JP2004220859A - Leakage detecting device - Google Patents

Leakage detecting device Download PDF

Info

Publication number
JP2004220859A
JP2004220859A JP2003004887A JP2003004887A JP2004220859A JP 2004220859 A JP2004220859 A JP 2004220859A JP 2003004887 A JP2003004887 A JP 2003004887A JP 2003004887 A JP2003004887 A JP 2003004887A JP 2004220859 A JP2004220859 A JP 2004220859A
Authority
JP
Japan
Prior art keywords
output
circuit
leakage
current transformer
zero
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003004887A
Other languages
Japanese (ja)
Other versions
JP4156385B2 (en
Inventor
Kiyoshi Otomo
潔 大友
Yuji Tsuchimoto
雄二 土本
Koji Kai
孝治 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Renesas Technology Corp
Mitsubishi Electric Engineering Co Ltd
Araco Co Ltd
Kyoei Sangyo KK
Original Assignee
Renesas Technology Corp
Mitsubishi Electric Engineering Co Ltd
Araco Co Ltd
Kyoei Sangyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Renesas Technology Corp, Mitsubishi Electric Engineering Co Ltd, Araco Co Ltd, Kyoei Sangyo KK filed Critical Renesas Technology Corp
Priority to JP2003004887A priority Critical patent/JP4156385B2/en
Publication of JP2004220859A publication Critical patent/JP2004220859A/en
Application granted granted Critical
Publication of JP4156385B2 publication Critical patent/JP4156385B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage detecting device capable of restraining unnecessary operations due to abnormal waveforms different from genuine leakage input waveforms and avoiding the degradation of detecting accuracy. <P>SOLUTION: The leakage detecting device generates a plus side output and a minus side output of a zero-phase-sequence current transformer 4 fitted to an alternate current cable way 1, and includes an integration circuit 14 for integrating each output of the plus side and the minus side, a VF conversion circuit 15 which resets the integration circuit 14 when the size of the waveform of output signals of the integration circuit 14 reaches a given level and outputs pulse signals of frequencies in accordance with the signal waveform inputted from the zero-phase-sequence current transformer, and an arithmetic circuit 16 for counting and integrating the pulse signals for a certain period from the time when the output of the current transformer 4 exceeds a judgment level Vth 3, calculating an average value of the waveforms of the input signals from the transformer 4, and generating trip signals when elapse of the certain period and the average value satisfy a given condition. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
この発明は、漏電を検出する漏電検出装置に関し、特にノイズなどによる誤動作を防止し高い精度で漏電を検出できる漏電検出装置に関するものである。
【0002】
【従来の技術】
従来の漏電検出装置としては、波高値と波形幅により漏電を検出し、その正負の組み合わせにより漏電を検出していた。
このような漏電検出装置としては、漏電信号のピーク電圧値がコンパレータの基準値以上になると正側レベル判別器および負側レベル判別器により信号を発生させ、その各出力信号が所定のパルス幅以上であることを正側信号幅判別器および負側信号幅判別器で判別し、その各判別結果をそれぞれ加算器で加算し、前記各加算器の加算結果をもとにスイッチング素子を動作させるものがある(例えば、特許文献1参照)。
【0003】
また、地絡電流が流れたときにこれを零相変流器により検出し、その検出電流を直流出力に変換するとともに、その直流出力の電圧値に対応した周波数のパルス信号にさらに変換し、前記パルス信号の計数値が一定時間内に所定値に達したときに出力回路接点を開放するものがある(例えば、特許文献2参照)。
【0004】
さらに、主回路に設けられた零相変流器と、この零相変流器の2次出力を直流出力に変換する変換手段と、この変換手段からの出力信号があらかじめ設定された基準定電圧以上のときに信号を出力する比較手段と、この比較手段からの出力信号とあらかじめ設定された所定周波数のパルス信号との論理積をとる論理積手段と、その論理積手段からの出力パルスを計数しその計数値が所定値に達したとき漏電検出信号を出力する計数手段とを備えたものがある(例えば、特許文献3参照)。
【0005】
【特許文献1】
特開平6−245364号公報(第1頁、第1図)
【特許文献2】
特開昭60−257716号公報(第1頁、第1図)
【特許文献3】
特開昭60−102813号公報(第1頁、第6図)
【0006】
【発明が解決しようとする課題】
従来の漏電検出装置は以上のように構成されているので、本来の漏電入力波形ではない、例えば電動機の突入電流や位相制御形電源などの負荷変動による異常波形を漏電入力波形として検出して不要な動作をすることがあり、特に高速タイプブレーカにおける一波形検出によるものにおいては検出精度の低下が顕著になり、またインバータノイズにより不要な動作が発生するという課題があった。
【0007】
この発明は、上記のような課題を解決するためになされたもので、本来の漏電入力波形ではない異常波形による不要な動作を抑制し、検出精度の低下を回避できる漏電検出装置を得ることを目的とする。
【0008】
【課題を解決するための手段】
この発明に係る漏電検出装置は、交流電路に設けられた零相変流器の出力を積分する積分回路と、積分回路の出力信号の波形の大きさが第1のレベルに達したとき積分回路をリセットし、零相変流器から出力された漏電入力波形に応じた周波数のパルス信号を出力する変換回路と、零相変流器から出力された漏電入力波形のレベルが第2のレベル以上の期間が所定期間以上あるとともに、変換回路から出力されたパルス信号の積算値が規定値以上あるとき、交流電路を遮断するためのトリップ信号を発生する演算回路とを備えたものである。
【0009】
【発明の実施の形態】
実施の形態1.
図1はこの実施の形態1による漏電検出装置の構成を示すブロック図である。この漏電検出装置は、基準電源回路18で発生した基準電圧Vref1をもとに、交流電路1に設けられた零相変流器4の出力の正側と負側の出力を生成し、その正側出力と負側出力をCRの時定数によりそれぞれ積分し出力する積分回路14と、積分回路14の出力信号の波形の大きさが正側については+Vref2、負側については−Vref2の所定のレベルに達したときに積分回路14をリセットし、零相変流器4から出力された漏電入力波形に応じた周波数のパルス信号を出力するVF(Voltage to Frequency)変換回路(変換回路)15と、零相変流器4からの漏電入力波形のレベルが所定の判定レベルVth3以上の期間が一定時間幅Td以上あるか判定するとともに、VF変換回路15から出力されたパルス信号の積算値が規定値ΣS以上あるか判定し、それら経過時間と積算値とが所定の条件を満たしたとき、トリップ信号を発生する演算回路16を備えている。
より具体的には、演算回路16では、正側の漏電入力波形の判定レベルVth3以上の期間が一定時間幅Td以上あるとともに、漏電入力波形の立上りからその一定時間幅Tdの終点までVF変換回路15から出力されたパルス信号を計数して、漏電入力波形の平均値(面積)を積算し、その積算値が規定値ΣS以上であること、さらに、負側の漏電入力波形の判定レベル−Vth3以下の期間が一定時間幅Td以上あるとともに、漏電入力波形の立下りからその一定時間幅Tdの終点までVF変換回路15から出力されたパルス信号を計数して、漏電入力波形の平均値(面積)を積算し、その積算値が規定値ΣS以上であることをそれぞれ判定するものである。
また、この漏電検出装置は、演算回路16から出力された信号によりサイリスタなどのスイッチング素子6を作動させ、電磁装置5を介して遮断機3を引き外し、負荷2への交流電路1を遮断する出力回路17と、VF変換回路15と演算回路16へ基準周波数のパルス信号をクロック信号として与える発振回路19とを備えている。
【0010】
