JP2010268645A - Abnormal insulation detector - Google Patents

Abnormal insulation detector Download PDF

Info

Publication number
JP2010268645A
JP2010268645A JP2009119471A JP2009119471A JP2010268645A JP 2010268645 A JP2010268645 A JP 2010268645A JP 2009119471 A JP2009119471 A JP 2009119471A JP 2009119471 A JP2009119471 A JP 2009119471A JP 2010268645 A JP2010268645 A JP 2010268645A
Authority
JP
Japan
Prior art keywords
neutral point
insulation abnormality
point current
detection device
abnormality detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009119471A
Other languages
Japanese (ja)
Other versions
JP5453917B2 (en
Inventor
Tomoya Imazu
知也 今津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2009119471A priority Critical patent/JP5453917B2/en
Publication of JP2010268645A publication Critical patent/JP2010268645A/en
Application granted granted Critical
Publication of JP5453917B2 publication Critical patent/JP5453917B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

<P>PROBLEM TO BE SOLVED: To provide an abnormal insulation detector which can reduce incorrect detection of abnormal insulation in an AC motor or a feeder, even if the current flowing through the neutral point of an AC motor is varied due to external factors. <P>SOLUTION: The abnormal insulation detector includes: a plurality of AC motors which are driven by an inverter to output a driving force or to generate electric power; a neutral point current detection means for detecting the state of currents flowing through the neutral point of the AC motors respectively; a comparison means for comparing the state of a current detected for each AC motor by the neutral point current detection means; and an abnormality decision means for deciding abnormal insulation in the winding of the AC motor, based on the comparison results from the comparison means. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、交流モータの巻き線等からの漏電といった絶縁異常を検出する絶縁異常検出装置に関する。   The present invention relates to an insulation abnormality detection device that detects an insulation abnormality such as leakage from an AC motor winding or the like.

従来、交流モータを搭載した電動車両の絶縁異常検出装置としては、交流モータを搭載した電動車両に用いられ、インバータの交流電力出力側と車体との間に接続されたコンデンサと電流検出器とを有する直列回路を備えており、電流検出器に流れる電流値から給電線を含む通電部(交流モータの巻き線)の漏電を検出するものが知られている(例えば、特許文献1参照)。   Conventionally, an insulation abnormality detection device for an electric vehicle equipped with an AC motor is used for an electric vehicle equipped with an AC motor, and includes a capacitor and a current detector connected between the AC power output side of the inverter and the vehicle body. There is known a circuit that includes a series circuit that detects leakage of a current-carrying unit (a winding of an AC motor) including a power supply line from a current value flowing through a current detector (see, for example, Patent Document 1).

特開2005−20848号公報JP 2005-20848 A

しかしながら、上記従来の絶縁異常検出装置にあっては、コンデンサのスター結線の仮想中性点を車体に接地し、この中性点を流れる電流を用いて漏電を検出するようになっていたため、中性点を流れる電流が温度や湿度などの外的要因によって変動し、この変動量によっては巻き線や給電線が正常であるにもかかわらず漏電と判定し、誤検出が発生してしまうことがあるといった問題点がある。   However, in the above-described conventional insulation abnormality detection device, a virtual neutral point of the star connection of the capacitor is grounded to the vehicle body, and the leakage is detected using the current flowing through the neutral point. The current flowing through the sex point fluctuates due to external factors such as temperature and humidity, and depending on the amount of fluctuation, it may be judged that there is a leakage even though the winding and power supply line are normal, and false detection may occur. There is a problem that there is.

本発明は、上記問題に着目してなされたもので、その目的とするところは、交流モータの中性点を流れる電流が外的要因で変動しても、交流モータの巻き線等が正常であるにもかかわらず絶縁異常であるとしてしまう誤検出を低減することができるモータの絶縁異常検出装置を提供することにある。   The present invention has been made paying attention to the above problems, and the purpose of the present invention is that even if the current flowing through the neutral point of the AC motor fluctuates due to an external factor, the winding of the AC motor is normal. An object of the present invention is to provide a motor insulation abnormality detection device capable of reducing erroneous detections that are considered to be insulation abnormality despite being present.

この目的のため本発明の絶縁異常検出装置は、複数の交流モータのそれぞれの中性点を流れる電流の状態を検出する中性点検出手段と、この中性点検出手段で検出した電流の状態を交流モータごとに比較する比較手段と、この比較結果に基づいて交流モータの巻き線等の絶縁異常を判定する異常判定手段とを、有することを特徴とする。   For this purpose, the insulation abnormality detection device of the present invention includes a neutral point detection means for detecting the state of a current flowing through a neutral point of each of a plurality of AC motors, and a current state detected by the neutral point detection means. Comparing means for comparing each AC motor, and abnormality determining means for determining an insulation abnormality such as a winding of the AC motor based on the comparison result.

本発明の絶縁異常検出装置にあっては、交流モータの巻線が正常な場合は、交流モータの中性点を流れる電流が外的要因により変動した場合にあっても、複数のモータ間では同じ傾向を持つので、中性点電流の左右での差異はほとんど変わらなくなるため、中性点電流の変動分を除去でき、その結果、絶縁異常の誤検出を低減することができる。   In the insulation abnormality detection device of the present invention, when the winding of the AC motor is normal, even if the current flowing through the neutral point of the AC motor fluctuates due to an external factor, it is not between the plurality of motors. Since they have the same tendency, the difference between the neutral point currents on the left and right sides hardly changes, so that the fluctuations in the neutral point currents can be removed, and as a result, false detection of insulation abnormality can be reduced.

本発明に係る実施例1の絶縁異常検出装置を搭載した電動車両の構成を示す図である。It is a figure which shows the structure of the electric vehicle carrying the insulation abnormality detection apparatus of Example 1 which concerns on this invention. 実施例1の絶縁異常検出装置が適用された2個の交流モータおよびそれらの給電回路を示す図である。It is a figure which shows the two alternating current motors and the electric power feeding circuit to which the insulation abnormality detection apparatus of Example 1 was applied. 実施例1の絶縁異常検出装置の構成を示すブロック図である。It is a block diagram which shows the structure of the insulation abnormality detection apparatus of Example 1. FIG. (a)は絶縁異常検出装置の周波数分別部に入力される中性点電流の波形を示す図、(b)は周波数弁別部から出力された電流信号の波形を示す図、(c)は整流部で整流された電流信号の波形を示す図、(d)は平滑化部で平滑化された電流信号の波形を示す図である。(A) is a figure which shows the waveform of the neutral point current input into the frequency classification part of an insulation abnormality detection apparatus, (b) is a figure which shows the waveform of the current signal output from the frequency discrimination part, (c) is rectification The figure which shows the waveform of the current signal rectified by the part, (d) is a figure which shows the waveform of the current signal smoothed by the smoothing part. 右側の交流モータの巻き線に絶縁異常を生じた場合の漏電電流の流れを示す図である。It is a figure which shows the flow of the earth-leakage current at the time of insulation abnormality having arisen in the winding of the right side AC motor. 左右の中性点電流値の差異に基づき絶縁異常を判定する方法を説明する図である。It is a figure explaining the method of determining an insulation abnormality based on the difference of the neutral point current value of right and left. 2個以上の交流モータへ実施例1の絶縁異常検出装置を適用した場合の絶縁異常を判定する方法を説明する図である。It is a figure explaining the method of determining the insulation abnormality at the time of applying the insulation abnormality detection apparatus of Example 1 to two or more AC motors. 本発明に係る実施例2の絶縁異常検出装置による絶縁異常を判定する方法を説明する図である。It is a figure explaining the method of determining the insulation abnormality by the insulation abnormality detection apparatus of Example 2 which concerns on this invention. 図8の判定を行うための構成を示したブロック図である。It is the block diagram which showed the structure for performing determination of FIG. 本発明に係る実施例3の絶縁異常検出装置による絶縁異常を判定する方法で用いる、各相への電圧指令値の大きさがU相>V相>W相である場合の区間、その区間での各相の電圧との関係を説明する図である。Section used when the magnitude of the voltage command value to each phase is U phase> V phase> W phase, which is used in the method for determining an insulation abnormality by the insulation abnormality detection device according to the third embodiment of the present invention. It is a figure explaining the relationship with the voltage of each phase. 本発明に係る実施例3の絶縁異常検出装置による絶縁異常を判定する方法で用いる、各相への電圧指令値の大きさがU相>W相>V相である場合の区間、その区間での各相の電圧との関係を説明する図である。The section in the case where the magnitude of the voltage command value to each phase is U phase> W phase> V phase, used in the method for determining the insulation abnormality by the insulation abnormality detection device according to the third embodiment of the present invention. It is a figure explaining the relationship with the voltage of each phase. U相,V相,W相での電圧指令値の大小とそのとき各相で現れる電圧との関係を示す図である。It is a figure which shows the relationship between the magnitude of the voltage command value in U phase, V phase, and W phase, and the voltage which appears in each phase at that time. 三相交流モータでの電気角と各相電圧との関係を示す図である。It is a figure which shows the relationship between the electrical angle in a three-phase alternating current motor, and each phase voltage. モータの寄生コンデンサ、寄生抵抗の影響を説明する図である。It is a figure explaining the influence of the parasitic capacitor of a motor, and parasitic resistance.

以下、本発明の実施の形態を、図面に示す実施例に基づき詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail based on examples shown in the drawings.

図1は、本発明の絶縁異常検出装置を搭載した電動車両の模式図を示す。同図において、電動車両にあっては、車体1には、それぞれ左前輪側懸架装置5FL、右前輪側懸架装置5FR、左後輪側懸架装置5RL、右後輪側懸架装置5RRを介して左前輪2FL、右前輪2FR、左後輪2RL、右後輪2RRを取り付けてある。   FIG. 1 is a schematic diagram of an electric vehicle equipped with an insulation abnormality detection device of the present invention. In the figure, in the case of an electric vehicle, the vehicle body 1 has a left front wheel side suspension device 5FL, a right front wheel side suspension device 5FR, a left rear wheel side suspension device 5RL, and a right rear wheel side suspension device 5RR. Front wheel 2FL, right front wheel 2FR, left rear wheel 2RL, right rear wheel 2RR are attached.

