JP2004219393A - 高光度の平行ビーム生成装置 - Google Patents
高光度の平行ビーム生成装置 Download PDFInfo
- Publication number
- JP2004219393A JP2004219393A JP2003038500A JP2003038500A JP2004219393A JP 2004219393 A JP2004219393 A JP 2004219393A JP 2003038500 A JP2003038500 A JP 2003038500A JP 2003038500 A JP2003038500 A JP 2003038500A JP 2004219393 A JP2004219393 A JP 2004219393A
- Authority
- JP
- Japan
- Prior art keywords
- mirror
- primary
- ellipse
- incident
- parallel beam
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21K—TECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
- G21K1/00—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
- G21K1/06—Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diffraction, refraction or reflection, e.g. monochromators
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H3/00—Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
- H05H3/06—Generating neutron beams
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- General Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Optical Elements Other Than Lenses (AREA)
- Lenses (AREA)
Abstract
【解決手段】1次楕円72の一焦点71に配置する光源、光源から入射するビームを反射させるように1次楕円上に配置する凹面鏡で、1次楕円の境界面形をした1次ミラーと、1次ミラーで反射したビームの経路に配置する凸面鏡で、凸面鏡に入射するビーム入射地点の接線間の角度差が、1次ミラーに入射するビーム入射地点の接線間の角度の1/2になるようにした2次楕円73の境界面形をした2次ミラーとを備え、さらに1次ミラーは、1次楕円の短軸上頂点に配置するか空間の活用のために1次楕円の他焦点側の長軸上頂点と短軸上頂点間に配置する。
【選択図】図7
Description
【発明の属する技術分野】
本発明は、ミラー(mirror)を適切に配置することによって高光度の平行ビームを生成する装置に関するものである。より詳細には、現存する光学部品の効率的な配置によって従来の装置より更に効果的にX線(x−ray)、中性子ビーム等の光度を増加させると同時に分散を減らす装置に関するものである。
【0002】
【従来の技術】
可視光線、X線、中性子等は、人為的な波長選択が可能であり固体の原子配列、半導体、光学素子、生化学等の分野で構造分析に広く利用されている。図1のように光は、一つの光源から放射形に拡がっていくため光の光度(flux)は、観測者位置との距離の自乗に反比例する。このことは物質の構造分析の為の試料及び検出器位置でその光度が顕著に減少することを意味する(図2)。図2は、一般的な単純スリット(slit)型 X線反射率計(reflectometer)を図示したものである。
【0003】
また、ライン焦点調節(line focusing、例:反射率計、薄膜測定用)及びポイント焦点調節(point focusing、例:4円回折(Four circle diffraction)、単結晶測定用)に必要なスリットを利用すればビームの光度はさらに減少する。
【0004】
したがって、世界の有名な研究所や装備製作会社等は、ビームの光度を高めると同時にビームの分散(divergence)を減らす研究を継続しているのが実情である。特に、中性子散乱分野では特定波長を持った中性子ビームの光度を増加させるために冷中性子源及び中性子ガイド等を利用する。
【0005】
図3は、ドイツのブルカー社(BRUKER)が提供するゲーベル(Goebel)ミラー(X線ミラーの一種)を利用して、平行ビームをつくる方法を図示したものである。図3aは、ゲーベルミラーの配置を、図3bはゲーベルミラーを利用して平行ビームをつくる原理を、図3cはゲーベルミラーを利用した反射率測定結果を図示したものである。この方法を使用した場合は、普通単純型X線分析装置より光度が約20倍以上増加するため現在広く利用されている。
【0006】
このゲーベルミラーは、双曲線形態の幾何
【数2】
を持っている。ゲーベルミラーが双曲線中心に接近するほどビームの光度を高められるが、ビーム配置上、X線線源に完全に近接することは出来ず、高光度の完全な密集型線形ビーム(線形ビーム< 0.1mm)の生成が難しいという問題があった。
【0007】
さらに、中性子を発生させる原子炉では、双曲線中心(中性子線源)近くに中性子ミラーを接近させることは容易ではなく、また遠距離でミラーを利用してビームを反射させる場合は、ビームの分散により必要なミラーの大きさが増加するため光度の利点はほとんどないと言える。
【0008】