次に、この漏電検出装置の動作について図2、図3および図4に示すタイミングチャートを参照しながら説明する。図2(a)はこの実施の形態1の漏電検出装置の通常の漏電入力波形(積分回路14が有する入力アンプの出力波形)と、通常の漏電入力波形に対する積分回路14の出力である積分波形と、VF変換回路15から出力されるパルス信号を示すタイミングチャート、図2(b)は異常時の入力波形と、異常時の入力波形に対する積分回路14の積分波形と、VF変換回路15から出力されるパルス信号を示すタイミングチャート、図3は通常の漏電入力波形に対する各部の信号波形、図4は本来の漏電入力波形ではない異常時の入力波形に対する各部の信号波形を示すタイミングチャートである。
【0011】
先ず、通常の漏電入力波形と異常時の漏電入力波形に対する積分回路14とVF変換回路15の動作について図2(a)、(b)に示すタイミングチャートを参照して説明する。
通常の漏電入力波形については、図2(a)に示すように積分回路14の出力波形(ロ)は、その積分回路14のCRの時定数に応じて上昇し、通常の漏電入力波形(イ)の波高値に応じて充電波形の勾配が急峻になり、この充電波形のレベルが+Vref2に達すると、積分回路14はVF変換回路15によりリセットされる。これに伴いVF変換回路15からはパルス信号が出力されるが、通常の漏電入力波形の場合、図2(a)(イ)に示すように立上りが遅れることなく、徐々に上昇する波形であるため、充電波形の勾配も積分回路14がリセットされるたびに大きくなり、VF変換回路15から出力されるパルス信号の間隔は小さくなっていく。
また、図2(b)に示す異常時の入力波形(ニ)については、立上りが遅れ、急峻に上昇する波形であるため、積分回路14の出力波形(ホ)では充電波形の立上りが遅れ、この結果、VF変換回路15から出力されるパルス信号の数も少ない。
従って、このVF変換回路15から出力されるパルス信号をある期間、計数することで、前記期間の図2(a)、(b)に示す漏電入力(イ)、異常時の入力(ニ)の波形面積の平均値を算出することができる。
【0012】
次に、図3および図4に示すタイミングチャートを参照してこの漏電検出装置の動作を説明する。通常の地絡検出動作は図3に示すタイミングチャートにより示される。図3(a)は交流電路1の地絡成分信号、同図(b)は零相変流器4の出力波形を示す。
通常の地絡検出動作では通常の漏電入力波形が入力されるが、積分回路14から出力された正側入力波形の大きさが図2(a)に示すように+Vref2に達すると、VF変換回路15により積分回路14はリセットされ、次の充電を開始する。そして、その充電波形が再度+Vref2に達すると、VF変換回路15により積分回路14は再リセットされ、次の充電を開始し、一定の時間この動作を繰り返す。この結果、零相変流器4から出力され積分回路14で積分された正側入力波形の大きさに応じて図3(c)に示すように周波数の変化するパルス信号がVF変換回路15から出力される。
【0013】
演算回路16では、VF変換回路15から出力されたパルス信号を漏電入力波形の立上り開始とともに積算を開始し、零相変流器4からの漏電入力波形が判定レベルVth3以上の期間が一定時間幅Tdとなったときに積算値が規定値ΣS以上あると図3(e)に示す信号を発生し、一定時間幅Tdおよび規定値ΣSのうちのいずれかが満たしていないときには図3(e)に示す信号を発生しない。このようなことから、演算回路16では、漏電入力波形の正側入力波形の波形幅と、その漏電入力波形の正側入力波形の面積、すなわち漏電電力量の平均値とを計算し、これら両者の条件からトリップ値に達しているか否かを判定する。
出力回路17では、演算回路16から出力された前記出力信号を正側ラッチ回路が保持し、同図(i)、(j)に示すようなステップ信号を出力する。
【0014】
また、同様に通常の地絡検出動作では、積分回路14の出力である負側入力波形の大きさが−Vref2に達すると、VF変換回路15により積分回路14はリセットされ、次の放電を開始する。そして、その放電波形が再度−Vref2に達すると、VF変換回路15により積分回路14は再リセットされ、次の放電を開始し、一定の時間この動作を繰り返す。この結果、零相変流器4から出力され積分回路14で積分された負側入力波形の大きさに応じて周波数の変化する図3(f)に示すようなパルス信号がVF変換回路15から出力される。
【0015】
演算回路16では、VF変換回路15から出力されたパルス信号を漏電入力波形の立下り開始とともに積算を開始し、零相変流器4からの漏電入力波形が判定レベル−Vth3以下の期間が一定時間幅Tdとなったときに積算値が規定値ΣS以上あると図3(h)に示す信号を発生し、一定時間幅Tdおよび規定値ΣSのうちのいずれかが満たしていないときには図3(h)に示す信号を発生しない。
このようなことから、演算回路16では、漏電入力波形の負側入力波形の波形幅と、その漏電入力波形の負側入力波形の面積、すなわち漏電電力量の平均値とを計算し、これら両者の条件からトリップ値に達しているか否かを判定する。
出力回路17では、演算回路16から出力された前記出力信号を負側ラッチ回路が保持し、同図(k)、(l)に示すようなステップ信号を出力する。
【0016】
このように、複数漏電入力波形検出型であれば、零相変流器4により得られた正側入力信号および負側入力信号からそれぞれ2回検出した前記正側ラッチ回路の前記図3(i)、(j)に示すステップ信号と、前記負側ラッチ回路の前記図3(k)、(l)に示すステップ信号とにより、その論理積が成立した時点で、同図(m)に示すような信号を出力回路17が出力する。また、一波形検出型であれば、演算回路16から図3(e)または(h)に示す信号が発生した時点で、同図(m)に示すような信号を出力回路17が出力する。この信号により、スイッチング素子6が導通し、電磁装置5が作動する。この結果、遮断機3により交流電路1は遮断される。
【0017】
次に、図4に示すタイミングチャートに従って電動機などの起動時における突入電流や位相制御形電源の負荷変動時におけるこの漏電検出装置の動作について説明する。
図4(a)は電動機などの起動時における突入電流や位相制御形電源の負荷変動時において交流電路1に発生する異常時の入力波形、同図(b)は零相変流器4の出力信号波形である。図4(b)の正側信号波形は、電動機などの起動時における突入電流により急峻に立上り、正側の判定レベル+Vth3を超えるが減衰も早く、このため破線で示す通常の漏電入力波形に比べ面積的に2/3程度になっている。
このような正側信号波形が積分回路14へ入力されると、図2(b)に示した異常時の入力波形(ニ)と同様に、積分回路14の出力波形(ホ)では充電波形の立上りが遅れ、この結果、VF変換回路15から出力されるパルス信号(ヘ)の数も少なくなる。
この結果、演算回路16では、図4(d)に示すように、例え、零相変流器4からの漏電入力波形が判定レベルVth3以上の期間が一定時間幅Td以上あったとしても、漏電入力波形の立上りとともに積算を開始したVF変換回路15から出力されたパルス信号の積算値が規定値ΣS以上を満たさない。従って、演算回路16は図4(e)に示すように出力を発生せず、出力回路17もスイッチング素子6を導通させることはなく、電磁装置5も作動せず、遮断機3により交流電路1が遮断される動作には至らない。
【0018】
以上のように、この実施の形態1によれば、積分回路14では、零相変流器4の出力を積分し、VF変換回路15では、積分回路14の出力信号の波形の大きさが所定のレベルに達したときにリセットし、零相変流器4から入力された信号波形に応じた周波数のパルス信号を出力し、演算回路16では、零相変流器4からの漏電入力波形のレベルが所定の判定レベルVth3以上の期間が一定時間幅Td以上あるか判定するとともに、VF変換回路15から出力されたパルス信号の積算値が規定値ΣS以上あるか判定し、それら経過時間と積算値との両者の判定結果から遮断動作を行うため、漏電入力波形幅と漏電入力波形の面積、すなわち漏電電力量の平均値からトリップ値に達しているか否かを判定することになり、電動機などの起動時における突入電流や位相制御形電源の負荷変動時において交流電路1に発生する本来の漏電入力波形ではない異常時の入力波形に対し不要動作しにくい漏電検出装置が得られる効果がある。
【0019】
【発明の効果】
この発明によれば、交流電路に設けられた零相変流器の出力を積分する積分回路と、積分回路の出力信号の波形の大きさが第1のレベルに達したとき積分回路をリセットし、零相変流器から出力された漏電入力波形に応じた周波数のパルス信号を出力する変換回路と、零相変流器から出力された漏電入力波形のレベルが第2のレベル以上の期間が所定期間以上あるとともに、変換回路から出力されたパルス信号の積算値が規定値以上あるとき、交流電路を遮断するためのトリップ信号を発生する演算回路とを備えるように構成したので、漏電入力波形幅と漏電入力波形の面積、すなわち漏電電力量の平均値からトリップ値に達しているか否かを判定することになり、本来の漏電波形ではない異常波形による不要な動作を抑制し、検出精度を向上させることができる効果がある。
【図面の簡単な説明】
【図1】この発明の実施の形態1による漏電検出装置の構成を示すブロック図である。
【図2】この発明の実施の形態1による漏電検出装置における漏電入力波形と、漏電入力波形に対する積分波形と、VF変換回路から出力されるパルス信号を示すタイミングチャートである。
【図3】この発明の実施の形態1による漏電検出装置における通常の地絡検出動作を示すタイミングチャートである。
【図4】この発明の実施の形態1による漏電検出装置における異常時の入力波形に対する地絡検出動作を示すタイミングチャートである。
【符号の説明】
1 交流電路、2 負荷、3 遮断機、4 零相変流器、5 電磁装置、6 スイッチング素子、14 積分回路、15 VF変換回路(変換回路)、16 演算回路、17 出力回路、18 基準電源回路、19 発振回路。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a leakage detection device for detecting a leakage, and more particularly to a leakage detection device capable of preventing a malfunction due to noise or the like and detecting the leakage with high accuracy.
[0002]
[Prior art]
In a conventional leakage detection device, leakage is detected based on a peak value and a waveform width, and leakage is detected based on a combination of the positive and negative values.