左前輪2FL、右前輪2FRは、ステアリング・ホイール7の操舵操作によって転舵可能にする。一方、左後輪2RL、右後輪2RRには、交流モータ3RL、交流モータ3RRをそれぞれ連結し、これらの左後輪2RL、右後輪2RRを駆動可能とする。左後輪2RL駆動用の交流モータ3RL、右後輪2RR駆動用の交流モータ3RRには、同一の交流モータを用い、実施例1では、三相交流のイン・ホイール・モータを用いる。   The left front wheel 2FL and the right front wheel 2FR are steerable by the steering operation of the steering wheel 7. On the other hand, an AC motor 3RL and an AC motor 3RR are connected to the left rear wheel 2RL and the right rear wheel 2RR, respectively, so that the left rear wheel 2RL and the right rear wheel 2RR can be driven. The same AC motor is used for the AC motor 3RL for driving the left rear wheel 2RL and the AC motor 3RR for driving the right rear wheel 2RR. In the first embodiment, a three-phase AC in-wheel motor is used.

左後輪2RL駆動用の交流モータ3RL、右後輪2RR駆動用の交流モータ3RRは、それぞれ左後輪側インバータ24L、右後輪側インバータ24Rに電気的に接続し、駆動電力が供給されるようにする。左後輪側インバータ24Lと右後輪側インバータ24Rとは、バッテリ等からなる電源ユニット12に接続し、電力の供給を受ける。電源ユニット12、左後輪側インバータ24L、右後輪側インバータ24Rには、制御ユニット6を接続し、この制御ユニット6により、左後輪2RL駆動用の交流モータ3RLおよび右後輪2RR駆動用の交流モータ3RRへ供給する駆動電力と、これらの交流モータ3RL、3RRからの回生電力との制御を行う。   The AC motor 3RL for driving the left rear wheel 2RL and the AC motor 3RR for driving the right rear wheel 2RR are electrically connected to the left rear wheel side inverter 24L and the right rear wheel side inverter 24R, respectively, and are supplied with driving power. Like that. The left rear wheel side inverter 24L and the right rear wheel side inverter 24R are connected to the power supply unit 12 made of a battery or the like and are supplied with electric power. A control unit 6 is connected to the power supply unit 12, the left rear wheel side inverter 24L, and the right rear wheel side inverter 24R. With this control unit 6, the AC motor 3RL for driving the left rear wheel 2RL and the right rear wheel 2RR drive The drive power supplied to the AC motor 3RR and the regenerative power from these AC motors 3RL and 3RR are controlled.

制御ユニット6には、マイクロ・コンピュータで構成され、ステアリング・ホイール7の操作量を検出するステアリング操作量センサ8と、アクセル・ペダル9の踏み込み量を検出するアクセル・ペダル踏み込み量センサ13と、ブレーキ・ペダル10の操作を検出するブレーキ操作センサ14と、車両の前後左右の加速度を検出する車両運動状態検出センサ11とを接続する。   The control unit 6 comprises a microcomputer, a steering operation amount sensor 8 that detects the operation amount of the steering wheel 7, an accelerator pedal depression amount sensor 13 that detects the depression amount of the accelerator pedal 9, and a brake A brake operation sensor 14 that detects the operation of the pedal 10 and a vehicle motion state detection sensor 11 that detects acceleration in the front / rear and left / right directions of the vehicle are connected.

制御ユニット6は、上記各センサから検出信号を受け取ることで、左後輪側インバータ24L、右後輪側インバータ24R等を制御して交流モータ3RL、3RRによる後車輪2RL、2RRの駆動や回生電力のバッテリへの回収などの制御を行う他、本発明の絶縁異常検出装置をも構成する。なお、これらを分離してそれぞれのユニットとして構成しても良いことは言うまでもない。   The control unit 6 receives the detection signals from each of the above sensors, and controls the left rear wheel side inverter 24L, the right rear wheel side inverter 24R, etc. to drive the rear wheels 2RL, 2RR by the AC motors 3RL, 3RR and regenerative power. In addition to controlling the recovery of the battery to the battery, the insulation abnormality detection device of the present invention is also configured. Needless to say, these units may be separated and configured as respective units.

図2に、左後輪側駆動用の交流モータ3RL、右後輪側駆動用の交流モータ3RR、およびそれらの給電回路を示す。同図において、電源ユニット12のバッテリのプラス側には第1ヒューズ22Aを、またそのマイナス側には第2ヒューズ22Bを接続する。また、これらヒューズ22A、22B間には、直流の入り・切りを行う直流コンタクタ23を接続する。   FIG. 2 shows an AC motor 3RL for driving the left rear wheel side, an AC motor 3RR for driving the right rear wheel side, and a power feeding circuit thereof. In the figure, the first fuse 22A is connected to the positive side of the battery of the power supply unit 12, and the second fuse 22B is connected to the negative side thereof. Further, a DC contactor 23 for turning on / off direct current is connected between the fuses 22A and 22B.

直流コンタクタ23には、左後輪側の電圧型インバータ24Lと左後輪側の電圧型インバータ24Rとをこれらが並列になるように接続する。これら電圧型インバータ24L、24Rは、それぞれ半導体スイッチ部24aと電流平滑用の入力コンデンサ24bとを備えており、出力電圧が矩形波で、平均電圧値をPMWのデューティで決定されるようにして、電圧と出力周波数で交流モータ3RL、3RRの出力量を制御する。なお、この出力電流の方は、正弦波となる。   The DC contactor 23 is connected to a voltage type inverter 24L on the left rear wheel side and a voltage type inverter 24R on the left rear wheel side so that they are in parallel. Each of these voltage type inverters 24L, 24R includes a semiconductor switch unit 24a and an input capacitor 24b for current smoothing, so that the output voltage is a rectangular wave and the average voltage value is determined by the duty of PMW, The output amount of AC motors 3RL and 3RR is controlled by the voltage and output frequency. The output current is a sine wave.

電圧型インバータ24Lと左後輪側の電圧型インバータ24Rと、それぞれ左後輪2RL駆動用の交流モータ3RLと右後輪2RR駆動用の交流モータ3RRとにスター結線され、交流の入り・切りを行う交流コンタクタ25L、25Rに接続され、交流モータ3RL、2RRを駆動可能とする。   The voltage type inverter 24L and the voltage type inverter 24R on the left rear wheel side are star-connected to the AC motor 3RL for driving the left rear wheel 2RL and the AC motor 3RR for driving the right rear wheel 2RR, respectively. It is connected to the AC contactors 25L and 25R to be operated, and the AC motors 3RL and 2RR can be driven.

交流モータ3RL、2RRは、それぞれステータ巻き線(コイル)3La、3Raとモータ・ケース3La、3Lbとを有している。このステータ巻き線3La、3Raとモータ・ケース3Lb、3Rbとの間には、それぞれ寄生抵抗3Lc、3Rcと寄生コンデンサ3Ld、3Rdとを有している。   AC motors 3RL and 2RR have stator windings (coils) 3La and 3Ra and motor cases 3La and 3Lb, respectively. Parasitic resistances 3Lc and 3Rc and parasitic capacitors 3Ld and 3Rd are respectively provided between the stator windings 3La and 3Ra and the motor cases 3Lb and 3Rb.

同様に、電圧型インバータ24L、24Rあるいはこれらより電源ユニット12側においても、強電回路とこの筐体との間もそれぞれ寄生コンデンサを有している。ここで、本発明では、電圧型インバータ24L、24Rより交流モータ3RL、2RR側、その中でも特に交流モータ3RL、2RRのステータ巻き線の絶縁の余寿命を監視することとする。したがって、ここでは、上記三つの寄生要素のみを考慮することとし、電圧型インバータ24L、24Rや電源ユニット12側での対地絶縁抵抗などは、無限大または変動しないものとして説明する。   Similarly, the voltage type inverters 24L and 24R or the power supply unit 12 side thereof also have parasitic capacitors between the high voltage circuit and the casing. Here, in the present invention, the remaining life of the insulation of the stator windings of the AC motors 3RL and 2RR, particularly the AC motors 3RL and 2RR, is monitored from the voltage type inverters 24L and 24R. Therefore, here, only the above three parasitic elements are considered, and the voltage-type inverters 24L and 24R and the ground insulation resistance on the power supply unit 12 side are assumed to be infinite or do not vary.

ここで、中性点電流値を計測するため、中性点電流センサを設ける位置を図2に丸1、丸2、丸3(丸1等は、図面では丸円内数字で示す)にで示す。すなわち、本実施例では、3ヶ所での中性点電流の大きさを検出する。   Here, in order to measure the neutral point current value, the position where the neutral point current sensor is provided is indicated by circle 1, circle 2 and circle 3 in FIG. 2 (circle 1 etc. is indicated by a number in a circle in the drawing). Show. That is, in the present embodiment, the magnitude of the neutral point current at three locations is detected.

まず、ループで位置(丸1)、すなわち電圧型インバータ24L、24Rと交流コンタクタ25L、25Rと間を結ぶ給電線中には、第1の中性点電流センサ15L、15Rをそれぞれ設ける。この第1の中性点電流センサ15L、15Rは、電圧型インバータ24L、24Rからそれぞれ交流モータ3RL、2RRへの交流結合線を全相(ここでは三相)まとめた合計電流の値を検出する電流センサを1固設けてもよいし、各交流結合線にそれぞれ電流センサを設けてこれらの検出値を合計して駆動周波数中性点電流の大きさを算出するようにしても良い。第1の中性点電流センサ15L、51Rは、制御ユニット6に接続し、位置(丸1)で計測した駆動周波数中性点電流値を表す電流信号を制御ユニット6に送る。   First, the first neutral point current sensors 15L and 15R are provided in positions (circle 1) in the loop, that is, in the feeders connecting the voltage type inverters 24L and 24R and the AC contactors 25L and 25R, respectively. The first neutral point current sensors 15L and 15R detect a total current value obtained by collecting all phases (here, three phases) of AC coupling wires from the voltage type inverters 24L and 24R to the AC motors 3RL and 2RR, respectively. One current sensor may be provided, or a current sensor may be provided for each AC coupling line, and the detected values may be summed to calculate the magnitude of the driving frequency neutral point current. The first neutral point current sensors 15L and 51R are connected to the control unit 6 and send a current signal representing the drive frequency neutral point current value measured at the position (circle 1) to the control unit 6.

