JP2016101040A - Ground fault detection circuit for vehicle having high voltage power source system - Google Patents

Ground fault detection circuit for vehicle having high voltage power source system Download PDF

Info

Publication number
JP2016101040A
JP2016101040A JP2014238078A JP2014238078A JP2016101040A JP 2016101040 A JP2016101040 A JP 2016101040A JP 2014238078 A JP2014238078 A JP 2014238078A JP 2014238078 A JP2014238078 A JP 2014238078A JP 2016101040 A JP2016101040 A JP 2016101040A
Authority
JP
Japan
Prior art keywords
ground fault
battery
voltage power
predetermined frequency
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014238078A
Other languages
Japanese (ja)
Other versions
JP6428197B2 (en
Inventor
隼 溝口
Hayato Mizoguchi
隼 溝口
前原 恒男
Tsuneo Maehara
恒男 前原
溝口 朝道
Asamichi Mizoguchi
朝道 溝口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2014238078A priority Critical patent/JP6428197B2/en
Publication of JP2016101040A publication Critical patent/JP2016101040A/en
Application granted granted Critical
Publication of JP6428197B2 publication Critical patent/JP6428197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a ground fault detection circuit for a vehicle having a high voltage power source system that is able to appropriately achieve detection frequency and detection accuracy of ground fault of a high voltage power source system.SOLUTION: A ground fault detection circuit 10 that detects ground fault of a high voltage power source system electrically insulated from a vehicle body comprises: a coupling capacitor Cs connected to the high voltage power source system and configured to insulate a DC component; a resistance element Rs connected to the coupling capacitor Cs in series; an oscillation circuit 12 connected to the resistance element Rs in series and configured to apply AC voltage of predetermined frequency to the resistance element Rs; detecting means 11, 13 that detect ground fault of the high voltage power source system on the basis of voltage at a connection point P between the coupling capacitor Cs and the resistance element Rs; and varying means 11 that changes the predetermined frequency fc of AC voltage output from the oscillation circuit 20 according to the state of connection between a battery 20 included in the high voltage power source system and other electric apparatus included in the high voltage power source system.SELECTED DRAWING: Figure 1

Description

本発明は、高電圧電源系を備えた車両の地絡検出回路に関する。   The present invention relates to a vehicle ground fault detection circuit including a high voltage power supply system.

近年、高電圧のバッテリが採用されたハイブリッド自動車や電気自動車等では、地絡に対する保護の重要性が認識されており、種々の地絡検出回路が提案されている。   In recent years, the importance of protection against ground faults has been recognized in hybrid vehicles, electric vehicles, and the like that employ high-voltage batteries, and various ground fault detection circuits have been proposed.

例えば、特許文献1に記載の地絡検出回路は、車体に高い電気抵抗(絶縁抵抗)を介して設置された直流電源回路に接続されたカップリングコンデンサに、出力インピーダンスを介して所定周波数の交流電圧を印加し、カップリングコンデンサと出力インピーダンスとの接続点における対地電圧を検出している。この対地電圧は、交流電圧を出力インピーダンスと絶縁抵抗で分圧した電圧である。上記検出回路では、この分圧の変動に基づいて、直流電源回路の地絡を検出している。   For example, the ground fault detection circuit described in Patent Document 1 is connected to a coupling capacitor connected to a DC power supply circuit installed through a high electrical resistance (insulation resistance) in a vehicle body, with an AC of a predetermined frequency via an output impedance. A voltage is applied to detect the ground voltage at the connection point between the coupling capacitor and the output impedance. This ground voltage is a voltage obtained by dividing an alternating voltage by an output impedance and an insulation resistance. In the detection circuit, a ground fault of the DC power supply circuit is detected based on the variation of the partial pressure.

特許3781289号公報Japanese Patent No. 378289

上記検出回路において、地絡の検出は、交流電圧の1波形ごとに行われる。よって、地絡を早期に検出するためには、交流電圧の周波数を高くし、漏電の検出頻度を高くすればよい。   In the detection circuit, the ground fault is detected for each waveform of the AC voltage. Therefore, in order to detect a ground fault at an early stage, the frequency of the AC voltage may be increased and the frequency of detection of leakage may be increased.

しかしながら、絶縁抵抗には並列に浮遊容量が存在する。交流電圧の周波数を高くすると、浮遊容量のインピーダンスが小さくなるため浮遊容量の影響が大きくなり、絶縁抵抗に対応した分圧の検出精度が低下するおそれがある。ひいては、地絡の検出精度が低下するおそれがある。   However, there is a stray capacitance in parallel with the insulation resistance. When the frequency of the alternating voltage is increased, the impedance of the stray capacitance is reduced, so that the effect of the stray capacitance is increased, and the detection accuracy of the partial pressure corresponding to the insulation resistance may be lowered. As a result, the detection accuracy of the ground fault may be lowered.

本発明は、上記実情に鑑み、高電圧電源系の地絡の検出頻度と検出精度とを適切に両立することが可能な高電圧電源系を備えた車両の地絡検出回路を提供することを主たる目的とする。   In view of the above circumstances, the present invention provides a ground fault detection circuit for a vehicle including a high voltage power supply system capable of appropriately balancing the detection frequency and detection accuracy of a ground fault in a high voltage power supply system. Main purpose.

本発明は、上記課題を解決するため、車体と電気的に絶縁された高電圧電源系の地絡を検出する地絡検出回路であって、前記高電圧電源系に接続され、直流成分を絶縁する絶縁手段と、前記絶縁手段に直列接続された抵抗手段と、前記抵抗手段に直列接続され、前記抵抗手段に所定周波数の交流電圧を印加する発振手段と、前記絶縁手段と前記抵抗手段との接続点での電圧に基づいて、前記地絡を検出する検出手段と、前記高電圧電源系に含まれるバッテリと前記高電圧電源系に含まれるその他の電気機器との接続状態に応じて、前記発振手段により出力される前記交流電圧の所定周波数を変化させる可変手段と、を備える。   In order to solve the above problems, the present invention is a ground fault detection circuit for detecting a ground fault of a high voltage power supply system that is electrically insulated from a vehicle body, and is connected to the high voltage power supply system to insulate a DC component. An insulating means connected in series to the insulating means, an oscillating means connected in series to the resistive means for applying an AC voltage of a predetermined frequency to the resistive means, and the insulating means and the resistive means Based on the voltage at the connection point, the detection means for detecting the ground fault, the battery included in the high-voltage power supply system and the other electrical equipment included in the high-voltage power supply system, according to the connection state, Variable means for changing a predetermined frequency of the AC voltage output by the oscillating means.

