JP3712886B2 - Leakage breaker and ground fault detection method - Google Patents

Leakage breaker and ground fault detection method Download PDF

Info

Publication number
JP3712886B2
JP3712886B2 JP11591699A JP11591699A JP3712886B2 JP 3712886 B2 JP3712886 B2 JP 3712886B2 JP 11591699 A JP11591699 A JP 11591699A JP 11591699 A JP11591699 A JP 11591699A JP 3712886 B2 JP3712886 B2 JP 3712886B2
Authority
JP
Japan
Prior art keywords
circuit
ground fault
current
phase
leakage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11591699A
Other languages
Japanese (ja)
Other versions
JP2000312434A (en
Inventor
孝文 近藤
勝弘 川上
文則 赤木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP11591699A priority Critical patent/JP3712886B2/en
Publication of JP2000312434A publication Critical patent/JP2000312434A/en
Application granted granted Critical
Publication of JP3712886B2 publication Critical patent/JP3712886B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Emergency Protection Circuit Devices (AREA)
  • Breakers (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、零相変流器により漏電の検出を行う漏電遮断器及び地絡の検出方法に関するもので、特に、零相変流器の不平衡特性による誤動作を防止した漏電遮断器及び地絡の検出方法に関する。
【0002】
【従来の技術】
図6は、例えば特開平09ー093790号公報に示された従来の漏電遮断器の内部回路を示すブロック図である。
図において、1は交流電路、2は零相変流器、3は漏電検出回路、4は漏電検出回路3の出力端子に接続されたスイッチング素子、5はスイッチング素子4により駆動される電磁装置、6は電磁装置5の駆動により交流電路1の電流を遮断する遮断器接点、7は過電流検出処理回路で、その内部構成は各相で検出された負電圧出力を正電圧に変換するためのレベル変換回路8、レベル変換回路8の出力をデイジタル信号に変換するためのA/D変換回路9、電流レベルの判定およびその大きさにより時限を決定するためのマイクロコンピュータ(CPU)10により形成されている。11は電源回路であり、漏電検出回路3、電磁装置5の作動直流電力を供給する。
【0003】
21〜23、30、41〜44は電流検出手段を形成するもので、21、22、23は交流電路1の各相の電流を検出する変流器、30は変流器21、22、23の2次出力を全波整流する整流回路であり、ダイオード31〜38で構成されている。41〜44は相電流検出抵抗で、各相の電流に比例した電圧を各抵抗両端に負電圧として出力する。このうち相電流検出抵抗44は零相電流を検出するもので、零相電流の値により交流電路1が地絡しているか否かを判定する。
【0004】
10aは過電流引外し信号出力であり、交流電路1の各相に対応する相電流検出抵抗41〜44の電圧をレベル判定して、所定以上のレベルと時限(所定レベル以上の継続時間)によりスイッチング素子4への出力を与える。スイッチング素子4は過電流引外し信号出力10aまたは漏電検出信号3aのいずれでも作動するようダイオード12、13を介して接続されている。
【0005】
10bはロック信号出力であり、その出力はトランジスタ14を制御して漏電検出出力3aを短絡し漏電検出信号3aをスイッチング素子4へ入力させないようにするものである。ロック信号出力10bは交流電路1の電流が所定値以上でかつ地絡でない場合、出力されるが、この判定レベルは過電流引外し信号の判定レベルとは異なる値に設定されている。
【0006】
マイクロコンピュータ10に入力された信号は図7のフローチャートに従って処理される。その処理手順を説明する。まず、A/D変換回路9からの入力信号を不平衡領域判定ステップ101で不平衡領域の入力信号かどうかを判定し、YESであれば地絡かどうかの判定を相電流検出抵抗44で検出された入力信号のレベルにより地絡電流判定ステップ102にて判定する。
【0007】
もし、地絡でないと判定された場合にはロック信号を出力し、スイッチング素子4の動作を阻止し、漏電検出回路3の誤出力による遮断器接点6の開離を防止する。入力信号が不平衡領域の電流でない場合、もしくは不平衡領域の入力信号であっても地絡が発生していると判定された場合は、直ちにロツク信号10bを出力せず、漏電検出回路3のスイッチング素子4への出力を阻害しないようにする。
【0008】
【発明が解決しようとする課題】
従来の漏電遮断器は以上のように構成されており、地絡かどうかの判定を行う地絡電流判定ステップ102において、相電流検出抵抗44で検出された零相電流が固定しきい値を通過する回数を計数し、その結果により判定を行っていた。
この判定内容を図8に示し、サンプリング時間(T1〜T6:例えば20ms)内に零相電流が固定しきい値を通過する回数を計数し、4回未満は地絡と判定し、4回以上であれば正常の三相通電として判定するものである。
【0009】
しかし、変流器21〜23それぞれの交流電路1の内部導体の配置の違いと、変流器21〜23の電流検出の性能差により、零相電流に特性差が生じ、例えば、サンプリング時間T2の区間において、正常の三相通電状態であるのに固定しきい値を通過する回数が3回であることから、地絡と判定し、過電流検出処理回路7のマイクロコンピュータ10はロック信号10bが出力しないようにロック解除を行ってしまい、漏電検出回路3の漏電検出信号3aにより漏電遮断器が誤動作するという問題があった。
【0010】
この発明は上記ような問題点を解決するためになされたもので、交流電路1に電流が流れた時、地絡かどうかを確実に判定すると共に、誤動作しない漏電遮断器を得ることを目的としている。
【課題を解決するための手段】
【0011】
(1)この発明に係わる漏電遮断器は、零相変流器により交流電路の漏電電流を検出してその検出値が所定レベルに達すると漏電検出信号を出力する漏電検出手段と、上記交流電路の各相に流れる電流を検出し、検出した電流レベルに応じて過電流引き外し信号を出力する過電流検出手段と、上記検出した各相に流れる電流値と、この電流値の大きさに応じて導出される変動しきい値との比較に基づいて地絡か否かを判定し、否であればロック信号を出力する地絡判定手段と、上記ロック信号に応じて上記漏電検出信号を通過または阻止するロック手段と、上記ロック手段を通過した上記漏電検出信号、または上記過電流引き外し信号に応じて上記交流電路を遮断する開閉手段とを備えたものである。
【0012】
(2)また、変動しきい値は、正常時に検出される合成検出電圧の最大値P1と、地絡時に検出される合成検出電圧の最大値P2との中間に設定されているものである。
【0013】
(3)また、変動しきい値は予め地絡判定手段に設定しておくようにしたものである。
【0014】
(4)この発明に係わる地絡の検出方法は、交流電路の各相に流れる電流と、この交流電路の各相に流れる電流の大きさに応じて導出した変動しきい値との比較に基づいて地絡か否かを判定するようにしたものである。
【0015】
【発明の実施の形態】
実施の形態1.
本発明の実施の形態1に係わる漏電遮断器の内部回路を示すブロック図は図6に示す従来のものと同様であり、マイクロコンピュータ10に入力された信号は図1のフローチャートに従って処理される。
【0016】
(1)まず、A/D変換回路9からの入力信号を不平衡領域判定ステップ201で不平衡領域の入力信号か否かを判定し、
(2)判定がYESであれば、地絡電流判定ステップ202にて、地絡かどうかの判定を相電流検出抵抗44で検出された入力信号の合成相電流レベルにより判定する。
【0017】
(3)もしステップ202での判定が「NO」で、地絡でないと判定された場合は、ステップ204にてロック信号を出力し、スイッチング素子4の動作を阻止し、漏電検出回路3の誤出力による遮断器接点6の開離を防止する。