また他の方法は、図4a及び図4bに図示したように毛細管(capillary tube)を利用するものである。この方法は、広い角に分散するビームを集束させることができ、平行ビームをつくることも易しく中性子とX線全てに応用でき、管の直径を小さくして狭小な場所で使用することもできる。しかし、細い管を通過する中性子やX線が多重反射によって強度が落ち、管内に入射するビームの量が微細管の厚みに依存するため効率(efficiency)が10−50%に過ぎない。狭い空間を活用するためには細い管の直径(約5−50マイクロメータ)と自体の厚みの極小化が効率を高める重要因子であり、X線オプチカルシステム社(X−ray optical system inc.)がこのような種類の毛細管を開発して市販しているが非常に高価である。
【0009】
3番目の方法は、結晶格子を段階的異物質に(Si→Ge)代置して格子の大きさを調節することによってビームを集束させるかまたは平行ビームをつくるもので、結晶成長時に完璧な制御を必要とする。このような問題を解決したという報告があったが(非特許文献1参照)技術的な難しさは相変わらず存在し、また結晶で回折されたビームは、反射したビームより光度がずっと弱いため利用には難しさがあると言える。
【0010】
図5は、段階的(graded)結晶を利用したビームの集束化と平行ビームをつくる方法を示している。図5a及び図5bは、段階的結晶を単純応用したものである。各々広角(wide−angle)ミラーと焦点調節(focusing)ミラーを図示したものである。一方、図5c ないし図5eは、非対称(asymmetric)段階的結晶の場合で、各々細いビームコンディショナー(narrow beam conditioner)、対称コリメーター(symmetrical collimator)、終局コリメーター(ultimate collimator)を図示したものである。(非特許文献2参照)
【0011】
この方法を使用すれば、結晶成長を通して格子の大きさが変化するため物理的な力を加えて結晶を湾曲させる必要がなく結晶自体が一つの焦点調節ベンダー(focusing bender)の役割をし、結晶を希望の方向にカットして入射角を調節することによって平行ビームをつくることができる。
【0012】
【非特許文献1】
エルコ(A.Erko),シャエルファーズ(F.Schaerfers),グダト(W.Gudat), アブロジモブ(N.V.Abrosimov),ロッソレンコ(S.N.Rossolenko), アレックス(V.Alex), スクロエデル(W.Schroeder)著、ニュークリア インストルメントメソッド フィジクス リサーチ(Nucl. Instr. Meth. Phys. Res.)、1996年、A374巻、P.408
【非特許文献2】
ペトラセン(P.Petrashen),エルコ(A.Erko)著, X線コリメーターとしての段階的SiGe結晶(Graded SiGe crystals as X−ray collimators), ニュークリア インストルメント メソッド フィジクス リサーチ(Nuclear Instruments and Methode in Physics research)、2001年、A 467−468巻、P.358−361
【0013】
【発明が解決しようとする課題】
本発明は、前記の問題点を解決するためにミラーの楕円形配置によって従来の装置よりさらに効果的にX線、中性子ビーム等の光度を増加させると同時に分散を減らして平行ビームを生成する新しい装置を提供することを目的とする。
【0014】
また、本発明は、楕円体形ミラーを利用して平行集束焦点ビームを生成する高光度の平行ビーム生成装置を提供することを目的とする。
【0015】
【発明を解決するための手段】
本発明は、前記の目的を達成する為に、1次楕円の一焦点に配置した光源、該光源から入射したビームを反射させるために前記1次楕円上に配置した凹面鏡で、前記1次楕円の境界面形をした1次ミラーと、該1次ミラーで反射したビームの経路に配置する凸面鏡で、該凸面鏡に入射するビーム入射地点の接線間の角度差が、前記1次ミラーに入射するビーム入射地点の接線間の角度差の1/2になるようにした2次楕円の境界面形をした2次ミラーとを備えることを特徴とする高光度の平行ビーム生成装置を提供する。
【0016】
また、前記1次ミラーは、前記1次楕円の短軸上の頂点に配置するか、空間を活用するために前記1次楕円の他焦点側の長軸上頂点と短軸上頂点との間に配置することを特徴とする。
【0017】
また、前記2次楕円の楕円パラメタ−a’(長軸長さの1/2)、b’(短軸長さの1/2)、e’(中心から焦点までの距離)は次の数式
【数3】
によって求める。ここで、a、bは前記1次楕円の楕円パラメタ−、Pは前記1次ミラーの入射地点間の最大距離、Sは前記2次ミラーの入射地点間の最大距離であることを特徴とする。
【0018】
また、本発明は、平行集束焦点ビームを生成する高光度の平行ビーム生成装置において、4個の楕円形ミラーの代わりに2個の楕円体(ellipsoid)形ミラーを使用することを特徴とする高光度の平行ビーム生成装置を提供する。
【0019】
以下、添付した図面を参照しながら本発明の実施例を説明する。本発明の根本原理は、楕円形配置を利用することであり、最も基本的な実施例は2個の楕円形ミラーで構成されたものである。
【0020】
図6のように、楕円では一つの焦点で発生したビームが楕円に反射した後、常にもう一つの焦点に向かうようになる。ここで、F1、F2が楕円の焦点であり、F1で発生したビームが楕円の境界面で反射してF2に向かうことが見られる。a、b、eは楕円パラメタ−で、各々長軸長さの1/2、短軸長さの1/2、楕円中心と焦点間の距離を示す。
【0021】
図7は、楕円形ミラーを利用して平行ビームを生成する原理を概略的に図示したものであり、本発明の平行ビーム生成装置は、光源と二個のミラーで構成される。光源は、楕円の一方の焦点71に配置し、図示した例では、左側の焦点に配置した。1次ミラーは1次楕円72上に配置する。この実施例では点▲1▼、点▲2▼、点▲3▼部分にわたって配置し、2次ミラーは2次楕円73上の点▲4▼、点▲5▼、点▲6▼部分にわたって配置されている。