本発明によれば、高電圧電源系に接続された絶縁手段と絶縁手段に直列接続された抵抗手段との接続点での電圧に基づいて、高電圧電源系の地絡が検出される。上記接続点での電圧は、抵抗手段に印加される交流電圧を、高電圧電源系の絶縁抵抗と抵抗手段とで分圧した電圧となる。高電圧電源系の絶縁抵抗に並列に浮遊容量が存在する場合、交流電圧の周波数を高くするほど、浮遊容量の影響が大きくなって、絶縁抵抗に対応する電圧降下分が小さくなり、高電圧電源系の地絡の検出精度は低下する。一方、交流電圧の周波数を高くするほど、地絡の検出機会は増加する。   According to the present invention, the ground fault of the high voltage power supply system is detected based on the voltage at the connection point between the insulating means connected to the high voltage power supply system and the resistance means connected in series to the insulation means. The voltage at the connection point is a voltage obtained by dividing the AC voltage applied to the resistance means by the insulation resistance of the high voltage power supply system and the resistance means. If stray capacitance exists in parallel with the insulation resistance of the high-voltage power supply system, the higher the AC voltage frequency, the greater the effect of stray capacitance, and the smaller the voltage drop corresponding to the insulation resistance. The detection accuracy of the system ground fault decreases. On the other hand, the higher the frequency of the AC voltage, the greater the number of ground fault detection opportunities.

ここで、高電圧電源系の地絡の発生頻度は、高電圧電源系に含まれるバッテリとその他の電気機器との接続状態に応じて異なる。地絡の発生頻度が高い場合には、地絡の発生頻度が低い場合よりも、地絡の検出頻度を高くすることが望まれる。よって、高電圧電源系に含まれるバッテリとその他の電気機器との接続状態に応じて、交流電圧の所定周波数を変化させることにより、高電圧電源系の地絡の検出頻度と検出精度とを適切に両立することができる。   Here, the frequency of occurrence of a ground fault in the high-voltage power supply system varies depending on the connection state between the battery included in the high-voltage power supply system and other electrical devices. When the occurrence frequency of ground faults is high, it is desirable to increase the detection frequency of ground faults than when the occurrence frequency of ground faults is low. Therefore, by changing the predetermined frequency of the AC voltage according to the connection state between the battery included in the high-voltage power supply system and other electrical devices, the detection frequency and detection accuracy of the ground fault of the high-voltage power supply system are appropriately set. Can be compatible.

本実施形態に係る地絡検出回路の概略構成を示す図。The figure which shows schematic structure of the ground fault detection circuit which concerns on this embodiment. 絶縁抵抗と接続点Pの電圧との特性を示す図。The figure which shows the characteristic of an insulation resistance and the voltage of the connection point P. FIG. 走行中の地絡検出回路の概略構成を示す図。The figure which shows schematic structure of the ground fault detection circuit in driving | running | working. 停車中の地絡検出回路の概略構成を示す図。The figure which shows schematic structure of the ground fault detection circuit during a stop. 充電中の地絡検出回路の概略構成を示す図。The figure which shows schematic structure of the ground fault detection circuit during charge. バッテリと電気機器との接続パターンに対するノイズ量、浮遊容量、漏電の発生度、及び交流電圧の周波数を示す図。The figure which shows the noise amount with respect to the connection pattern of a battery and an electric equipment, a stray capacity, the generation degree of an electrical leakage, and the frequency of alternating voltage. 他の実施形態に係る高圧電源系の概略構成を示す図。The figure which shows schematic structure of the high voltage power supply system which concerns on other embodiment.

以下、高電圧電源系を備えた車両の地絡検出回路を具現化した実施形態について説明する。本実施形態に係る地絡検出回路10を適用する車両は、高電圧電源系を備え走行用モータを駆動源としたハイブリッド自動車、電気自動車、及び燃料電池自動車等を想定している。   Hereinafter, an embodiment in which a ground fault detection circuit for a vehicle including a high voltage power supply system is embodied will be described. Vehicles to which the ground fault detection circuit 10 according to the present embodiment is applied are assumed to be hybrid vehicles, electric vehicles, fuel cell vehicles, and the like that have a high-voltage power supply system and use a traveling motor as a drive source.

まず、本実施形態に係る車両の高電圧電源系の構成について、図1を参照しつつ説明する。本車両の高圧電源系は、バッテリ20及び複数の電気機器を含み、車体と電気的に絶縁されている。複数の電気機器は、コンバータ31、インバータ32、MG33及び電力変換器34を含む。   First, the configuration of a high-voltage power supply system for a vehicle according to the present embodiment will be described with reference to FIG. The high-voltage power supply system of the vehicle includes a battery 20 and a plurality of electric devices, and is electrically insulated from the vehicle body. The plurality of electrical devices includes a converter 31, an inverter 32, an MG 33, and a power converter 34.

バッテリ20は、複数の電池セルが直列接続されて構成された高圧(例えば数百V)の組電池であり、例えばリチウムイオン二次電池である。バッテリ20は、スイッチSW1及びSW2を介してコンバータ31に接続される。コンバータ31にはインバータ32が接続されており、インバータ32は、MG33が接続されている。   The battery 20 is a high-voltage (for example, several hundreds V) assembled battery configured by connecting a plurality of battery cells in series, and is, for example, a lithium ion secondary battery. Battery 20 is connected to converter 31 via switches SW1 and SW2. An inverter 32 is connected to the converter 31, and an MG 33 is connected to the inverter 32.

MG33(走行用モータ)は、車両に走行動力を付与する電動機として作動するとともに、車両の減速時に回生発電を行う発電機として作動するモータジェネレータである。インバータ32は、MG33を発電機又は電動機として駆動する。コンバータ31は、MG33が電動機として作動する場合、バッテリ20から供給された電力を昇圧してインバータ32に供給する。また、コンバータ31は、MG33が発電機として作動する場合、インバータ32から供給された電力を昇圧して、バッテリ20を充電する。   The MG 33 (traveling motor) is a motor generator that operates as an electric motor that applies traveling power to the vehicle and operates as a generator that performs regenerative power generation when the vehicle is decelerated. The inverter 32 drives the MG 33 as a generator or an electric motor. Converter 31 boosts the power supplied from battery 20 and supplies it to inverter 32 when MG 33 operates as an electric motor. Further, converter 31 boosts the power supplied from inverter 32 to charge battery 20 when MG 33 operates as a generator.