(4)ステップ201で、入力信号が不平衡領域の電流でない場合、もしくは、ステップ202で、不平衡領域の入力信号であっても地絡が発生していると判定された場合は、ステップ203にてロツク信号10bを出力せず、漏電検出回路3のスイッチング素子4への出力を阻害しないようにする。
【0018】
(5)次にステップ205で、変流器21〜23で検出し、CPU10で演算された各相に流れる電流が所定レベル以上か否か、または、零相変流器2で検出した漏電検出回路3からの電流が所定レベル以上か否かの判定(過電流の判定)をする。
(6)判定結果が否(NO)であれば、ステップ201に返る。
【0019】
(7)判定結果がYESで、ステップ206で過電流の状態が所定の時限まで継続すると、ステップ207で過電流引き外し信号を出力して、交流電路1を遮断する。
(8)もし、過電流であってもステップ206で所定の時限に達しない場合は、
ステップ201に返って、交流電路1を遮断しない。
【0020】
図2は相電流検出抵抗44で検出された検出電圧(合成相電流)と地絡か否かを判定するための変動しきい値の関係図であり、この変動しきい値は交流電路1を流れる電流を変流器21〜23で検出し、整流回路30、相電流検出抵抗44、レベル変換回路8、A/D変換回路9によりデータ変換を行った後、マイクロコンピュータ10に入力され、演算により求められる。
【0021】
図3は変動しきい値を決定するための特性を示すもので、交流電路1に流れる電流のピーク値が通常の三相通電した場合の電流ピーク値に対する合成相検出電圧(ピーク値)と、交流電路1に単極地絡した場合の電流ピーク値に対する合成相検出電圧(ピーク値)とを漏電遮断器の機種毎に測定し、この2つの特性曲線の中間の値を変動しきい値の特性曲線としている。
【0022】
漏電遮断器の機種毎に変動しきい値の特性曲線を求めてCPUのメモリ上に設定してもよいが、簡易化するため、変動しきい値を折れ線(1次関数)として、
次の演算式を近似式としている。
変動しきい値=[K(Z−X)/100]+Y −−−−−(1)
ただし、Z:交流電路を流れる電流値(ピーク値)
K,X,Y:変動しきい値の係数(Zの値の範囲により可変する係数)
【0023】
交流電路1を流れる電流のピーク値と演算式(1)で求められる変動しきい値との関係の一例を図4に示す。機種A,B共それぞれ2つの直線(折れ線)で近似した変動しきい値としている。
【0024】
この演算式によれば、変動しきい値は正常時に相電流検出抵抗44で検出される検出電圧の最大値P1と、地絡時に相電流検出抵抗44で検出される検出電圧の最大値P2との中間に設定されるため、たとえ、交流電路1を流れる電流値が変動したり、電流を検出する変流器21〜23の性能差により、零相電流に特性差が生じることがあっても、地絡時は相電流検出抵抗44で検出された検出電圧が設定された変動しきい値を超え、地絡の判定がおこなわれ、正常時は相電流検出抵抗44で検出された検出電圧は設定された変動しきい値を超えることはなく、正常(三相通電)であるとの判定が行われるものである。
【0025】
なお、上記の説明では交流電路1を流れている電流データを連続的にマイクロコンピュータ10に取り込み、演算式により変動しきい値を算出し、設定する場合について述べたが、あらかじめ、実験結果により交流電路1を流れている電流データと変動しきい値との関係を求めておき、マイクロコンピュータ10内のメモリにデータとして保存しておけば、演算時間が省略でき高速な処理ができる。
【0026】
以上のように本発明によれば、交流電路1に過渡的な電流が流れた時、地絡かどうかを確実に判定すると共に、誤動作することがない漏電遮断器を得ることができる。
【0027】
なお、上記では漏電遮断器において地絡を検出する場合について述べたが、その他の交流電路における機器の地絡の検出方法として利用ができるものである。
【0028】
実施の形態2.
実施の形態1では三相の交流電路における漏電遮断器であったが、この実施の形態2は単相の交流電路に漏電遮断器の場合を示す。
図5はこの実施の形態2の漏電遮断器の回路構成を示すブロック図である。
この図5は実施の形態1の図6の回路から、交流電路1の中央電路を省くと共に、変流器22、ダイオード33,34、相電流検出抵抗42を省いたものである。
動作については実施の形態1と同様であるので省略する。
【0029】
【発明の効果】
以上のように、この発明の漏電遮断器および地絡の検出方法は、交流電路に過渡的な電流が流れた時、地絡かどうかを確実に判定し、誤動作または誤検出を防止する効果がある。
【0030】
また、この発明の地絡の検出方法は地絡か否かを確実に判定する効果がある。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による漏電遮断器の動作を示すフローチャートである。
【図2】 この発明の実施の形態1による相電流検出抵抗での検出電圧波形と変動しきい値の関係図である。
【図3】 この発明の実施の形態1による変動しきい値を導出する特性図である。
【図4】 この発明の実施の形態1による交流電路を流れる電流と演算式で求められる変動しきい値との関係の一例を示す図である。
【図5】 この発明の実施の形態2による漏電遮断器の回路構成を示すブロック図である。
【図6】 この発明の実施の形態1および従来の漏電遮断器の回路構成を示すブロック図である。
【図7】 従来の漏電遮断器の動作を示すフローチャートである。
【図8】 従来の相電流検出抵抗での検出電圧波形と固定しきい値の関係図である。
【符号の説明】
1 交流電路、 2 零相変流器、 3 漏電検出回路、
3a 漏電検出信号、 4 スイッチング素子、 5 電磁装置、
6 遮断器接点 7 過電流検出処理回路、 8 レベル変換回路、
9 A/D変換回路、 10 マイクロコンピュータ(CPU)、
10a 過電流引外し信号出力、 10b ロック信号出力、
11 電源回路、 12、13 ダイオード、 14 トランジスタ、
21、22、23 変流器、 30 ダイオード、
31、32、33、34、35、36、37、38 ダイオード、
41、42、43、44 相電流検出抵抗。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an earth leakage circuit breaker for detecting an earth leakage by a zero phase current transformer and a ground fault detection method, and more particularly to an earth leakage circuit breaker and a ground fault for preventing malfunction due to unbalance characteristics of the zero phase current transformer. It relates to the detection method.
[0002]
[Prior art]
FIG. 6 is a block diagram showing an internal circuit of a conventional earth leakage circuit breaker disclosed in, for example, Japanese Patent Application Laid-Open No. 09-093790.
In the figure, 1 is an AC circuit, 2 is a zero-phase current transformer, 3 is a leakage detection circuit, 4 is a switching element connected to the output terminal of the leakage detection circuit 3, 5 is an electromagnetic device driven by the switching element 4, 6 is a circuit breaker contact that cuts off the current in the AC circuit 1 by driving the electromagnetic device 5, 7 is an overcurrent detection processing circuit, and its internal configuration is for converting the negative voltage output detected in each phase into a positive voltage. It is formed by a level conversion circuit 8, an A / D conversion circuit 9 for converting the output of the level conversion circuit 8 into a digital signal, and a microcomputer (CPU) 10 for determining a time period by determining the current level and its magnitude. ing. Reference numeral 11 denotes a power supply circuit that supplies operating DC power of the leakage detection circuit 3 and the electromagnetic device 5.