一方、電圧型インバータ24L、24Rは、等電位となる車体1にボンディングを介して接地する。位置(丸2)は、このボンディングの途中に設定し、ここに第2の中性点電流センサ16L、16Rをそれぞれ設ける。これらの第2の中性点電流センサ16L、16Rは、制御ユニット6に接続して、位置(丸2)で計測した中性点電流値を表す電流信号を制御ユニット6に送る。なお、上記ボンディングとしては、電圧型インバータ24L、24Rの筐体を車体1へ取り付けるボルトなどの締結具で構成するようにしても良いし、車体1に代えて交流モータM1、M2に共通に設置されているデバイスに電流検出器を設けるようにすることも可能である。あるいは、ノイズ対策としてコンデンサにより高周波接地とするようにしても良い。   On the other hand, the voltage-type inverters 24L and 24R are grounded to the vehicle body 1 having an equipotential through bonding. The position (circle 2) is set in the middle of this bonding, and the second neutral point current sensors 16L and 16R are provided here. These second neutral point current sensors 16L and 16R are connected to the control unit 6 and send a current signal representing the neutral point current value measured at the position (circle 2) to the control unit 6. In addition, as said bonding, you may make it comprise with the fasteners, such as a volt | bolt which attaches the housing | casing of voltage type inverters 24L and 24R to the vehicle body 1, or it replaces with the vehicle body 1 and installs in common with AC motor M1 and M2. It is also possible to provide a current detector in the device being implemented. Alternatively, high frequency grounding may be performed with a capacitor as a noise countermeasure.

また、交流モータ3RL、2RRのモータ・ケース3Lb、3Rbも、ボンディングを介してそれぞれ車体1に接地する。位置(丸3)は、このボンディングの途中に設定し、ここに第3の中性点電流センサ17L、17Rをそれぞれ設ける。これらの第3の中性点電流センサ17L、17Rは、制御ユニット6に接続して、位置(丸3)で計測した中性点電流値を表す電流信号を制御ユニット6に送る。なお、これらのボンディングとしては、モータ・ケース3Lb、3Rbを車体1へ取り付けるボルトなどの締結具で構成するようにしても良いし、ノイズ対策としてコンデンサにより高周波接地とするようにしても良い。また、この場合も、車体1に代えて交流モータM1、M2に共通に設置されているデバイスに電流検出器を設けるようにすることも可能である。   The motor cases 3Lb and 3Rb of the AC motors 3RL and 2RR are also grounded to the vehicle body 1 through bonding. The position (circle 3) is set in the middle of this bonding, and third neutral point current sensors 17L and 17R are provided here, respectively. These third neutral point current sensors 17L and 17R are connected to the control unit 6 and send a current signal representing the neutral point current value measured at the position (circle 3) to the control unit 6. In addition, as these bonding, you may make it comprise with fasteners, such as a volt | bolt which attaches motor case 3Lb, 3Rb to the vehicle body 1, and you may make it make high frequency grounding with a capacitor | condenser as a noise countermeasure. Also in this case, it is possible to provide a current detector in a device installed in common with the AC motors M1 and M2 instead of the vehicle body 1.

図3は、絶縁異常検出装置の構成を示すブロック図である。なお、絶縁異常検出装置は、前述したように本実施例では制御ユニット6の一部にて構成する。   FIG. 3 is a block diagram showing the configuration of the insulation abnormality detection device. As described above, the insulation abnormality detection device is constituted by a part of the control unit 6 in this embodiment.

絶縁異常検出装置、したがって制御ユニット6には、左後輪駆動用の交流モータ3RL側の第1の中性点電流センサ15Lおよび右後輪駆動用の交流モータ3RR側の第1の中性点電流センサ15Rからそれぞれ中性点電流信号が入力される。絶縁異常検出装置は、これらの入力された中性点電流から周波数弁別して必要な帯域の信号を取り出す周波数弁別部61L、61Rと、周波数弁別された電流信号をそれぞれ整流する整流部62L、62Rと、整流された電流信号をそれぞれ平滑化する平滑化部63L、63Rと、これら平滑化された電流信号が入力されて比較判断する比較判断部64と、を有する。   The insulation abnormality detection device, and thus the control unit 6, includes a first neutral point current sensor 15L on the left rear wheel drive AC motor 3RL side and a first neutral point on the right rear wheel drive AC motor 3RR side. A neutral point current signal is input from each of the current sensors 15R. The insulation abnormality detection device includes frequency discriminating units 61L and 61R that extract a signal of a necessary band by frequency discrimination from these input neutral point currents, and rectification units 62L and 62R that rectify the frequency discriminated current signals, respectively. And smoothing units 63L and 63R that smooth the rectified current signals, respectively, and a comparison determination unit 64 that receives these smoothed current signals and makes a comparison determination.

周波数弁別部61L、61Rは、フィルタで構成する。このフィルタとしては、計測ノイズを除去するロー・パス・フィルタや電流信号のオフセットなどを除去するハイ・パス・フィルタを用いる。また、比較判断部64で中性点電流の駆動周波数を比較評価する場合には、駆動周波数の変動範囲をカバーするバンド・パス・フィルタ、あるいは瞬間瞬間で変化する駆動周波数に対応した周波数へ可変するバンド・バス・フィルタを用いるようにしても良い。   The frequency discriminating units 61L and 61R are configured by filters. As this filter, a low-pass filter for removing measurement noise or a high-pass filter for removing an offset of a current signal or the like is used. When comparing and evaluating the driving frequency of the neutral point current by the comparison / determination unit 64, the band pass filter that covers the fluctuation range of the driving frequency or the frequency corresponding to the driving frequency that changes instantaneously can be changed. A band-pass filter may be used.

ここで、第1の中性点電流センサ15L、15Rから入力された中性点電流信号の時系列計測値の例を図4(a)に示す。このように高周波ノイズを含んだ中性点電流信号は、周波数弁別部61L、61Rのロー・パス・フィルタにてそれぞれ高周波ノイズ分が除去され、図4(b)に示すような電流信号となって周波数弁別部61L、61Rから出力される。   Here, FIG. 4A shows an example of time-series measured values of the neutral point current signals input from the first neutral point current sensors 15L and 15R. In this way, the neutral point current signal including high frequency noise is subjected to high frequency noise removal by the low pass filters of the frequency discriminators 61L and 61R, and becomes a current signal as shown in FIG. 4B. Output from the frequency discriminators 61L and 61R.

整流部62L、62Rでは、周波数弁別部61L、61Rから入力された電流信号のマイナス側信号を、図4(c)に示すようにプラス側にそれぞれ折り返す。このようにして整流された電気信号は、平滑化部63L、63Rへ入力される。   In the rectifying units 62L and 62R, the minus side signals of the current signals input from the frequency discriminating units 61L and 61R are folded back to the plus side as shown in FIG. The electric signal rectified in this way is input to the smoothing units 63L and 63R.

平滑化部63L、63Rでは、周波数弁別部61L,61Rよりも時定数を長くしたロー・パス・フィルタを用いて、整流部62L、62Rから出力された整流された電気信号を、図4(d)に太い実線で示すようにそれぞれ平滑化して中性点電流の大きさを信号化する。   In the smoothing units 63L and 63R, the rectified electric signals output from the rectifying units 62L and 62R are converted into the rectified electric signals output from the rectifying units 62L and 62R using a low pass filter having a longer time constant than the frequency discriminating units 61L and 61R. ) And smoothing each as shown by a thick solid line to signal the magnitude of the neutral point current.

比較判断部64では、駆動周波数中性点電流の波形の差異に基づいて絶縁異常を判断する。本実施例では、波形の差異として、左後輪2RLを駆動する交流モータ3RL側の駆動周波数中性点電流の大きさと右後輪2RRを駆動する交流モータ3RR側の駆動周波数中性点電流の大きさとの差異(減算値)、これらの比、またはこれらの差異と比の両方を用い、これらの絶対値が所定値以上となる場合に異常であると判断する。言い換えると、駆動周波数中性点電流の抵抗成分の差異の絶対値が所定以上大きい場合、この抵抗成分の差異の絶対値が所定値以上の増加傾向にある場合に、巻き線の絶縁異常が発生していると判断する。   The comparison / determination unit 64 determines the insulation abnormality based on the difference in the waveform of the driving frequency neutral point current. In this embodiment, as the difference in waveform, the magnitude of the driving frequency neutral point current on the AC motor 3RL side that drives the left rear wheel 2RL and the driving frequency neutral point current on the AC motor 3RR side that drives the right rear wheel 2RR are shown. A difference from the magnitude (subtraction value), a ratio thereof, or both of the difference and the ratio are used, and when these absolute values are equal to or larger than a predetermined value, it is determined that an abnormality is present. In other words, when the absolute value of the difference in resistance component of the driving frequency neutral point current is greater than a predetermined value, if the absolute value of the difference in resistance component tends to increase above a predetermined value, a winding insulation abnormality occurs. Judge that you are doing.

なお、左後輪2RL側と右後輪2RRとの第2の中性点電流センサ16L、16R間における検出電流値同士、また第3の中性点電流センサ17L、17R間における検出電流値同士も、上記同様に併せて比較判断する。   The detected current values between the second neutral point current sensors 16L and 16R on the left rear wheel 2RL side and the right rear wheel 2RR, and the detected current values between the third neutral point current sensors 17L and 17R. In the same manner as described above, a comparative judgment is also made.