【0022】
1次楕円72の楕円パラメータa、b、eを各々100mm、50mm、86.6mmにした時、1次楕円72の左側焦点から点▲1▼、点▲2▼、点▲3▼への入射角は、左側と右側焦点間の基準線(x軸)と各々32度、30度、28度になる。
【0023】
1次ミラーは、上述したように1次楕円72上の入射位置に配置し、1次楕円の境界面の形をした楕円形凹面鏡である。1次ミラーの点▲1▼、点▲2▼、点▲3▼で反射した後、右側焦点に向かう各々のビームは、x軸と28度、30度、32度をなす。これは点▲1▼と点▲3▼での接線とx軸と平行な点▲2▼の接線が各々2度の角度をなすためである。また、これは各々の点(点▲1▼、点▲2▼、点▲3▼)での接線と左側焦点からの入射角は常に30度をなすことを意味する。
【0024】
平行ビームを生成するためには、1次楕円72の右側焦点に向かうビームの経路に他のミラー(2次ミラー)を配置しなければならない。2次ミラーは、2次楕円73上に配置し、2次楕円73の境界面形の凸面鏡である。1次反射では1次楕円72の凹面部分で反射をさせたのに対して、2次反射では2次楕円73の凸面部分で反射をさせる。図面は、2次ミラーを74の楕円形態で他の位置に配置出来ることを示している。
【0025】
平行ビームを生成するための2次ミラーの楕円パラメータa’、b’、e’は次の数式1によって求められる。
【数4】
ここでPは、点▲1▼〜点▲3▼までの距離であり、Sは、点▲4▼〜点▲6▼までの距離である。
【0026】
上記の式により形が決定された2次ミラーの点▲4▼と点▲6▼での接線が点▲5▼での接線となす角が各々
【数5】
になるため(誤差は無視)、点▲5▼で反射したビームと平行をなすようになる。
【0027】
つまり、1次楕円72上の点▲1▼、点▲2▼、点▲3▼での接線間の角度差が2次楕円73上の点▲4▼、点▲5▼、点▲6▼での接線間の角度差の2倍になるように楕円の形を決める。この方法によって所望の平行集束線形ビーム(parallel line beam)幅の調整が可能であり、先に説明したゲーベルミラーの短所である空間上の制約を解決出来る。図8は、2次ミラーが配置される部分を拡大して描いたもので、点▲4▼、点▲5▼、点▲6▼での接線間の角度差が1度であることが分かる。
【0028】
図9は、平行集束線形ビーム(line beam)を、図10は、平行集束焦点ビーム(point beam)を生成する方法を図示したものである。
【0029】
焦点ビームの場合、3、4番目の鏡を1、2番目の鏡に90度の差をつけて配置し、二回の反射によって生成された線形ビームを集束化された線形ビームの垂直方向に集束化させ焦点ビームを形成する。したがって、楕円形ミラーを利用する場合は4個のミラーが必要である(図10a)。
【0030】
しかし、中性子やX線ミラーの場合、ビームの光度は反射する度に少しずつ減少するため各反射による光度の損失を減らす方法が必要である。本発明では、図10bに図示したように、2個の楕円形ミラーを1個の楕円体(Ellipsoid)形ミラーに代置して4回の反射を2回に減らせるようにした。X線ミラー(Mo/Si、W/C、W/Si)及び中性子ミラー(58Ni、Ni/Ti)は、二物質の反復的な多層薄膜構造であるため表面の粗さと境界面の不完全性のために反射率の減少をもたらし得るが、最近では薄膜コーティング技術の発展によって90%以上の反射率達成が可能である。
【0031】
一般的な楕円体の公式は
【数6】
である。ビームの分散量がz軸方向にも同じであれば楕円体の公式は
【数7】
であり、x軸とz軸方向に同じ曲率を持った1次楕円体形ミラーを製作可能で、2次ミラーも楕円形ミラーと同様に計算して製作出来る。x軸とz軸方向のビームの分散量が異なる場合は、一般的な楕円体公式による1次楕円体形ミラーによってビームを焦点化させた後、2次ミラーの分散によって平行ビームをつくることができる。2次ミラーの楕円体パラメータを求める公式は、前記数式 1を拡張して次のように決められる。
【0032】
【数8】
【0033】
図11と図12は、原子炉周囲で中性子ミラーまたはスーパーミラー(メゼイ(F. Mezei)著,コミュニケーション フィジクス(Comm. Phys.)、1976年、第1巻、P. 81、メゼイ ウント ダグレイス(F. Mezei und P. Dagleish)著, コミュニケーション フィジクス(Comm. Phys.)、1977年、第2巻、P.41)を利用してビームを線形ビームにするための配置図である。
【0034】
図11aは、1次ミラーを楕円のy軸に左右対称の形態に配置した場合で、中性子源から水平孔(中性子ビームを取り出す孔)後端までの距離が3000mm、中性子スーパーミラー(Ni/Ti, 3M, 4.75Å基準、最大完全反射角 約3度)の大きさが382mmの場合を図示したものである。図11bは、ミラーが配置された部分を拡大したものである。
【0035】
このような場合、1次ミラーで反射されたビームから反対側に2次ミラーを置いてビームを集束するために広い空間が必要なため、1次ミラーを右側焦点近くに配置することによって空間活用問題を解決出来る。
【0036】
図12aは、空間活用の為に配置を変えた例であり、1次ミラーを楕円の右側部分に配置して1次ミラーと2次ミラー間の間隔をさらに狭くしたものである。楕円の短軸から1000mm距離に配置されているのが1次中性子ミラー121で、右側上部に配置されているのが2次中性子ミラー122であり、左側の焦点に線源を配置する。図12bは、ミラーが配された部分を拡大したものである。
【0037】
【発明の効果】
上述したように、本発明のミラーは新しい幾何学的配置によってビームのライン焦点調節とポイント焦点調節を可能にすることによって、ビームの光度増大と同時に平行ビームの生成が可能であるという効果がある。
特に、中性子を利用した分光装置では、光源(核分裂ユニット)への接近が容易ではなく、また中性子は、X線に比べて相対的に光度が低いため、本発明の平行ビーム生成装置が必需的である。