In such a leakage detection device, when the peak voltage value of the leakage signal exceeds a reference value of a comparator, a signal is generated by a positive level discriminator and a negative level discriminator, and each output signal has a predetermined pulse width or more. Is determined by a positive-side signal width discriminator and a negative-side signal width discriminator, and each of the discrimination results is added by an adder, and a switching element is operated based on the addition result of each adder. (For example, see Patent Document 1).
[0003]
Further, when a ground fault current flows, this is detected by a zero-phase current transformer, and the detected current is converted into a DC output, and further converted into a pulse signal having a frequency corresponding to the voltage value of the DC output, There is one in which an output circuit contact is opened when the count value of the pulse signal reaches a predetermined value within a predetermined time (for example, see Patent Document 2).
[0004]
Further, a zero-phase current transformer provided in the main circuit, a conversion means for converting a secondary output of the zero-phase current transformer into a DC output, and a reference constant voltage A comparison means for outputting a signal at the time of the above, an AND means for performing an AND operation of the output signal from the comparison means and a pulse signal having a predetermined frequency, and counting an output pulse from the AND means; Some devices include a counting unit that outputs a leakage detection signal when the counted value reaches a predetermined value (for example, see Patent Document 3).
[0005]
[Patent Document 1]
JP-A-6-245364 (page 1, FIG. 1)
[Patent Document 2]
JP-A-60-257716 (page 1, FIG. 1)
[Patent Document 3]
JP-A-60-102813 (page 1, FIG. 6)
[0006]
[Problems to be solved by the invention]
Since the conventional leak detection device is configured as described above, it is unnecessary to detect an abnormal waveform due to load fluctuations such as inrush current of the motor or phase control type power supply as the leak input waveform, which is not the original leak input waveform. In particular, in the case of one-waveform detection in a high-speed type breaker, there is a problem that the detection accuracy is remarkably reduced and unnecessary operation occurs due to inverter noise.
[0007]
The present invention has been made in order to solve the above-described problems, and it is an object of the present invention to provide a leakage detection device capable of suppressing unnecessary operation due to an abnormal waveform that is not an original leakage input waveform and avoiding a decrease in detection accuracy. Aim.
[0008]
[Means for Solving the Problems]
An earth leakage detecting device according to the present invention includes an integrating circuit for integrating an output of a zero-phase current transformer provided in an AC circuit, and an integrating circuit when a waveform of an output signal of the integrating circuit reaches a first level. And a conversion circuit for outputting a pulse signal having a frequency corresponding to the leakage input waveform output from the zero-phase current transformer, and a level of the leakage input waveform output from the zero-phase current transformer being equal to or higher than the second level And a calculation circuit for generating a trip signal for cutting off the AC circuit when the integrated value of the pulse signal output from the conversion circuit is equal to or greater than a specified value.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of the leakage detecting device according to the first embodiment. This leakage detection device generates the positive and negative outputs of the output of the zero-phase current transformer 4 provided in the AC circuit 1 based on the reference voltage Vref1 generated by the reference power supply circuit 18, and outputs the positive and negative outputs. An integrating circuit 14 for integrating and outputting the side output and the negative side output, respectively, according to the time constant of CR, and a predetermined level of + Vref2 on the positive side and -Vref2 on the negative side when the magnitude of the output signal waveform is positive. VF (Voltage to Frequency) conversion circuit (conversion circuit) 15 that resets the integrator circuit 14 when the voltage reaches the frequency and outputs a pulse signal having a frequency corresponding to the leakage input waveform output from the zero-phase current transformer 4. It is determined whether the level of the leakage input waveform from the zero-phase current transformer 4 is equal to or greater than the predetermined determination level Vth3 for a predetermined time width Td or more, and the power output from the VF conversion circuit 15 is determined. Integrated value of the scan signal is determined whether or prescribed value [sigma] s, as they age and the integrated value satisfies a predetermined condition, and a computing circuit 16 for generating a trip signal.
More specifically, in the arithmetic circuit 16, the period during which the positive-side leakage input waveform determination level Vth3 or more is equal to or greater than the fixed time width Td, and the VF conversion circuit extends from the rise of the leakage input waveform to the end point of the fixed time width Td. The pulse signal output from the counter 15 is counted, the average value (area) of the leakage input waveform is integrated, and the integrated value is equal to or more than the specified value ΣS. Further, the determination level of the negative leakage input waveform −Vth3 The following period is equal to or greater than the fixed time width Td, and the pulse signal output from the VF conversion circuit 15 is counted from the fall of the leakage input waveform to the end point of the fixed time width Td, and the average value (area) of the leakage input waveform is calculated. ) Is integrated, and it is determined that the integrated value is equal to or greater than a specified value ΔS.
In addition, the leakage detection device activates a switching element 6 such as a thyristor in response to a signal output from the arithmetic circuit 16, trips the circuit breaker 3 via the electromagnetic device 5, and cuts off the AC circuit 1 to the load 2. An output circuit 17 and an oscillation circuit 19 that supplies a pulse signal of a reference frequency as a clock signal to the VF conversion circuit 15 and the arithmetic circuit 16 are provided.
[0010]
Next, the operation of the electric leakage detection device will be described with reference to timing charts shown in FIGS. FIG. 2A shows a normal leakage input waveform (output waveform of an input amplifier included in the integration circuit 14) of the leakage detection device according to the first embodiment, and an integrated waveform which is an output of the integration circuit 14 with respect to the normal leakage input waveform. FIG. 2B is a timing chart showing a pulse signal output from the VF conversion circuit 15, and FIG. 2B shows an input waveform at the time of abnormality, an integrated waveform of the integration circuit 14 with respect to the input waveform at the time of abnormality, and an output from the VF conversion circuit 15. 3 is a timing chart showing a signal waveform of each part with respect to a normal leakage input waveform, and FIG. 4 is a timing chart showing a signal waveform of each part with respect to an abnormal input waveform which is not an original leakage input waveform.
[0011]
First, the operation of the integration circuit 14 and the VF conversion circuit 15 for the normal leakage input waveform and the leakage input waveform at the time of abnormality will be described with reference to timing charts shown in FIGS.
As for the normal leakage input waveform, as shown in FIG. 2 (a), the output waveform (b) of the integration circuit 14 rises according to the CR time constant of the integration circuit 14, and the normal leakage input waveform (b) ), The gradient of the charging waveform becomes steep, and when the level of the charging waveform reaches + Vref2, the integration circuit 14 is reset by the VF conversion circuit 15. With this, a pulse signal is output from the VF conversion circuit 15, but in the case of a normal leakage input waveform, the waveform gradually rises without delay as shown in FIGS. Therefore, the gradient of the charging waveform also increases each time the integration circuit 14 is reset, and the interval between the pulse signals output from the VF conversion circuit 15 decreases.
In addition, the input waveform (d) at the time of abnormality shown in FIG. 2B is a waveform whose rising is delayed and rises steeply, so that the rising of the charging waveform is delayed in the output waveform (e) of the integrating circuit 14, As a result, the number of pulse signals output from the VF conversion circuit 15 is also small.
Therefore, by counting the pulse signal output from the VF conversion circuit 15 for a certain period, the leakage input (a) shown in FIGS. 2A and 2B and the abnormal input (d) during the period are counted. The average value of the waveform area can be calculated.
[0012]
Next, the operation of the electric leakage detection device will be described with reference to timing charts shown in FIGS. A normal ground fault detection operation is shown by a timing chart shown in FIG. FIG. 3A shows a ground fault component signal of the AC circuit 1, and FIG. 3B shows an output waveform of the zero-phase current transformer 4.