さらに、バッテリ20は、スイッチSW3及びSW4を介して電力変換器34に接続される。電力変換器34は、MG33の駆動とは異なる用途で用いられる電気機器である。本実施形態において、電力変換器34は、外部電源のプラグの差し込み口を有し、車両の外部から供給された電力の電圧を変換してバッテリ20に供給する充電器とする。なお、電力変換器34は、外部負荷のプラグの差し込み口を有し、バッテリ20の電力を電圧変換して外部負荷に供給する機器でもよい。   Further, the battery 20 is connected to the power converter 34 via the switches SW3 and SW4. The power converter 34 is an electrical device that is used for a different purpose from the driving of the MG 33. In the present embodiment, the power converter 34 is a charger that has a plug opening for an external power supply, converts the voltage of power supplied from the outside of the vehicle, and supplies the converted voltage to the battery 20. Note that the power converter 34 may be a device that has a plug insertion port for an external load, converts the power of the battery 20 to a voltage, and supplies the voltage to the external load.

高電圧電源系に含まれるバッテリ20、コンバータ31、インバータ32、MG33及び電力変換器34と車体との間には、対地絶縁抵抗41a〜e及び対地浮遊容量42a〜eがそれぞれ存在する。特に、電力変換器34はノイズ量が多いため、電力変換器34と車体との間には、ノイズ対策用コンデンサが接続されることが多い。ここでは便宜上、ノイズ対策用コンデンサも対地浮遊容量42eに含める。よって、対地浮遊容量42eは、対地浮遊容量42b〜dよりも大きい。また、対地浮遊容量42b〜dの中では、インバータ32の対地浮遊容量42cが大きく、コンバータ31及びMG33の対地浮遊容量42b,42dは小さい。以下、対地絶縁抵抗41a〜eの少なくとも1つを示す場合は対地絶縁抵抗41とし、対地浮遊容量42a〜eの少なくとも1つを示す場合は対地浮遊容量42とする。   Between the battery 20, the converter 31, the inverter 32, the MG 33 and the power converter 34 included in the high-voltage power supply system and the vehicle body, there are ground insulation resistances 41a to 41e and ground floating capacitors 42a to 42e, respectively. In particular, since the power converter 34 has a large amount of noise, a noise countermeasure capacitor is often connected between the power converter 34 and the vehicle body. Here, for convenience, a noise countermeasure capacitor is also included in the ground stray capacitance 42e. Therefore, the ground stray capacitance 42e is larger than the ground stray capacitances 42b to 42d. Further, among the ground stray capacitances 42b to 42d, the ground stray capacitance 42c of the inverter 32 is large, and the ground stray capacitances 42b and 42d of the converter 31 and the MG 33 are small. Hereinafter, when at least one of the ground insulation resistances 41a to 41e is shown, the ground insulation resistance 41 is used, and when at least one of the ground stray capacitances 42a to 42e is shown, the ground stray capacitance 42 is used.

次に、本実施形態に係る地絡検出回路10の構成について、図1を参照して説明する。地絡検出回路10は、カップリングコンデンサCs、抵抗素子Rs、発振回路12、検出回路13、及びCPU11を備え、高電圧電源系における車体への地絡を検出する。   Next, the configuration of the ground fault detection circuit 10 according to the present embodiment will be described with reference to FIG. The ground fault detection circuit 10 includes a coupling capacitor Cs, a resistance element Rs, an oscillation circuit 12, a detection circuit 13, and a CPU 11, and detects a ground fault to the vehicle body in the high voltage power supply system.

カップリングコンデンサCs(絶縁手段)は、バッテリ20の負極端子側に接続されており、直流成分を絶縁する。抵抗素子Rs(抵抗手段)は、カップリングコンデンサCsに直列接続されているとともに、発振回路12に直列接続されている。   The coupling capacitor Cs (insulating means) is connected to the negative terminal side of the battery 20 and insulates a direct current component. The resistance element Rs (resistance means) is connected in series to the coupling capacitor Cs and is connected in series to the oscillation circuit 12.

発振回路12(発振手段)は、所定周波数のパルス電圧(交流電圧であればよい)を発生し、所定周波数のパルス電圧を抵抗素子Rsに印加する。所定周波数は、CPU11により設定される。   The oscillation circuit 12 (oscillation means) generates a pulse voltage with a predetermined frequency (which may be an AC voltage) and applies the pulse voltage with a predetermined frequency to the resistance element Rs. The predetermined frequency is set by the CPU 11.

検出回路13は、カップリングコンデンサCsと抵抗素子Rsとの接続点Pに接続されており、接続点Pにおける対地電圧を抽出して、CPU11へ出力する。詳しくは、検出回路13は、バンドパスフィルタ回路及び増幅回路を含む。バンドパスフィルタ回路は、接続点Pの対地電圧からバッテリ20の電圧変動に伴う変動成分等のノイズ成分を除去し、ノイズ成分を除去した接続点Pの対地電圧を増幅回路に入力する。増幅回路は、接続点Pの対地電圧のピーク値と基準電圧との差分を増幅してCPU11へ入力する。   The detection circuit 13 is connected to a connection point P between the coupling capacitor Cs and the resistance element Rs, extracts the ground voltage at the connection point P, and outputs it to the CPU 11. Specifically, the detection circuit 13 includes a band pass filter circuit and an amplifier circuit. The band-pass filter circuit removes noise components such as fluctuation components associated with voltage fluctuations of the battery 20 from the ground voltage at the connection point P, and inputs the ground voltage at the connection point P from which the noise component has been removed to the amplifier circuit. The amplifier circuit amplifies the difference between the peak value of the ground voltage at the connection point P and the reference voltage and inputs the amplified difference to the CPU 11.

接続点Pにおける対地電圧は、抵抗素子Rsに印加された交流電圧を、抵抗素子Rsと高電圧電源系の対地絶縁抵抗とで分圧した電圧となる。高電圧電源系の対地絶縁抵抗は、バッテリ20の対地絶縁抵抗41a、及びバッテリ20に接続されている電機機器の対地絶縁抵抗41を合成した値となる。また、高電圧電源系の対地浮遊容量は、バッテリ20の対地浮遊容量42a、及びバッテリ20に接続されている電機機器の対地浮遊容量42を合成した値となる。   The ground voltage at the connection point P is a voltage obtained by dividing the AC voltage applied to the resistance element Rs by the resistance element Rs and the ground insulation resistance of the high-voltage power supply system. The ground insulation resistance of the high-voltage power supply system is a value obtained by synthesizing the ground insulation resistance 41 a of the battery 20 and the ground insulation resistance 41 of the electrical equipment connected to the battery 20. Also, the ground stray capacitance of the high voltage power supply system is a value obtained by combining the ground stray capacitance 42 a of the battery 20 and the ground stray capacitance 42 of the electrical equipment connected to the battery 20.

