JP4953087B2 - Concentration measuring method and apparatus - Google Patents

Concentration measuring method and apparatus Download PDF

Info

Publication number
JP4953087B2
JP4953087B2 JP2007292213A JP2007292213A JP4953087B2 JP 4953087 B2 JP4953087 B2 JP 4953087B2 JP 2007292213 A JP2007292213 A JP 2007292213A JP 2007292213 A JP2007292213 A JP 2007292213A JP 4953087 B2 JP4953087 B2 JP 4953087B2
Authority
JP
Japan
Prior art keywords
gas
concentration
component
mixed gas
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007292213A
Other languages
Japanese (ja)
Other versions
JP2009115760A (en
Inventor
淳 鈴木
秀彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007292213A priority Critical patent/JP4953087B2/en
Publication of JP2009115760A publication Critical patent/JP2009115760A/en
Application granted granted Critical
Publication of JP4953087B2 publication Critical patent/JP4953087B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、予め構成する気体の種類が知られている3種類以上の気体から成る混合気体中の各気体の濃度を測定する測定方法および装置に関する。   The present invention relates to a measuring method and apparatus for measuring the concentration of each gas in a mixed gas composed of three or more types of gases whose types of gases are known in advance.

本出願人は、混合既知二成分気体の濃度を測定する発明を開発した(特許文献1参照。以下「従来技術1」という。)。
この発明の測定方法は主として水晶振動子センサーによる圧力計の出力が、同じ絶対圧力においては気体の種類に依存して変化することを利用することにより混合気体中の各成分気体の濃度(分圧)を測定するものである。
また、本出願人は、この従来技術1をさらに拡張し、本発明と同様の解決課題である多成分気体の分圧を測定する発明も提案している(特許文献2参照。以下「従来技術2」という。)。
The present applicant has developed an invention for measuring the concentration of mixed binary gas (see Patent Document 1, hereinafter referred to as “Prior Art 1”).
The measurement method of the present invention mainly uses the fact that the output of a pressure gauge by a quartz crystal sensor changes depending on the type of gas at the same absolute pressure, thereby allowing the concentration (partial pressure) of each component gas in the mixed gas. ).
In addition, the present applicant has further expanded the conventional technique 1 and proposed an invention for measuring the partial pressure of a multi-component gas, which is the same problem as that of the present invention (see Patent Document 2 below). 2 ”).

さらに、上記従来技術1、2の応用として、ガス検出を行う発明がある(特許文献3参照。以下「従来技術3」という。)。
また、以上とは別に気密試験を簡便に行う発明が提案されている(特許文献4参照。以下「従来技術4」という。)。
一方、サーモパイルを有するマイクロフローセンサーを利用したガス密度計についての発明も存在する(特許文献5参照。以下「従来技術5」という。)。
特開2001−330543号公報 特開2004−198328号公報 特開昭60−238742号公報 特開2003−194654号公報 特開2004−125684号公報
Furthermore, as an application of the above-described prior arts 1 and 2, there is an invention for performing gas detection (see Patent Document 3; hereinafter referred to as “prior art 3”).
In addition to the above, an invention has been proposed in which an airtight test is simply performed (see Patent Document 4; hereinafter referred to as “Prior Art 4”).
On the other hand, there is also an invention relating to a gas density meter using a microflow sensor having a thermopile (see Patent Document 5, hereinafter referred to as “Prior Art 5”).
JP 2001-330543 A JP 2004-198328 A JP-A-60-238742 JP 2003-194654 A JP 2004-125684 A

上記従来技術1においては、二成分から成る気体にしか応用できない。
また上記従来技術2は、三成分から成る混合気体のみを想定している上、その構成する気体のうち1つの濃度が自明である場合か、または2つの気体の濃度比が一定であり、事実上その対象が二成分混合気体の分圧測定に帰着できる場合のみに限られている。
また上記従来技術3においては、気体の組成が変化したことは検知できるが、その際組成変化前後のいずれにおいても混合気体を構成する気体の各分圧を求める方法については記されていない。
さらに上記従来技術4については、ガス管の気密試験を行うための方法であって、濃度測定の部分については従来から存在する濃度計を用いており、濃度測定の点において新たな技術を開示するものではない。
さらにまた、上記従来技術5は成分が既知の一種類の気体の密度測定を行うもので気体種の判別は行えない。
The prior art 1 can be applied only to a gas composed of two components.
Moreover, the above prior art 2 assumes only a mixed gas composed of three components, and the case where the concentration of one of the constituent gases is self-evident or the concentration ratio of the two gases is constant. Furthermore, it is limited only when the object can be reduced to the partial pressure measurement of the binary gas mixture.
Moreover, in the said prior art 3, although it can detect that the composition of gas changed, the method of calculating | requiring each partial pressure of the gas which comprises mixed gas in any before and behind a composition change is not described.
Further, the above prior art 4 is a method for performing a gas pipe airtightness test, and the concentration measuring portion uses a conventional densitometer, and discloses a new technology in terms of concentration measurement. It is not a thing.
Furthermore, the above prior art 5 measures the density of one kind of gas whose components are known, and cannot distinguish the gas type.

本発明は以上のような難点を克服し、簡便で安全に測定できる水晶振動子を用いて既知の三成分以上の気体から成る混合ガス中の各気体の濃度を求める方法及び装置を提供することを目的とする。
なお、本明細書において気体の「濃度」とは、気体の「濃度または分圧」を意味するものである。
The present invention provides a method and apparatus for determining the concentration of each gas in a mixed gas composed of three or more known gases by using a crystal resonator that can overcome the above-described difficulties and can be measured easily and safely. With the goal.
In the present specification, the “concentration” of gas means “concentration or partial pressure” of gas.