中性子は、自体の特別な性質(磁気モーメント、周期率表に依存しない不規則な散乱長さ密度(scattering length density))のためX線より物質分析に長所があるにもかかわらず、低光度の為に測定時間がX線より長くなる欠点がある。しかし、本発明の ミラー配置により中性子光度を増加出来るため、さらに多くの利用者らを中性子分光装置に誘導できるであろう。
この方法は、現存する分光装置中、回折(diffraction)、反射光測定(reflectometry)、高解像度回折(high resolution diffraction)、単結晶(single crystal)で弱散乱(weakly scattering)する蛋白質(proteins)等に利用でき、先に説明した毛細管技術と共に利用すればさらに効果的である。
【図面の簡単な説明】
【図1】光の放射原理を図示した図面代用写真である。
【図2】一般的な単純スリット形X線反射率計の構成を図示した図面代用写真である。
【図3】ブルカー社のゲーベルミラーを利用して平行ビームをつくる方法を図示した図面代用写真である。
【図4】X線オプチカルシステム社の毛細管を利用する方法を図示した図面代用写真である。
【図5】段階的SiGe結晶のビーム集束化と平行化方法を図示した図面代用写真である。
【図6】楕円の構造を図示した図面代用写真である。
【図7】本発明の平行ビーム生成原理を図示した図面代用写真である。
【図8】図7の2次ミラー部分を拡大図示した図面代用写真である。
【図9】ライン焦点調節原理を図示した図面代用写真である。
【図10】ポイント焦点調節原理を図示した図面代用写真である。
【図11】中性子ミラーの配置を図示した図面代用写真である。
【図12】図11の例で空間活用の為に配置を変えた場合を図示した図面代用写真である。
Claims (5)
- ミラーの楕円形配置により高光度の平行ビームを生成する装置において、1次楕円の一焦点に配置した光源、該光源から入射したビームを反射させるために前記1次楕円上に配置した凹面鏡で、前記1次楕円の境界面形をした1次ミラーと、該1次ミラーで反射したビームの経路に配置する凸面鏡で、該凸面鏡に入射するビーム入射地点の接線間の角度差が、前記1次ミラーに入射するビーム入射地点の接線間の角度差の1/2になるようにした2次楕円の境界面形をした2次ミラーとを備えることを特徴とする、前記高光度の平行ビーム生成装置。
- 前記1次ミラーが、前記1次楕円の短軸上の頂点に配置することを特徴とする、請求項1記載の高光度の平行ビーム生成装置。
- 前記1次ミラーが、前記1次楕円の他焦点側の長軸上頂点と短軸上頂点との間に配置することを特徴とする、請求項1記載の高光度の平行ビーム生成装置。
- 平行集束焦点ビームを生成する高光度の平行ビーム生成装置において、4個の楕円形ミラーの代わりに2個の楕円体(ellipsoid)形ミラーを備え、焦点ビームを生成することを特徴とする高光度の平行ビーム生成装置。
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030002779A KR100576921B1 (ko) | 2003-01-15 | 2003-01-15 | 고광도의 평행빔 생성 장치 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2004219393A true JP2004219393A (ja) | 2004-08-05 |
JP3830908B2 JP3830908B2 (ja) | 2006-10-11 |
Family
ID=32588964
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2003038500A Expired - Fee Related JP3830908B2 (ja) | 2003-01-15 | 2003-02-17 | 高光度の平行ビーム生成装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US6863409B2 (ja) |
JP (1) | JP3830908B2 (ja) |
KR (1) | KR100576921B1 (ja) |
FR (1) | FR2849930B1 (ja) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170236A (ja) * | 2007-01-10 | 2008-07-24 | High Energy Accelerator Research Organization | X線及び中性子線の反射率曲線測定方法及び測定装置 |
JP2010217089A (ja) * | 2009-03-18 | 2010-09-30 | Tohoku Univ | 中性子線の単色集光装置 |
JP2011053096A (ja) * | 2009-09-02 | 2011-03-17 | Japan Atomic Energy Agency | 中性子光学素子 |
KR101319240B1 (ko) | 2012-06-12 | 2013-10-16 | 한국과학기술연구원 | 극소각 중성자 산란 장치의 중성자 집속 장치 |
JP2014013169A (ja) * | 2012-07-04 | 2014-01-23 | Jtec Corp | 集光径可変なx線集光システム |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100825914B1 (ko) * | 2006-11-17 | 2008-04-28 | 한국원자력연구원 | 중성자 단색기 구조를 이용한 중성자 초거울 제작방법 |
DE102010022851B4 (de) | 2010-06-07 | 2014-11-13 | Siemens Aktiengesellschaft | Röntgenstrahlungsvorrichtung zur Erzeugung von quasimonochromatischer Röntgenstrahlung und Radiographie-Röntgenaufnahmesystem |
DE102010062472A1 (de) * | 2010-12-06 | 2012-06-06 | Bruker Axs Gmbh | Punkt-Strich-Konverter |
JP6533006B2 (ja) * | 2015-07-14 | 2019-06-19 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 強化されたx線放射を用いた撮像 |
JP6545353B2 (ja) * | 2015-07-14 | 2019-07-17 | コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. | 変調されたx線放射による撮像 |
US10352881B2 (en) * | 2016-12-27 | 2019-07-16 | Malvern Panalytical B.V. | Computed tomography |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA985078A (en) * | 1972-07-03 | 1976-03-09 | Raytheon Company | Catoptric lens arrangement |
US5214540A (en) * | 1991-01-14 | 1993-05-25 | Yoram Yakimovsky | Curved mirror optical systems |
TW374864B (en) * | 1994-10-28 | 1999-11-21 | Toshiba Corp | Projecting type displaying device and photo-modulating elements array used therein |
JP2001155515A (ja) * | 1999-09-14 | 2001-06-08 | Stanley Electric Co Ltd | 多眼プロジェクタランプ |
-
2003
- 2003-01-15 KR KR1020030002779A patent/KR100576921B1/ko not_active IP Right Cessation
- 2003-02-17 JP JP2003038500A patent/JP3830908B2/ja not_active Expired - Fee Related
- 2003-03-18 US US10/390,997 patent/US6863409B2/en not_active Expired - Fee Related
- 2003-05-05 FR FR0305443A patent/FR2849930B1/fr not_active Expired - Fee Related
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008170236A (ja) * | 2007-01-10 | 2008-07-24 | High Energy Accelerator Research Organization | X線及び中性子線の反射率曲線測定方法及び測定装置 |
JP4521573B2 (ja) * | 2007-01-10 | 2010-08-11 | 大学共同利用機関法人 高エネルギー加速器研究機構 | 中性子線の反射率曲線測定方法及び測定装置 |
JP2010217089A (ja) * | 2009-03-18 | 2010-09-30 | Tohoku Univ | 中性子線の単色集光装置 |
JP2011053096A (ja) * | 2009-09-02 | 2011-03-17 | Japan Atomic Energy Agency | 中性子光学素子 |
KR101319240B1 (ko) | 2012-06-12 | 2013-10-16 | 한국과학기술연구원 | 극소각 중성자 산란 장치의 중성자 집속 장치 |
JP2014013169A (ja) * | 2012-07-04 | 2014-01-23 | Jtec Corp | 集光径可変なx線集光システム |
Also Published As
Publication number | Publication date |
---|---|
JP3830908B2 (ja) | 2006-10-11 |
KR20040065673A (ko) | 2004-07-23 |
US6863409B2 (en) | 2005-03-08 |
KR100576921B1 (ko) | 2006-05-03 |
FR2849930A1 (fr) | 2004-07-16 |
FR2849930B1 (fr) | 2006-04-28 |
US20040136102A1 (en) | 2004-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wilkins et al. | On the concentration, focusing, and collimation of x‐rays and neutrons using microchannel plates and configurations of holes | |
JP5531009B2 (ja) | ポリキャピラリ光学系を有するx線発生装置 | |
CA2397070C (en) | X-ray measuring and testing complex | |
Stangl et al. | Nanobeam X-ray Scattering: Probing matter at the nanoscale | |