[0003]
Reference numerals 21 to 23, 30, 41 to 44 form current detection means. Reference numerals 21, 22, and 23 denote current transformers that detect currents of respective phases of the AC circuit 1, and reference numeral 30 denotes current transformers 21, 22, and 23. This is a rectifier circuit that full-wave rectifies the secondary output of the first and second diodes, and is composed of diodes 31-38. Reference numerals 41 to 44 denote phase current detection resistors which output a voltage proportional to the current of each phase as a negative voltage across each resistor. Among these, the phase current detection resistor 44 detects a zero phase current, and determines whether or not the AC circuit 1 is grounded according to the value of the zero phase current.
[0004]
10a is an overcurrent trip signal output, which determines the level of the voltage of the phase current detection resistors 41 to 44 corresponding to each phase of the AC circuit 1, and is based on a predetermined level and time limit (duration greater than the predetermined level). An output to the switching element 4 is given. The switching element 4 is connected via diodes 12 and 13 so as to operate with either the overcurrent trip signal output 10a or the leakage detection signal 3a.
[0005]
10b is a lock signal output, and the output controls the transistor 14 to short-circuit the leakage detection output 3a so that the leakage detection signal 3a is not input to the switching element 4. The lock signal output 10b is output when the current of the AC circuit 1 is not less than a predetermined value and is not a ground fault, but this determination level is set to a value different from the determination level of the overcurrent trip signal.
[0006]
The signal input to the microcomputer 10 is processed according to the flowchart of FIG. The processing procedure will be described. First, it is determined whether or not the input signal from the A / D conversion circuit 9 is an input signal in the unbalanced region in the unbalanced region determining step 101. If YES, the phase current detection resistor 44 detects whether it is a ground fault or not. The ground fault current determination step 102 makes a determination based on the level of the input signal.
[0007]
If it is determined that there is no ground fault, a lock signal is output, the operation of the switching element 4 is blocked, and the breaker contact 6 is prevented from being opened due to an erroneous output of the leakage detection circuit 3. If the input signal is not a current in the unbalanced region, or if it is determined that a ground fault has occurred even if the input signal is in the unbalanced region, the lock signal 10b is not immediately output, and the leakage detection circuit 3 The output to the switching element 4 is not disturbed.
[0008]
[Problems to be solved by the invention]
The conventional earth leakage breaker is configured as described above, and the zero-phase current detected by the phase current detection resistor 44 passes the fixed threshold value in the ground fault current determination step 102 for determining whether or not there is a ground fault. The number of times was counted, and the determination was made based on the result.
Shows this determination content in FIG. 8, the sampling time: zero-phase current counts the number of passes through the fixed threshold (T1 to T6 e.g. 20 ms) within less than 4 times, it is determined that the ground fault, or 4 times If so, it is determined as normal three-phase energization.
[0009]