In a normal ground fault detection operation, a normal leakage input waveform is input. When the magnitude of the positive input waveform output from the integration circuit 14 reaches + Vref2 as shown in FIG. 15 resets the integration circuit 14 and starts the next charging. Then, when the charge waveform reaches + Vref2 again, the integration circuit 14 is reset again by the VF conversion circuit 15, starts the next charge, and repeats this operation for a certain period of time. As a result, a pulse signal whose frequency changes in accordance with the magnitude of the positive-side input waveform output from the zero-phase current transformer 4 and integrated by the integration circuit 14 is output from the VF conversion circuit 15 as shown in FIG. Is output.
[0013]
The arithmetic circuit 16 starts accumulating the pulse signal output from the VF conversion circuit 15 together with the start of the rise of the leakage input waveform, and a period during which the leakage input waveform from the zero-phase current transformer 4 is equal to or higher than the determination level Vth3 is a fixed time width. A signal shown in FIG. 3E is generated when the integrated value is equal to or more than the specified value ΣS when Td is reached, and when either the fixed time width Td or the specified value ΣS is not satisfied, the signal shown in FIG. Does not generate the signal shown in. For this reason, the arithmetic circuit 16 calculates the waveform width of the positive input waveform of the leakage input waveform and the area of the positive input waveform of the leakage input waveform, that is, the average value of the leakage power, and calculates both of them. It is determined whether or not the trip value has been reached based on the condition (1).
In the output circuit 17, the positive side latch circuit holds the output signal output from the arithmetic circuit 16, and outputs a step signal as shown in FIGS.
[0014]
Similarly, in a normal ground fault detection operation, when the magnitude of the negative input waveform, which is the output of the integration circuit 14, reaches -Vref2, the VF conversion circuit 15 resets the integration circuit 14 and starts the next discharge. I do. Then, when the discharge waveform reaches -Vref2 again, the integration circuit 14 is reset again by the VF conversion circuit 15, starts the next discharge, and repeats this operation for a certain period of time. As a result, a pulse signal whose frequency changes according to the magnitude of the negative input waveform output from the zero-phase current transformer 4 and integrated by the integration circuit 14 as shown in FIG. Is output.
[0015]
The arithmetic circuit 16 starts accumulating the pulse signal output from the VF conversion circuit 15 together with the start of the fall of the leakage input waveform, and the period during which the leakage input waveform from the zero-phase current transformer 4 is equal to or lower than the determination level -Vth3 is constant. If the integrated value is equal to or more than the specified value ΣS when the time width Td is reached, a signal shown in FIG. 3H is generated. If any of the fixed time width Td and the specified value ΣS is not satisfied, the signal shown in FIG. The signal shown in h) is not generated.
For this reason, the arithmetic circuit 16 calculates the waveform width of the negative input waveform of the leakage input waveform and the area of the negative input waveform of the leakage input waveform, that is, the average value of the leakage power amount. It is determined whether or not the trip value has been reached based on the condition (1).
In the output circuit 17, the negative side latch circuit holds the output signal output from the arithmetic circuit 16, and outputs a step signal as shown in FIGS.
[0016]
As described above, in the case of the plural-leakage input waveform detection type, the positive side latch circuit shown in FIG. ), (J) and the step signal shown in FIGS. 3 (k) and (l) of the negative side latch circuit when the logical product is established, as shown in FIG. The output circuit 17 outputs such a signal. In the case of the one-waveform detection type, when the arithmetic circuit 16 generates a signal shown in FIG. 3E or 3H, the output circuit 17 outputs a signal shown in FIG. With this signal, the switching element 6 conducts, and the electromagnetic device 5 operates. As a result, the AC circuit 1 is cut off by the circuit breaker 3.
[0017]
Next, the operation of the earth leakage detecting device when the inrush current of the electric motor or the like or when the load of the phase control type power supply changes will be described with reference to the timing chart shown in FIG.
FIG. 4A is an input waveform at the time of an inrush current at the time of starting an electric motor or the like and an abnormality occurs in the AC circuit 1 when the load of the phase control type power supply changes, and FIG. It is a signal waveform. The positive side signal waveform in FIG. 4 (b) rises sharply due to the inrush current at the time of starting the motor or the like, and exceeds the positive side determination level + Vth3, but the attenuation is fast, and therefore, compared to the normal leakage input waveform indicated by the broken line. The area is about 2/3.
