JP2004219386A - Concentration measuring instrument for gas mixture comprising two kinds of gases - Google Patents

Concentration measuring instrument for gas mixture comprising two kinds of gases Download PDF

Info

Publication number
JP2004219386A
JP2004219386A JP2003010118A JP2003010118A JP2004219386A JP 2004219386 A JP2004219386 A JP 2004219386A JP 2003010118 A JP2003010118 A JP 2003010118A JP 2003010118 A JP2003010118 A JP 2003010118A JP 2004219386 A JP2004219386 A JP 2004219386A
Authority
JP
Japan
Prior art keywords
pressure
concentration
gas
oscillator
mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003010118A
Other languages
Japanese (ja)
Inventor
Hisao Hojo
久男 北條
Takichi Kobayashi
太吉 小林
Akira Kurokawa
明 黒河
Shingo Ichimura
信吾 一村
Hidehiko Nonaka
秀彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Vacuum Products Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Vacuum Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Vacuum Products Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2003010118A priority Critical patent/JP2004219386A/en
Publication of JP2004219386A publication Critical patent/JP2004219386A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simplify instrument constitution by using two pressure measuring probes of the same type, and to simply read data in from the respective probes. <P>SOLUTION: This concentration measuring instrument for two component gas mixture of which the constitutive gases are known and of which the concentrations are unknown has the first and second pressure measuring probes 20, 40. The first probe 20 is displaced in response to pressure of the gas mixture supplied to piping 10, and is sensitive to a physical property of the gas mixture. The second probe 40 is arranged inside a bellows container 30. The bellows container 30 is stored, in its inside, with known gas of which the physical property is not substantially fluctuated, and changes its volume in response to the pressure of the gas mixture. The second probe 40 is displaced in response to the pressure of the gas inside the container 30, and is sensitive to the physical property of the gas in the container 30. The concentrations in the gas mixture are measured based on outputs from the first and second pressure measuring probes 20, 40. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、2種類の気体からなる混合気体の濃度を計測する装置に関する。特に、混合気体の物性値を反映した圧力と、混合気体の物性値を反映しない絶対圧力とを、それぞれ同種の圧力測定子を用いて検出可能とした濃度測定装置に関する。
【0002】
【背景技術】
従来、2種類の気体からなる混合気体の濃度を求める方法として、紫外線吸光度測定法が知られている。この方法では、例えばオゾン酸素混合ガス中のオゾン濃度を計測するとき、紫外線のうちオゾンは吸収するが酸素はほとんど吸収しない特定の波長を、混合ガスに照射する。そして、紫外線の吸収率を測定することにより濃度を求めるようにしていた。
【0003】
この紫外線吸光度測定法の種々の問題点を解決するために、粘性・熱伝導率・密度・分子量およびそれらの関数としての混合気体の物性値を測定し、純粋気体固有の物性値をもとに気体の濃度を算出する手法が開発された(特許文献1)。
【0004】
このために、2種類の圧力測定子を用いている。一つは、混合気体の物性値に敏感な圧力測定子であり、他の一つは混合気体の物性値に影響を受けない圧力測定子である。特許文献1では、前者の圧力測定子として水晶摩擦振動子が挙げられ、後者の圧力測定子として隔膜振動子が挙げられている。
【0005】
さらには、水晶振動子として、温度補償可能なものが提案されている(特許文献2)。
【0006】
【特許文献1】
特許第3336384号公報
【特許文献2】
米国特許第5,228,344号明細書(特公平7−97060)
【0007】
【発明が解決しようとする課題】
特許文献1の方法は、混合気体の圧力が大気圧以外の時でも、また圧力が変化しても常に正確な濃度を測定することができ、また、熱や光を照射しない手法を採用することができるため、熱や光による刺激によって爆発の起こる混合気体でも安全に測定することができる点で優れている。また、特定の波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、更に気体濃度の変化に対応して即時に濃度を測定することが可能となる点でも優れている。
【0008】
しかし、特許文献1の方法では、その発明の原理上、2種類の全く異なる原理の圧力測定子を用いることから、装置構成が複雑となり、かつ2種類の圧力測定子からのデータの整合性等、新たな課題が生じた。また、混合気体の物性値に影響を受けない圧力測定子として、隔膜を用いた圧力測定子が好適であるが、測定精度を上げるために隔膜の直径が大きくなり、装置の小型化にも限界があった。
【0009】
そこで、本発明の目的は、混合気体の物性値の影響を受けた圧力と受けない圧力を測定しながらも、それらを同種の圧力素子でそれぞれ測定でき、もって装置の大型化と複雑化の問題を解消できる2種混合気体の濃度測定装置を提供することにある。
【0010】
【課題を解決するための手段】
本発明の一態様は、構成気体が既知で濃度が未知の2種混合気体の濃度測定装置において、
前記混合気体の圧力に応じて変位し、かつ、前記混合気体の物性値に敏感な第1の圧力測定子と、
物性値が実質的に変動しない既知の気体が内部に収容され、前記混合気体の圧力に応じて体積変化する容器と、
前記容器内に配置され、前記容器内の気体の圧力に応じて変位し、かつ前記容器内の気体の物性値に敏感な第2の圧力測定子と、
前記第1,第2の圧力測定子の出力にも基づいて、前記混合気体の濃度を測定する濃度検出部と、を有することを特徴とする。
【0011】
本発明の一態様によれば、第1の圧力測定子からは混合気体の物性に依存した圧力が求められ、第2の圧力測定子からは混合気体の物性に依存しない絶対圧力が求められる。濃度検出器は、この2種類の圧力値に基づいて、圧力の影響を除外した混合気体の物性を求め、その物性により混合気体の濃度を検出することができる。
【0012】
しかも、第1,第2の圧力測定子は共に、被測定気体の物性値に敏感な同一タイプの測定子となる。よって、異種タイプの圧力測定子を使用する特許文献1の発明と比較して、装置構成が簡易となり、かつ各圧力測定子からのデータが整合するので、データの取り込みが簡易となる。
【0013】
前記第1,第2の圧力測定子としては、共に音叉型水晶振動子を好適に用いることができる。
【0014】
前記濃度検出部は、前記第1,第2の圧力測定子に接続される発振器を有することができる。濃度検出器はさらに、前記発振器からの出力である前記第1,第2の圧力測定子の共振抵抗と、前記第1,第2の圧力測定子の固有共振抵抗とに基づいて、前記混合気体の濃度を演算する濃度演算器を含むことができる。
【0015】
この場合、前記発振器は、前記第1の圧力測定子に接続された第1の発振器と、
前記第2の圧力測定子に接続された第2の発振器とを含むことができる。あるいは、前記発振器は、前記第1,第2の圧力測定子に共用されてもよい。このとき、前記第1,第2の圧力測定子からの出力を、前記発振器に択一的に接続するスイッチを設ければよい。
【0016】
前記濃度検出部は、前記発振器からの前記第1,第2の圧力測定子の共振抵抗値と、前記第1,第2の圧力測定子の各固有共振抵抗値との差に基づいて、前記混合気体の濃度を測定することができる。
【0017】
この場合、前記発振器は、前記第1,第2の圧力測定子の各共振周波数を出力し、前記濃度検出部は、前記第1,第2の圧力測定子の前記各共振周波数に基づいて、前記第1,第2の圧力測定子の温度依存性を有する前記固有共振抵抗値を補正することができる。
【0018】
さらに、前記濃度演算部は、前記第1,第2の圧力測定子間の共振抵抗−圧力のバラツキを、前記混合気体の圧力が異なる少なくとも2点にて校正する校正結果を記憶するメモリをさらに有することができる。
【0019】
【発明の実施の形態】
本発明の濃度検出原理の前提として、特許文献1(特許第3336384)に記載のように、粘性・熱伝導率・密度・分子量等の物性値に影響を受けた圧力と、その物性値の影響を受けない圧力とに基づいて、混合気体の濃度を算出する手法を採用するものである。本発明の改良点とし、混合気体の濃度に依存して変化する物性値例えば粘性などに敏感な2つの圧力測定子を用いる。一方の圧力測定子を混合気体と接触させて圧力測定を行い、他方は混合気体の圧力によって体積変化する気密容器内に収納して、前記混合気体とは非接触で該混合気体の物性の影響を受けない絶対圧力を測定する。そして、物性値が反映された圧力値と絶対圧力値とに基づいて、演算処理によって圧力の影響を除いて混合気体の例えば粘性等の物性値を算出することで、物性値に応じた混合気体の濃度を求めるものである。
【0020】
本発明における使用測定子の例としては、混合気体の圧力の変化と共に物理量が変化する圧力計としては、例えば粘性(摩擦)を利用する水晶振動子やスピニングロータゲージ、熱伝導を利用する熱電対真空計やピラニー真空計、そのほかクヌーセン真空計等を用いることができ、また、電離現象を利用する例えば熱陰極電離真空計、冷陰極電離真空計、放射線電離真空計等を使用することができる。これら測定子は、引火性・爆発性といった気体の性質・対象混合気体の濃度・圧力によって使い分けることができる。
【0021】
<第1の実施の形態>
図1に本発明の第1実施形態である濃度測定装置を示す。図1において、配管10は、混合気体例えばオゾン/酸素の2種混合気体を供給するものである。この配管10の一端には、ガス供給源が接続される。配管10の他端には、基板上に例えば酸化膜を形成する半導体製造装置に接続されている。ガス供給源として例えば液化オゾンを収容したボンベを用いた場合、配管10には気化された高濃度オゾンを供給することができ、成膜スピードを上げることができる。これに限らず、低濃度オゾンと高濃度酸素とを配管10に供給しても良い。なお、配管10に供給される混合気体の濃度が変動するため、その濃度測定の必要性がある。
【0022】
配管10の途中に連通する測定室12には、第1の圧力測定子と20、圧力によって体積変化する気密容器たとえばベローズ容器30が設けられている。このベローズ容器30内には、第2の圧力測定子40が配置されている。測定室12を別個に設けず、配管10内を測定室としても良い。
【0023】
第1,第2の圧力測定子20,40は共に、被測定気体の濃度変に応じて変化する物性値を反映した圧力を測定する圧力測定子であり、本実施形態では第1,第2の圧力測定子20,40を共に音叉型の水晶振動子を用いている。水晶振動子による圧力検出原理は、被測定気体に接した水晶振動子の受ける気体との摩擦力が、圧力が粘性流の領域では気体の分子量と気体の粘性係数の積の1/2乗に比例することである。この水晶振動子は、常温で動作し、また気体への接触面も金、石英、ステンレスのみであり、オゾンを分解する要因がない。
【0024】
ベローズ容器30内には一定濃度の気体、好ましくは不活性ガスであるアルゴンまたは窒素ガスが封入され、混合気体が配管10に導入される以前は、ベローズ容器30内の圧力は一定、例えば大気圧に設定されている。
【0025】
ここで、第1の圧力測定子20は、被測定対象の混合気体と直接接触するので、その物性例えば粘性や分子密度によって変動する圧力を測定することになる。
一方、第2の圧力測定子40はベローズ容器30内に収容され、被測定対象の混合気体とは非接触である。このベローズ容器30の体積は、混合気体の圧力によって変化する。つまり、混合気体の圧力がベローズ容器30内の圧力よりも高ければベローズ容器30の体積は収縮し、その逆であれば拡張する。これにより、ベローズ容器30内の不活性気体の圧力も変化する。第2の圧力測定子は、この不活性気体の物性によって変化する圧力を測定することになるが。不活性気体の濃度は一定である。結局、ベローズ容器30内の第2の圧力測定子40は、混合気体の粘性や分子密度等の物性によって測定値が変化しない絶対圧力を測定することができる絶対圧力測定子として機能する。
【0026】
図1に示すように、第1の圧力測定子20には第1の発振器50が、第2の圧力測定子40には第2の発振器60が接続されている。また、第1,第2の発振器20,40に共用される周波数カウンタ70及びA/D変換器80が設けられている。これら周波数カウンタ70及びA/D変換器80は、濃度演算器として機能するCPU90に接続されている。CPU90にはさらにメモリ92が接続され、このメモリ92には濃度演算に必要な情報が予め記憶されている。
【0027】
図2は、第1,第2の発振器50,60に共用される発振回路の一例を示している。図2では、第1の発振器50について説明するが、第2の発振器60も同一の構成を有する。
【0028】
図2は、米国特許第5,228,344に開示された発振回路と同じ構成を有している。図2に示す第1の発振器50は、水晶振動子50の温度変化に起因した測定誤差を補償するものである。この第1の発振器50は、電流電圧変換器100、第1の全波整流器102、減衰器104、比較器106、電圧制御減衰器108、第2の全波整流器110を有する。
【0029】
ここで、水晶振動子20の固有共振抵抗をZとする。水晶振動子20が混合気体の雰囲気中に配置された時に、水晶振動子20が第1の発振器50を介して振動すると、第2の全波整流器110からは、測定された共振抵抗Zの逆数1/Zが得られる。この固有共振抵抗Z0と測定された共振抵抗Zとの差ΔZ(Z0−Z)が、粘性(濃度)に依存した混合気体の圧力に相当する。ただし、固有共振抵抗Zは、広い温度領域(−20〜+60℃)にて安定であるが、真空下ではその変化が無視できなくなる。