However, a characteristic difference occurs in the zero-phase current due to the difference in the arrangement of the inner conductors of the AC current paths 1 of the current transformers 21 to 23 and the current detection performance difference of the current transformers 21 to 23. For example, the sampling time T2 In this section, the number of times of passing through the fixed threshold value is 3 even though it is in a normal three-phase energized state, so it is determined that there is a ground fault, and the microcomputer 10 of the overcurrent detection processing circuit 7 locks the lock signal 10b. The lock release is performed so as not to output, and the leakage breaker malfunctions due to the leakage detection signal 3a of the leakage detection circuit 3.
[0010]
The present invention has been made to solve the above-described problems. For the purpose of obtaining an earth leakage circuit breaker that reliably determines whether or not a ground fault occurs when a current flows through the AC circuit 1, and that does not malfunction. Yes.
[Means for Solving the Problems]
[0011]
(1) An earth leakage breaker according to the present invention includes an earth leakage detection means for detecting an earth leakage current of an AC circuit by a zero-phase current transformer and outputting a leakage detection signal when the detected value reaches a predetermined level; and the AC circuit Overcurrent detection means for detecting the current flowing through each phase and outputting an overcurrent trip signal in accordance with the detected current level, the current value flowing through each detected phase, and the magnitude of this current value The ground fault determining means for outputting a lock signal is determined based on the comparison with the fluctuation threshold value derived in this case, and if it is not, the leakage detection signal is passed according to the lock signal. Alternatively, it includes a locking means for blocking, and an opening / closing means for interrupting the AC circuit in response to the leakage detection signal passing through the locking means or the overcurrent trip signal.
[0012]
(2) Further, the fluctuation threshold value is set between the maximum value P1 of the combined detection voltage detected during normal operation and the maximum value P2 of the combined detection voltage detected during ground fault.
[0013]
(3) The fluctuation threshold value is set in advance in the ground fault determination means.
[0014]
(4) The ground fault detection method according to the present invention is based on a comparison between a current flowing through each phase of the AC circuit and a fluctuation threshold derived according to the magnitude of the current flowing through each phase of the AC circuit. It is determined whether or not it is a ground fault.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Embodiment 1 FIG.
The block diagram showing the internal circuit of the earth leakage circuit breaker according to the first embodiment of the present invention is the same as the conventional one shown in FIG. 6, and the signal inputted to the microcomputer 10 is processed according to the flowchart of FIG.
[0016]
(1) First, it is determined whether or not the input signal from the A / D conversion circuit 9 is an input signal in the unbalanced region in the unbalanced region determining step 201.
(2) If the determination is YES, in the ground fault current determination step 202, it is determined whether or not there is a ground fault based on the combined phase current level of the input signal detected by the phase current detection resistor 44.
[0017]
(3) If the determination in step 202 is “NO” and it is determined that there is no ground fault, a lock signal is output in step 204, the operation of the switching element 4 is blocked, and the leakage detection circuit 3 is erroneously detected. The breaker contact 6 is prevented from being separated by the output.