上記異常時における比較判断部64での判断の様子を図6に示す。図6は右側の中性点電流の大きさを横軸に、また左側の中性点電流の大きさを縦軸にとった座標を示す。第1〜第3の電流検出器で検出した部位(丸1)、(丸2)、(丸3)における差異をプロットしてみると、第1の中性点電流センサ15L、15Rでの左右の中性点電流の差異(または比)と、第2の中性点電流センサ16L、16Rでの左右の中性点電流の差異(または比)とは、それらの絶対値が所定値より小さく位置(丸1)、位置(丸2)での差異(または比)は「差異の正常範囲」内にあるが、第3の中性点電流センサ17L、17Rでの中性点電流の差異(または比)は、右側の巻き線3Laに絶縁異常があるため、その絶対値が所定値以上となって位置(丸3)での差異(または比)は「差異の正常範囲」より外れてその下側の異常領域に位置するようになる。また、左側の巻き線3Raに絶縁異常があると、第3の中性点電流センサ17L、17Rでの中性点電流の差異(または比)は、「差異の正常範囲」より外れてその上側の異常領域に位置するようになる。   FIG. 6 shows a state of judgment by the comparison judgment unit 64 at the time of the abnormality. FIG. 6 shows the coordinates of the neutral point current on the right side on the horizontal axis and the neutral point current on the left side on the vertical axis. Plotting the differences in the parts (circle 1), (circle 2), and (circle 3) detected by the first to third current detectors, the left and right of the first neutral point current sensors 15L and 15R The neutral point current difference (or ratio) of the second and the neutral point current difference (or ratio) of the second neutral point current sensors 16L and 16R are such that their absolute values are smaller than a predetermined value. Although the difference (or ratio) at the position (circle 1) and position (circle 2) is within the “normal range of difference”, the difference in neutral point current between the third neutral point current sensors 17L and 17R ( (Or ratio), because there is an insulation abnormality in the right winding 3La, the absolute value becomes a predetermined value or more, and the difference (or ratio) at the position (circle 3) deviates from the “normal range of difference”. It will be located in the lower abnormal area. Also, if there is an insulation abnormality in the left winding 3Ra, the neutral point current difference (or ratio) of the third neutral point current sensors 17L and 17R is outside the “normal range of difference” and above it. It will be located in the abnormal area.

すなわち、中性点を流れる電流値は、外気温度、湿度などの外的要因によって変動するため、単に各中性点を流れる電流値に基づき個別に交流モータ3RL、3RRの巻き線3La、3Raの絶縁異常を判断しようとすると、上記変動量によっては、巻き線3La、3Raが正常であるにもかかわらず、異常と判定し、誤検出してしまう。しかしながら、上記構成にあっては、左右の中性点電流の差異に基づき、外的要因による中性点電流の変動分をキャンセルして除去しながら、巻き線3La、3Raの絶縁異常の有無を検出するようにしている。   That is, since the current value flowing through the neutral point varies depending on external factors such as outside temperature and humidity, the windings 3La and 3Ra of the AC motors 3RL and 3RR are individually individually based on the current value flowing through each neutral point. If an attempt is made to determine an insulation abnormality, the windings 3La and 3Ra are determined to be abnormal and erroneously detected depending on the amount of fluctuation. However, in the above configuration, based on the difference between the neutral point currents on the left and right, canceling and removing the fluctuations in the neutral point current due to external factors, the presence or absence of insulation abnormality in the windings 3La and 3Ra I try to detect it.

このように外的要因による中性点電流の変動分をキャンセルできるのは、交流モータ3RL、3RRや第1〜第3中性点電流センサ15L、15R、16L、16R、17L、17Rなどは左右で同じものを用いているので、交流モータ3RL、3RRの巻き線3La、3Raが正常な場合は、外的要因により計測された中性点電流値が変動しても、これらは左右で同じ傾向を持つので、中性点電流値の左右での差異、比はほとんど変わらなくなるからである。これに対し、交流モータ3RL、3RRの巻き線3La、3Raのいずれかに絶縁異常が発生すると、中性点電流値の左右での差異の絶対値、比の絶対値は大きくなってしまうので、差異が大きくなり、絶縁異常を検出できるようになるのである。   The neutral point current fluctuation due to external factors can be canceled in the AC motors 3RL and 3RR and the first to third neutral point current sensors 15L, 15R, 16L, 16R, 17L, and 17R. When the windings 3La and 3Ra of AC motors 3RL and 3RR are normal, even if the neutral point current value measured due to external factors fluctuates, these tend to be the same on the left and right This is because the difference and the ratio of the neutral point current value on the left and right hardly change. On the other hand, if an insulation abnormality occurs in any of the windings 3La and 3Ra of the AC motors 3RL and 3RR, the absolute value of the difference between the right and left neutral point current values and the absolute value of the ratio will increase. The difference becomes large and insulation abnormality can be detected.

たとえば右後輪駆動用の交流モータ3RRの巻き線3Raのみに絶縁異常で漏電が発生したとすると、巻き線3Raからモータ・ケース3Rbと車体1との間のボンディングを介して車体1へと駆動電流が、図5に太い矢印で示すように流れる結果、右後輪2RL側の第3の中性点電流センサ17Rの電流検出値は大きくなる。しかしながら、左後輪駆動用の交流モータ3RLの巻き線3Laには絶縁異常が発生していないため、左後輪2RL側の第3の中性点電流センサ17Lでの電流検出値は右側に比べてかなり小さく、両者間の差異の絶対値が大きくなる。   For example, if leakage occurs due to insulation abnormality only in the winding 3Ra of the AC motor 3RR for driving the right rear wheel, it is driven from the winding 3Ra to the vehicle body 1 through bonding between the motor case 3Rb and the vehicle body 1. As a result of the current flowing as shown by the thick arrows in FIG. 5, the current detection value of the third neutral point current sensor 17R on the right rear wheel 2RL side increases. However, since there is no insulation abnormality in the winding 3La of the AC motor 3RL for driving the left rear wheel, the current detection value of the third neutral point current sensor 17L on the left rear wheel 2RL side is larger than that on the right side. The absolute value of the difference between the two is large.

この場合、車体1から、ボンディングを介して左後輪側および右後輪側の電圧型インバータ24L、24Rの両方の筐体へも電流が流れるが、左右間における位置(丸2)における中性点電流の差異は所定値以上に大きくならず、位置(丸2)の箇所は正常であることが判別できる。一方、位置(丸1)においてもインバータ24L、24Rから印加される中性電流値も大きくは変わらないので、位置(丸2)の箇所は正常であることが判別できる。     In this case, the current flows from the vehicle body 1 to both the left and right rear wheel side voltage type inverters 24L and 24R through bonding, but neutrality at the position between the left and right (circle 2). It can be determined that the difference between the point currents does not become larger than a predetermined value, and the position (circle 2) is normal. On the other hand, since the neutral current value applied from the inverters 24L and 24R does not change significantly at the position (circle 1), it can be determined that the position (circle 2) is normal.

たとえば、外的要因の一つとして天気の場合をみると、中性点電流値は晴天時と雨天時とでかなり大きく変わる。すなわち、交流モータ3RL、3RRの巻き線3La、3Raが正常な場合には、晴天時には、右後輪側の交流モータ3RRの中性点電流値が5で、左後輪側の交流モータ電流値が4であるのに対し、雨天時には、中性点電流値は上昇する傾向にあるので、右後輪側の交流モータ3RRの中性点電流値が10で、左後輪側の交流モータ電流値が9となるとする。この場合、比較判断部64で得られる晴天時での中性点電流値の差異の絶対値は5−4=1、一方、比較判断部64で得られる雨天時での中性点電流値の差異の絶対値も9−8=1となる。したがって、晴天時、雨天時における左右間の差異の絶対値が所定値(たとえば4)より小さくなる結果、外的要因で中性点電流値が大きくなっても、巻き線3La、3Raは正常であると判断でき、絶縁異常の誤検出をすることはない。   For example, in the case of weather as one of the external factors, the neutral point current value varies considerably between fine weather and rainy weather. That is, when the windings 3La and 3Ra of the AC motors 3RL and 3RR are normal, the neutral point current value of the AC motor 3RR on the right rear wheel side is 5 and the AC motor current value on the left rear wheel side in fine weather However, the neutral point current value tends to increase during rainy weather, so the neutral point current value of the AC motor 3RR on the right rear wheel side is 10 and the AC motor current on the left rear wheel side. Assume that the value is 9. In this case, the absolute value of the difference between the neutral point current values in fine weather obtained by the comparison judgment unit 64 is 5-4 = 1, while the neutral point current value in the rainy weather obtained by the comparison judgment unit 64 is The absolute value of the difference is also 9-8 = 1. Therefore, when the absolute value of the difference between right and left in fine weather and rainy weather is smaller than a predetermined value (for example, 4), the windings 3La and 3Ra are normal even if the neutral point current value increases due to an external factor. It can be determined that there is no insulation error.

一方、右後輪側の交流モータ3RRの巻き線3Raに絶縁異常が発生した場合には、晴天時、右後輪駆動用の交流モータ3RR側の中性点電流値が9で、左後輪駆動用の交流モータ3RL側の中性点電流値が2であるのに対し、雨天時には右後輪駆動用の交流モータ3RR側の中性点電流値が16で、左後輪駆動用の交流モータ3RL側の中性点電流値が10となるとする。この場合、比較判断部64で得られる晴天時での中性点電流値の差異の絶対値は9−2=7、一方、比較判断部64で得られる雨天時での中性点電流値の差異の絶対値も16−10=6となる。したがって、晴天時、雨天時における左右間の差異の絶対値が所定値(たとえば4)より大きくなる結果、巻き線Raは絶縁異常であると判断できる。   On the other hand, if an insulation abnormality occurs in the winding 3Ra of the AC motor 3RR on the right rear wheel side, the neutral point current value on the AC motor 3RR side for driving the right rear wheel is 9 and the left rear wheel in clear weather. The neutral point current value on the AC motor 3RL side for driving is 2, whereas the neutral point current value on the AC motor 3RR side for driving the right rear wheel is 16 in the rain, and the alternating current for driving the left rear wheel is It is assumed that the neutral point current value on the motor 3RL side is 10. In this case, the absolute value of the difference between the neutral point current values at the time of fine weather obtained by the comparison judgment unit 64 is 9-2 = 7, whereas the neutral point current value at the time of rain obtained by the comparison judgment unit 64 is The absolute value of the difference is also 16-10 = 6. Therefore, as a result of the absolute value of the difference between the left and right in fine weather and rainy weather becoming larger than a predetermined value (for example, 4), it can be determined that the winding Ra is an insulation abnormality.