【0030】
そこで、本実施形態では温度に依存した固有共振抵抗(Z+Zt)を求め、この固有共振抵抗(Z+Zt)と測定された共振抵抗Zとの差ΔZ(Z+Zt−Z)を、粘性(濃度)に依存した混合気体の圧力として求めている。
【0031】
第1の発振器50は、水晶振動子50の共振周波数fを出力するように構成されている。この共振周波数fは、後述する通り温度Tを求めるために測定されている。
【0032】
第1の発振器50からの第1の共振周波数fは、図1に示す周波数カウンタ70にてカウントされた後に、デジタル値としてCPU90に入力される。第1の発振器50からの共振抵抗Zの逆数1/Z(アナログ値)は、図1に示すA/D変換器80を介してCPU90に入力される。
【0033】
同様にして、第2の発振器60からの共振周波数fは、図1に示す周波数カウンタ70にてカウントされた後に、デジタル値としてCPU90に入力される。第2の発振器60からの共振抵抗Zの逆数1/Z(アナログ値)は、図1に示すA/D変換器80を介してCPU90に入力される。
【0034】
次に、CPU90での濃度演算について説明する。
【0035】
(温度補正)
まず、第1,第2の発振器50,60からのデータf,f,1/Z,1/Zに基づき、それぞれ温度補正された固有共振抵抗(Z+Zt)を求める。以下では、第1の水晶発振子20について求めるが、第2の水晶発振子40についても同様に求められる。
【0036】
ここで、第1の水晶発振子20は、図3に示すように、温度Tと共振周波数fとの間で直線aの特性と、温度Tとそれに依存した固有共振抵抗(Z+Zt)との間で曲線bの特性を有する。
【0037】
CPU90では、第1の発振器50にて求められた共振周波数fから、例えば図3中のA点を求め、そのA点に対応する温度から図3中のB点を求めることで、続いてと、水晶振動子50の温度に依存した固有共振抵抗(Z+Zt)を求めることができる。
【0038】
第2の水晶振動子40についても同様にして、温度に依存した固有共振抵抗を求めることができる。
【0039】
(混合気体の濃度演算)
上述した通り、温度に依存した固有共振抵抗(Z+Zt)を求め、この固有共振抵抗(Z+Zt)と測定された共振抵抗Zとの差ΔZ(Z+Zt−Z)が、粘性(濃度)に依存した気体の圧力である。図4は、その差ΔZを、気体圧力Pを変化させて求めた測定図である。図4と同様な手法で、被測定気体として例えば2種類の濃度のオゾン/酸素混合気体と、ベローズ容器30内の一定濃度の不活性ガスについてそれぞれ、抵抗差ΔZと気体圧力Pとの関係を予め測定しておく。
【0040】
次に、これら3種類の測定データから、図5に示す検量線が作成される。図5の横軸は、第2の水晶振動子40側のデータから求められる圧力(絶対圧力)である。図5の縦軸は、第1の水晶振動子20側のデータから求められる混合気体の粘性に依存した圧力である。図5では、酸素100%の場合の特性Cと、酸素95%/オゾン5%の混合気体の場合の特性Dとについてプロットされている。
この図5に示す検量線データが、図1のメモリ92に記憶されている。
【0041】
ここで、濃度が未知の混合気体が配管10を通過した時、上述した手法により、第1の水晶振動子20からの情報に基づいて、その混合気体の粘性(濃度)に依存した圧力(図5の縦軸座標位置)が求められる。一方、第2の水晶振動子40からの情報に基づいて、その混合気体の粘性(濃度)に依存しない絶対圧力(図5の横軸座標位置)が求められる。この縦、横座標位置から、未知の混合気体の図5中の座標位置Eが求まる。CPU90は、図5中の座標位置Eと、特性C,Dとに基づいて、未知の混合気体中のオゾン濃度を測定することができる。
【0042】
なお、第1,第2の水晶振動子20,40との間に特性、つまり共振抵抗−圧力特性のバラツキが生ずることがある。この特性のバラツキは、異なるの2つの圧力点、例えば大気圧と真空の2点で構成すれば、その間の圧力下での共振抵抗Zから十分な精度で圧力を計算可能である。このために、図1に示すメモリ92に、第1,第2の水晶振動子20,40のそれぞれについて、例えば大気圧と真空との2点の校正結果を記憶し、演算時にその校正結果に基づいて圧力値を補正すればよい。
【0043】
<比較例>
図6は、特許第3336384号に開示された実施形態を示している。なお、図6中において図1と同一機能の部材には同一符号を付している。水晶摩擦真空計100は、水晶振動子20、発振器50、周波数カウンタ70、A/D変換器80及びCPU110を有しており、混合気体の物性(例えば粘性)に依存した圧力を測定する手法は、第1の実施形態と同じである。
【0044】
図6では、混合気体の物性に依存しない圧力を求めるために、隔膜真空計120を用いている。この隔膜真空計120は、混合気体の圧力によって変位するダイヤグラム121とその周辺検出回路の他、増幅器122、位相検出器124、A/D変換器126、発振器128及びCPU130などを有している。水晶摩擦真空計100のCPU110と、隔膜真空計120のCPU130との各出力が入力されるCPU140は、濃度計算機として機能する。その計算結果等はディスプレイ150に表示される。
【0045】
このように、図6に示す比較例の測定装置は、検出原理が全く異なる2種類の真空計を用いることからデータの取り込みが本実施例よりも複雑であり、しかも検出精度はダイヤグラム121の直径に依存するので、隔膜真空計120は小型化が困難である。
【0046】
これに対して、本実施形態では比較的大型な隔膜真空計120を用いることなく、ベローズ容器30内に水晶振動子40を配置することで、混合気体の物性に依存しない圧力測定を可能としている。そして、本実施形態では同種の例えば水晶振動子を2つ用いるので、データの取り込みが共通化し、図1のように例えば周波数カウンタ70及びA/D変換器80は2つの水晶振動子20,40に兼用できる。しかも、水晶振動子20,40は直径2mm、長さ10mm程度にて構成できるので、隔膜真空計120と比較すれば小型化が可能である。
【0047】
<第2の実施の形態>
図7は、本発明の第2の実施形態に係る濃度測定装置を示している。図7に示すように、第1,第2の水晶振動子20,40の出力端に2連スイッチ200を設けることで、図1中の第1,第2の発振器50,60を一つの発振器210にて構成している。2連スイッチ200は、高速で切り換え可能な半導体スイッチなどにて構成することができる。
【0048】
このようにすれば、第1,第2の水晶振動子20,40に対して、周波数カウンタ70及びA/D変換器80に加えて、発振器210を共用させることができ、測測定装置がさらに小型化される。
【0049】
本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。例えば、第1,第2の圧力測定子として、上記実施形態では水晶振動子を用いたが、これに限定されない。ただし、特に混合気体がオゾン等の活性気体であると、発熱体があると爆発するが、水晶振動子はヒータなど用いないので、爆発の危険性がない点で、他の測定子と比較して優れている。
【0050】
また、上述の実施形態では水晶振動子の固有共振抵抗を温度補償したが、温度補償が必要でない圧力帯域例えば大気圧付近であれば、その補償動作を不要とすることができる。この場合、共振周波数f,fを検出する回路と、それをカウントする周波数カウンタが不要となる。
【図面の簡単な説明】
【図1】本発明の第1実施形態に係る濃度測定装置の概略説明図である。
【図2】図1中の第1,第2の発振器に共通な回路構成例を示す図である。
【図3】図1中の水晶振動子の共振周波数及び固有共振抵抗の温度異存特性を示す図である。
【図4】図1中の水晶振動子の固有共振抵抗と共振抵抗の差と、被測定対象気体の圧力との関係を示す特性図ある。
【図5】図1中のメモリに記憶される検量線の一例を示す特性図である。
【図6】本発明の比較例である濃度測定装置の概略説明図である。
【図7】本発明の第2の実施形態の濃度測定装置の概略説明図である。
【符号の説明】
10 配管、12 測定室、20 第1の圧力測定子(水晶振動子)、30 ベローズ容器、40 第2の圧力測定子(水晶振動子)、50 第1の発振器、60 第2の発振器、70 周波数カウンタ、80 A/D変換器、90 CPU(濃度計算機)、92 メモリ、200 2連スイッチ、210 発振器
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to an apparatus for measuring the concentration of a mixed gas composed of two types of gases. In particular, the present invention relates to a concentration measuring device that can detect a pressure reflecting a physical property value of a mixed gas and an absolute pressure not reflecting a physical property value of a mixed gas using the same type of pressure gauge.
[0002]
[Background Art]
Conventionally, as a method for determining the concentration of a mixed gas composed of two types of gases, an ultraviolet absorbance measurement method is known. In this method, for example, when measuring the ozone concentration in the ozone-oxygen mixed gas, the mixed gas is irradiated with a specific wavelength of ultraviolet rays that absorbs ozone but hardly absorbs oxygen. Then, the concentration was determined by measuring the absorptivity of ultraviolet rays.
[0003]
In order to solve various problems of this UV absorbance measurement method, the viscosity, thermal conductivity, density, molecular weight and physical properties of the mixed gas as a function of them are measured, and based on the physical properties of the pure gas, A technique for calculating the concentration of gas has been developed (Patent Document 1).
[0004]
For this purpose, two types of pressure gauges are used. One is a pressure gauge that is sensitive to the physical properties of the gas mixture, and the other is a pressure gauge that is not affected by the physical properties of the gas mixture. In Patent Document 1, a quartz friction vibrator is cited as the former pressure measuring element, and a diaphragm vibrator is cited as the latter pressure measuring element.
[0005]
Further, a crystal resonator that can be temperature-compensated has been proposed (Patent Document 2).
[0006]
[Patent Document 1]
Japanese Patent No. 3336384 [Patent Document 2]
U.S. Pat. No. 5,228,344 (Japanese Patent Publication No. 7-97060)
[0007]
[Problems to be solved by the invention]
The method of Patent Document 1 employs a method that can always accurately measure the concentration even when the pressure of the mixed gas is other than the atmospheric pressure, and even when the pressure changes, and that does not irradiate heat or light. Therefore, it is excellent in that it can safely measure even a gas mixture in which an explosion occurs due to heat or light stimulation. Further, it is excellent in that it does not require an ultraviolet lamp or the like having a specific wavelength, maintenance is easy, and the concentration can be measured immediately in response to a change in gas concentration.
[0008]
However, the method disclosed in Patent Document 1 uses two types of pressure gauges having completely different principles according to the principle of the present invention, so that the apparatus configuration becomes complicated, and the consistency of data from the two types of pressure gauges, etc. New challenges have arisen. In addition, a pressure gauge using a diaphragm is suitable as a pressure gauge that is not affected by the physical property value of the gas mixture. was there.
[0009]
Therefore, an object of the present invention is to measure the pressure affected by the physical property value of the gas mixture and the pressure not affected by the physical property value, and to measure them with the same type of pressure element, thereby increasing the size and complexity of the apparatus. It is an object of the present invention to provide an apparatus for measuring the concentration of a mixture of two gases, which can solve the above problem.