(4) If the input signal is not an unbalanced region current in step 201, or if it is determined in step 202 that a ground fault has occurred even if the input signal is in the unbalanced region, step 203 So that the lock signal 10b is not output and the output of the leakage detection circuit 3 to the switching element 4 is not disturbed.
[0018]
(5) Next, in step 205, whether or not the current flowing through each phase detected by the current transformers 21 to 23 and calculated by the CPU 10 is equal to or higher than a predetermined level, or the leakage detection detected by the zero-phase current transformer 2 It is determined whether or not the current from the circuit 3 is equal to or higher than a predetermined level (overcurrent determination).
(6) If the determination result is NO (NO), return to Step 201.
[0019]
(7) If the determination result is YES and the overcurrent state continues to a predetermined time period in step 206, an overcurrent trip signal is output in step 207 and the AC circuit 1 is interrupted.
(8) If the predetermined time limit is not reached in step 206 even if there is an overcurrent,
Returning to step 201, the AC circuit 1 is not interrupted.
[0020]
FIG. 2 is a relationship diagram of the detection voltage (combined phase current) detected by the phase current detection resistor 44 and the fluctuation threshold value for determining whether or not there is a ground fault. The flowing current is detected by the current transformers 21 to 23, converted into data by the rectifier circuit 30, the phase current detection resistor 44, the level conversion circuit 8, and the A / D conversion circuit 9, and then input to the microcomputer 10 for calculation. Is required.
[0021]
FIG. 3 shows characteristics for determining the fluctuation threshold, and the combined phase detection voltage (peak value) with respect to the current peak value when the peak value of the current flowing in the AC circuit 1 is normal three-phase energization, The composite phase detection voltage (peak value) with respect to the current peak value when the AC circuit 1 is unipolar ground fault is measured for each earth leakage circuit breaker model, and the value between the two characteristic curves is the characteristic of the fluctuation threshold. It is a curve.
[0022]
The characteristic curve of the fluctuation threshold may be obtained for each type of earth leakage breaker and set on the memory of the CPU. However, for the sake of simplicity, the fluctuation threshold is represented by a broken line (linear function).
The following arithmetic expression is an approximate expression.
Fluctuation threshold = [K (Z−X) / 100] + Y −−−−− (1)
Where Z: current value (peak value) flowing through the AC circuit
K, X, Y: Fluctuation threshold coefficient (coefficient that varies according to the range of Z value)
[0023]
FIG. 4 shows an example of the relationship between the peak value of the current flowing through the AC circuit 1 and the fluctuation threshold value obtained by the calculation formula (1). Both the models A and B have variable threshold values approximated by two straight lines (broken lines).
[0024]
According to this arithmetic expression, the fluctuation threshold value is the maximum value P1 of the detection voltage detected by the phase current detection resistor 44 when normal, and the maximum value P2 of the detection voltage detected by the phase current detection resistor 44 when a ground fault occurs. Therefore, even if the value of the current flowing through the AC circuit 1 fluctuates or the performance difference between the current transformers 21 to 23 for detecting the current may cause a characteristic difference in the zero-phase current. When a ground fault occurs, the detection voltage detected by the phase current detection resistor 44 exceeds the set fluctuation threshold value, and a ground fault is determined. When the ground fault is normal, the detection voltage detected by the phase current detection resistor 44 is The set fluctuation threshold is not exceeded, and it is determined that it is normal (three-phase energization).