CPU11は、マイクロコンピュータであり、SW1〜4のオンオフを制御するとともに、交流電圧の所定周波数を設定する。また、CPU11は、検出回路13から入力された電圧に基づいて、高電圧電源系の地絡を検出する。詳しくは、CPU11は、接続点Pの対地電圧が基準電圧よりも低い場合に、地絡と判定する。なお、接続点Pにおける対地電圧と、予め用意されている対地電圧と絶縁抵抗とのマップから、絶縁抵抗を算出してもよい。   The CPU 11 is a microcomputer that controls on / off of the SW1 to SW4 and sets a predetermined frequency of the AC voltage. Further, the CPU 11 detects a ground fault of the high voltage power supply system based on the voltage input from the detection circuit 13. Specifically, the CPU 11 determines that there is a ground fault when the ground voltage at the connection point P is lower than the reference voltage. The insulation resistance may be calculated from the ground voltage at the connection point P and a map of the ground voltage and the insulation resistance prepared in advance.

ここで、交流電圧の所定周波数をfc、対地浮遊容量42の容量値をCとした場合、対地浮遊容量42のインピーダンスXは、X=1/(2π×fc×C)となる。すなわち、所定周波数fcが高くなるほどインピーダンスXは小さくなるとともに、容量値Cが大きくなるほどインピーダンスXは小さくなる。そして、インピーダンスXが小さくなるほど、対地絶縁抵抗41に対する対地浮遊容量42の影響が大きくなり、対地絶縁抵抗41に対応する電圧降下分が小さくなって、接続点Pの対地電圧は小さくなる。   Here, when the predetermined frequency of the AC voltage is fc and the capacitance value of the ground stray capacitance 42 is C, the impedance X of the ground stray capacitance 42 is X = 1 / (2π × fc × C). That is, the impedance X decreases as the predetermined frequency fc increases, and the impedance X decreases as the capacitance value C increases. As the impedance X decreases, the influence of the ground stray capacitance 42 on the ground insulation resistance 41 increases, the voltage drop corresponding to the ground insulation resistance 41 decreases, and the ground voltage at the connection point P decreases.

よって、図2に示すように、実際の対地絶縁抵抗41が同じ値でも、所定周波数fcが高くなるほど又は容量値Cが大きくなるほど、接続点Pにおける対地電圧の検出値は小さくなる。すなわち、所定周波数fcが高くなるほど、対地絶縁抵抗41は実際の値よりも小さく見える。   Therefore, as shown in FIG. 2, even if the actual ground insulation resistance 41 has the same value, the detected value of the ground voltage at the connection point P decreases as the predetermined frequency fc increases or the capacitance value C increases. That is, as the predetermined frequency fc increases, the ground insulation resistance 41 appears smaller than the actual value.

そのため、CPU11は、所定周波数fcが高いと、実際は地絡していない場合でも、地絡と判定しやすくなる。一方、CPU11は、発振回路12から出力される交流電圧の1波形ごとに地絡か否かを判定する。そのため、所定周波数fcが高いほど、地絡の検出機会は増加する。また、バッテリ20とその他の電気機器との接続状態によって、地絡の発生頻度は異なる。地絡の発生頻度が高い場合には、地絡の検出機会を増加させることが望ましい。   Therefore, when the predetermined frequency fc is high, the CPU 11 can easily determine that there is a ground fault even when the ground fault is not actually occurred. On the other hand, the CPU 11 determines whether or not there is a ground fault for each waveform of the AC voltage output from the oscillation circuit 12. For this reason, the higher the predetermined frequency fc, the greater the number of ground fault detection opportunities. Moreover, the occurrence frequency of a ground fault changes with the connection state of the battery 20 and another electric equipment. When the frequency of occurrence of ground faults is high, it is desirable to increase the number of ground fault detection opportunities.

そこで、CPU11は、バッテリ20と高圧電源系に含まれるその他の電気機器との接続状態に応じて、発振回路12から出力される交流電圧の所定周波数fcを変化させる。ただし、所定周波数fcを変化させることにより、アナログのバンドパスフィルタだけでは適切に信号成分を抽出できないおそれがある。そのため、CPU11は、所定通過帯域から外れた周波数成分を遮断するデジタルフィルタを構成し、交流電圧の所定周波数fcに応じて、デジタルフィルタの所定通過帯域を変化させる。本実施形態では、CPU11及び検出回路13が検出手段を構成し、CPU11が可変手段及びデジタルフィルタ手段を構成する。   Therefore, the CPU 11 changes the predetermined frequency fc of the AC voltage output from the oscillation circuit 12 in accordance with the connection state between the battery 20 and other electrical devices included in the high-voltage power supply system. However, by changing the predetermined frequency fc, there is a possibility that a signal component cannot be appropriately extracted only by an analog bandpass filter. Therefore, the CPU 11 configures a digital filter that cuts off frequency components outside the predetermined pass band, and changes the predetermined pass band of the digital filter according to the predetermined frequency fc of the AC voltage. In this embodiment, the CPU 11 and the detection circuit 13 constitute detection means, and the CPU 11 constitutes a variable means and digital filter means.

次に、高圧電源系内の接続状態に応じて交流電圧の所定周波数fcを変化させる態様について、図3〜6を参照して説明する。   Next, a mode in which the predetermined frequency fc of the AC voltage is changed according to the connection state in the high-voltage power supply system will be described with reference to FIGS.

接続状態としては、パターンA、パターンB、パターンCの3通りに分けられる。パターンAは、図3に示すように、車両の走行中のパターンで、スイッチSW1及びSW2をオンにし、スイッチSW3及びSW4をオフにした状態である。一点鎖線で囲まれた部分が、バッテリ20とバッテリ20に接続された電気機器を示す。パターンAでは、バッテリ20にコンバータ31及びインバータ32を介してMG33が接続されている。   There are three connection states: pattern A, pattern B, and pattern C. As shown in FIG. 3, the pattern A is a pattern in which the vehicle is running, and is a state in which the switches SW1 and SW2 are turned on and the switches SW3 and SW4 are turned off. A portion surrounded by an alternate long and short dash line indicates the battery 20 and an electric device connected to the battery 20. In the pattern A, the MG 33 is connected to the battery 20 via the converter 31 and the inverter 32.

パターンBは、図4に示すように、車両の停車中のパターンで、スイッチSW1〜SW4を全てオフにした状態である。パターンBでは、バッテリ20に他の電気機器が接続されていない。車両の停車中とは、車両が駐車場や交差点で停車しているときである。   Pattern B is a pattern in which the vehicle is stopped as shown in FIG. 4 and is a state in which all switches SW1 to SW4 are turned off. In the pattern B, no other electrical device is connected to the battery 20. The vehicle is stopped when the vehicle is stopped at a parking lot or an intersection.