JP4025779B2 (ja) | X線集光装置 | |
US6271534B1 (en) | Device for producing the image of an object using a flux of neutral or charged particles, and an integrated lens for converting such flux of neutral or charged particles | |
WO2009083605A1 (en) | X-ray beam device | |
JP2013210377A (ja) | ビーム調整システム | |
Dhez et al. | Instrumental aspects of x-ray microbeams in the range above 1 keV | |
JP3830908B2 (ja) | 高光度の平行ビーム生成装置 | |
Franks | X-ray optics | |
JP2005534183A (ja) | 光学デバイス | |
Garakhin et al. | High-resolution laboratory reflectometer for the study of x-ray optical elements in the soft and extreme ultraviolet wavelength ranges | |
Thiel et al. | Production of intense micrometer‐sized x‐ray beams with tapered glass monocapillaries | |
Nazmov et al. | LIGA fabrication of X-ray Nickel lenses | |
WO2001075488A1 (en) | Optical assembly for increasing the intensity of a formed x-ray beam | |
JP4532478B2 (ja) | 収束を調整可能なx線光学システム | |
Brammer et al. | A new protein crystallography station on the SRS wiggler beamline for very rapid Laue and rapidly tunable monochromatic experiments: I. Design principles, ray tracing and heat calculations | |
JPH04501604A (ja) | X線レンズ及びコリメータ | |
JPS61186839A (ja) | ラウエカメラ | |
Del Rio et al. | Ray-tracing for a monochromatic x-ray backlighting scheme based on spherically bent crystal | |
Suortti et al. | Focusing monochromators for high energy synchrotron radiation | |
Lennie et al. | A novel facility using a Laue focusing monochromator for high-pressure diffraction at the SRS, Daresbury, UK | |
Cocco et al. | From Soft to Hard X‐ray with a Single Grating Monochromator | |
Dolbnya et al. | Focusing parabolic pyrolytic graphite X-ray monochromator |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20050823 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20051122 |
|
A602 | Written permission of extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A602 Effective date: 20051128 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20060222 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20060704 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20060712 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090721 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100721 Year of fee payment: 4 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110721 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20110721 Year of fee payment: 5 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20120721 Year of fee payment: 6 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20130721 Year of fee payment: 7 |
|
LAPS | Cancellation because of no payment of annual fees |