[0010]
[Means for Solving the Problems]
One embodiment of the present invention is a concentration measurement device for a two-component gas mixture whose constituent gas is known and whose concentration is unknown.
A first pressure gauge that is displaced in accordance with the pressure of the gas mixture and is sensitive to the physical property value of the gas mixture;
A known gas whose physical property value does not substantially fluctuate is housed therein, and a container that changes its volume according to the pressure of the mixed gas,
A second pressure gauge disposed in the container, displaced in accordance with the pressure of the gas in the container, and sensitive to the physical property value of the gas in the container;
A concentration detector that measures the concentration of the mixed gas based on the outputs of the first and second pressure gauges.
[0011]
According to one embodiment of the present invention, a pressure dependent on the physical properties of the gas mixture is determined from the first pressure gauge, and an absolute pressure independent of the physical properties of the gas mixture is determined from the second pressure gauge. The concentration detector obtains the physical properties of the mixed gas excluding the influence of the pressure based on the two types of pressure values, and can detect the concentration of the mixed gas based on the physical properties.
[0012]
Moreover, both the first and second pressure gauges are of the same type that are sensitive to the physical property values of the gas to be measured. Therefore, as compared with the invention of Patent Document 1 in which different types of pressure gauges are used, the apparatus configuration is simplified and the data from each pressure gauge is matched, so that the data capture is simplified.
[0013]
As the first and second pressure measuring elements, a tuning-fork type crystal resonator can be suitably used.
[0014]
The concentration detector may include an oscillator connected to the first and second pressure gauges. The concentration detector further includes the mixed gas based on a resonance resistance of the first and second pressure measuring elements, which are outputs from the oscillator, and a specific resonance resistance of the first and second pressure measuring elements. May be included.
[0015]
In this case, the oscillator includes a first oscillator connected to the first pressure gauge,
A second oscillator connected to the second pressure gauge. Alternatively, the oscillator may be shared by the first and second pressure gauges. At this time, a switch may be provided for selectively connecting the output from the first and second pressure gauges to the oscillator.
[0016]
The concentration detector is configured to determine a resonance resistance value of the first and second pressure measuring elements from the oscillator and a difference between each of the natural resonance resistance values of the first and second pressure measuring elements. The concentration of the gas mixture can be measured.
[0017]
In this case, the oscillator outputs the respective resonance frequencies of the first and second pressure measuring elements, and the concentration detecting section is configured based on the respective resonance frequencies of the first and second pressure measuring elements, It is possible to correct the specific resonance resistance value having the temperature dependency of the first and second pressure measuring elements.
[0018]
Further, the concentration calculating unit further includes a memory for storing a calibration result for calibrating a variation in resonance resistance-pressure between the first and second pressure gauges at at least two points where the pressure of the mixed gas is different. Can have.
[0019]
BEST MODE FOR CARRYING OUT THE INVENTION
As a premise of the concentration detection principle of the present invention, as described in Patent Document 1 (Japanese Patent No. 3336384), pressure affected by physical properties such as viscosity, thermal conductivity, density, molecular weight, and the like, and the influence of the physical properties are described. The method adopts a method of calculating the concentration of the mixed gas based on the pressure that does not receive the gas. As an improvement of the present invention, two pressure gauges that are sensitive to physical property values, such as viscosity, that vary depending on the concentration of the mixed gas are used. One of the pressure gauges is brought into contact with the gas mixture to measure the pressure, and the other is housed in an airtight container whose volume changes according to the pressure of the gas mixture, and is not in contact with the gas mixture, but is affected by the physical properties of the gas mixture. Measure the absolute pressure that will not be affected. Then, based on the pressure value reflecting the physical property value and the absolute pressure value, the physical property value such as viscosity of the mixed gas is calculated by an arithmetic processing, excluding the influence of the pressure, thereby obtaining the mixed gas corresponding to the physical property value. Is determined.
[0020]
Examples of the measuring element used in the present invention include a pressure gauge in which a physical quantity changes with a change in pressure of a mixed gas. Examples of the pressure gauge include a quartz oscillator using viscosity (friction), a spinning rotor gauge, and a thermocouple using heat conduction. A vacuum gauge, a Pirani vacuum gauge, a Knudsen vacuum gauge, or the like can be used. Further, for example, a hot cathode ionization vacuum gauge, a cold cathode ionization vacuum gauge, a radiation ionization vacuum gauge, or the like using an ionization phenomenon can be used. These probes can be used properly depending on the properties of gas such as flammability and explosiveness, the concentration and pressure of the target mixed gas.
[0021]
<First embodiment>
FIG. 1 shows a concentration measuring device according to a first embodiment of the present invention. In FIG. 1, a pipe 10 supplies a mixed gas, for example, a mixed gas of two kinds of ozone / oxygen. A gas supply source is connected to one end of the pipe 10. The other end of the pipe 10 is connected to a semiconductor manufacturing apparatus that forms, for example, an oxide film on a substrate. When a cylinder containing liquefied ozone is used as a gas supply source, for example, vaporized high-concentration ozone can be supplied to the pipe 10, and the film forming speed can be increased. The invention is not limited thereto, and low-concentration ozone and high-concentration oxygen may be supplied to the pipe 10. Since the concentration of the mixed gas supplied to the pipe 10 fluctuates, it is necessary to measure the concentration.
[0022]
The measurement chamber 12 communicating with the pipe 10 is provided with a first pressure measuring element 20 and an airtight container such as a bellows container 30 whose volume changes according to pressure. In this bellows container 30, a second pressure gauge 40 is arranged. The measurement chamber 12 may not be provided separately, and the inside of the pipe 10 may be used as the measurement chamber.