パターンCは、図5に示すように、外部電源によるバッテリ20の充電中のパターンで、スイッチSW1及びSW2をオフにし、スイッチSW3及びSW4をオンにした状態である。パターンCでは、バッテリ20に電力変換器34が接続されている。なお、電力変換器34が充電器以外の電気機器の場合でも、パターンCは、バッテリ20に電力変換器34を接続し、電力変換器34を使用している状態である。   As shown in FIG. 5, the pattern C is a pattern in which the battery 20 is being charged by the external power source, and is a state in which the switches SW1 and SW2 are turned off and the switches SW3 and SW4 are turned on. In the pattern C, the power converter 34 is connected to the battery 20. Note that, even when the power converter 34 is an electric device other than the charger, the pattern C is a state in which the power converter 34 is connected to the battery 20 and the power converter 34 is used.

図6(a)に示すように、パターンCでは、バッテリ20に、外部プラグが接続される電力変換器34が接続されているため、3つのパターンの中でノイズ量は最も多くなる。一方、パターンBでは、バッテリ20に他の電気機器が接続されていないため、3つのパターンの中でノイズ量は最も少なくなる。   As shown in FIG. 6A, in the pattern C, since the power converter 34 to which the external plug is connected is connected to the battery 20, the noise amount is the largest among the three patterns. On the other hand, in pattern B, since no other electrical device is connected to battery 20, the amount of noise is the smallest among the three patterns.

また、図6(b)に示すように、パターンCでは、電力変換器34と車体との間にノイズ対策用コンデンサが設置されるため、3つのパターンの中で対地浮遊容量42は最も大きくなる。一方、パターンBでは、バッテリ20に他の電気機器が接続されていないため、3つのパターンの中で対地浮遊容量42は最も小さくなる。   Further, as shown in FIG. 6 (b), in pattern C, a noise countermeasure capacitor is installed between the power converter 34 and the vehicle body, and therefore the ground floating capacitance 42 is the largest among the three patterns. . On the other hand, in the pattern B, since no other electrical device is connected to the battery 20, the ground stray capacitance 42 is the smallest among the three patterns.

また、車両の振動が多く且つ大きい場合に、高圧電源系と車体とが地絡して漏電が発生しやすい。図6(c)に示すように、パターンAでは、車両が走行中のため車両の振動が多く、3つのパターンの中で漏電の発生頻度は最も高くなる。一方、パターンCでは、駐車場等に停車して充電しているため車両の振動が小さく且つ少なく、3つのパターンの中で漏電の発生頻度は最も低い。電力変換器34が充電器以外の電気機器の場合でも、駐車場等に停車して使用されるため、3つのパターンの中で漏電の発生頻度は最も低い。パターンBでは、交差点に停車する場合、図6(c)に示すように漏電の発生頻度は、パターンAよりも低くパターンCよりも高くなり、駐車場等に停車する場合、漏電の発生頻度はパターンCと同程度になる。   In addition, when the vehicle vibration is large and large, a ground fault occurs between the high-voltage power supply system and the vehicle body, and electric leakage is likely to occur. As shown in FIG. 6 (c), in the pattern A, the vehicle is running, so the vibration of the vehicle is large, and the occurrence frequency of electric leakage is the highest among the three patterns. On the other hand, in the pattern C, since the vehicle is stopped and charged in a parking lot or the like, the vibration of the vehicle is small and little, and the frequency of occurrence of electric leakage is the lowest among the three patterns. Even when the power converter 34 is an electric device other than the charger, it is used by stopping at a parking lot or the like, and therefore, the occurrence frequency of electric leakage is the lowest among the three patterns. In pattern B, when stopping at an intersection, as shown in FIG. 6C, the occurrence frequency of leakage is lower than pattern A and higher than pattern C. When stopping at a parking lot or the like, the occurrence frequency of leakage is Similar to pattern C.

パターンAでは、漏電の発生頻度が比較的高いため、所定周波数fcを比較的高くすることが望まれる。一方、パターンCでは、漏電の発生頻度が比較的低く、対地浮遊容量42が比較的大きい。そのため、パターンCでは、対地浮遊容量42の影響を低減するために所定周波数fcを比較的低くすることが望まれる。よって、パターンCにおける所定周波数fcを、パターンAにおける所定周波数fcよりも低くする。   In pattern A, since the occurrence frequency of electric leakage is relatively high, it is desirable that the predetermined frequency fc be relatively high. On the other hand, in the pattern C, the occurrence frequency of leakage is relatively low and the ground floating capacitance 42 is relatively large. Therefore, in the pattern C, it is desired that the predetermined frequency fc is relatively low in order to reduce the influence of the ground stray capacitance 42. Therefore, the predetermined frequency fc in the pattern C is set lower than the predetermined frequency fc in the pattern A.

また、車両が駐車場等に停車して電気機器を使用していない場合、一般に、CPU11はスリープ状態となっており、定期的に短時間起動して所定の処理を実行する。そのため、パターンBでは、CPU11がスリープ状態からの起動時に短時間で地絡を検出できるように、地絡の検出機会を多くすることが望ましい。よって、パターンBにおける所定周波数fcを、バッテリ20に他の電気機器が接続されている場合における所定周波数fcよりも高くする。すなわち、パターンBにおける所定周波数fcを、パターンAにおける所定周波数fcよりも高くし、3つのパターンの中でも最も高い周波数にする。   In addition, when the vehicle stops at a parking lot or the like and does not use an electrical device, the CPU 11 is generally in a sleep state and periodically starts for a short time to execute a predetermined process. Therefore, in pattern B, it is desirable to increase the number of ground fault detection opportunities so that the CPU 11 can detect the ground fault in a short time when the CPU 11 starts from the sleep state. Therefore, the predetermined frequency fc in the pattern B is set to be higher than the predetermined frequency fc when another electric device is connected to the battery 20. That is, the predetermined frequency fc in the pattern B is higher than the predetermined frequency fc in the pattern A, and is set to the highest frequency among the three patterns.

以上説明した本実施形態によれば、以下の効果を奏する。   According to this embodiment described above, the following effects are obtained.

・高電圧電源系に含まれるバッテリ20とその他の電気機器との接続状態に応じて、発振回路12から出力する交流電圧の所定周波数fcを変化させることにより、高圧電源系の地絡の検出頻度と検出精度とを適切に両立することができる。   The frequency of detection of a ground fault in the high-voltage power supply system by changing the predetermined frequency fc of the AC voltage output from the oscillation circuit 12 according to the connection state between the battery 20 included in the high-voltage power supply system and other electrical devices. And detection accuracy can both be achieved appropriately.

・交流電圧の所定周波数fcに応じてデジタルフィルタの通過帯域が変化される。これにより、交流電圧の所定周波数fcに応じて信号成分を抽出できるため、高圧電源系の対地絶縁抵抗41に対応した接続点Pでの電圧の検出精度、ひいては地絡の検出精度を向上させることができる。   The pass band of the digital filter is changed according to the predetermined frequency fc of the AC voltage. As a result, since the signal component can be extracted according to the predetermined frequency fc of the AC voltage, the detection accuracy of the voltage at the connection point P corresponding to the ground insulation resistance 41 of the high-voltage power supply system, and hence the detection accuracy of the ground fault can be improved. Can do.

・バッテリ20にMG33が接続されているときは、車両が走行中であり、車両の振動が大きく地絡の発生頻度が高い。一方、バッテリ20に電力変換器34が接続されているときは、車両が駐車場等に停車して充電しているときであり、車両の振動が小さく且つ少なく地絡の発生頻度は低い。よって、交流電圧の所定周波数fcを、バッテリ20にMG33が接続されている場合よりも、バッテリ20に電力変換器34が接続されている場合に低くすることにより、高電圧電源系の地絡の検出頻度と検出精度とを適切に両立することができる。   When the MG 33 is connected to the battery 20, the vehicle is traveling, the vehicle vibration is large, and the occurrence frequency of the ground fault is high. On the other hand, the power converter 34 is connected to the battery 20 when the vehicle is parked and charged at a parking lot or the like, and the vibration of the vehicle is small and the occurrence frequency of the ground fault is low. Therefore, by setting the predetermined frequency fc of the AC voltage to be lower when the power converter 34 is connected to the battery 20 than when the MG 33 is connected to the battery 20, the ground fault of the high voltage power supply system is reduced. The detection frequency and the detection accuracy can be appropriately balanced.

・一般的に、電力変換器34にはノイズ対策用コンデンサが接続されているため、他の電気機器よりも対地浮遊容量42の容量値が大きくなる。容量値が大きくなるほど、対地浮遊容量42のインピーダンスXは小さくなり、対地絶縁抵抗41に対する対地浮遊容量42の影響は大きくなる。よって、交流電圧の所定周波数fcを、バッテリ20にMG33が接続されている場合よりも、バッテリ20に電力変換器34が接続されている場合に低くすることにより、高電圧電源系の地絡の検出精度を上げることができる。   Generally, since a noise countermeasure capacitor is connected to the power converter 34, the capacitance value of the ground stray capacitance 42 is larger than that of other electric devices. As the capacitance value increases, the impedance X of the ground stray capacitance 42 decreases, and the influence of the ground stray capacitance 42 on the ground insulation resistance 41 increases. Therefore, by setting the predetermined frequency fc of the AC voltage to be lower when the power converter 34 is connected to the battery 20 than when the MG 33 is connected to the battery 20, the ground fault of the high voltage power supply system is reduced. Detection accuracy can be increased.

・バッテリ20にその他の電気機器が接続されていないときは、車両が駐車場や交差点に停車しているときである。車両が駐車場に停車している場合、一般的に、CPU11はスリープ状態になっており、定期的に起動して地絡の検出を行う。そのため、バッテリ20に他の電気機器が接続されていないときは、CPU11の起動時に短時間で地絡の検出ができるように、地絡の検出頻度を高くすることが望まれる。よって、交流電圧の所定周波数fcを、バッテリ20に電力変換器34が接続されている場合よりも、バッテリ20に他の電気機器が接続されていない場合に高くすることにより、高電圧電源系の地絡の検出頻度と検出精度とを適切に両立することができる。   When no other electrical device is connected to the battery 20, the vehicle is stopped at a parking lot or an intersection. When the vehicle is parked at the parking lot, the CPU 11 is generally in a sleep state and is periodically activated to detect a ground fault. For this reason, when no other electrical device is connected to the battery 20, it is desirable to increase the detection frequency of the ground fault so that the ground fault can be detected in a short time when the CPU 11 is activated. Therefore, by increasing the predetermined frequency fc of the AC voltage when the electric power converter 34 is connected to the battery 20 when no other electrical device is connected to the battery 20, the high voltage power supply system The detection frequency of ground fault and the detection accuracy can be made compatible appropriately.

・交流電圧の所定周波数fcを、バッテリ20にその他の電気機器が接続されている場合よりも、バッテリ20に他の電気機器が接続されていない場合に高くすることにより、高電圧電源系の地絡の検出頻度と検出精度とを更に適切に両立することができる。   By setting the predetermined frequency fc of the AC voltage higher when no other electrical device is connected to the battery 20 than when the other electrical device is connected to the battery 20, It is possible to more appropriately balance the detection frequency and the detection accuracy of the fault.

(他の実施形態)
・CPU11のスリープ状態からの定期的な起動時間が長くなるおそれはあるが、パターンBにおける所定周波数fcは、発振回路12から出力可能な範囲であればどのような周波数にしてもよい。パターンCにおける所定周波数fcを、パターンAにおける所定周波数fcよりも低くさえすれば、パターンBにおける所定周波数fcをどのような周波数にしてもよい。
(Other embodiments)
The periodic startup time from the sleep state of the CPU 11 may be long, but the predetermined frequency fc in the pattern B may be any frequency as long as it can be output from the oscillation circuit 12. The predetermined frequency fc in the pattern B may be any frequency as long as the predetermined frequency fc in the pattern C is lower than the predetermined frequency fc in the pattern A.

・パターンBにおいて、信号停車時と駐車場等での停車時とで、所定周波数fcを変化させてもよい。すなわち、パターンBにおいて、CPU11が常時起動している場合と、スリープ状態から起動する場合とで、所定周波数fcを変化せてもよい。例えば、信号停車時における所定周波数fcを、パターンAにおける所定周波数fcとパターンCにおける所定周波数fcとの間の周波数にし、駐車場等での停車時における所定周波数fcを最も高い周波数にする。   In pattern B, the predetermined frequency fc may be changed between when the signal stops and when the vehicle stops in a parking lot or the like. That is, in the pattern B, the predetermined frequency fc may be changed between when the CPU 11 is always activated and when activated from the sleep state. For example, the predetermined frequency fc when the signal is stopped is set to a frequency between the predetermined frequency fc in the pattern A and the predetermined frequency fc in the pattern C, and the predetermined frequency fc when the vehicle is stopped in a parking lot or the like is set to the highest frequency.