[0025]
In the above description, the current data flowing in the AC circuit 1 is continuously taken into the microcomputer 10 and the fluctuation threshold value is calculated and set by an arithmetic expression. If the relationship between the current data flowing in the electric circuit 1 and the fluctuation threshold value is obtained and stored as data in the memory in the microcomputer 10, the calculation time can be omitted and high-speed processing can be performed.
[0026]
As described above, according to the present invention, when a transient current flows through the AC circuit 1, it is possible to reliably determine whether there is a ground fault and to obtain a leakage breaker that does not malfunction.
[0027]
In addition, although the case where a ground fault was detected in the earth leakage breaker was described above, it can be used as a method for detecting a ground fault of a device in another AC circuit.
[0028]
Embodiment 2. FIG.
In Embodiment 1, the earth leakage breaker in the three-phase AC circuit is used. However, Embodiment 2 shows the case of the earth leakage breaker in the single-phase AC circuit.
FIG. 5 is a block diagram showing a circuit configuration of the leakage breaker according to the second embodiment.
In FIG. 5, the central circuit of the AC circuit 1 is omitted from the circuit of FIG. 6 of the first embodiment, and the current transformer 22, the diodes 33 and 34, and the phase current detection resistor 42 are omitted.
Since the operation is the same as that of the first embodiment, a description thereof will be omitted.
[0029]
【The invention's effect】
As described above, the earth leakage breaker and the ground fault detection method of the present invention have the effect of reliably determining whether a ground fault has occurred when a transient current flows through the AC circuit, and preventing malfunction or detection. is there.
[0030]
In addition, the ground fault detection method of the present invention has an effect of reliably determining whether or not there is a ground fault.
[Brief description of the drawings]
FIG. 1 is a flowchart showing an operation of an earth leakage circuit breaker according to Embodiment 1 of the present invention.
FIG. 2 is a relationship diagram between a detection voltage waveform and a variation threshold value in a phase current detection resistor according to Embodiment 1 of the present invention;
FIG. 3 is a characteristic diagram for deriving a variation threshold value according to the first embodiment of the present invention.
FIG. 4 is a diagram showing an example of a relationship between a current flowing through an AC circuit according to Embodiment 1 of the present invention and a fluctuation threshold obtained by an arithmetic expression.
FIG. 5 is a block diagram showing a circuit configuration of a leakage breaker according to Embodiment 2 of the present invention.
FIG. 6 is a block diagram showing a circuit configuration of the first embodiment of the present invention and a conventional earth leakage breaker.
FIG. 7 is a flowchart showing the operation of a conventional earth leakage circuit breaker.
FIG. 8 is a relationship diagram between a detection voltage waveform and a fixed threshold value in a conventional phase current detection resistor.
[Explanation of symbols]
1 AC circuit, 2 Zero-phase current transformer, 3 Earth leakage detection circuit,
3a earth leakage detection signal, 4 switching element, 5 electromagnetic device,
6 Circuit breaker contact 7 Overcurrent detection processing circuit, 8 level conversion circuit,
9 A / D conversion circuit, 10 microcomputer (CPU),
10a Overcurrent trip signal output, 10b Lock signal output,
11 power supply circuit 12, 13 diode, 14 transistor,
21, 22, 23 Current transformer, 30 Diode,
31, 32, 33, 34, 35, 36, 37, 38 diode,
41, 42, 43, 44 Phase current detection resistors.