[0023]
Each of the first and second pressure gauges 20 and 40 is a pressure gauge that measures a pressure reflecting a physical property value that changes according to a change in the concentration of the gas to be measured. Both of the pressure measuring elements 20 and 40 use a tuning fork type crystal resonator. The principle of pressure detection by a quartz oscillator is that the frictional force between the quartz oscillator that is in contact with the gas to be measured and the gas is equal to the square of the product of the molecular weight of the gas and the viscosity coefficient of the gas when the pressure is in a viscous flow region. It is proportional. This crystal oscillator operates at room temperature and has only gold, quartz, and stainless steel in contact with gas, and has no factor for decomposing ozone.
[0024]
A constant concentration of gas, preferably argon or nitrogen gas, which is an inert gas, is sealed in the bellows container 30, and before the mixed gas is introduced into the pipe 10, the pressure in the bellows container 30 is constant, for example, atmospheric pressure. Is set to
[0025]
Here, since the first pressure measuring element 20 is in direct contact with the gas mixture to be measured, the first pressure measuring element 20 measures a pressure that fluctuates depending on its physical properties, for example, viscosity or molecular density.
On the other hand, the second pressure measuring element 40 is housed in the bellows container 30 and is not in contact with the gas mixture to be measured. The volume of the bellows container 30 changes depending on the pressure of the mixed gas. That is, if the pressure of the mixed gas is higher than the pressure in the bellows container 30, the volume of the bellows container 30 contracts, and if the pressure is opposite, it expands. As a result, the pressure of the inert gas in the bellows container 30 also changes. The second pressure gauge measures the pressure that changes due to the physical properties of the inert gas. The concentration of the inert gas is constant. After all, the second pressure gauge 40 in the bellows container 30 functions as an absolute pressure gauge that can measure an absolute pressure whose measured value does not change due to physical properties such as viscosity and molecular density of the mixed gas.
[0026]
As shown in FIG. 1, a first oscillator 50 is connected to the first pressure gauge 20, and a second oscillator 60 is connected to the second pressure gauge 40. Further, a frequency counter 70 and an A / D converter 80 shared by the first and second oscillators 20 and 40 are provided. The frequency counter 70 and the A / D converter 80 are connected to a CPU 90 functioning as a density calculator. A memory 92 is further connected to the CPU 90, and information necessary for density calculation is stored in the memory 92 in advance.
[0027]
FIG. 2 shows an example of an oscillation circuit shared by the first and second oscillators 50 and 60. Although FIG. 2 illustrates the first oscillator 50, the second oscillator 60 has the same configuration.
[0028]
FIG. 2 has the same configuration as the oscillation circuit disclosed in US Pat. No. 5,228,344. The first oscillator 50 shown in FIG. 2 is for compensating for a measurement error caused by a temperature change of the crystal unit 50. The first oscillator 50 includes a current-voltage converter 100, a first full-wave rectifier 102, an attenuator 104, a comparator 106, a voltage-controlled attenuator 108, and a second full-wave rectifier 110.
[0029]
Here, the natural resonance resistance of the crystal oscillator 20 and Z 0. When the crystal oscillator 20 is placed in an atmosphere of a mixed gas, the crystal oscillator 20 oscillates via the first oscillator 50, from the second full-wave rectifier 110, the measured resonance resistance Z 1 reciprocal 1 / Z 1 is obtained. The difference between the natural resonance resistance Z0 and the measured resonance resistance Z 1 ΔZ (Z0-Z 1 ) corresponds to the pressure of a mixed gas depending on the viscosity (concentration). However, the natural resonance resistance Z 0 is stable over a wide temperature range (-20 to + 60 ° C.), the change can not be ignored in vacuo.
[0030]
Thus, in the present embodiment, a temperature-dependent natural resonance resistance (Z 0 + Zt) is obtained, and a difference ΔZ (Z 0 + Zt−Z 1 ) between the natural resonance resistance (Z 0 + Zt) and the measured resonance resistance Z is calculated. And the pressure of the mixed gas depending on the viscosity (concentration).
[0031]
The first oscillator 50 is configured to output a resonance frequency f 1 of the crystal oscillator 50. The resonance frequency f 1 is measured to determine the street temperature T to be described later.
[0032]
The first resonance frequency f 1 from the first oscillator 50 is input to the CPU 90 as a digital value after being counted by the frequency counter 70 shown in FIG. The reciprocal 1 / Z 1 (analog value) of the resonance resistance Z 1 from the first oscillator 50 is input to the CPU 90 via the A / D converter 80 shown in FIG.
[0033]
Similarly, the resonance frequency f 2 from the second oscillator 60, after being counted by a frequency counter 70 shown in FIG. 1, is input to CPU90 as a digital value. The reciprocal 1 / Z 2 (analog value) of the resonance resistance Z 2 from the second oscillator 60 is input to the CPU 90 via the A / D converter 80 shown in FIG.
[0034]
Next, the density calculation in the CPU 90 will be described.
[0035]
(Temperature correction)
First, based on the data f 1 , f 2 , 1 / Z 1 , 1 / Z 2 from the first and second oscillators 50 and 60, temperature-corrected natural resonance resistances (Z 0 + Zt) are obtained. Hereinafter, the first crystal oscillator 20 is obtained, but the second crystal oscillator 40 is similarly obtained.
[0036]
The first crystal oscillator 20, as shown in FIG. 3, the natural resonance resistance was dependent on the characteristics of the straight line a, and it temperature T between the temperature T and the resonance frequency f 1 (Z 0 + Zt) And has the characteristic of the curve b.
[0037]
In CPU 90, from the resonance frequency f 1 determined by the first oscillator 50, for example, determine the point A in FIG. 3, by obtaining the point B in FIG. 3 from a temperature corresponding to the point A, followed by And the natural resonance resistance (Z 0 + Zt) depending on the temperature of the crystal unit 50 can be obtained.
[0038]
Similarly, the temperature-dependent natural resonance resistance of the second crystal resonator 40 can be obtained.
[0039]
(Calculation of gas mixture concentration)
As described above, the temperature-dependent natural resonance resistance (Z 0 + Zt) is obtained, and the difference ΔZ (Z 0 + Zt−Z) between the natural resonance resistance (Z 0 + Zt) and the measured resonance resistance Z is determined by the viscosity ( Concentration) depending on the gas pressure. FIG. 4 is a measurement diagram in which the difference ΔZ is obtained by changing the gas pressure P. In the same manner as in FIG. 4, the relationship between the resistance difference ΔZ and the gas pressure P is determined for each of the ozone / oxygen mixed gas having two concentrations and the inert gas having a constant concentration in the bellows container 30 as the gas to be measured. Measure in advance.