When such a positive-side signal waveform is input to the integration circuit 14, the output waveform (e) of the integration circuit 14 has a charge waveform similar to the abnormal input waveform (d) shown in FIG. The rise is delayed, and as a result, the number of pulse signals (f) output from the VF conversion circuit 15 also decreases.
As a result, in the arithmetic circuit 16, as shown in FIG. 4D, even if a period in which the leakage input waveform from the zero-phase current transformer 4 is equal to or greater than the determination level Vth3 is equal to or greater than the predetermined time width Td, the leakage is detected. The integrated value of the pulse signal output from the VF conversion circuit 15 which started integration with the rise of the input waveform does not satisfy the specified value ΔS or more. Therefore, the arithmetic circuit 16 does not generate an output as shown in FIG. 4 (e), the output circuit 17 does not conduct the switching element 6, the electromagnetic device 5 does not operate, and the AC circuit 1 Does not lead to the operation of shutting off.
[0018]
As described above, according to the first embodiment, the integration circuit 14 integrates the output of the zero-phase current transformer 4, and the VF conversion circuit 15 adjusts the size of the waveform of the output signal of the integration circuit 14 to a predetermined value. , And outputs a pulse signal having a frequency corresponding to the signal waveform input from the zero-phase current transformer 4. It is determined whether or not the period in which the level is equal to or greater than the predetermined determination level Vth3 is equal to or greater than the predetermined time width Td, and it is determined whether the integrated value of the pulse signal output from the VF conversion circuit 15 is equal to or greater than the specified value ΣS. In order to perform the cutoff operation from the determination result of both the value and the value, the leakage input waveform width and the area of the leakage input waveform, that is, whether or not the trip value has been reached is determined from the average value of the leakage power amount, such as an electric motor. At startup The effect of unnecessary operation difficult leakage detecting device to the input waveform of the abnormal state is not the original leakage input waveform generated in the AC circuit 1 at the time of load fluctuation of the definitive inrush current and the phase-controlled power supply can be obtained.
[0019]
【The invention's effect】
According to the present invention, the integrating circuit for integrating the output of the zero-phase current transformer provided on the AC circuit, and resetting the integrating circuit when the magnitude of the waveform of the output signal of the integrating circuit reaches the first level. A conversion circuit that outputs a pulse signal having a frequency corresponding to the leakage input waveform output from the zero-phase current transformer, and a period in which the level of the leakage input waveform output from the zero-phase current transformer is equal to or more than the second level. An arithmetic circuit that generates a trip signal for interrupting the AC circuit when the integrated value of the pulse signal output from the conversion circuit is equal to or greater than a predetermined value while the predetermined period or more is provided, From the width and the area of the leakage input waveform, that is, the average value of the leakage power amount, it is determined whether or not the trip value has been reached, and unnecessary operation due to an abnormal waveform that is not the original leakage waveform is suppressed, and the detection accuracy is improved. Direction There is an effect that can be.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of an earth leakage detection device according to Embodiment 1 of the present invention.
FIG. 2 is a timing chart showing a leakage input waveform, an integral waveform with respect to the leakage input waveform, and a pulse signal output from the VF conversion circuit in the leakage detection device according to the first embodiment of the present invention.
FIG. 3 is a timing chart showing a normal ground fault detection operation in the earth leakage detection device according to the first embodiment of the present invention.
FIG. 4 is a timing chart showing a ground fault detection operation for an input waveform at the time of an abnormality in the earth leakage detection device according to the first embodiment of the present invention.
[Explanation of symbols]
1 AC circuit, 2 load, 3 breaker, 4 zero-phase current transformer, 5 electromagnetic device, 6 switching element, 14 integration circuit, 15 VF conversion circuit (conversion circuit), 16 arithmetic circuit, 17 output circuit, 18 reference power supply Circuit, 19 oscillation circuit.