Claims (4)

零相変流器により交流電路の漏電電流を検出してその検出値が所定レベルに達すると漏電検出信号を出力する漏電検出手段と、
上記交流電路の各相に流れる電流を検出し、検出した電流レベルに応じて過電流引き外し信号を出力する過電流検出手段と、
上記検出した各相に流れる電流値と、この電流値の大きさに応じて導出される変動しきい値との比較に基づいて地絡か否かを判定し、否であればロック信号を出力する地絡判定手段と、
上記ロック信号に応じて上記漏電検出信号を通過または阻止するロック手段と、
上記ロック手段を通過した上記漏電検出信号、または上記過電流引き外し信号に応じて上記交流電路を遮断する開閉手段とを備えた漏電遮断器。
A leakage detecting means for detecting a leakage current of the AC circuit by a zero-phase current transformer and outputting a leakage detection signal when the detected value reaches a predetermined level;
Overcurrent detection means for detecting a current flowing in each phase of the AC circuit and outputting an overcurrent trip signal according to the detected current level;
Based on the comparison between the detected current value flowing through each phase and the fluctuation threshold value derived according to the magnitude of this current value, it is determined whether or not there is a ground fault. If not, a lock signal is output. A ground fault judging means for
Lock means for passing or blocking the leakage detection signal in response to the lock signal;
An earth leakage circuit breaker comprising: the leakage detecting signal that has passed through the locking means; or an opening / closing means that interrupts the AC circuit in response to the overcurrent trip signal.
変動しきい値は、正常時に検出される合成検出電圧の最大値P1と、地絡時に検出される合成検出電圧の最大値P2との中間に設定されていることを特徴とする請求項1記載の漏電遮断器。  2. The fluctuation threshold value is set to be intermediate between a maximum value P1 of a combined detection voltage detected at normal time and a maximum value P2 of a combined detection voltage detected at ground fault. Earth leakage circuit breaker. 変動しきい値は予め地絡判定手段に設定しておくようにした請求項1または請求項2記載の漏電遮断器。  3. The earth leakage circuit breaker according to claim 1, wherein the fluctuation threshold value is set in advance in the ground fault determination means. 交流電路の各相に流れる電流と、この交流電路の各相に流れる電流の大きさに応じて導出した変動しきい値との比較に基づいて地絡か否かを判定する地絡の検出方法。  Ground fault detection method for determining whether there is a ground fault based on a comparison between a current flowing in each phase of the AC circuit and a fluctuation threshold derived according to the magnitude of the current flowing in each phase of the AC circuit .
JP11591699A 1999-04-23 1999-04-23 Leakage breaker and ground fault detection method Expired - Lifetime JP3712886B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11591699A JP3712886B2 (en) 1999-04-23 1999-04-23 Leakage breaker and ground fault detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11591699A JP3712886B2 (en) 1999-04-23 1999-04-23 Leakage breaker and ground fault detection method