[0040]
Next, a calibration curve shown in FIG. 5 is created from these three types of measurement data. The horizontal axis in FIG. 5 is the pressure (absolute pressure) obtained from the data on the second crystal resonator 40 side. The vertical axis in FIG. 5 is a pressure dependent on the viscosity of the gas mixture obtained from the data on the first crystal resonator 20 side. FIG. 5 plots a characteristic C in the case of 100% oxygen and a characteristic D in the case of a mixed gas of 95% oxygen / 5% ozone.
The calibration curve data shown in FIG. 5 is stored in the memory 92 of FIG.
[0041]
Here, when the mixed gas whose concentration is unknown passes through the pipe 10, based on the information from the first crystal resonator 20, the pressure (FIG. 5 (vertical axis coordinate position). On the other hand, based on information from the second crystal resonator 40, an absolute pressure (the horizontal coordinate position in FIG. 5) that does not depend on the viscosity (concentration) of the gas mixture is obtained. The coordinate position E in FIG. 5 of the unknown gas mixture is determined from the vertical and horizontal coordinate positions. The CPU 90 can measure the ozone concentration in the unknown gas mixture based on the coordinate position E in FIG. 5 and the characteristics C and D.
[0042]
Note that there may be variations in characteristics between the first and second crystal units 20 and 40, that is, the resonance resistance-pressure characteristics. If this characteristic variation is made up of two different pressure points, for example, two points of atmospheric pressure and vacuum, the pressure can be calculated with sufficient accuracy from the resonance resistance Z under the pressure between them. For this purpose, for example, two calibration results of atmospheric pressure and vacuum are stored in the memory 92 shown in FIG. The pressure value may be corrected based on the pressure value.
[0043]
<Comparative example>
FIG. 6 shows an embodiment disclosed in Japanese Patent No. 3336384. In FIG. 6, members having the same functions as those in FIG. 1 are denoted by the same reference numerals. The quartz friction vacuum gauge 100 includes a quartz oscillator 20, an oscillator 50, a frequency counter 70, an A / D converter 80, and a CPU 110. A method for measuring a pressure depending on the physical properties (eg, viscosity) of a mixed gas is as follows. , And the same as the first embodiment.
[0044]
In FIG. 6, a diaphragm gauge 120 is used to obtain a pressure independent of the physical properties of the gas mixture. The diaphragm vacuum gauge 120 has an amplifier 122, a phase detector 124, an A / D converter 126, an oscillator 128, a CPU 130, and the like, in addition to a diagram 121 displaced by the pressure of the mixed gas and its peripheral detection circuit. The CPU 140 to which the outputs of the CPU 110 of the quartz friction gauge 100 and the CPU 130 of the diaphragm gauge 120 are input functions as a concentration calculator. The calculation result and the like are displayed on the display 150.
[0045]
As described above, the measurement device of the comparative example shown in FIG. 6 uses two types of vacuum gauges whose detection principles are completely different from each other, so that data acquisition is more complicated than that of this embodiment, and the detection accuracy is the diameter of the diagram 121. , It is difficult to reduce the size of the diaphragm gauge 120.
[0046]
On the other hand, in the present embodiment, by arranging the quartz oscillator 40 in the bellows container 30 without using the relatively large diaphragm gauge 120, pressure measurement independent of the physical properties of the mixed gas is enabled. . In the present embodiment, since the same type of, for example, two crystal units are used, data acquisition is commonized. For example, the frequency counter 70 and the A / D converter 80 are connected to the two crystal units 20 and 40 as shown in FIG. Can be used for Moreover, since the quartz oscillators 20 and 40 can be configured with a diameter of about 2 mm and a length of about 10 mm, the size can be reduced as compared with the diaphragm gauge 120.
[0047]
<Second embodiment>
FIG. 7 shows a concentration measuring device according to a second embodiment of the present invention. As shown in FIG. 7, by providing a double switch 200 at the output terminals of the first and second crystal units 20 and 40, the first and second oscillators 50 and 60 in FIG. 210. The dual switch 200 can be configured by a semiconductor switch or the like that can be switched at high speed.
[0048]
By doing so, the oscillator 210 can be shared with the first and second crystal units 20 and 40 in addition to the frequency counter 70 and the A / D converter 80, and the measurement and measurement device can be further configured. It is downsized.
[0049]
The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the present invention. For example, a quartz oscillator is used as the first and second pressure measuring elements in the above embodiment, but the present invention is not limited to this. However, especially when the mixed gas is an active gas such as ozone, it explodes when there is a heating element.However, since a quartz oscillator is not used, there is no danger of explosion. Excellent.
[0050]
In the above-described embodiment, the natural resonance resistance of the crystal unit is temperature-compensated. However, the compensation operation can be omitted in a pressure band where temperature compensation is not required, for example, near the atmospheric pressure. In this case, a circuit for detecting the resonance frequencies f 1 and f 2 and a frequency counter for counting them are not required.
[Brief description of the drawings]
FIG. 1 is a schematic explanatory view of a concentration measuring device according to a first embodiment of the present invention.
FIG. 2 is a diagram illustrating a circuit configuration example common to first and second oscillators in FIG. 1;
FIG. 3 is a diagram showing a temperature dependence characteristic of a resonance frequency and a natural resonance resistance of the crystal unit shown in FIG. 1;
FIG. 4 is a characteristic diagram showing a relationship between a difference between a natural resonance resistance and a resonance resistance of the crystal unit shown in FIG. 1 and a pressure of a gas to be measured.
FIG. 5 is a characteristic diagram showing an example of a calibration curve stored in a memory in FIG.
FIG. 6 is a schematic explanatory view of a concentration measuring device as a comparative example of the present invention.
FIG. 7 is a schematic explanatory view of a concentration measuring device according to a second embodiment of the present invention.
[Explanation of symbols]
Reference Signs List 10 piping, 12 measuring chamber, 20 first pressure measuring element (crystal oscillator), 30 bellows container, 40 second pressure measuring element (crystal oscillator), 50 first oscillator, 60 second oscillator, 70 Frequency counter, 80 A / D converter, 90 CPU (concentration calculator), 92 memory, 200 double switch, 210 oscillator

Claims (8)

構成気体が既知で濃度が未知の2種混合気体の濃度測定装置において、
前記混合気体の圧力に応じて変位し、かつ、前記混合気体の物性値に敏感な第1の圧力測定子と、
物性値が実質的に変動しない既知の気体が内部に収容され、前記混合気体の圧力に応じて体積変化する容器と、
前記容器内に配置され、前記容器内の気体の圧力に応じて変位し、かつ前記容器内の気体の物性値に敏感な第2の圧力測定子と、
前記第1,第2の圧力測定子の出力に基づいて、前記混合気体の濃度を測定する濃度検出部と、を有することを特徴とする2種混合気体の濃度測定装置。
In a concentration measuring device for a mixture of two gases whose constituent gases are known and whose concentration is unknown,
A first pressure gauge that is displaced in accordance with the pressure of the gas mixture and is sensitive to the physical property value of the gas mixture;
A known gas whose physical property value does not substantially fluctuate is housed therein, and a container that changes its volume according to the pressure of the mixed gas,
A second pressure gauge disposed in the container, displaced in accordance with the pressure of the gas in the container, and sensitive to the physical property value of the gas in the container;
A concentration detector for measuring the concentration of the mixed gas based on the outputs of the first and second pressure gauges.
請求項1において、
前記第1,第2の圧力測定子は、共に音叉型水晶振動子であることを特徴とする2種混合気体の濃度測定装置。
In claim 1,
The apparatus for measuring the concentration of a mixture of two gases, wherein the first and second pressure measuring elements are both tuning-fork type quartz vibrators.
請求項1または2において、
前記濃度検出部は、
前記第1,第2の圧力測定子に接続される発振器と、
前記発振器からの出力である前記第1,第2の圧力測定子の共振抵抗と、前記第1,第2の圧力測定子の固有共振抵抗とに基づいて、前記混合気体の濃度を演算する濃度演算器と、を含むことを特徴とする2種混合気体の濃度測定装置。
In claim 1 or 2,
The concentration detector,
An oscillator connected to the first and second pressure gauges;
A concentration calculating a concentration of the gas mixture based on a resonance resistance of the first and second pressure measuring elements, which are outputs from the oscillator, and a specific resonance resistance of the first and second pressure measuring elements; An apparatus for measuring the concentration of a mixture of two gases, comprising: a computing unit.
請求項3において、
前記発振器は、
前記第1の圧力測定子に接続された第1の発振器と、
前記第2の圧力測定子に接続された第2の発振器と、
を含むことを特徴とする2種混合気体の濃度測定装置。
In claim 3,
The oscillator comprises:
A first oscillator connected to the first pressure gauge;
A second oscillator connected to the second pressure gauge;
An apparatus for measuring the concentration of a mixture of two gases, comprising:
請求項2において、
前記発振器は、前記第1,第2の圧力測定子に共用され、
前記第1,第2の圧力測定子からの出力を、前記発振器に択一的に接続するスイッチをさらに有することを特徴とする2種混合気体の濃度測定装置。
In claim 2,
The oscillator is shared by the first and second pressure gauges,
An apparatus for measuring the concentration of a mixture of two gases, further comprising a switch for selectively connecting the outputs from the first and second pressure gauges to the oscillator.
請求項3乃至5のいずれかにおいて、
前記濃度検出部は、前記発振器からの前記第1,第2の圧力測定子の共振抵抗値と、前記第1,第2の圧力測定子の各固有共振抵抗値との差に基づいて、前記混合気体の濃度を測定することを特徴とする2種混合気体の濃度測定装置。
In any one of claims 3 to 5,
The concentration detector is configured to determine a resonance resistance value of the first and second pressure measuring elements from the oscillator and a difference between each of the natural resonance resistance values of the first and second pressure measuring elements. An apparatus for measuring the concentration of a mixture of two gases, which measures the concentration of a mixture of gases.
請求項6において、
前記発振器は、前記第1,第2の圧力測定子の各共振周波数を出力し、
前記濃度検出部は、前記第1,第2の圧力測定子の前記各共振周波数に基づいて、前記第1,第2の圧力測定子の温度依存性を有する前記固有共振抵抗値を補正することを特徴とする2種混合気体の濃度測定装置。
In claim 6,
The oscillator outputs each resonance frequency of the first and second pressure gauges,
The concentration detector corrects the specific resonance resistance having the temperature dependency of the first and second pressure measuring elements based on the respective resonance frequencies of the first and second pressure measuring elements. An apparatus for measuring the concentration of a mixture of two gases.
請求項1乃至7のいずれかにおいて、
前記濃度検出部は、前記第1,第2の圧力測定子間の共振抵抗−圧力のバラツキを、前記混合気体の圧力が異なる少なくとも2点にて校正する校正結果を記憶するメモリをさらに有することを特徴とする2種混合気体の濃度測定装置。
In any one of claims 1 to 7,
The concentration detecting unit further includes a memory for storing a calibration result for calibrating a variation in resonance resistance-pressure between the first and second pressure gauges at at least two points where the pressure of the mixed gas is different. An apparatus for measuring the concentration of a mixture of two gases.
JP2003010118A 2003-01-17 2003-01-17 Concentration measuring instrument for gas mixture comprising two kinds of gases Pending JP2004219386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003010118A JP2004219386A (en) 2003-01-17 2003-01-17 Concentration measuring instrument for gas mixture comprising two kinds of gases

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003010118A JP2004219386A (en) 2003-01-17 2003-01-17 Concentration measuring instrument for gas mixture comprising two kinds of gases

Publications (1)

Publication Number Publication Date
JP2004219386A true JP2004219386A (en) 2004-08-05

Family

ID=32899418

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003010118A Pending JP2004219386A (en) 2003-01-17 2003-01-17 Concentration measuring instrument for gas mixture comprising two kinds of gases

Country Status (1)

Country Link
JP (1) JP2004219386A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006216855A (en) * 2005-02-04 2006-08-17 National Institute Of Advanced Industrial & Technology Film forming equipment and measuring method
KR100772802B1 (en) * 2001-09-06 2007-11-01 다이요 닛산 가부시키가이샤 Method for measuring fluid component concentrations and apparatus therefor
JP2010169550A (en) * 2009-01-23 2010-08-05 Epson Toyocom Corp Stress-detecting device
EP2667276A1 (en) * 2012-05-24 2013-11-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
CN103868816A (en) * 2012-12-17 2014-06-18 精工电子有限公司 Qcm sensor
JP2014119456A (en) * 2012-12-13 2014-06-30 Tesat-Spacecom Gmbh & Co Kg Method for testing airtightness of package
JP2014139566A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
JP2015099045A (en) * 2013-11-18 2015-05-28 セイコーインスツル株式会社 QCM sensor and cartridge
JP2015169581A (en) * 2014-03-07 2015-09-28 バキュームプロダクツ株式会社 Physical property dependence type pressure gauge and hydrogen concentration measurement device
CN105424546A (en) * 2015-11-04 2016-03-23 中国直升机设计研究所 Concentration measuring device of fire extinguishing agent concentration measuring system
US9441997B2 (en) 2012-05-24 2016-09-13 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
US9448094B2 (en) 2010-11-29 2016-09-20 Air Products And Chemicals, Inc. Method of and apparatus for measuring the mass flow rate of a gas
US9448090B2 (en) 2012-05-24 2016-09-20 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
US9459191B2 (en) 2010-11-29 2016-10-04 Air Products And Chemicals, Inc. Method of and apparatus for measuring the molecular weight of a gas
JP2017527802A (en) * 2014-09-09 2017-09-21 アムス インターナショナル エージー Resonant membrane gas sensor and non-transitory machine-readable storage medium therefor
US9804010B2 (en) 2012-05-24 2017-10-31 Air Products And Chemicals, Inc. Method of, and apparatus for, regulating the mass flow rate of a gas
US9870007B2 (en) 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
KR101856956B1 (en) 2011-12-27 2018-05-15 재단법인 포항산업과학연구원 Method for Measuring Concentration of Gas in Mixed Gases
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture
US10151627B2 (en) 2012-08-10 2018-12-11 Skorpios Technologies, Inc. Method and system for performing testing of photonic devices
JP2020024190A (en) * 2018-06-26 2020-02-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Sensor device for detecting gas

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100772802B1 (en) * 2001-09-06 2007-11-01 다이요 닛산 가부시키가이샤 Method for measuring fluid component concentrations and apparatus therefor
JP2006216855A (en) * 2005-02-04 2006-08-17 National Institute Of Advanced Industrial & Technology Film forming equipment and measuring method
JP2010169550A (en) * 2009-01-23 2010-08-05 Epson Toyocom Corp Stress-detecting device
US9459191B2 (en) 2010-11-29 2016-10-04 Air Products And Chemicals, Inc. Method of and apparatus for measuring the molecular weight of a gas
US9448094B2 (en) 2010-11-29 2016-09-20 Air Products And Chemicals, Inc. Method of and apparatus for measuring the mass flow rate of a gas
KR101856956B1 (en) 2011-12-27 2018-05-15 재단법인 포항산업과학연구원 Method for Measuring Concentration of Gas in Mixed Gases
CN104303127A (en) * 2012-05-24 2015-01-21 气体产品与化学公司 Method of, and apparatus for, providing a gas mixture
US9804010B2 (en) 2012-05-24 2017-10-31 Air Products And Chemicals, Inc. Method of, and apparatus for, regulating the mass flow rate of a gas
TWI582328B (en) * 2012-05-24 2017-05-11 氣體產品及化學品股份公司 Method of, and apparatus for, providing a gas mixture
KR20150004924A (en) * 2012-05-24 2015-01-13 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method of, and apparatus for, providing a gas mixture
US9690304B2 (en) 2012-05-24 2017-06-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
EP2667276A1 (en) * 2012-05-24 2013-11-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
US9870007B2 (en) 2012-05-24 2018-01-16 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
KR101659200B1 (en) * 2012-05-24 2016-09-22 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Method ofand apparatus forproviding a gas mixture
US9441997B2 (en) 2012-05-24 2016-09-13 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the physical properties of two-phase fluids
WO2013174954A1 (en) * 2012-05-24 2013-11-28 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
US9448090B2 (en) 2012-05-24 2016-09-20 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
US10732029B2 (en) 2012-08-10 2020-08-04 Skorpios Technologies, Inc. Diagnostic waveguide for optical chip testing
US10151627B2 (en) 2012-08-10 2018-12-11 Skorpios Technologies, Inc. Method and system for performing testing of photonic devices
JP2014119456A (en) * 2012-12-13 2014-06-30 Tesat-Spacecom Gmbh & Co Kg Method for testing airtightness of package
JP2014139557A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
JP2014139566A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
CN103868816A (en) * 2012-12-17 2014-06-18 精工电子有限公司 Qcm sensor
JP2015099045A (en) * 2013-11-18 2015-05-28 セイコーインスツル株式会社 QCM sensor and cartridge
JP2015169581A (en) * 2014-03-07 2015-09-28 バキュームプロダクツ株式会社 Physical property dependence type pressure gauge and hydrogen concentration measurement device
JP2017527802A (en) * 2014-09-09 2017-09-21 アムス インターナショナル エージー Resonant membrane gas sensor and non-transitory machine-readable storage medium therefor
KR101946182B1 (en) 2014-09-09 2019-02-08 에이엠에스 인터내셔널 에이쥐 Nem-transitory machine-readable storage medium
CN105424546A (en) * 2015-11-04 2016-03-23 中国直升机设计研究所 Concentration measuring device of fire extinguishing agent concentration measuring system
JP2018112444A (en) * 2017-01-11 2018-07-19 Q’z株式会社 Device for measuring concentration of two-gas mixture
JP2020024190A (en) * 2018-06-26 2020-02-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツングRobert Bosch Gmbh Sensor device for detecting gas
JP7397588B2 (en) 2018-06-26 2023-12-13 ロベルト・ボッシュ・ゲゼルシャフト・ミト・ベシュレンクテル・ハフツング Sensor device for detecting gas

Similar Documents

Publication Publication Date Title
JP2004219386A (en) Concentration measuring instrument for gas mixture comprising two kinds of gases
Egan et al. Comparison measurements of low-pressure between a laser refractometer and ultrasonic manometer
Stone et al. Using helium as a standard of refractive index: correcting errors in a gas refractometer
US8117898B2 (en) Method for sensing gas composition and pressure
Abe et al. Performance evaluation of a trace-moisture analyzer based on cavity ring-down spectroscopy: Direct comparison with the NMIJ trace-moisture standard
Tretyakov et al. Studies of 183 GHz water line: Broadening and shifting by air, N2 and O2 and integral intensity measurements
JP4266850B2 (en) Concentration measuring device for binary gas mixture
US10914717B2 (en) Method and apparatus for partial pressure detection
Prokopová et al. Comments on temperature calibration and uncertainty estimate of the vibrating tube densimeter operated at atmospheric pressure
Ricker et al. Determination of distortion corrections for a fixed length optical cavity pressure standard
Romeo et al. Density of standard seawater by vibrating tube densimeter: analysis of the method and results
Barlow et al. Pressure dependence of the velocity of sound in water as a function of temperature
Wegge et al. Speed-of-sound measurements in (argon+ carbon dioxide) over the temperature range from (275 to 500) K at pressures up to 8 MPa
RU2556288C2 (en) Analyser of total pressure, density and partial pressure of water vapours in low vacuum
JP4953087B2 (en) Concentration measuring method and apparatus
JP2004198328A (en) Method and apparatus for measuring composition of multi-component mixed gas
JPH0862010A (en) Measuring apparatus
Gonano et al. In situ vapor pressure measurement for low temperature thermometry
JPH1090152A (en) Measuring apparatus for concentration of gas
JP6364209B2 (en) Hydrogen concentration measuring device
JP2006208028A (en) Temperature sensor and measuring method of temperature
CN117347571B (en) Multi-parameter self-calibration method, device and system of mixed gas measuring device
Kojima et al. Development of low-pressure calibration system using a pressure balance
Bradley A thermistor McLeod gauge for a pressure range 1-10-7 mm of mercury
KR100441663B1 (en) Micro pH sensor with temperature sensor for measuring pH with the micro pH sensor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070731

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071120