Claims (3)

交流電路に発生した地絡を零相変流器により検出し、前記交流電路を遮断する漏電検出装置において、
前記交流電路に設けられた前記零相変流器の出力を積分する積分回路と、
前記積分回路の出力信号の波形の大きさが第1のレベルに達したとき前記積分回路をリセットし、前記零相変流器から出力された漏電入力波形に応じた周波数のパルス信号を出力する変換回路と、
前記零相変流器から出力された漏電入力波形のレベルが第2のレベル以上の期間が所定期間以上あるとともに、前記変換回路から出力されたパルス信号の積算値が規定値以上あるとき、前記交流電路を遮断するためのトリップ信号を発生する演算回路とを備えたことを特徴とする漏電検出装置。
A ground fault generated in the AC circuit is detected by a zero-phase current transformer, and in the earth leakage detecting device for interrupting the AC circuit,
An integration circuit that integrates an output of the zero-phase current transformer provided in the AC circuit;
When the magnitude of the waveform of the output signal of the integration circuit reaches the first level, the integration circuit is reset, and a pulse signal having a frequency corresponding to the leakage input waveform output from the zero-phase current transformer is output. A conversion circuit;
When the level of the leakage input waveform output from the zero-phase current transformer is equal to or greater than the second level for a predetermined period or more, and when the integrated value of the pulse signal output from the conversion circuit is equal to or greater than a specified value, An electric circuit for generating a trip signal for interrupting an AC electric circuit.
積分回路は、零相変流器の出力の正側出力と負側出力をそれぞれ積分して出力し、
変換回路は、前記積分回路の出力信号の正側の波形の大きさが第1のレベルに、負側の波形の大きさが第3のレベルにそれぞれ達するごとに前記積分回路をリセットし、前記零相変流器から出力された漏電入力波形の正側と負側の各出力波形に応じた周波数のパルス信号を出力し、
演算回路は、前記零相変流器から出力された正側の漏電入力波形のレベルが第2のレベル以上の期間が所定期間以上あるとともに、前記変換回路から出力された正側の出力波形に応じたパルス信号の積算値が規定値以上あり、かつ前記零相変流器から出力された負側の漏電入力波形のレベルが第4のレベル以下の期間が所定期間以上あるとともに、前記変換回路から出力された負側の出力波形に応じたパルス信号の積算値が規定値以上あるとき、前記交流電路を遮断するためのトリップ信号を発生することを特徴とする請求項1記載の漏電検出装置。
The integrating circuit integrates and outputs the positive output and the negative output of the output of the zero-phase current transformer, respectively.
The conversion circuit resets the integration circuit each time the magnitude of the waveform on the positive side of the output signal of the integration circuit reaches the first level and the magnitude of the waveform on the negative side reaches the third level. A pulse signal having a frequency corresponding to each of the positive and negative output waveforms of the leakage input waveform output from the zero-phase current transformer is output,
The arithmetic circuit includes a period in which the level of the positive-side leakage input waveform output from the zero-phase current transformer is equal to or higher than the second level for a predetermined period or more, and a positive-side output waveform output from the conversion circuit. A period in which the integrated value of the corresponding pulse signal is equal to or more than a specified value and the level of the negative-side leakage input waveform output from the zero-phase current transformer is equal to or less than a fourth level for a predetermined period or more; 2. A leakage detection device according to claim 1, wherein when the integrated value of the pulse signal corresponding to the negative output waveform output from the controller is equal to or greater than a specified value, a trip signal for interrupting the AC circuit is generated. .
演算回路が、変換回路から出力されたパルス信号を積算する期間は、零相変流器から出力された漏電入力波形の立上りからその漏電入力波形のレベルが第2のレベル以上の所定期間を含むことを特徴とする請求項1記載の漏電検出装置。The period in which the arithmetic circuit integrates the pulse signal output from the conversion circuit includes a predetermined period in which the level of the leakage input waveform output from the zero-phase current transformer rises to the second level or higher from the rising edge of the input signal. The earth leakage detecting device according to claim 1, wherein:
JP2003004887A 2003-01-10 2003-01-10 Earth leakage detector Expired - Fee Related JP4156385B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004887A JP4156385B2 (en) 2003-01-10 2003-01-10 Earth leakage detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004887A JP4156385B2 (en) 2003-01-10 2003-01-10 Earth leakage detector

Publications (2)

Publication Number Publication Date
JP2004220859A true JP2004220859A (en) 2004-08-05
JP4156385B2 JP4156385B2 (en) 2008-09-24

Family

ID=32895722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004887A Expired - Fee Related JP4156385B2 (en) 2003-01-10 2003-01-10 Earth leakage detector

Country Status (1)

Country Link
JP (1) JP4156385B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638635B1 (en) 2005-06-02 2006-10-27 (주)갑진 Earth leakage circuit breaker
JP2010268645A (en) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd Abnormal insulation detector
JP2015130345A (en) * 2014-01-07 2015-07-16 エルエス産電株式会社Lsis Co.,Ltd. Earth leakage circuit breaker
JP2016057314A (en) * 2016-01-12 2016-04-21 パナソニックIpマネジメント株式会社 Leak detection device
DE102017107126A1 (en) 2016-04-04 2017-10-05 New Japan Radio Co., Ltd. Leakage detector
KR101904764B1 (en) * 2018-01-18 2018-10-05 주식회사 써니아이씨 Integrated circuit for leakage current detection and earth leakage circuit breaker having the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100638635B1 (en) 2005-06-02 2006-10-27 (주)갑진 Earth leakage circuit breaker
WO2006129935A1 (en) * 2005-06-02 2006-12-07 Kapjin Co., Ltd. Earth leakage circuit breaker
US7764474B2 (en) 2005-06-02 2010-07-27 Kapjin Co., Ltd. Earth leakage circuit breaker
JP2010268645A (en) * 2009-05-18 2010-11-25 Nissan Motor Co Ltd Abnormal insulation detector
JP2015130345A (en) * 2014-01-07 2015-07-16 エルエス産電株式会社Lsis Co.,Ltd. Earth leakage circuit breaker
US9678130B2 (en) 2014-01-07 2017-06-13 Lsis Co., Ltd. Earth leakage circuit breaker
JP2016057314A (en) * 2016-01-12 2016-04-21 パナソニックIpマネジメント株式会社 Leak detection device
DE102017107126A1 (en) 2016-04-04 2017-10-05 New Japan Radio Co., Ltd. Leakage detector
US10359463B2 (en) 2016-04-04 2019-07-23 New Japan Radio Co., Ltd. Electric leakage detecting device
KR101904764B1 (en) * 2018-01-18 2018-10-05 주식회사 써니아이씨 Integrated circuit for leakage current detection and earth leakage circuit breaker having the same

Also Published As

Publication number Publication date
JP4156385B2 (en) 2008-09-24

Similar Documents

Publication Publication Date Title
KR100206027B1 (en) Field ground fault detector and field ground fault relay for detecting ground fault corresponding to dc component extracted from ground fault current
KR100638635B1 (en) Earth leakage circuit breaker
CN107276025B (en) Electric leakage detection device
JP6137982B2 (en) Earth leakage breaker
JPWO2008136071A1 (en) Phase control switchgear and switching pole control method in phase control switchgear
WO2012127307A1 (en) Earth leakage detection device
KR20170119248A (en) Analog signal detecting circuit
JP2004220859A (en) Leakage detecting device
JPH07262903A (en) Earth leakage breaker
JP5511599B2 (en) Commutation type shut-off device
JPWO2012160647A1 (en) Electronic circuit breaker
JP2000102158A (en) Earth leakage circuit breaker
JP6569489B2 (en) Semiconductor integrated circuit for earth leakage breaker
KR20150081943A (en) Earth leakage circuit breaker
JP7262014B2 (en) Arc detection circuits, breakers, power conditioners, solar panels, modules attached to solar panels, junction boxes
JP2003219552A (en) Ground detector for ground leakage breaker and phase control device
KR20160041868A (en) Earth leakage circuit breaker
JP2774377B2 (en) Ground fault detector
JP4156386B2 (en) Earth leakage detector
JP5656291B2 (en) Shut-off device
JP2803435B2 (en) Circuit breaker
JP5436334B2 (en) Overcurrent relay
KR102551607B1 (en) Leakage Current Detector
JP3319799B2 (en) Ground fault detector
JPWO2020105140A1 (en) Power converter

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20051219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20051219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060328

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060405

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20080115

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080605

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080709

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees