate shape are pressed by applying a force in a direction perpendicular to both of the plate surfaces, as in the related art, so that a welding point is formed. Location, that is, compared with a case where the pole current collector plate and the longitudinal end portions of the pair of current collector plates are pressed so as to particularly closely adhere to each other, and the welding location can be surely adhered to the welding process. Can be simplified.
[0014]
Here, the projecting portions may be provided at both ends in the longitudinal direction of the first holding portion. In this case, the first holding portion can be securely fixed to the pole current collector plate by welding both projecting portions to the pole current collector plate.
[0015]
By the way, when a power generation element having the same electrochemical capacity is to be formed by a winding method, all the strip electrodes (metal foils) corresponding to the electrochemical capacity are wound flatly around one axis. As compared with the case of obtaining a power generation element, a strip-shaped electrode (metal foil) corresponding to the electrochemical capacity is divided into a plurality of pieces in length dimension to form a plurality of flat wound power generation elements, and the plurality of windings are formed. Stacking the power generation elements can reduce the dead space. In particular, when the battery capacity is large, specifically, in the case of a large capacity battery in which a power generating element having a battery capacity of 10 Ah or more is accommodated in one cell, a plurality of flat power generating elements as described above are used. The effect on the volumetric efficiency of a battery formed by stacking individual batteries is remarkable. It is effective and preferable to apply the present invention to such a large capacity battery.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[0017]
(1st Embodiment)
FIG. 1 shows a lithium ion battery 5 to which the battery according to the first embodiment of the present invention is applied. The lithium ion battery 5 includes a plurality of power generation elements 51, a pair of pole current collectors 52 connected to both ends of the power generation elements 51, and a positive electrode terminal 53 provided on the pair of pole current collectors 52. And a negative electrode terminal 54.
[0018]
As shown in FIG. 2, the power generating element 51 has a separator 55 and a metal foil 56 serving as a negative electrode and a positive electrode wound in a flat shape having a substantially elliptical cross section. The outer peripheral end of the separator 55 is stopped by a tape 58.
Further, since the metal foils 56 constituting the negative electrode and the positive electrode are wound while being shifted in a direction away from each other along the winding axis, one of both ends in the axial direction of the power generation element 51 is connected to the separator 55 from the separator 55. The constituent metal foil 56 protrudes, and the other of the axial ends of the power generation element 51 protrudes the metal foil 56 forming the positive electrode.
Thereby, as shown in FIG. 3, the power generation element 51 is formed with the linear laminated portion 60 and a pair of arc laminated portions 61 adjacent to the linear laminated portion 60. The power generating element 51 has cutouts 62 at both ends of the circular arc laminated portion 61.
[0019]
As shown in FIG. 4, the notch 62 passes through the circular arc center 61 a of the circular arc laminated portion 61 and extends along a flat direction and extends to a predetermined position along the axial direction 51 a of the power generation element 51. By forming a cutout along a plane 63 and a second plane 64 that is continuous with the first plane 63 and extends along the cross-sectional direction of the arc laminated portion 61, the exposed portion of the metal foil in the arc laminated portion 61 from the separator is formed. It is formed by deleting a part of 60b.
After the cutout portion 62 is formed in the power generation element 51 in this manner, as shown in FIG. 5, the exposed portion 60b of the linear laminated portion 60 (see FIGS. 3 and 4) is moved from substantially the center in the thickness direction. Fold both sides.
[0020]
Then, the pair of exposed portions 60b bent up and down is sandwiched between a pair of substantially U-shaped conductive first and second holding portions 65a and 65b as shown in FIG. Next, after cutting off the excess on the open end side of the exposed portion 60b sandwiched between the first and second holding portions 65a and 65b, the first and second holding portions are indicated by arrows in FIG. The directions of 65a and 65b are changed by 90 degrees.
Thus, as shown in FIG. 7, the first holding portion 65a and the second holding portion 65b are substantially in close contact with each other, and the exposed portion 60b is held therebetween. In this state, the first and second holding portions 65a and 65b are fixed to each other by, for example, welding 66.
[0021]
As shown in FIGS. 8 to 10, the pole collector plate 52 of FIG. 1 is inserted into the collector plate 65 of the power generation element 51 and fixed to the collector plate 65 by welding 67.
That is, the pole collector plate 52 is formed in a substantially inverted L-shape as shown in FIG. The vertical side portion 52a of the pole current collecting plate 52 is inserted into the current collecting plate 65 of the stacked power generating elements 51 (only one is shown). Next, as shown in FIG. 9, a boundary portion between the pair of protrusions 65 c of the pole current collector plate 52 and the current collector plate 65 is fixed by welding 67.
[0022]
At this time, by using appropriate tools, jigs and the like, the pair of projecting portions 65c of the current collecting plate 65 are pressed so as to approach each other along the longitudinal direction of the first holding portion 65a. A pair of projecting portions 65c are brought into close contact with both end surfaces of the projection 52, respectively. Then, welding 67 is performed between the ends of the pair of protrusions 65 c and the pole current collector plate 52.
As described above, the configuration of the lithium ion battery 5 in which the current collecting plate 65 of the power generating element 51 is joined to the pole current collecting plate 52 is an inevitable configuration including a plurality of power generating elements 51.
[0023]
As described above, according to the lithium ion battery 5 of the present invention, when the projections 65c, 65c of the first holding portion 65a of the current collector plate 65 are welded to the electrode plate 52, By applying a force in the horizontal direction to the surface, the pole current collector plate 52 can be pressed, so that the current collector plate 65 and the pole current collector plate 52 can be easily brought into close contact with each other.
[0024]
In particular, according to the above-described lithium ion battery 5, the pair of protrusions 65c of the current collecting plate 65 are pressed toward each other along the longitudinal direction of the first holding portion 65a, so that the Since a pair of protrusions 65c are brought into close contact with both end surfaces and the corresponding portions are welded, as in the related art, a pair of flat current collector plates and pole current collector plates are formed in a direction perpendicular to both plate surfaces. By applying force and holding, welding is easier and more reliable than in the case where the welding points, that is, the pole current collector and the pair of current collectors are pressed so that both ends in the longitudinal direction are particularly close to each other. The parts can be closely contacted, and the welding process can be simplified.
[0025]
In the lithium ion battery 5 having a plurality of power generating elements 51, the effects of workability and volume efficiency become remarkable according to the number of the power generating elements 51.
[0026]
Further, in this example, since the protruding portions 65c are provided at both ends in the longitudinal direction of the first holding portion 65, both of the protruding portions 65c are welded to the pole current collecting plate 52, so that the current collecting plate 65 is poled. It can be securely fixed to the current collecting plate 62.
In this case, since the second holding portion 65b can be formed thin, it can be welded to the first holding portion 65a with a small current. Thereby, the effect of welding heat on the metal foil 56 can be suppressed.
[0027]
In the above embodiment, the case where the present invention is applied to a lithium ion battery has been described. However, the present invention is not limited to this, and can be applied to a lithium polymer battery, a nickel metal hydride battery, and the like.
[0028]
Further, the present invention is not limited to a wound battery, and can be applied to a battery in which a plurality of metal foils and separators are laminated in a flat shape.
The welding between the first holding portion 65a and the second holding portion 65b can be performed by friction welding or the like. In the case of friction welding, any welding can be performed by adjusting various conditions including the number of rotations, as is well known. Alternatively, welding may be performed using an electron beam processing machine.
[0029]
(2nd Embodiment)
The second embodiment described below is a modification of the form of the current collector used in the battery of the present invention.
10 to 14 show current collector plates 70 to 73 of the second embodiment. The current collecting plate 70 of FIG. 10 has a first holding portion 70a and a second holding portion 70b. The protruding portion 70c is formed only on one side of the first holding portion 70a.
The current collecting plate 71 in FIG. 11 has a first holding portion 71a and a second holding portion 71b. Projections 71c are formed on both sides of the first holding portion 70a, respectively. And the 2nd holding part 71b is arrange | positioned outside the 1st holding part 71a.
[0030]
The current collector plate 72 in FIG. 12 has a substantially U-shaped first holding portion 72a and a substantially U-shaped second holding portion 72b. Protrusions 72c and 72d are formed on the first and second holding portions 72a and 72b.
These first and second holding portions 72a and 72b can be fitted in the same orientation, and can sandwich the end 60b of the power generation element 51 therebetween.
[0031]
The current collecting plate 73 of FIG. 13 has a first holding portion 73a and a second holding portion 73b. The first holding portion 73a has a pair of protrusions 73c provided at both ends thereof, and a receiving plate 73d provided on the opposite side of the pair of protrusions 73c and having substantially the same size as the second holding portion 73b. And
As shown in FIG. 14, the current collecting plate 73 is configured so as to sandwich the end portion 60b of the power generation element 51 between the receiving plate 73d of the first holding portion 73a and the second holding portion 73b. .
[0032]
In each of the above embodiments, the case where the present invention is applied to a lithium ion battery has been described. However, the present invention is not limited to this, and can be applied to a lithium polymer battery, a nickel hydrogen battery, and the like.
[0033]
【The invention's effect】
As described above, according to the present invention, the projecting portion of the first holding portion can be welded to the pole current collecting plate. This saves time and effort (claim 1).
Further, since the protrusions are provided at both ends in the longitudinal direction of the first holding portion, the first holding portion can be securely fixed to the pole current collector plate by welding both protrusions to the pole current collector plate ( Claim 2).
[Brief description of the drawings]
FIG. 1 is a perspective view showing a first embodiment according to the present invention.
FIG. 2 is a diagram showing a method for manufacturing a power generating element.
FIG. 3 is a view showing a cutout portion of a power generation element.
FIG. 4 is a diagram showing a method of forming a notch.
FIG. 5 is a diagram showing a state where an end of a power generation element is bent and a current collector plate.
FIG. 6 is a diagram illustrating a method of sandwiching a bent end of a power generating element between current collecting plates.
FIG. 7 is a diagram showing a state where a current collecting plate is attached to a power generating element.
FIG. 8 is a diagram showing a method of attaching the pole current collector to the current collector.
FIG. 9 is a diagram showing a method of attaching the pole current collector to the current collector.
FIG. 10 is a view showing a current collector of a second embodiment according to the present invention.
FIG. 11 is a view showing a current collector plate according to a second embodiment of the present invention.
FIG. 12 is a view showing a current collector plate according to a second embodiment of the present invention.
FIG. 13 is a view showing a current collector plate according to a second embodiment of the present invention.
FIG. 14 is a view showing a current collector plate according to a second embodiment of the present invention.
FIG. 15 is a diagram showing a conventional example.
FIG. 16 is a diagram showing a conventional example.
FIG. 17 is a diagram showing a conventional example.
FIG. 18 is a diagram showing a conventional example.
FIG. 19 is a diagram showing a conventional example.
FIG. 20 is a diagram showing a conventional example.
[Explanation of symbols]
1 Wound battery 5 Lithium ion battery 8 Power generation element 11 Power generation element 12 Foil current collector 13 Positive electrode terminal 14 Negative electrode terminal 15 Separator 16 Metal foil 17 Shaft 18 Tape 19 Laser light 20 Plate current collector 51 Power generation element 51a Axial direction 52 Electrode collector plate 52a Vertical side portion 55 Separator 56 Metal foil 58 Tape 53 Positive electrode terminal 54 Negative terminal 57 Shaft 61 Arc laminated portion 60 Straight laminated portion 60a Arc center 60b Exposed portion 61 Arc laminated portion 62 Notch 63 First plane 64 Second flat surface 65 Current collecting plate 65a First holding portion 65b Second holding portion 65c Projecting portions 66, 67 Welding 70 Current collecting plate 70a First holding portion 70b Second holding portion 70c Projecting portion 71 Current collecting plate 71a First Nipping part 71b Second holding part 71c Projecting part 72 Current collecting plate 72a First holding part 72b Second holding part 72c Projecting part 73 Current collecting plate 73a First holding part 7 b The second holding portion 73c protruding portion 73d receiving plate