Publications (2)

Publication Number Publication Date
JP2000312434A JP2000312434A (en) 2000-11-07
JP3712886B2 true JP3712886B2 (en) 2005-11-02

Family

ID=14674395

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11591699A Expired - Lifetime JP3712886B2 (en) 1999-04-23 1999-04-23 Leakage breaker and ground fault detection method

Country Status (1)

Country Link
JP (1) JP3712886B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7400477B2 (en) 1998-08-24 2008-07-15 Leviton Manufacturing Co., Inc. Method of distribution of a circuit interrupting device with reset lockout and reverse wiring protection
KR100638635B1 (en) 2005-06-02 2006-10-27 (주)갑진 Earth leakage circuit breaker
KR100536106B1 (en) * 2005-06-22 2005-12-14 델타이지씨에스(주) Power switching device for preventing error operation by high frequency current contact and device cut off leakage of electricity therefor
WO2009097469A1 (en) 2008-01-29 2009-08-06 Leviton Manufacturing Co., Inc. Self testing fault circuit interrupter apparatus and method
CN102067402A (en) * 2008-07-07 2011-05-18 立维腾制造有限公司 Fault circuit interrupter device
JP5310501B2 (en) * 2009-11-19 2013-10-09 三菱電機株式会社 Electronic leakage breaker
JP5768741B2 (en) 2012-02-29 2015-08-26 三菱電機株式会社 Earth leakage breaker
US9759758B2 (en) 2014-04-25 2017-09-12 Leviton Manufacturing Co., Inc. Ground fault detector
CN110837042B (en) * 2018-08-17 2021-06-22 东元电机股份有限公司 Motor interlayer short circuit fast screening method

Also Published As

Publication number Publication date
JP2000312434A (en) 2000-11-07

Similar Documents

Publication Publication Date Title
JP2735598B2 (en) Solid trip device
KR100299014B1 (en) Ground circuit breaker with broadband noise immunity
JP3712886B2 (en) Leakage breaker and ground fault detection method
KR100464596B1 (en) Circuit Breaker for Detecting Overload
JPS62144535A (en) Differential relay for power transformer
US4839770A (en) Control circuit with validity-determining arrangement
EP0637865B1 (en) Transformer differential relay
US7420343B2 (en) Current limiting DC motor starter circuit
Ngema et al. A new technique for improvement differential relay performance in power transformers
Kasztenny et al. Generator protection and CT saturation problems and solutions
KR20160147599A (en) The module for detecting electric short with pulse signal using the different phase of the resistance type current and condenser type current
JP3449172B2 (en) Three-phase four-wire neutral-phase open-phase detector and circuit breaker
JP3028093B2 (en) System fault current detector
JP3199940B2 (en) Transformer protection relay device
JP3375800B2 (en) Earth leakage breaker
JPH04372519A (en) Breaker
JP4052785B2 (en) Circuit breaker
Wang et al. A sensitive line differential protection solution for high impedance fault detection
Verma et al. Microprocessor-based comprehensive relaying scheme for power transformer protection
JP3776651B2 (en) AA neutral wire breaker with phase loss protection
JP2004096818A (en) Ground fault interrupter
JPS6059915A (en) Defect current protecting device
KR100460310B1 (en) Method for operating relay for protecting transformer
JPH07298475A (en) Circuit breaker
JP3207643B2 (en) Short circuit accident high-speed judgment circuit

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20041111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050809

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050818

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080826

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090826

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100826

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110826

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120826

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130826

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term