なお、上記では、二つの交流モータを用い、これら左右二つの中性点電流を比較しているが、より多くの交流モータを用いる場合にも適用可能である。図7に示すように、4個の交流モータ#1〜#4からそれらの中性点電流の大きさの信号を入力して、これらの集合としての平均値、標準偏差、各偏差を算出し、各偏差が標準偏差より所定値以上、たとえば1.5倍以上あれば、当該交流モータに絶縁異常があるとしてその異常フラグをたてるようにすれば良い。   In the above description, two AC motors are used and the left and right neutral point currents are compared. However, the present invention can be applied to a case where more AC motors are used. As shown in FIG. 7, the signals of the neutral point current magnitudes are input from the four AC motors # 1 to # 4, and the average value, standard deviation, and each deviation are calculated as a set of these signals. If each deviation is a predetermined value or more, for example, 1.5 times or more than the standard deviation, an abnormality flag may be set to indicate that the AC motor has an insulation abnormality.

以上のように、実施例1の絶縁異常装置にあっては、以下の効果を得ることができる。   As described above, in the insulation abnormality device of the first embodiment, the following effects can be obtained.

中性点電流の左右における差異、比、偏差、標準偏差等に基づき、外部要因による中性点電流の変動分をキャンセル、除去して交流モータ3RL、3RRの巻き線3La、3Raの絶縁異常を検出することができるので、絶縁異常の誤検出を減らすことができる。   Based on the difference, ratio, deviation, standard deviation, etc., on the left and right of the neutral point current, the neutral point current fluctuation due to external factors is canceled and eliminated, and the insulation abnormality of the windings 3La and 3Ra of the AC motor 3RL and 3RR is eliminated. Since it can be detected, erroneous detection of insulation abnormality can be reduced.

また、中性点電流として低周波数の駆動周波数中性点電流を用いて比較するようにしたので、電流計測ノイズによる計測精度の低下を伴うことなく、絶縁抵抗の測定と比較を高精度で行うことができる。   In addition, because the neutral point current is compared using the low frequency drive frequency neutral point current, measurement and comparison of the insulation resistance can be performed with high accuracy without degrading the measurement accuracy due to current measurement noise. be able to.

駆動周波数中性点電流の抵抗成分の差異が所定値より大きいことで絶縁異常を検出するようにしたので、中性点電流のうち絶縁抵抗に対し感度の高い電流成分のみを抽出して比較することで、絶縁抵抗の測定と比較を高精度に行うことができる。   Since the insulation abnormality is detected when the difference in the resistance component of the driving frequency neutral point current is greater than the predetermined value, only the current component that is sensitive to the insulation resistance is extracted from the neutral point current for comparison. Thus, measurement and comparison of insulation resistance can be performed with high accuracy.

絶縁抵抗が低下していることを示す、駆動周波数中性点電流の抵抗成分の増加を検出、比較するようにしたので、特に絶縁抵抗の低下が著しい交流モータを抽出することができる。さらに、正常な交流モータにも共通の、絶縁性能低下を意味しない中性点電流変動分を除去することで、より高精度な検出を行うことができる。   Since an increase in the resistance component of the drive frequency neutral point current, which indicates that the insulation resistance is reduced, is detected and compared, it is possible to extract an AC motor in which the insulation resistance is particularly low. Furthermore, more accurate detection can be performed by removing the neutral point current fluctuation that does not mean a decrease in insulation performance, which is common to normal AC motors.

次に、本発明に係る実施例2の絶縁異常検出装置につき、添付の図面に基づき説明する。なお、実施例2では、実施例1の位置(丸1)における高周波中性点電流をそれぞれの給電線ごとに中性点電流センサを設け、中性点電圧印加状態ごとまたはその変動状態ごとに中性点電流の特性値を比較して巻き線3La、3Raの絶縁異常を検出するようにしている。なお、その他は、実施例1と同じなので、同じ部分については実施例1と同じ番号を付して説明する。   Next, an insulation abnormality detection apparatus according to Embodiment 2 of the present invention will be described with reference to the accompanying drawings. In the second embodiment, a neutral point current sensor is provided for each high-frequency neutral point current at the position (circle 1) in the first embodiment for each feeder line, and each neutral point voltage application state or each fluctuation state thereof is provided. The characteristic value of the neutral point current is compared to detect the insulation abnormality of the windings 3La and 3Ra. Since the other parts are the same as those in the first embodiment, the same portions are denoted by the same reference numerals as those in the first embodiment.

ここでは、左後輪2RLを駆動する交流モータ3RLと右後輪2RRを駆動する交流モータ3RRとに、三相交流モータを使用しているので、電圧型インバータ24L、24Rから交流モータ3RL、3RRに三本の給電線を介して出力される電圧は、それぞれ直流のプラス側電圧Vpかマイナス側電圧Vnと同電位である。したがって、その組み合わせは、2の3乗で8通りとなるが、中性点電位の相違により分類すると、次の4通りに分けられる。   Here, since the three-phase AC motor is used for the AC motor 3RL that drives the left rear wheel 2RL and the AC motor 3RR that drives the right rear wheel 2RR, the voltage-type inverters 24L and 24R are replaced with the AC motors 3RL and 3RR. The voltages output via the three power supply lines are respectively at the same potential as the DC positive side voltage Vp or the negative side voltage Vn. Therefore, there are 8 combinations of 2 to the third power, but when classified according to the difference in neutral point potential, the combinations are divided into the following four types.

すなわち、(1)三線ともプラス側電圧Vpである場合、この場合は中性点電位もVpとなる。(2)二線がプラス電位Vpで残り一線がマイナス電位Vnである場合、この場合中性点電位は(2Vp+Vn)/3となる。(3)一線がプラス電位Vpで二線がマイナス電位Vnである場合、この場合中性点電位は(Vp+2Vn)/3となる。(4)三線ともマイナス電位Vnである場合、この場合中性点電位はVnとなる。   That is, (1) when all three wires are at the positive side voltage Vp, in this case, the neutral point potential is also Vp. (2) When two lines are positive potential Vp and the remaining one line is negative potential Vn, the neutral point potential is (2Vp + Vn) / 3 in this case. (3) When one line is the positive potential Vp and the second line is the negative potential Vn, in this case, the neutral point potential is (Vp + 2Vn) / 3. (4) If all three wires are at negative potential Vn, the neutral point potential is Vn in this case.

上記中性点電位の相違による4通りにしたがって巻き線の絶縁異常を判定するための中性点電流の処理につき、図8を参照しながら説明する。なお、この処理は上記8通りの場合でも同様である。   A neutral point current process for determining a winding insulation abnormality according to the above four differences depending on the neutral point potential will be described with reference to FIG. This process is the same in the above eight cases.

図8は、最上段にモータ仮想中性点電位Vm nを、第2段目に中性点電流を、第3段目に区間弁別により区間Aで切り出した中性点電流を、第4段目に、区間Aで切り出した中間電流の平均値(太い実線で示す)を、最下段に区間Aで切り出した中間電流の減衰係数(太い減衰包絡線で示す)を、それぞれ時系列で示す。   FIG. 8 shows the motor virtual neutral point potential Vmn at the top stage, the neutral point current at the second stage, and the neutral point current cut out at section A by section discrimination at the third stage. The average value (indicated by a thick solid line) of the intermediate current cut out in the section A is shown in the time series, and the attenuation coefficient (indicated by the thick attenuation envelope) of the intermediate current cut out in the section A is shown in time series in the lowermost stage.

なお、弁別の区間としては、上記4通りにしたがって4区間A〜Dに弁別するが、これらは電圧型インバータ24L、24Rの半導体スイッチ部24aのスイッチング・チミングで決定する。最上段に示すように、モータ仮想中性点電位Vm nは区間Aで最大電圧値Vp、続く区間Bで電圧値(2Vp+Vn)/3、続く区間Cで電圧値(Vp+2Vn)/3、続く区間Dで最低電位Vnと徐々に小さくなっていく。この後、つづいて、区間C、区間B、区間Aと電位が増大していき、再び区間B、区間C、区間Dといったように繰り返される。   In addition, as a section of discrimination, it discriminate | determines into 4 sections AD according to the above-mentioned 4 types, These are determined by the switching teaming of the semiconductor switch part 24a of the voltage type inverters 24L and 24R. As shown in the top row, the motor virtual neutral point potential Vmn is the maximum voltage value Vp in the section A, the voltage value (2Vp + Vn) / 3 in the following section B, and the voltage value (Vp + 2Vn) / in the following section C. 3. In the following section D, it gradually decreases to the lowest potential Vn. Thereafter, the potential increases with the interval C, the interval B, and the interval A, and is repeated as the interval B, the interval C, and the interval D again.

図8では、位置(丸1)で計測した中性点電流を、区間Aで切り出した中性点電流の振動減衰波形について、その特性量である平均値、減衰係数を算出したものを示しているが、これらは区間ごとに算出する。なお、特性量としては、周波数スペクトルを算出するようにしても良い。   In FIG. 8, the neutral point current measured at the position (circle 1) is obtained by calculating an average value and a damping coefficient as characteristic values of the vibration attenuation waveform of the neutral point current cut out in the section A. However, these are calculated for each section. Note that a frequency spectrum may be calculated as the characteristic amount.

このようにして区間ごとに算出して得た特性量は、それら区間ごとに左右後輪側の交流モータ3RL、3RR間で比較し、差異が大きいものは異常と判断する。なお、この比較判断は、実施例1の駆動周波数中性点電流の大きさの比較の場合と同じようにして行う。   The characteristic amounts obtained by calculating for each section in this way are compared between the AC motors 3RL and 3RR on the left and right rear wheels for each section, and those having large differences are determined to be abnormal. This comparison determination is performed in the same manner as in the comparison of the magnitude of the driving frequency neutral point current in the first embodiment.

図9に上記切り出しによる特性量算出を行うための構成を示す。同図において、切り出し信号生成部30には、時間tによって切り替わる矩形ON信号とOFF信号からなるインバータ・スイッチング・タイミング信号が入力され、それぞれのタイミングに合わせて区間A切り出し部31、区間B切り出し部39、区間C切り出し部40、区間D切り出し部(図示省略)にて左右それぞれの中性点電流から区間に対応した中性点信号を切り出す。   FIG. 9 shows a configuration for performing the characteristic amount calculation by the cutout. In the figure, the cut-out signal generation unit 30 receives an inverter switching timing signal composed of a rectangular ON signal and an OFF signal that are switched according to time t, and a section A cut-out section 31 and a section B cut-out section according to the respective timings. 39, the section C cutout section 40 and the section D cutout section (not shown) cut out neutral point signals corresponding to the sections from the left and right neutral point currents.

区間A切り出し部31で切り出された中性点信号は、平均値算出部32、絶対値算出部33、FET34へ送られてそれぞれその平均値、絶対値、周波数fにおけるパワー値Powerを表す周波数スペクトルを算出する。絶対値算出部33の出力はロー・パス・フィルタ35で高周波ノイズを除去した後、区間最大値算出部38と所定時間後値算出部36とに入力する。区間最大値算出部38では切り出した区間Aでの最大値を算出し、所定時間後値算出部36では最大値となる時点より後となる所定時間後における切り出した中性点電流値を算出する。減衰係数算出部37は、区間最大値算出部38からの最大値と所定値後値算出部36からの所定時間後の値とから減衰係数を算出する。   The neutral point signal cut out by the section A cutout unit 31 is sent to the average value calculation unit 32, the absolute value calculation unit 33, and the FET 34, and the frequency spectrum representing the power value Power at the average value, absolute value, and frequency f, respectively. Is calculated. The output of the absolute value calculator 33 is input to the interval maximum value calculator 38 and the post-predetermined value calculator 36 after the high-frequency noise is removed by the low pass filter 35. The section maximum value calculation unit 38 calculates the maximum value in the section A that has been cut out, and the value calculation unit 36 after the predetermined time calculates a cut-out neutral point current value after a predetermined time after the point when the maximum value is reached. . The attenuation coefficient calculation unit 37 calculates an attenuation coefficient from the maximum value from the section maximum value calculation unit 38 and the value after a predetermined time from the predetermined value subsequent value calculation unit 36.

なお、区間B切り出し部39、区間C切り出し部40、区間D切り出し部にあっても、区間A切り出し部31と同様に、平均値算出部32〜減衰係数算出部37を有してそれぞれの区間における平均値、減衰係数、周波数スペクトルを算出するが、図9ではこれらは省略してある。   In addition, even in the section B cutout section 39, the section C cutout section 40, and the section D cutout section, each section has an average value calculation section 32 to an attenuation coefficient calculation section 37 as in the section A cutout section 31. The average value, the attenuation coefficient, and the frequency spectrum at are calculated, but these are omitted in FIG.

このようにして得た特性量は、比較判断部64にて、交流モータ3RL,3RRの中性点電圧の印加電圧状態または中性点電圧の変動状態ごとに高周波中性点電流を比較し、左右の交流モータ3RL,3RR間でそれらの中性点電流の波形の差異が所定値以上大きいとき絶縁異常と判断する。波形の差異の比較では、中性点電流の平均値の差異を比較することで、これら平均値の差異が所定値以上大きいとき絶縁異常と判断する。また、波形の差異の比較では、左右の中性点電流の振動減衰係数の差異を比較することで、これら減衰係数の差異が所定値異常大きいとき絶縁異常と判定する。あるいは、波形の差異の比較では、中性点電流の振動の周波数スペクトルが異なるとき絶縁異常と判断する。   The characteristic quantity obtained in this way is compared with the high-frequency neutral point current for each applied voltage state of the neutral point voltage of AC motor 3RL, 3RR or the fluctuation state of neutral point voltage in comparison judgment unit 64, When the difference in the waveform of the neutral current between the left and right AC motors 3RL and 3RR is greater than a predetermined value, it is determined that the insulation is abnormal. In the comparison of the difference in waveform, the difference in average value of neutral point currents is compared, and when the difference in these average values is larger than a predetermined value, it is determined that the insulation is abnormal. Further, in the comparison of the waveform difference, the difference in vibration attenuation coefficient between the left and right neutral point currents is compared, and when the difference in these attenuation coefficients is large by a predetermined value, it is determined that the insulation is abnormal. Alternatively, in the comparison of waveform differences, an insulation abnormality is determined when the frequency spectrum of the neutral point current vibration is different.

したがって、実施例2の絶縁異常検出装置にあっても、実施例1と同様に、中性点電流の左右における差異に基づき、外部要因による中性点電流の変動分を除去して交流モータ3RL、3RRの巻き線3La、3Raの絶縁異常を検出することができるので、絶縁異常の誤検出を減らすことができる。   Therefore, even in the insulation abnormality detection device of the second embodiment, similarly to the first embodiment, based on the difference between the left and right of the neutral point current, the fluctuation amount of the neutral point current due to the external factor is removed, and the AC motor 3RL. Since the insulation abnormality of the 3RR windings 3La and 3Ra can be detected, erroneous detection of the insulation abnormality can be reduced.

また、中性点電流として高周波中性点電流を用いるようにしたので、交流モータへ3RL、3RRのトルク指令値が小さいときのように駆動周波数の電流成分が小さい場合にあっても、駆動周波数とは関係なく中性点電流を計測、比較することができ、インバータ24L、24Rがスイッチングしている限り常に絶縁の低下を検出できる。   In addition, since the high-frequency neutral point current is used as the neutral point current, even if the current component of the drive frequency is small, such as when the 3RL and 3RR torque command values are small, the drive frequency Neutral point current can be measured and compared regardless of whether or not the insulation 24L, 24R is always switched as long as the inverters 24L, 24R are switching.

また、交流モータ3RL、3RRの中性点の印加電圧の印加電圧状態ごとに中性点電流を比較するようにしたので、交流モータ3RL、3RRの巻き線3La、3Raの寄生コンデンサ3Lc、3Rcへの印加電圧ステップが同一である状態における中性点電流(充放電電流)の波形を比較することができ、印加電圧ステップの違いによる高周波中性点電流の違いで上記波形の差異を誤って検出することを防ぐことができる。   In addition, since the neutral point current is compared for each applied voltage state of the neutral point applied voltage of AC motors 3RL and 3RR, to parasitic capacitors 3Lc and 3Rc of windings 3La and 3Ra of AC motors 3RL and 3RR Compare the waveform of the neutral point current (charging / discharging current) when the applied voltage step is the same, and erroneously detect the difference in the waveform due to the difference in the high frequency neutral point current due to the difference in the applied voltage step Can be prevented.

また、交流モータ3RL、3RRの中性点電圧の印加電圧の状態ごとに充放電電流(中性点電流)を比較してそれらの平均値の差異により絶縁異常を検出するようにしたので、印加電圧ステップが同一状態の下で漏れ電流の大小を比較することができ、絶縁抵抗の劣化を高精度に比較することができる。   In addition, charge / discharge current (neutral point current) is compared for each state of the applied voltage of neutral point voltage of AC motors 3RL and 3RR, and insulation abnormality is detected by the difference in their average value. It is possible to compare the magnitude of the leakage current under the same voltage step, and to compare the deterioration of the insulation resistance with high accuracy.

また、交流モータ3RL、3RRの中性点電圧の印加電圧の状態ごとに中性点電流を比較してそれらの減衰係数の差異により絶縁異常を検出するようにしたので、印加電圧ステップが同一状態の下で寄生コンデンサ3Ld、3Rdの充放電電流(中性点電流)の大小を比較することができ、絶縁抵抗の劣化を高精度に比較することができる。   In addition, since the neutral point current is compared for each state of the applied voltage of the neutral point voltage of the AC motors 3RL and 3RR and the insulation abnormality is detected by the difference in their attenuation coefficients, the applied voltage step is the same state The magnitudes of the charge / discharge currents (neutral point currents) of the parasitic capacitors 3Ld and 3Rd can be compared with each other, and the deterioration of the insulation resistance can be compared with high accuracy.

また、交流モータ3RL、3RRの中性点電圧の印加電圧の状態ごとに充放電電流(中性点電流)を比較してその振動の周波数スペクトルの差異により絶縁異常を検出するようにしたので、印加電圧ステップが同一状態の下で寄生コンデンサ3Ld、3Rdの充放電電流(中性点電流)の共振周波数やその減衰を比較することができ、絶縁抵抗の劣化を高精度に比較することができる。   In addition, since the charge / discharge current (neutral point current) is compared for each state of the applied voltage of the neutral point voltage of the AC motors 3RL and 3RR, the insulation abnormality is detected by the difference in the frequency spectrum of the vibration. Under the same applied voltage step, it is possible to compare the resonance frequency and attenuation of the charge / discharge current (neutral point current) of the parasitic capacitors 3Ld and 3Rd, and to compare the deterioration of insulation resistance with high accuracy. .

次に、本発明に係る実施例3の絶縁異常検出装置につき、添付の図面を参照しながら説明する。なお、本実施例では、実施例2でモータの中性点電圧印加状態ごとに分けた4通りにつき処理するのに代えて、交流電流の各相の電圧の組み合わせにより中性点電流の処理を行う。なお、実施例3では、実施例1、実施例2と同じ部分については同じ番号を付して説明する。   Next, an insulation abnormality detection apparatus according to Embodiment 3 of the present invention will be described with reference to the accompanying drawings. In this embodiment, the neutral point current is processed by a combination of voltages of each phase of the alternating current instead of the four processes divided for each neutral point voltage application state of the motor in the second embodiment. Do. In the third embodiment, the same parts as those in the first and second embodiments will be described with the same numbers.

三相交流モータの場合、各相の電圧の組み合わせは前述したように2の3乗で以下の8通りある。すなわち、NNN、NNP、NPN、NPP、PNN、PNP、PPN、PPPである。ここで、N(マイナス側の電圧Vnを表す)、P(プラス側の電圧Vpを表す)を組み合わせた上記3つの文字にあっては、いずれも最初の文字、真ん中の文字、最後の文字が、それぞれ交流モータ3RL、3RRのU相、V相、W相における電圧でVnかVpであることを表すこととする。   In the case of a three-phase AC motor, there are the following eight combinations of the voltage of each phase as the cube of 2 as described above. That is, NNN, NNP, NPN, NPP, PNN, PNP, PPN, PPP. Here, in the above three characters combined with N (representing negative voltage Vn) and P (representing positive voltage Vp), the first character, the middle character, and the last character are all The voltages in the U-phase, V-phase, and W-phase of AC motors 3RL and 3RR are represented as Vn or Vp, respectively.

上記8通りの状態は、交流モータ3RL、3RRにおけるすべてのUVWの電圧指令の大小によりしばらく現れないこともある。図10では、印加電圧の大きさがU相>V相>W相の場合を示しており、上記8通りのうちPNN、NNN、PPN、PPPの4通りが現れている。一方、図11では、印加電圧の大きさがU相>W相>V相の場合を示しており、さらにPNN、PNPといった3通りがさらに現れている。これらの出現状況を表にまとめると、図12のようになる。図12において○に相当する箇所が出現する所である。   The above eight states may not appear for a while due to the magnitude of all UVW voltage commands in AC motors 3RL and 3RR. FIG. 10 shows the case where the magnitude of the applied voltage is U phase> V phase> W phase, and among the above eight patterns, four patterns of PNN, NNN, PPN, and PPP appear. On the other hand, FIG. 11 shows a case where the magnitude of the applied voltage is U phase> W phase> V phase, and further three types of PNN and PNP appear. These appearance situations are summarized in a table as shown in FIG. In FIG. 12, a place corresponding to ◯ appears.

通常の三相交流にあっては、U相、V相、W相の大小関係の組み合わせは、電気角と各相電圧の関係を描いた図13に示すように、すべてのケースが出現するので、図12に示した8通りすべての電圧状態を検出できることになる。したがって、たとえば、PNN、NPN、NNPを区別してPNNの特性量に異常があれば、U相のコイルに絶縁異常が生じていると言ったように、いずれの絶縁が巻きコイル3La、3Raが劣化しているのかを判別できる。すなわち、判別できるようになる。   In normal three-phase alternating current, all combinations of U-phase, V-phase, and W-phase magnitude combinations appear as shown in FIG. 13 depicting the relationship between the electrical angle and each phase voltage. All eight voltage states shown in FIG. 12 can be detected. Therefore, for example, if PNN, NPN, and NNP are distinguished and there is an abnormality in the characteristic amount of PNN, it is said that an insulation abnormality has occurred in the U-phase coil. You can determine whether you are doing. That is, it becomes possible to discriminate.

したがって、実施例3の絶縁異常検出装置では、実施例2と同様な効果を得ることが可能であるほか、実施例1、実施例2にはない以下の効果を得ることができる。   Therefore, in the insulation abnormality detection device of the third embodiment, the same effects as those of the second embodiment can be obtained, and the following effects not found in the first and second embodiments can be obtained.

図8に示したように中性点電圧印加状態ごとに分けた4通りの区間分別して差異をみる実施例2に比較して、実施例3では、図10で示したように交流モータ3RL、3RRに印加する中性点電圧の変動状態ごとに充放電電流(中性点電流)を比較して左右における中性点電流の波形を比較してそれらの差異に基づき絶縁異常を判定するので、分別する区間の種類が多く処理が煩雑となるものの、どの相の巻き線に絶縁異常があるのか、といった判別が可能となる。   As shown in FIG. 8, compared with the second embodiment in which the difference is obtained by sorting into four sections divided for each neutral point voltage application state, in the third embodiment, the AC motor 3RL, as shown in FIG. Since the charge / discharge current (neutral point current) is compared for each fluctuation state of the neutral point voltage applied to the 3RR, the waveforms of the neutral point currents on the left and right are compared, and the insulation abnormality is determined based on the difference between them. Although there are many types of sections to be sorted and the processing becomes complicated, it is possible to determine which phase winding has an insulation abnormality.

以上の実施例から分かるように、本発明にあっては、外的要因による日々の中性点の変動分をキャンセルするために、複数の交流モータ間でそれらの特性値を相対比較することで、交流モータの絶縁異常を検出するようにしている。このことを、以下、図14を用いてさらに詳しく説明する。   As can be seen from the above embodiments, in the present invention, in order to cancel the fluctuation of the neutral point of the day due to external factors, the characteristic values are compared relatively between a plurality of AC motors. The insulation abnormality of the AC motor is detected. This will be described below in more detail with reference to FIG.

交流モータの巻き線にかかる平均電圧あるいは仮想中性点電圧電位は、図8で示したようにインバータの半導体スイッチ部でのスイッチングに同期してステップ状に変化する。この結果、モータ巻き線とモータのステータ鉄心あるいはモータ・ケースとの間の寄生キャパシタンスや絶縁抵抗には微弱な電流が流れる。このうち、上記ステップ状の電圧変化に連動して寄生コンデンサが充電される。このとき、直列になっているインバータ側の寄生コンデンサとモータ側の寄生コンデンサとで静電分圧されるが、モータ側の寄生コンデンサは巻き線の対地絶縁をするための絶縁被覆などであるから、インバータ側の寄生コンデンサに比べて容量が大きく、この結果、大部分の電圧はモータ側で発生すると考えて良い。   The average voltage or virtual neutral point voltage potential applied to the winding of the AC motor changes stepwise in synchronization with the switching at the semiconductor switch portion of the inverter as shown in FIG. As a result, a weak current flows through the parasitic capacitance and insulation resistance between the motor winding and the motor stator core or the motor case. Among these, the parasitic capacitor is charged in conjunction with the step-like voltage change. At this time, the inverter-side parasitic capacitor and the motor-side parasitic capacitor in series are electrostatically divided by voltage, but the motor-side parasitic capacitor is an insulation coating for insulating the windings from the ground. The capacitance is larger than that of the parasitic capacitor on the inverter side, and as a result, it can be considered that most of the voltage is generated on the motor side.

このモータ側のコンデンサに直列な主回路の抵抗分は小さいので、コンデンサの電圧または充放電電流は小さいCと小さいRで決まる各周波数ω=√(CR)で振動する波形となる。一方、このコンデンサには並列に絶縁抵抗が存在するので、この振動波形は徐々に放電され、図14に示すような波形になる。   Since the resistance of the main circuit in series with the capacitor on the motor side is small, the voltage or charge / discharge current of the capacitor has a waveform oscillating at each frequency ω = √ (CR) determined by small C and small R. On the other hand, since this capacitor has an insulation resistance in parallel, the vibration waveform is gradually discharged to a waveform as shown in FIG.

もし絶縁抵抗が低下していると、電流に定常漏れ電流分が現れる。これは実施例2、3のように区間平均をとることで抽出することができる。一方、絶縁物のやせ(機械的な収縮)が発生していると、寄生コンデンサの容量が大きくなるため、共振周波数が変化する。この共振周波数は周波数スペクトルで抽出することができる。また、定常漏れ電流分が発生しないような絶縁抵抗変化であっても、振動波形の減衰速度が変動する。これは減衰係数を用いて抽出することができる。   If the insulation resistance is reduced, a steady leakage current appears in the current. This can be extracted by taking a section average as in the second and third embodiments. On the other hand, when the insulator is thin (mechanical contraction), the capacitance of the parasitic capacitor increases, and the resonance frequency changes. This resonance frequency can be extracted from the frequency spectrum. Even if the insulation resistance changes such that no steady leakage current is generated, the damping speed of the vibration waveform varies. This can be extracted using the attenuation coefficient.

理論的には、これらの変化は一つのモータを長時間連続してその傾向を監視することで検出できるはずであるが、実際には絶縁物の温度や湿度などの変化による日々の変動分の方が絶縁物の変動分よりはるかに大きいため、実際には検出は容易ではない。しかしながら、本発明では、上述のように、複数のモータ間での特性値を相対比較することで絶縁異常の検出を行うようにしているので、外部要因による上記日々の変動分をキャンセルでき、誤検出を減らすことができるわけである。   Theoretically, these changes should be detected by monitoring the trend of a single motor continuously for a long time, but in reality, the daily fluctuation due to changes in the temperature, humidity, etc. of the insulators. In practice, detection is not easy because it is much larger than the variation of the insulator. However, in the present invention, as described above, since the insulation abnormality is detected by relatively comparing the characteristic values among a plurality of motors, the daily fluctuation due to the external factor can be canceled, and an error is detected. Detection can be reduced.

以上のように、本発明の絶縁異常検出装置を上記各実施例に基づき、説明してきたが、本発明はこれらの実施例に限られることなく、本発明の要旨を逸脱しないかぎり、設計変更や変形例は本発明に含まれる。     As described above, the insulation abnormality detection device of the present invention has been described based on the above embodiments. However, the present invention is not limited to these embodiments, and design changes and Variations are included in the present invention.

たとえば、上記実施例にあっては、交流モータは左右の後輪のみに設けたが、左右の前輪のみ、あるいは左右前後の四輪に設けてもよく、これらの場合でも実施例同様の絶縁異常検出装置を適用して、実施例1〜実施例3と同様の効果を得ることができる。   For example, in the above embodiment, the AC motor is provided only on the left and right rear wheels, but it may be provided only on the left and right front wheels or on the four wheels on the left and right sides. By applying the detection device, the same effects as those of the first to third embodiments can be obtained.

本発明の絶縁異常検出装置は、複数の交流モータを搭載した車両に用いることが可能である。   The insulation abnormality detection device of the present invention can be used for a vehicle equipped with a plurality of AC motors.

1 車体
2FL,2fR,2RL,2RR 車輪
3RL、3RR 交流モータ
3La,3Ra 巻き線
3Lb,3Rb モータ・ケース
3Lc、3Rc 寄生抵抗
3Ld,3Rd 寄生コンデンサ
6 制御ユニット
12 電源ユニット
15L,15R,16L,16R,17L,17R 中性点電流センサ
23L,23R 直流コンタクタ
24L、24R 電圧型インバータ
24a 半導体スイッチ部
25L,25R 交流コンタクタ
30 切り出し信号生成部
31、39,40 区間切り出し部
32 平均値算出部
33 絶対値算出部
34 FET
35 ロー・パス・フィルタ
36 所定時間後値算出部
37 減衰係数算出部
38 区間最大値算出部
61L、61R 周波数弁別部
62L,62R 整流部
63L,63RF 平滑部
64 比較判断部
1 body
2FL, 2fR, 2RL, 2RR wheels
3RL, 3RR AC motor
3La, 3Ra winding
3Lb, 3Rb motor case
3Lc, 3Rc parasitic resistance
3Ld, 3Rd parasitic capacitor
6 Control unit
12 Power supply unit
15L, 15R, 16L, 16R, 17L, 17R Neutral point current sensor
23L, 23R DC contactor
24L, 24R voltage type inverter
24a Semiconductor switch part
25L, 25R AC contactor
30 Cutout signal generator
31, 39, 40 section cutout
32 Average value calculator
33 Absolute value calculator
34 FET
35 Low pass filter
36 After-hours calculation unit
37 Damping coefficient calculator
38 Section maximum value calculator
61L, 61R frequency discriminator
62L, 62R Rectifier
63L, 63RF Smoothing section
64 Comparison judgment section

Claims (10)

インバータにより駆動されて駆動力の出力または発電を行う複数の交流モータと、
該交流モータの中性点を流れる中性点電流の状態をそれぞれ検出する中性点電流検出手段と、
前記中性点電流検出手段により前記交流モータごとに検出した前記中性点電流の状態を比較する比較手段と、
該比較手段による比較結果に基づいて前記交流モータの巻き線の絶縁異常判定を行う異常判定手段と、
を備えたことを特徴とする絶縁異常検出装置。
A plurality of AC motors driven by an inverter to generate driving force or generate power;
Neutral point current detecting means for detecting the state of neutral point current flowing through the neutral point of the AC motor;
Comparison means for comparing the state of the neutral point current detected for each of the AC motors by the neutral point current detection means;
An abnormality determination means for performing an insulation abnormality determination of the winding of the AC motor based on a comparison result by the comparison means;
An insulation abnormality detection device comprising:
請求項1に記載の絶縁異常検出装置において、
前記中性点電流検出手段は前記中性点電流の波形を検出し、前記比較手段は前記波形を比較し、前記異常判定手段は前記波形の差異の絶対値が所定値より大きいとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 1,
The neutral point current detection means detects the waveform of the neutral point current, the comparison means compares the waveforms, and the abnormality determination means determines that the insulation abnormality is present when the absolute value of the difference between the waveforms is greater than a predetermined value. An insulation abnormality detection device characterized by determining.
請求項1または請求項2に記載の絶縁異常検出装置において、
前記中性点電流が駆動周波数中性点電流であることを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 1 or 2,
An insulation abnormality detection device, wherein the neutral point current is a drive frequency neutral point current.
請求項3に記載の絶縁異常検出装置において、
前記駆動周波数中性点電流の抵抗成分の差異の絶対値が所定値以上大きいとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 3,
An insulation abnormality detection device, wherein an insulation abnormality is determined when an absolute value of a difference between resistance components of the driving frequency neutral point current is larger than a predetermined value.
請求項3に記載の絶縁異常検出装置において、
前記駆動周波数中性点電流の抵抗成分の差異の絶対値が所定値以上の増加傾向にあるとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 3,
An insulation abnormality detection device, wherein an insulation abnormality is determined when an absolute value of a difference between resistance components of the driving frequency neutral point current tends to increase beyond a predetermined value.
請求項1または請求項2に記載の絶縁異常検出装置において、
前記中性点電流が高周波中性点電流であることを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 1 or 2,
An insulation abnormality detection device, wherein the neutral point current is a high-frequency neutral point current.
請求項6に記載の絶縁異常検出装置において、
前記複数の交流モータの中性点電圧の印加電圧状態または前記中性点電圧の変動状態ごとに前記中性点電流を比較し、前記複数の交流モータ間で前記中性点電流の波形の差異が所定値以上大きいとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 6,
The neutral point current is compared for each applied voltage state of the neutral point voltage of the plurality of AC motors or the fluctuation state of the neutral point voltage, and the waveform difference of the neutral point current among the plurality of AC motors An insulation abnormality detection device that determines an insulation abnormality when is greater than a predetermined value.
請求項7に記載の絶縁異常検出装置において、
前記複数の交流モータ間で前記中性点電流の平均値の差異が所定値以上大きいとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 7,
An insulation abnormality detection device, wherein an insulation abnormality is determined when a difference in an average value of the neutral point currents between the plurality of AC motors is greater than a predetermined value.
請求項7に記載の絶縁異常検出装置において、
前記複数の交流モータ間で前記中性点電流の振動減衰の差異が所定値以上大きいとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 7,
An insulation abnormality detection device, wherein an insulation abnormality is determined when a difference in vibration attenuation of the neutral point current among the plurality of AC motors is greater than a predetermined value.
請求項7に記載の絶縁異常検出装置において、
前記複数の交流モータ間で前記中性点電流の振動の周波数スペクトルが異なるとき絶縁異常と判定することを特徴とする絶縁異常検出装置。
In the insulation abnormality detection device according to claim 7,
An insulation abnormality detection apparatus, wherein an insulation abnormality is determined when a frequency spectrum of the neutral point current vibration differs between the plurality of AC motors.
JP2009119471A 2009-05-18 2009-05-18 Insulation abnormality detector Active JP5453917B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009119471A JP5453917B2 (en) 2009-05-18 2009-05-18 Insulation abnormality detector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009119471A JP5453917B2 (en) 2009-05-18 2009-05-18 Insulation abnormality detector

Publications (2)

Publication Number Publication Date
JP2010268645A true JP2010268645A (en) 2010-11-25
JP5453917B2 JP5453917B2 (en) 2014-03-26

Family

ID=43365114

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009119471A Active JP5453917B2 (en) 2009-05-18 2009-05-18 Insulation abnormality detector

Country Status (1)

Country Link
JP (1) JP5453917B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016750A1 (en) 2011-08-01 2013-02-07 Technische Universitat Wien Method and device for detecting a deterioration in the state of an insulation in an operating electric machine
CN103107508A (en) * 2011-11-14 2013-05-15 中国科学院沈阳自动化研究所 Insulation monitoring and protecting control device and method for multichannel underwater motor power supply loop
EP3855195A1 (en) * 2020-01-16 2021-07-28 MAN Truck & Bus SE Method for functional electrical testing of a reluctance electric machine of a motor vehicle

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168166A (en) * 1994-10-11 1996-06-25 Toshiba Corp Ground fault detector and detection method
JP2003255012A (en) * 2001-12-26 2003-09-10 Toyota Motor Corp Load driver, method for decoding impedance and computer-readable recording medium recording program for making computer execute impedance decision
JP2004220859A (en) * 2003-01-10 2004-08-05 Renesas Technology Corp Leakage detecting device
JP2006006043A (en) * 2004-06-18 2006-01-05 Kokusan Denki Co Ltd Electric leakage sensor
JP2006101632A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Power output device and vehicle equipped with the same
JP2007209158A (en) * 2006-02-03 2007-08-16 Toyota Motor Corp Power supply unit

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08168166A (en) * 1994-10-11 1996-06-25 Toshiba Corp Ground fault detector and detection method
JP2003255012A (en) * 2001-12-26 2003-09-10 Toyota Motor Corp Load driver, method for decoding impedance and computer-readable recording medium recording program for making computer execute impedance decision
JP2004220859A (en) * 2003-01-10 2004-08-05 Renesas Technology Corp Leakage detecting device
JP2006006043A (en) * 2004-06-18 2006-01-05 Kokusan Denki Co Ltd Electric leakage sensor
JP2006101632A (en) * 2004-09-29 2006-04-13 Toyota Motor Corp Power output device and vehicle equipped with the same
JP2007209158A (en) * 2006-02-03 2007-08-16 Toyota Motor Corp Power supply unit

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013016750A1 (en) 2011-08-01 2013-02-07 Technische Universitat Wien Method and device for detecting a deterioration in the state of an insulation in an operating electric machine
AT511807A4 (en) * 2011-08-01 2013-03-15 Univ Wien Tech METHOD AND DEVICE FOR ONLINE RECOGNITION OF STATE-OF-CHARGE INSULATION IN AN ELECTRICAL MACHINE
AT511807B1 (en) * 2011-08-01 2013-03-15 Univ Wien Tech METHOD AND DEVICE FOR ONLINE RECOGNITION OF STATE-OF-CHARGE INSULATION IN AN ELECTRICAL MACHINE
US9529032B2 (en) 2011-08-01 2016-12-27 Technische Universitat Wien Method and device for detecting a deterioration in the state of an insulation in an operating electric machine
CN103107508A (en) * 2011-11-14 2013-05-15 中国科学院沈阳自动化研究所 Insulation monitoring and protecting control device and method for multichannel underwater motor power supply loop
EP3855195A1 (en) * 2020-01-16 2021-07-28 MAN Truck & Bus SE Method for functional electrical testing of a reluctance electric machine of a motor vehicle

Also Published As

Publication number Publication date
JP5453917B2 (en) 2014-03-26

Similar Documents

Publication Publication Date Title
US9647599B2 (en) Electronic apparatus
CN104364989B (en) System and method for high resistance grounding fault detect in a power distribution system and protection
CN100550599C (en) Control apparatus for electric railcar
EP2482411B1 (en) Drive Failure Protection
CN101381046B (en) Elevator
CN107086843A (en) Motor driven systems and transducer air conditioning
WO2008016179A1 (en) Insulation resistance determining system, insulation resistance determining apparatus and insulation resistance determining method
US20190288547A1 (en) Ac charging of an intelligent battery
US8149551B2 (en) Systems and methods involving motor drive ground fault interrupts
JP5453917B2 (en) Insulation abnormality detector
EP1557935A1 (en) Inverter controlling apparatus for driving a motor and an air conditioner using same
WO2014019834A1 (en) Twelve-pulse autotransformer rectifier units
CN107276446A (en) SPM and variable frequency drives
US20140145662A1 (en) Motor driving apparatus and method
CN107147083A (en) SPM and variable frequency drives
CN112219348A (en) Converter and motor control device
JP2005304138A (en) Motor driving unit
JP4098069B2 (en) Insulation failure detection circuit for motor circuit system
AU2019245978A1 (en) Power source quality management system and air conditioning apparatus
JP2007074796A (en) Inverter apparatus
US9523362B2 (en) Vehicular electric compressor
JP4027727B2 (en) In-vehicle ground insulation circuit coupling capacitor type leakage detector
JP2016101040A (en) Ground fault detection circuit for vehicle having high voltage power source system
JP7100554B2 (en) Leakage determination device
JP2010085231A (en) Voltage detecting device, power converting apparatus, and air conditioning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130723

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131223

R150 Certificate of patent or registration of utility model

Ref document number: 5453917

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150