・高電圧電源系に電力変換器34が含まれていなくてもよい。この場合、バッテリ20にMG33が接続されているパターンと、バッテリ20にMG33が接続されていないパターンとで所定周波数fcを変化させる。   The power converter 34 may not be included in the high voltage power supply system. In this case, the predetermined frequency fc is changed between a pattern in which the MG 33 is connected to the battery 20 and a pattern in which the MG 33 is not connected to the battery 20.

・カップリングコンデンサCsは、バッテリ20の正極端子側又はバッテリ20の内部に接続してもよい。   The coupling capacitor Cs may be connected to the positive terminal side of the battery 20 or the inside of the battery 20.

・高圧電源系に含まれる他の電気機器は、コンバータ31、インバータ32及びMG33からなる走行用の電力系統と、電力変換器34からなる走行用以外の電力系統との2系統に限らず、3つ以上の電力系統を含んでいてもよい。図7に、他の電気機器として、コンバータ31、インバータ32、MG33、電力変換器34以外に、電気機器35を含み、3つの電力系統を備える高圧電源系の構成を示す。電気機器35は、コンバータ、インバータ及びMGからなる走行用の電力系統でもよいし、走行用以外の用途で用いられる電気機器でもよい。例えば、電力機器35が走行用の電力系統の場合には、SW5及びSW6がオンの場合に、パターンAと同様の処理を実施する。また、電力機器35が走行用以外の用途で用いられる電気機器の場合には、SW5及びSW6がオンの場合に、パターンCと同様の処理を実施する。   The other electric devices included in the high-voltage power supply system are not limited to two systems, that is, a traveling power system including the converter 31, the inverter 32, and the MG 33, and a non-traveling power system including the power converter 34. Two or more electric power systems may be included. FIG. 7 shows the configuration of a high-voltage power supply system that includes three electric power systems including electric equipment 35 in addition to converter 31, inverter 32, MG 33, and power converter 34 as other electric equipment. The electrical device 35 may be a traveling power system including a converter, an inverter, and an MG, or may be an electrical device used for purposes other than traveling. For example, when the power device 35 is a traveling power system, the same processing as the pattern A is performed when SW5 and SW6 are on. In the case where the electric power device 35 is an electric device used for purposes other than traveling, the same processing as the pattern C is performed when SW5 and SW6 are on.

10…地絡検出回路、11…CPU、12…発振回路、13…検出回路、20…バッテリ、33…MG、34…電力変換器、Cs…カップリングコンデンサ、Rs…抵抗素子。   DESCRIPTION OF SYMBOLS 10 ... Ground fault detection circuit, 11 ... CPU, 12 ... Oscillation circuit, 13 ... Detection circuit, 20 ... Battery, 33 ... MG, 34 ... Power converter, Cs ... Coupling capacitor, Rs ... Resistance element.

Claims (7)

車体と電気的に絶縁された高電圧電源系の地絡を検出する地絡検出回路(10)であって、
前記高電圧電源系に接続され、直流成分を絶縁する絶縁手段(Cs)と、
前記絶縁手段に直列接続された抵抗手段(Rs)と、
前記抵抗手段に直列接続され、前記抵抗手段に所定周波数の交流電圧を印加する発振手段(12)と、
前記絶縁手段と前記抵抗手段との接続点での電圧に基づいて、前記地絡を検出する検出手段(11,13)と、
前記高電圧電源系に含まれるバッテリ(20)と前記高電圧電源系に含まれるその他の電気機器(33,34)との接続状態に応じて、前記発振手段により出力される前記交流電圧の所定周波数を変化させる可変手段(11)と、を備えることを特徴とする高電圧電源系を備えた車両の地絡検出回路。
A ground fault detection circuit (10) for detecting a ground fault of a high voltage power supply system electrically insulated from a vehicle body,
An insulating means (Cs) connected to the high-voltage power supply system and insulating a DC component;
Resistance means (Rs) connected in series to the insulation means;
Oscillating means (12) connected in series to the resistance means and applying an alternating voltage of a predetermined frequency to the resistance means;
Detection means (11, 13) for detecting the ground fault based on a voltage at a connection point between the insulation means and the resistance means;
The predetermined AC voltage output by the oscillating means is determined according to the connection state between the battery (20) included in the high-voltage power supply system and the other electrical devices (33, 34) included in the high-voltage power supply system. A vehicle ground fault detection circuit comprising a high-voltage power supply system, comprising variable means (11) for changing the frequency.
所定通過帯域から外れた周波数成分を遮断するデジタルフィルタ手段(11)を備え、
前記可変手段は、前記交流電圧の所定周波数に応じて、前記フィルタ手段の所定通過帯域を変化させる請求項1に記載の高電圧電源系を備えた車両の地絡検出回路。
Comprising digital filter means (11) for cutting off frequency components outside the predetermined passband;
2. The vehicle ground fault detection circuit having a high-voltage power supply system according to claim 1, wherein the variable means changes a predetermined pass band of the filter means in accordance with a predetermined frequency of the AC voltage.
前記その他の電気機器は、走行用モータ(33)、及び前記走行用モータの駆動とは異なる用途で用いられる電力変換器(34)を含み、
前記可変手段は、前記バッテリに前記電力変換器が接続されている場合における前記所定周波数を、前記バッテリに前記走行用モータが接続されている場合における前記所定周波数よりも低くする請求項1又は2に記載の高電圧電源系を備えた車両の地絡検出回路。
The other electric device includes a traveling motor (33) and a power converter (34) used for a purpose different from the driving of the traveling motor,
The variable means makes the predetermined frequency when the power converter is connected to the battery lower than the predetermined frequency when the traveling motor is connected to the battery. A ground fault detection circuit for a vehicle comprising the high-voltage power supply system described in 1.
前記電力変換器と車体との間には、ノイズ対策用コンデンサが接続されている請求項3に記載の高電圧電源系を備えた車両の地絡検出回路。   The vehicle ground fault detection circuit having a high-voltage power supply system according to claim 3, wherein a noise countermeasure capacitor is connected between the power converter and the vehicle body. 前記可変手段は、前記バッテリに前記その他の電気機器が接続されていない場合における前記所定周波数を、前記バッテリに前記その他の電気機器が接続されている場合における前記所定周波数よりも高くする請求項1〜4のいずれかに記載の高電圧電源系を備えた車両の地絡検出回路。   The variable means makes the predetermined frequency when the other electric device is not connected to the battery higher than the predetermined frequency when the other electric device is connected to the battery. A vehicle ground fault detection circuit comprising the high-voltage power supply system according to any one of? 前記その他の電気機器は、走行用モータを含み、
前記可変手段は、前記バッテリに前記その他の電気機器が接続されていない場合における前記所定周波数を、前記バッテリに前記走行用モータが接続されている場合における前記所定周波数よりも高くする請求項5に記載の高電圧電源系を備えた車両の地絡検出回路。
The other electric device includes a traveling motor,
The variable means makes the predetermined frequency when the other electric device is not connected to the battery higher than the predetermined frequency when the traveling motor is connected to the battery. A vehicle ground fault detection circuit comprising the high-voltage power supply system described.
前記その他の電気機器は、走行用モータ、及び前記走行用モータの駆動とは異なる用途で用いられる電力変換器を含み、
前記可変手段は、前記バッテリに前記その他の電気機器が接続されていない場合における前記所定周波数を、前記バッテリに前記走行用モータが接続されている場合における前記所定周波数よりも高くするとともに、前記バッテリに前記電力変換器が接続されている場合における前記所定周波数を、前記バッテリに前記走行用モータが接続されている場合における前記所定周波数よりも低くする請求項1又は2に記載の高電圧電源系を備えた車両の地絡検出回路。
The other electric devices include a travel motor, and a power converter used in a different application from the drive of the travel motor,
The variable means makes the predetermined frequency when the other electric device is not connected to the battery higher than the predetermined frequency when the traveling motor is connected to the battery, and the battery. The high-voltage power supply system according to claim 1 or 2, wherein the predetermined frequency when the power converter is connected to the battery is lower than the predetermined frequency when the traveling motor is connected to the battery. A ground fault detection circuit for a vehicle.
JP2014238078A 2014-11-25 2014-11-25 Vehicle ground fault detection circuit with high voltage power supply system Active JP6428197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014238078A JP6428197B2 (en) 2014-11-25 2014-11-25 Vehicle ground fault detection circuit with high voltage power supply system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014238078A JP6428197B2 (en) 2014-11-25 2014-11-25 Vehicle ground fault detection circuit with high voltage power supply system

Publications (2)

Publication Number Publication Date
JP2016101040A true JP2016101040A (en) 2016-05-30
JP6428197B2 JP6428197B2 (en) 2018-11-28

Family

ID=56077701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014238078A Active JP6428197B2 (en) 2014-11-25 2014-11-25 Vehicle ground fault detection circuit with high voltage power supply system

Country Status (1)

Country Link
JP (1) JP6428197B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107490744A (en) * 2017-08-09 2017-12-19 上海绘润实业有限公司 A kind of grounded continuous detection circuit of electric automobile power supply unit
JP2018021871A (en) * 2016-08-05 2018-02-08 日産自動車株式会社 Insulation detector, detection system and isolation detection method
JP2019012026A (en) * 2017-06-30 2019-01-24 株式会社デンソー Earth fault detection device
CN111948458A (en) * 2020-09-23 2020-11-17 东风汽车集团有限公司 Detection method and equipment of electric automobile insulation monitoring system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053365A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Earth detector
JP2009240016A (en) * 2008-03-26 2009-10-15 Mitsubishi Motors Corp In-vehicle charging device
JP2010178422A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Ground fault detection device for vehicle
JP2010259274A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Charging pack for electric storage device
JP2014149276A (en) * 2013-02-04 2014-08-21 Denso Corp Electrical leak detection device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004053365A (en) * 2002-07-18 2004-02-19 Nissan Motor Co Ltd Earth detector
JP2009240016A (en) * 2008-03-26 2009-10-15 Mitsubishi Motors Corp In-vehicle charging device
JP2010178422A (en) * 2009-01-27 2010-08-12 Nissan Motor Co Ltd Ground fault detection device for vehicle
JP2010259274A (en) * 2009-04-28 2010-11-11 Toyota Motor Corp Charging pack for electric storage device
JP2014149276A (en) * 2013-02-04 2014-08-21 Denso Corp Electrical leak detection device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018021871A (en) * 2016-08-05 2018-02-08 日産自動車株式会社 Insulation detector, detection system and isolation detection method
JP2019012026A (en) * 2017-06-30 2019-01-24 株式会社デンソー Earth fault detection device
CN107490744A (en) * 2017-08-09 2017-12-19 上海绘润实业有限公司 A kind of grounded continuous detection circuit of electric automobile power supply unit
CN111948458A (en) * 2020-09-23 2020-11-17 东风汽车集团有限公司 Detection method and equipment of electric automobile insulation monitoring system
CN111948458B (en) * 2020-09-23 2021-11-09 东风汽车集团有限公司 Detection method and equipment of electric automobile insulation monitoring system

Also Published As

Publication number Publication date
JP6428197B2 (en) 2018-11-28

Similar Documents

Publication Publication Date Title
US9255957B2 (en) Earth fault detection circuit and power source device
JP6633585B2 (en) Ground fault detector
JP6428197B2 (en) Vehicle ground fault detection circuit with high voltage power supply system
JP6464752B2 (en) Leakage determination device
KR20140041621A (en) Device for detecting a defect in insulation
JP6391619B2 (en) Deterioration specifying device and deterioration specifying method
WO2018074394A1 (en) Earth fault detecting device, and electricity storage system
TWI453432B (en) Insulating detection circuit and method thereof
JPWO2011040128A1 (en) Ground fault detection circuit and power supply device
WO2012023595A1 (en) Ground fault detection circuit for ungrounded power source
CN103278776A (en) Electric automobile battery insulation detecting system
JPWO2016143678A1 (en) Battery management device, battery monitoring circuit, control system
JP2018072169A (en) Ground fault detection circuit Reverse voltage protection circuit
JP5423766B2 (en) Ground fault detection device
EP3521094B1 (en) Method and device for obtaining internal side, external side insulation resistances of relay, and battery management system
JP6881097B2 (en) Ground fault detector
JP2016118522A (en) Insulation detector
JP5239975B2 (en) Earth leakage detection system
JP6342250B2 (en) Battery monitoring circuit
CN110108939B (en) Alternating current motor insulation impedance obtaining method and device based on alternating current injection method
JP6742191B2 (en) Sticking detection device and battery system
JP2014149276A (en) Electrical leak detection device
JP2016146700A (en) Electric leakage determination device
KR101619467B1 (en) Apparatus and method for measuring isolation resistance using integrating
KR101619477B1 (en) Apparatus and method for measuring isolation resistance using oscillator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181002

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181015

R151 Written notification of patent or utility model registration

Ref document number: 6428197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250