上記目的を達成するため本発明の濃度測定方法は、3種類以上の、種類が既知の気体から成る混合気体を構成する各気体の未知濃度を測定する方法であって、センサーにより前記混合気体を構成する各気体の濃度に依存して変化する物性値に依存する物性依存出力を測定し、前記混合気体に含まれる気体のうち、2種類の気体の各組み合わせについて、一方の種類の気体の分圧比に対する他方の種類の気体の分圧比を0%から100%変化させることにより検量線群を予め求め、測定した前記物性依存出力と前記検量線群との関係から、前記一方の種類の気体と他方の種類の気体との分圧比の絞り込みを行い、前記混合気体を構成する各気体の濃度を求めることを特徴としている。
ここで従来技術1は1つの検量線を用いることにより既知二成分から成る混合気体を構成する各気体の濃度を測定するものである。一方混合気体を構成する気体が三成分以上の場合には、1つの検量線からだけでは全ての気体の濃度を完全に決定することはできないが、ある程度絞り込むことはできる。そこで複数の物性依存出力の気体濃度依存性を用いれば、さらに、各気体の濃度を絞り込める。この各気体の濃度の絞り込みを測定誤差範囲または実用上十分な範囲まで行えば、それは混合気体を構成する各気体の濃度を決定する、すなわち求めることと同義である。
上記の気体濃度絞り込みのためには各構成気体の濃度に依存する物性依存出力を複数取得する必要があるが、これらの物性依存出力に寄与する物性値としては、粘性・熱伝導率・密度・分子量といった量が利用できる。さらにここでの測定においては同じ物性に対しても異なる種類のセンサーまたは異なる気体に対する相対感応度が異なるセンサーを用いれば物性依存出力の気体濃度依存性が異なることからさらに多くの異なる気体濃度依存性を得ることができ、各構成気体の濃度測定精度を向上させる。
以上の発明を実施するためには、最低限、装置として気体を導入するための諸装置及び上記の物性依存出力を直接、間接に得るための複数種、複数個のセンサーが必要である。
さらに濃度測定のためには物性依存出力の気体濃度依存性である検量線が必要であるが、これらは上記装置を使用すれば求めることができる。なお濃度測定の迅速化及び精密化のため既知検量線群から濃度を導出する電子計算機が必要である。
In order to achieve the above object, the concentration measuring method of the present invention is a method for measuring an unknown concentration of each gas constituting a mixed gas composed of three or more kinds of known gases , wherein the mixed gas is measured by a sensor. A physical property-dependent output that depends on a physical property value that varies depending on the concentration of each constituent gas is measured, and for each combination of two types of gases among the gases contained in the mixed gas, the distribution of one type of gas A calibration curve group is obtained in advance by changing the partial pressure ratio of the other type of gas to the pressure ratio from 0% to 100%, and from the relationship between the measured physical property-dependent output and the calibration curve group, the one type of gas and The partial pressure ratio with the other kind of gas is narrowed down, and the concentration of each gas constituting the mixed gas is obtained.
Here, the prior art 1 measures the concentration of each gas constituting a mixed gas composed of two known components by using one calibration curve. On the other hand, when the gas constituting the mixed gas has three or more components, the concentration of all gases cannot be determined completely from only one calibration curve, but can be narrowed down to some extent. Therefore, the concentration of each gas can be further narrowed down by using the gas concentration dependency of a plurality of physical property dependent outputs. If the concentration of each gas is narrowed down to a measurement error range or a practically sufficient range, it is synonymous with determining, that is, obtaining the concentration of each gas constituting the mixed gas.
In order to narrow down the above gas concentration, it is necessary to obtain a plurality of physical property dependent outputs depending on the concentration of each constituent gas. Physical property values contributing to these physical property dependent outputs include viscosity, thermal conductivity, density, A quantity such as molecular weight can be used. Furthermore, in this measurement, if different types of sensors are used for the same physical properties or sensors with different relative sensitivities to different gases, the dependence of the physical property-dependent output on the gas concentration will be different. And the concentration measurement accuracy of each constituent gas is improved.
In order to implement the above invention, at least a device for introducing a gas and a plurality of types and a plurality of sensors for directly and indirectly obtaining the above-described physical property dependent outputs are necessary.
Further, for the concentration measurement, a calibration curve that is dependent on the gas concentration of the physical property dependent output is necessary, and these can be obtained by using the above-mentioned apparatus. In order to speed up and refine the concentration measurement, an electronic computer that derives the concentration from the known calibration curve group is required.

本発明は、以下のような優れた効果を奏する。
(1)予め構成する気体が知られている多成分混合気体において、混合気体が存在する容器内を水晶振動子センサーと絶対圧力計のような物理センサーのみを用いて測定することにより混合気体中に存在する各構成気体の濃度を簡便に測定することができる。この測定では測定時に測定される気体を消費することなく、高速な測定が可能で、混合気体の圧力が大気圧以外の時でも、また圧力が変化しても常に正確な組成を測定することができる。
(2)さらに、水晶振動子を含む圧電素子を用いる場合には、熱や光を照射しない測定法であるため、熱や光による刺激によって爆発の起こる反応性の高い混合気体でも安全に測定することができる。測定に際して特定の波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、更に気体組成の変化に対応して即時にその組成を測定することが可能となる。
The present invention has the following excellent effects.
(1) In a multi-component gas mixture in which a pre-configured gas is known, the inside of the container in which the gas mixture exists is measured by using only a physical sensor such as a quartz crystal sensor and an absolute pressure gauge. It is possible to easily measure the concentration of each constituent gas present in the. This measurement enables high-speed measurement without consuming the gas measured at the time of measurement, and can always measure the exact composition even when the pressure of the mixed gas is other than atmospheric pressure or even when the pressure changes. it can.
(2) Furthermore, when using a piezoelectric element including a quartz resonator, it is a measurement method that does not irradiate heat or light, so it can safely measure even highly reactive gas mixtures that cause an explosion due to stimulation by heat or light. be able to. The measurement does not require an ultraviolet lamp having a specific wavelength, is easy to maintain, and can immediately measure the composition in response to changes in the gas composition.

以下、図面を参照して、本発明の濃度測定方法および濃度測定装置の実施の形態について詳細に説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加えうるものである。   Hereinafter, embodiments of a concentration measuring method and a concentration measuring apparatus according to the present invention will be described in detail with reference to the drawings. However, the present invention is not construed as being limited thereto, and the scope of the present invention is not limited thereto. Various changes, modifications, and improvements can be made based on the knowledge of those skilled in the art without departing from the scope.

本発明の基本原理は、粘性・熱伝導率・密度・分子量などの混合気体の物性値が、構成する各気体の濃度に依存することを利用し、特定の単数または複数の物性値を測定することにより各気体の濃度を算出するものである。その物性値のひとつとして粘性を用いる場合、圧力と粘性に敏感な測定子Aと、圧力のみに敏感な測定子Bを同時に用いて対象混合気体を計測すれば、演算処理によって圧力の影響を除いて混合気体の粘性が算出できるため、この測定方法を用いて混合気体の粘性を測定し、予め求めておいた混合気体の粘性の各気体濃度依存性と照らし合わせることにより混合気体を構成する各気体の濃度を求めるものである。   The basic principle of the present invention is that the physical property value of a mixed gas such as viscosity, thermal conductivity, density, and molecular weight depends on the concentration of each constituent gas, and measures a specific physical property value or a plurality of physical property values. Thus, the concentration of each gas is calculated. When viscosity is used as one of the physical property values, if the target gas mixture is measured using the probe A sensitive to pressure and viscosity and the probe B sensitive only to pressure at the same time, the influence of the pressure is eliminated by the calculation process. Therefore, the viscosity of the mixed gas can be calculated by using this measurement method, and each of the components constituting the mixed gas is compared with the gas concentration dependence of the viscosity of the mixed gas obtained in advance. The concentration of gas is obtained.

濃度の校正は、混合ガスを構成する各純気体をあらかじめ既知割合で混合して各種濃度の標準気体を作成し、前記の各種センサーで標準気体を実測してみて検量線を得て、この検量線を濃度計算機に記録させておくことで行うことができる。   Concentration calibration is performed by preparing standard gases of various concentrations by mixing each pure gas constituting the mixed gas at a known ratio in advance, and measuring the standard gas with the various sensors to obtain a calibration curve. This can be done by recording the line in a density calculator.

本発明における使用測定子Bの例としては、例えば液柱差真空計、圧縮真空計、隔膜真空計、ブルドン管真空計等の圧力のみに敏感なものが利用できる。またAとしては圧力に依存して変わると共に、運動固体が気体から受ける摩擦力変化・固体から気体への熱伝導率変化・固体表面近傍で気体が反応したときの固体が受ける分解生成熱といった物理量のうち、いずれかの物理量が変化する圧力計が使用できる。   As an example of the measuring probe B used in the present invention, for example, a pressure sensitive sensor such as a liquid column differential gauge, a compression gauge, a diaphragm gauge, a Bourdon tube gauge, etc. can be used. A varies depending on the pressure, and changes in frictional force that the moving solid receives from the gas, changes in the thermal conductivity from the solid to the gas, and heat generated by the solid when the gas reacts near the solid surface. Among them, a pressure gauge whose physical quantity changes can be used.

同様に前記Aのような前記圧力が変化すると共に物理量が変化する圧力計としては、例えば粘性(摩擦)を利用する水晶振動子センサーを備えた摩擦真空計やスピニングロータゲージ、熱伝導を利用する熱電対真空計やピラニー真空計、そのほかクヌーセン真空計等を用いることができ、また、電離現象を利用する例えば熱陰極電離真空計、冷陰極電離真空計、放射線電離真空計等を使用することができる。これら測定子は、引火性・爆発性といった気体の性質・対象混合気体の濃度・圧力によって使い分けることができる。   Similarly, as the pressure gauge such as A, in which the physical quantity changes as the pressure changes, for example, a friction vacuum gauge equipped with a quartz vibrator sensor that uses viscosity (friction), a spinning rotor gauge, or heat conduction is used. Thermocouple vacuum gauges, Pirani vacuum gauges, other Knudsen vacuum gauges, etc. can be used, and hot cathode ionization vacuum gauges, cold cathode ionization vacuum gauges, radiation ionization vacuum gauges, etc. that use ionization phenomena can be used. it can. These probes can be used properly depending on the gas properties such as flammability and explosiveness, the concentration and pressure of the target mixed gas.

図1は、水晶振動子センサーを備えた摩擦真空計の特性を示したものである。
この図1は、圧力のみに敏感な隔膜真空計の値を横軸に、圧力が変化すると共に物理量が変化する水晶振動子センサーを備えた摩擦真空計の値を縦軸に示している。隔膜真空計の値が一定でも、気体の種類によって水晶振動子センサーを備えた摩擦真空計の指示値が見かけ上異なる圧力を表示していることがわかる。
FIG. 1 shows the characteristics of a friction vacuum gauge equipped with a crystal resonator sensor.
FIG. 1 shows the value of a diaphragm vacuum gauge sensitive only to pressure on the horizontal axis, and the value of a friction vacuum gauge equipped with a quartz vibrator sensor whose physical quantity changes as the pressure changes on the vertical axis. It can be seen that even if the value of the diaphragm vacuum gauge is constant, the indicated value of the friction vacuum gauge equipped with the quartz crystal sensor is apparently different depending on the type of gas.

水晶振動子の共振時における電気的インピーダンスおよび共振周波数が周囲の気体圧力に対してどのように変化するかを研究したものとして、〔「水晶振動子を用いた摩擦真空計の理論」、「真空」第29巻第2号(1986)、国分清秀、平田正紘、小野雅俊、村上寛、戸田義継〕がある。
この文献には、振動子と周囲の気体との間の摩擦のみから生じるインピーダンス成分ΔZが、振動子と気体との間の摩擦から生ずる抗力の速度項の係数fに比例すること、および、気体圧力が下がっていくにつれてΔZの値は小さくなることが記載されている。
As a study of how the electrical impedance and resonance frequency at the time of resonance of a quartz crystal change with respect to the surrounding gas pressure, ["Theory of a friction vacuum gauge using a quartz crystal", "Vacuum “Vol. 29, No. 2 (1986), Kiyohide Kokubun, Masatoshi Hirata, Masatoshi Ono, Hiroshi Murakami, Yoshitsugu Toda”.
This document states that the impedance component ΔZ resulting only from the friction between the vibrator and the surrounding gas is proportional to the coefficient f 1 of the velocity term of the drag resulting from the friction between the vibrator and the gas, and It is described that the value of ΔZ decreases as the gas pressure decreases.

図2は、本発明の実施の形態に係る濃度測定装置の一形態を示した説明図である。
同図に示されるように、被測定混合ガスが供給される真空装置8を設け、この真空装置8に対して混合ガスの粘性や分子密度等の物性によって測定値が変化しない絶対圧力を測定することができる隔膜真空計1を接続すると共に、気体の粘度により表示圧力が変化し、且つ予めその特性が知られている圧力測定子、即ち水晶振動子センサー2〜6を接続している。また、前記隔膜真空計1、及び水晶振動子センサー2〜6のデータを入力することにより物性値を求め、混合ガスの各気体の濃度と物性値の関係を示すデータから濃度を計算する濃度計算機7を備えている。
FIG. 2 is an explanatory view showing one form of the concentration measuring apparatus according to the embodiment of the present invention.
As shown in the figure, a vacuum device 8 to which a mixed gas to be measured is supplied is provided, and an absolute pressure at which the measured value does not change due to physical properties such as the viscosity and molecular density of the mixed gas is measured. A diaphragm vacuum gauge 1 that can be used is connected, and a pressure measuring element whose characteristics change in advance depending on the viscosity of the gas and whose characteristics are known in advance, that is, quartz vibrator sensors 2 to 6 are connected. Further, a concentration calculator that obtains physical property values by inputting the data of the diaphragm vacuum gauge 1 and the quartz vibrator sensors 2 to 6 and calculates the concentration from the data indicating the relationship between the concentration of each gas in the mixed gas and the physical property value. 7 is provided.

上記のような本発明による濃度測定の基本原理の元に、対象となる三成分の気体として例えばアルゴン、窒素、水素を用い、真空排気した後、排気系と真空的に隔絶、すなわち閉じた真空装置8へと導入する。この時、所定の各分圧を持つ混合気体は、隔膜真空計1で絶対圧力を測定しながら順次各ガスを導入することにより作製できる。
以上の手順で作製した既知の各分圧を持つ三成分混合気体に対していくつかの異なる感応度を持つ水晶振動子センサーである2〜6を用いて同時に測定すれば、図3および図4に示す検量線群Amax、Bmaxが各水晶振動子センサーに対して作製される。
図3は、水晶振動子2により、また、図4は、水晶振動子3により作成されたものであり、必要に応じて、水晶振動子4、5、6についても作成すればよい。
なお、図3および図4においては、三成分の気体を便宜的にA、B、Cで表している。
Based on the basic principle of concentration measurement according to the present invention as described above, for example, argon, nitrogen, and hydrogen are used as the three-component gases to be evacuated, and then evacuated and then vacuum-isolated from the exhaust system, that is, a closed vacuum. Introduce into device 8 At this time, a gas mixture having a predetermined partial pressure can be produced by sequentially introducing each gas while measuring the absolute pressure with the diaphragm vacuum gauge 1.
3 and 4, when the two-component quartz vibrator sensors 2 to 6 having different sensitivities are simultaneously measured with respect to the ternary mixed gas having the respective partial pressures prepared by the above procedure. The calibration curve groups Amax and Bmax shown in FIG.
FIG. 3 is created by the crystal resonator 2 and FIG. 4 is created by the crystal resonator 3, and the crystal resonators 4, 5, and 6 may be created as necessary.
3 and 4, the three-component gas is represented by A, B, and C for convenience.

図3において、横軸はC成分の分圧比(vol.%)を、縦軸に水晶振動子センサー出力(粘性値の逆数)を示しており、C分圧比0vol.%(図の左端)は、A+B100vol.%を意味し、また、C分圧比100vol.%(図の右端)では、各検量線群が一点に一致し、それ以外では測定結果は検量線Amaxと検量線Bmaxとの内側の範囲に収まる。
なお、図3では検量線Amaxおよび検量線Bmaxが直線で示されているが、直線に限ることはない。
In FIG. 3, the horizontal axis indicates the C component partial pressure ratio (vol.%), And the vertical axis indicates the quartz vibrator sensor output (reciprocal of the viscosity value). % (The left end of the figure) is A + B100 vol. %, And C partial pressure ratio 100 vol. In% (the right end of the figure), each calibration curve group coincides with one point, and otherwise, the measurement result falls within the range between the calibration curve Amax and the calibration curve Bmax.
In FIG. 3, the calibration curve Amax and the calibration curve Bmax are shown as straight lines, but are not limited to straight lines.

検量線AmaxはB成分0vol.%すなわちA分圧比が最大になる場合を、また、検量線BmaxはA成分0vol.%すなわちB分圧比が最大になる場合を示している。例えば図中のC分圧比50vol.%における検量線Amaxおよび検量線Bmax上の点は、それぞれ、A50vol.%+C50vol.%、B50vol.%+C50vol.%の状態を意味している。
なお成分A、B、Cの粘性に着目すると、これらの粘性は、C<B<Aの順の場合に相当する。
The calibration curve Amax is B component 0 vol. %, That is, the case where the A partial pressure ratio is maximized, and the calibration curve Bmax is A component 0 vol. %, That is, the case where the B partial pressure ratio is maximized. For example, C partial pressure ratio 50 vol. % On the calibration curve Amax and the calibration curve Bmax are respectively A50 vol. % + C50 vol. %, B50 vol. % + C50 vol. % Means the state.
When attention is focused on the viscosities of the components A, B, and C, these viscosities correspond to the order of C <B <A.

図3は前記段落〔0016〕で記した方法によって作製できるが、さらにその同じ測定結果を、横軸をA及びBの分圧比に対して表わすことによって合計3種類の検量線群を得ることができる。これらのような、A及びBの分圧比に対する検量線群をそれぞれ図5、6に示す。   Although FIG. 3 can be produced by the method described in the paragraph [0016], it is possible to obtain a total of three types of calibration curve groups by further expressing the same measurement results with respect to the partial pressure ratio of A and B. it can. Such calibration curve groups with respect to the partial pressure ratio of A and B are shown in FIGS. 5 and 6, respectively.

今、測定の結果水晶振動子センサー出力が5.0を示したとすると、図3から、C成分は20〜50vol.%と決定されるから、A+B成分はこれに応じて80〜50vol.%の範囲に限定される。
同様に、図5においても、水晶振動子センサー出力は5.0であるから、A成分は0〜50vol.%の範囲に限定され、B+C成分についてはこれに対応して50〜0vol.%に限定される。
同様に、図6においても同じ結果を当てはめると、B成分については0〜80vol.%の範囲に限定され、A+C成分についてはこれに対応して100〜20vol.%に限定される。
これら図3、5、6の結果は同時に成立することから、以上を総合すると、A成分は0〜50vol.%、B成分は0〜50vol.%、C成分は20〜50vol.%の範囲に、さらにA+B成分は0〜80vol.%、B+C成分は0〜50vol.%、A+C成分については限定されない。
Assuming that the quartz resonator sensor output is 5.0 as a result of the measurement, the C component is 20 to 50 vol. %, The A + B component is accordingly 80-50 vol. %.
Similarly, also in FIG. 5, since the quartz vibrator sensor output is 5.0, the A component is 0 to 50 vol. % For the B + C component corresponding to 50 to 0 vol. %.
Similarly, when the same result is applied in FIG. 6, 0 to 80 vol. %, And the A + C component is correspondingly 100 to 20 vol. %.
Since the results of FIGS. 3, 5 and 6 are established at the same time, when the above is combined, the A component is 0 to 50 vol. %, B component is 0 to 50 vol. %, C component is 20-50 vol. %, And the A + B component is 0 to 80 vol. %, B + C component is 0 to 50 vol. %, A + C component is not limited.

以上のようにひとつのセンサーを用いた場合においても混合気体を構成する各気体の濃度を限定することは可能である。
さらに前述したように各気体に対する相対感度の異なるセンサーを用いて測定すれば同一同分圧の3種類の気体からなる混合気体に対し例えば図4、7、8のような、図3とは異なる結果が得られ、さらに各気体の濃度が限定される。
As described above, even when one sensor is used, it is possible to limit the concentration of each gas constituting the mixed gas.
Further, as described above, if measurement is performed using sensors having different relative sensitivities to each gas, the mixed gas composed of three kinds of gases having the same partial pressure is different from FIG. 3, for example, as shown in FIGS. Results are obtained and the concentration of each gas is further limited.

図4においては、C成分は40〜70vol.%に、図7からはA成分は0〜40vol.%、図8からB成分は0〜60vol.%に限定される。
以上の結果を総合すると、さらに各気体の濃度はA成分は0〜40vol.%、B成分は0〜60vol.%にC成分は40〜50vol.%に限定される。2つのセンサーを用いるだけでもこのように混合気体中の3種類の各気体の濃度を限定できる。
In FIG. 4, C component is 40-70 vol. %, The component A is 0 to 40 vol. %, B component from 0 to 60 vol. %.
When the above results are combined, the concentration of each gas is 0 to 40 vol. %, B component is 0-60 vol. % C component is 40-50 vol. %. The concentration of each of the three types of gases in the mixed gas can be limited in this way even by using only two sensors.

一方、図9のように、A成分とB成分の相対濃度を横軸にとり、センサー出力を縦軸にとることも可能である。この場合、検量線はC成分の濃度に応じて異なる検量線群となる。なおこの図においてC成分の濃度はA及びB成分の総濃度に対する相対濃度で示してある。   On the other hand, as shown in FIG. 9, it is possible to take the relative concentrations of the A component and the B component on the horizontal axis and the sensor output on the vertical axis. In this case, the calibration curve is a different calibration curve group depending on the concentration of the C component. In this figure, the concentration of the C component is shown as a relative concentration with respect to the total concentration of the A and B components.

先に述べた方法により、さらにセンサーの数を増やして測定を行い、各分圧が限定され、最終的には測定誤差の範囲内である一成分、例えばC成分の濃度が求められれば、この混合気体は前記従来技術2の、3つのうちひとつの気体の濃度が既知の混合気体となるから、二成分気体の濃度測定法が応用でき、残りの2つの気体濃度についても求めることができる。
具体的には、図9に測定結果及びC成分濃度を当てはめることによりA、B間の相対分圧比が求められるから、結果的に三成分全ての分圧を求めることができる。
If the number of sensors is further increased by the above-described method and measurement is performed, each partial pressure is limited, and finally the concentration of one component, for example, C component within the range of the measurement error, is obtained. Since the gas mixture is a gas mixture in which the concentration of one of the three gases in the prior art 2 is known, the two-component gas concentration measurement method can be applied, and the remaining two gas concentrations can also be obtained.
Specifically, since the relative partial pressure ratio between A and B is obtained by applying the measurement result and the C component concentration to FIG. 9, the partial pressures of all three components can be obtained as a result.

今の場合、前述の測定においてさらにC成分の濃度が限定され、C成分が45vol.%であることが明らかと成れば、図9の測定結果とC成分が45vol.%である場合の検量線の交点から、A成分とB成分の相対濃度比は約7:3であることが求められるから、この結果から、A成分はC成分の濃度比45vol.%を100vol.%から差し引いたうちの7割で約38vol.%、B成分は残り17vol.%となり、結果混合気体を構成する全ての気体の濃度を求めることができる。なお、この結果は図3から図9までのすべての図から得られる、前段落22の濃度範囲と当然一致している。   In this case, the concentration of the C component is further limited in the above-described measurement, and the C component is 45 vol. %, The measurement result of FIG. 9 and the C component are 45 vol. %, The relative concentration ratio of the A component and the B component is required to be about 7: 3. From this result, the A component has a C component concentration ratio of 45 vol. % Is 100 vol. About 38 vol. %, B component is 17 vol. %, And as a result, the concentration of all gases constituting the mixed gas can be obtained. This result is of course consistent with the density range of the preceding paragraph 22 obtained from all the figures from FIG. 3 to FIG.

本特許においては各気体に対する感度が異なる水晶振動子を用いて測定することが重要なポイントとなる。異なる種類の気体に対する感度の違う水晶振動子の作成については主としてその形状を変えることにより行う。水晶振動子の形状を変えることにより共振周波数が変化するが、同時に気体の種類に対する感度も変化する。現在用いている水晶振動子はシグナルーノイズ比が最も良く共振周波数が32 kHzのものを用いている。   In this patent, it is an important point to measure using a crystal resonator having different sensitivities to each gas. Quartz resonators with different sensitivities to different types of gases are produced mainly by changing their shapes. Changing the shape of the crystal resonator changes the resonance frequency, but also changes the sensitivity to the type of gas. Currently used quartz oscillators have the best signal-to-noise ratio and a resonance frequency of 32 kHz.

実際にこれまでに測定した例において、図10に示すように、同種のガスに対して異なる水晶振動子センサーI、IIを用いて測定した場合、その圧力依存性の測定結果の近似直線の傾きが異なる測定結果が得られている。この、絶対圧力依存性が個別のセンサーによって異なるという結果は、各センサーの気体粘性に対する感度が異なることによるものであるから、このようなセンサーを複数用いれば以上示したような混合気体を構成する各気体の濃度測定が可能であることがわかる。   In the actual measurement examples so far, as shown in FIG. 10, when the measurement is performed using different crystal resonator sensors I and II with respect to the same kind of gas, the inclination of the approximate straight line of the pressure dependence measurement result is obtained. Different measurement results are obtained. The result that the absolute pressure dependency differs depending on the individual sensor is due to the difference in sensitivity to the gas viscosity of each sensor. Therefore, if a plurality of such sensors are used, a mixed gas as shown above is formed. It can be seen that the concentration of each gas can be measured.

図3と図4を比較すると、図4に比較して図3では気体の種類に対する感度が悪化しているが、このような感度の違いが大きければ大きいほど分圧測定の精度は高くなる。
さらに気体種に対する感度が異なる水晶振動子センサーを用いる代わりに、別の圧電素子センサーであるセラミック振動子や、気体の別の物性値である熱伝導率に依存する出力を発生することによりこの熱伝導率を測定することのできるサーモパイルマイクロフローセンサを用いることにより気体種に対する感度差を利用して多成分混合気体の分圧を測定することができる。
Comparing FIG. 3 and FIG. 4, the sensitivity to the type of gas is worse in FIG. 3 compared to FIG. 4, but the greater the difference in sensitivity, the higher the accuracy of partial pressure measurement.
Furthermore, instead of using a quartz crystal sensor with different sensitivity to gas species, this heat is generated by generating an output that depends on the ceramic vibrator, which is another piezoelectric element sensor, or the thermal conductivity, which is another physical property value of gas. By using a thermopile microflow sensor capable of measuring conductivity, it is possible to measure the partial pressure of a multi-component mixed gas by utilizing the difference in sensitivity with respect to gas species.

気体の物性値において、明らかに粘性と熱伝導率は異なる物性であるから、これらそれぞれの値の、気体の種類に対する依存性は異なるのが当然である。したがって、複数の物性値を測定すれば各気体種に対する依存性が異なるため、混合気体を構成する各気体の濃度が限定される。
なお、原理的には、異なる物性値の測定と異なるセンサーでの測定は、異なる物性依存出力の気体濃度依存性を得るという意味において同義である。
Since the physical properties of gas are clearly different in viscosity and thermal conductivity, it is natural that the dependence of these values on the type of gas is different. Therefore, if a plurality of physical property values are measured, the dependency on each gas type is different, so the concentration of each gas constituting the mixed gas is limited.
In principle, the measurement of different physical property values and the measurement by different sensors are synonymous in the sense of obtaining gas concentration dependency of different physical property dependent outputs.

4種類以上の気体からなる混合気体に対しても原理的には応用可能で、複数の測定結果からあるひとつの成分の濃度が確定されれば順次この方法を適用することにより混合気体を構成する各気体の濃度を求めることができる。   In principle, it can also be applied to mixed gases consisting of four or more gases, and if the concentration of a single component is determined from a plurality of measurement results, the mixed gas is constructed by sequentially applying this method. The concentration of each gas can be determined.

気体の物性値として粘性のみを利用する場合には、その測定は水晶振動子センサーなどの圧力測定子での測定が可能であるため、被測定気体を消費せず、また熱や光といったエネルギーを直接比測定気体に接触させる必要が無いため、反応性の高い気体でも安全に測定できる。   When only the viscosity is used as the physical property value of the gas, the measurement can be performed with a pressure gauge such as a quartz crystal sensor, so the measured gas is not consumed and energy such as heat and light is consumed. Since it is not necessary to directly contact the specific measurement gas, even a highly reactive gas can be measured safely.

本発明の実施の形態で用いる水晶振動子センサーを備えた摩擦真空計の特性を示すグラフである。It is a graph which shows the characteristic of the friction vacuum gauge provided with the crystal oscillator sensor used by embodiment of this invention. 本発明の実施の形態に係る濃度測定装置の概要を示した説明図である。It is explanatory drawing which showed the outline | summary of the density | concentration measuring apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る三成分混合気体において、特定の感応度を持つ水晶振動子センサーを備えた摩擦真空計で得られた測定結果を、横軸にC成分の分圧比をとった場合のA成分およびB成分の検量線群を示すグラフである。In the ternary mixed gas according to the embodiment of the present invention, when the measurement result obtained by the friction vacuum gauge equipped with the quartz resonator sensor having a specific sensitivity is taken, the horizontal axis represents the partial pressure ratio of the C component. It is a graph which shows the calibration curve group of A component and B component. 図3の測定に用いた水晶振動子センサーを備えた摩擦真空計と異なる感応度を持つ水晶振動子センサーを備えた摩擦真空計により測定した場合のA成分およびB成分の検量線群を示すグラフである。3 is a graph showing a calibration curve group of the A component and the B component when measured by a friction vacuum gauge having a quartz crystal sensor having a sensitivity different from that of the friction vacuum gauge having the quartz crystal sensor used in the measurement of FIG. It is. 図3の場合において、横軸にA成分の分圧比をとった場合のB成分およびC成分の検量線群を示すグラフである。In the case of FIG. 3, it is a graph which shows the calibration curve group of the B component and C component at the time of taking the partial pressure ratio of A component on a horizontal axis. 図3の場合において、横軸にB成分の分圧比をとった場合のA成分およびC成分の検量線群を示すグラフである。In the case of FIG. 3, it is a graph which shows the calibration curve group of A component and C component at the time of taking the partial pressure ratio of B component on a horizontal axis. 図4の場合において、横軸にA成分の分圧比をとった場合のB成分およびC成分の検量線群を示すグラフである。In the case of FIG. 4, it is a graph which shows the calibration curve group of the B component and C component at the time of taking the partial pressure ratio of A component on a horizontal axis. 図4の場合において、横軸にB成分の分圧比をとった場合のA成分およびC成分の検量線群を示すグラフである。In the case of FIG. 4, it is a graph which shows the calibration curve group of A component and C component at the time of taking the partial pressure ratio of B component on a horizontal axis. 図3の測定結果を、A成分とB成分の相対濃度を横軸にとった場合のC成分の検量線群を示すグラフである。It is a graph which shows the calibration curve group of C component at the time of taking the relative density | concentration of A component and B component as a horizontal axis for the measurement result of FIG. 同種のガスに対して異なる水晶振動子センサーを用いて測定した場合、その圧力依存性の測定結果の近似直線の傾きが異なる測定結果となることを説明するグラフである。It is a graph explaining that the inclination of the approximate straight line of the measurement result of the pressure dependence becomes a different measurement result when the measurement is performed using the different crystal resonator sensor for the same kind of gas.

符号の説明Explanation of symbols

1 隔膜真空計
2〜6 水晶振動子センサー
7 濃度計算器
8 真空装置
1 Diaphragm gauge 2-6 Quartz crystal sensor 7 Concentration calculator 8 Vacuum device

Claims (2)

3種類以上の、種類が既知の気体から成る混合気体を構成する各気体の未知濃度を測定する方法であって、
センサーにより前記混合気体を構成する各気体の濃度に依存して変化する物性値に依存する物性依存出力を測定し、
前記混合気体に含まれる気体のうち、2種類の気体の各組み合わせについて、一方の種類の気体の分圧比に対する他方の種類の気体の分圧比を0%から100%変化させることにより検量線群を予め求め、
測定した前記物性依存出力と前記検量線群との関係から、前記一方の種類の気体と他方の種類の気体との分圧比の絞り込みを行い、
前記混合気体を構成する各気体の濃度を求めることを特徴とする濃度測定方法。
A method of measuring an unknown concentration of each gas constituting a mixed gas composed of three or more types of known gases,
The physical properties dependent output that depends on the physical properties that vary depending on the concentration of the gas constituting the mixed gas was measurement by the sensor,
For each combination of two types of gases included in the mixed gas, the calibration curve group is changed by changing the partial pressure ratio of the other type of gas to the partial pressure ratio of one type of gas from 0% to 100%. Ask in advance,
From the relationship between the measured physical property dependent output and the calibration curve group, the partial pressure ratio between the one kind of gas and the other kind of gas is narrowed down,
A concentration measuring method, wherein the concentration of each gas constituting the mixed gas is determined.
予め構成する気体が知られている3種類以上の混合気体を構成する各気体の濃度測定装
置において、
構成する各気体の濃度に対応した物性依存出力を取得するためのセンサーと、
前記混合気体に含まれる気体のうち、2種類の気体の各組み合わせについて、一方の種類の気体の分圧比に対する他方の種類の気体の分圧比を0%から100%変化させることにより予め求めた検量線群とを備え、
前記センサーによって求められる物性依存出力の気体濃度依存性である複数の検量線に、未知濃度の混合気体の測定において得られる前記センサーの物性依存出力の値を当てはめて各気体の濃度範囲の絞り込み演算を行う処理装置を備えた、混合気体を構成する各気体の濃度を求める濃度測定装置。
In each gas concentration measuring device that constitutes a mixed gas of three or more types of gases that are known in advance,
And sensors for obtaining an object dependency output corresponding to the concentration of each gas constituting,
Calibration obtained in advance by changing the partial pressure ratio of the other type of gas to the partial pressure ratio of one type of gas for each combination of two types of gases included in the mixed gas, from 0% to 100% With line groups,
A plurality of calibration curve group is gas concentration dependence of physical properties dependent output obtained by said sensor, narrowing of the concentration range of each gas by applying the values of physical properties dependent output of the sensor obtained in the measurement of a mixed gas of unknown concentration A concentration measuring device for determining the concentration of each gas constituting a mixed gas, comprising a processing device for performing a calculation.
JP2007292213A 2007-11-09 2007-11-09 Concentration measuring method and apparatus Expired - Fee Related JP4953087B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007292213A JP4953087B2 (en) 2007-11-09 2007-11-09 Concentration measuring method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007292213A JP4953087B2 (en) 2007-11-09 2007-11-09 Concentration measuring method and apparatus

Publications (2)

Publication Number Publication Date
JP2009115760A JP2009115760A (en) 2009-05-28
JP4953087B2 true JP4953087B2 (en) 2012-06-13

Family

ID=40783036

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007292213A Expired - Fee Related JP4953087B2 (en) 2007-11-09 2007-11-09 Concentration measuring method and apparatus

Country Status (1)

Country Link
JP (1) JP4953087B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10914717B2 (en) * 2018-05-09 2021-02-09 Mks Instruments, Inc. Method and apparatus for partial pressure detection

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3302481B2 (en) * 1994-01-12 2002-07-15 長谷川香料株式会社 Method for identification and concentration measurement of volatile compounds
JP2000249649A (en) * 1999-03-03 2000-09-14 Chizai Senryaku Kenkyusho:Kk System and method for wide-region investigation of gas environment
JP4036618B2 (en) * 2001-02-07 2008-01-23 独立行政法人産業技術総合研究所 Method and apparatus for measuring mixed gas
JP2004198328A (en) * 2002-12-20 2004-07-15 National Institute Of Advanced Industrial & Technology Method and apparatus for measuring composition of multi-component mixed gas
JP4078422B2 (en) * 2003-08-29 2008-04-23 独立行政法人産業技術総合研究所 Gas leak detection method and apparatus

Also Published As

Publication number Publication date
JP2009115760A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
TWI635258B (en) Mems thermal flow sensor with compensation for fluid composition and method for measuring the flow rate of a fluid
JP5534193B2 (en) Temperature diffusivity measurement system and flow rate measurement system
US8888361B2 (en) Calorific value measuring system and calorific value measuring method
CN108377654B (en) Method for determining properties of a hydrocarbon-containing gas mixture and apparatus therefor
US11474092B2 (en) Method for determining properties of a hydrocarbon-containing gas mixture and device for the same
CN104713606A (en) Method and device for measuring flow of multi-component gas
JP2004219386A (en) Concentration measuring instrument for gas mixture comprising two kinds of gases
Malarde et al. High-resolution and compact refractometer for salinity measurements
WO2011128643A1 (en) Method of determining the energy content of a methan - rich gas mixture
US5303167A (en) Absolute pressure sensor and method
JP5389502B2 (en) Gas property value measurement system, gas property value measurement method, calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
CN107850474B (en) Method for determining a physical parameter of a gas
KR101213848B1 (en) System and method for making heating value calculating formular, system and method for measuring heating value and, system for measuring physical property
JP5389501B2 (en) Calorific value calculation formula creation system, calorific value calculation formula creation method, calorific value calculation system, and calorific value calculation method
Sparks et al. A MEMS-based low pressure, light gas density and binary concentration sensor
JP4953087B2 (en) Concentration measuring method and apparatus
Estrada-Alexanders et al. Kinematic viscosity and speed of sound in gaseous CO, CO2, SiF4, SF6, C4F8, and NH3 from 220 K to 375 K and pressures up to 3.4 MPa
Daudé et al. On the gas dependence of thermal transpiration and a critical appraisal of correction methods for capacitive diaphragm gauges
Romeo et al. Density of standard seawater by vibrating tube densimeter: analysis of the method and results
JP4266850B2 (en) Concentration measuring device for binary gas mixture
Fukuoka et al. Measurement of oxygen concentration in atmospheric air using ultrasound time of flight with humidity compensation
JP5690003B2 (en) Specific heat capacity measurement system and flow rate measurement system
CN114184648B (en) Moisture content calibration method for resistance-capacitance humidity sensor
JP3336384B2 (en) Method and apparatus for measuring the concentration of two types of gas mixtures
CN112834562A (en) Device and method for detecting helium concentration in heat-conducting mixed gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111109

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120301

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees