JP4266850B2 - Concentration measuring device for binary gas mixture - Google Patents

Concentration measuring device for binary gas mixture Download PDF

Info

Publication number
JP4266850B2
JP4266850B2 JP2004049769A JP2004049769A JP4266850B2 JP 4266850 B2 JP4266850 B2 JP 4266850B2 JP 2004049769 A JP2004049769 A JP 2004049769A JP 2004049769 A JP2004049769 A JP 2004049769A JP 4266850 B2 JP4266850 B2 JP 4266850B2
Authority
JP
Japan
Prior art keywords
concentration
crystal resonator
temperature
measuring
resonance frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2004049769A
Other languages
Japanese (ja)
Other versions
JP2005241355A (en
Inventor
明 黒河
信吾 一村
久男 北條
太吉 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Vacuum Products Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Vacuum Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Vacuum Products Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2004049769A priority Critical patent/JP4266850B2/en
Publication of JP2005241355A publication Critical patent/JP2005241355A/en
Application granted granted Critical
Publication of JP4266850B2 publication Critical patent/JP4266850B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、2種類の気体からなる混合気体の濃度を計測する装置に関する。特に、混合気体の圧力を計測する絶対圧力計が不要であって、水晶振動子のみを用いて混合気体の濃度を検出可能とした濃度測定装置に関する。   The present invention relates to an apparatus for measuring the concentration of a mixed gas composed of two kinds of gases. In particular, the present invention relates to a concentration measuring apparatus that does not require an absolute pressure gauge for measuring the pressure of a mixed gas and that can detect the concentration of the mixed gas using only a crystal resonator.

従来、2種類の気体からなる混合気体の濃度を求める方法として、紫外線吸光度測定法
が知られている。この方法では、例えばオゾン酸素混合ガス中のオゾン濃度を計測するとき、紫外線のうちオゾンは吸収するが酸素はほとんど吸収しない特定の波長を、混合ガスに照射する。そして、紫外線の吸収率を測定することにより、濃度を求めるようにしていた。
Conventionally, an ultraviolet absorbance measurement method is known as a method for obtaining the concentration of a mixed gas composed of two kinds of gases. In this method, for example, when the ozone concentration in the ozone-oxygen mixed gas is measured, the mixed gas is irradiated with a specific wavelength that absorbs ozone but absorbs little oxygen in the ultraviolet rays. And the density | concentration was calculated | required by measuring the absorption factor of an ultraviolet-ray.

この紫外線吸光度測定法の種々の問題点を解決するために、粘性・熱伝導率・密度・分子量およびそれらの関数としての混合気体の物性値を測定し、純粋気体固有の物性値をもとに気体の濃度を算出する手法が開発された(特許文献1)。   In order to solve the various problems of this UV absorbance measurement method, viscosity, thermal conductivity, density, molecular weight, and the physical properties of the mixed gas as a function of them are measured. A method for calculating the concentration of gas has been developed (Patent Document 1).

このために、2種類の圧力測定子を用いている。一つは、混合気体の物性値に敏感な圧力測定子であり、他の一つは混合気体の物性値に影響を受けない圧力測定子である。特許文献1では、前者の圧力測定子として水晶摩擦振動子が挙げられ、後者の圧力測定子として隔膜振動子が挙げられている。   For this purpose, two types of pressure gauges are used. One is a pressure gauge sensitive to the physical property value of the mixed gas, and the other is a pressure gauge not affected by the physical property value of the mixed gas. In Patent Document 1, a quartz friction vibrator is cited as the former pressure gauge, and a diaphragm vibrator is cited as the latter pressure gauge.

さらには、水晶振動子として、温度補償可能なものが提案されている(特許文献2)。
特許第3336384号公報 米国特許第5,228,344号明細書(特公平7−97060)
Furthermore, a crystal oscillator capable of temperature compensation has been proposed (Patent Document 2).
Japanese Patent No. 3336384 US Pat. No. 5,228,344 (Japanese Patent Publication No. 7-97060)

特許文献1の方法は、混合気体の圧力が大気圧以外の時でも、また圧力が変化しても常に正確な濃度を測定することができ、また、熱や光を照射しない手法を採用することができるため、熱や光による刺激によって爆発の起こる混合気体でも安全に測定することができる点で優れている。また、特定の波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、更に気体濃度の変化に対応して即時に濃度を測定することが可能となる点でも優れている。   The method of Patent Document 1 adopts a method that can always measure an accurate concentration even when the pressure of the mixed gas is other than atmospheric pressure or even when the pressure changes, and does not irradiate heat or light. Therefore, it is excellent in that it can be safely measured even in a mixed gas in which an explosion occurs due to stimulation by heat or light. Further, it is excellent in that it does not require an ultraviolet lamp having a specific wavelength, is easy to maintain, and can immediately measure the concentration in response to a change in gas concentration.

しかし、特許文献1の方法では、その発明の原理上、2種類の全く異なる原理の圧力測定子を用いることから、装置構成が複雑となり、かつ2種類の圧力測定子からのデータの整合性を配慮し、校正が不可欠である等の新たな課題が生じた。また、力学式圧力計には隔膜式圧力計が適しているが、水晶摩擦振動子型圧力計に比べてダイナミックレンジが劣っている。よって、測定圧力範囲によって隔膜式圧力計を選択する必要があった。このように、混合気体の物性値に影響を受けない圧力測定子として、隔膜を用いた圧力測定子が好適であるが、測定精度を上げるために隔膜の直径が大きくなり、装置の小型化にも限界があった。   However, the method of Patent Document 1 uses two different types of pressure gauges based on the principle of the invention, so that the configuration of the apparatus is complicated and the consistency of data from the two types of pressure gauges is improved. Considering this, new issues such as the need for calibration have arisen. A diaphragm type pressure gauge is suitable for the dynamic pressure gauge, but the dynamic range is inferior to that of the quartz friction vibrator type pressure gauge. Therefore, it was necessary to select a diaphragm type pressure gauge according to the measurement pressure range. As described above, a pressure gauge using a diaphragm is suitable as a pressure gauge that is not affected by the physical property value of the mixed gas. However, the diameter of the diaphragm is increased in order to increase the measurement accuracy, thereby reducing the size of the apparatus. There was also a limit.

そこで、本発明の目的は、混合気体の濃度を求めるために一つの水晶振動子を用いることとし、もって装置の大型化と複雑化の問題を解消できる2成分混合気体の濃度測定装置を提供することにある。   Accordingly, an object of the present invention is to provide a concentration measuring apparatus for a two-component gas mixture that can solve the problems of enlargement and complication of the apparatus by using a single crystal unit to determine the concentration of the gas mixture. There is.

本発明の他の目的は、混合気体の圧力が変化しても、混合気体の正確な濃度を測定することができ、特定波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、また、熱や光を加えて測定を行なう方法のように爆発引火の危険性がない2成分混合気体の濃度測定装置を提供することにある。   Another object of the present invention is that, even if the pressure of the mixed gas changes, the accurate concentration of the mixed gas can be measured, an ultraviolet lamp having a specific wavelength is not required, maintenance is easy, An object of the present invention is to provide an apparatus for measuring the concentration of a two-component gas mixture that does not have the risk of explosion ignition as in the method of measuring by applying heat or light.

本発明のさらに他の目的は、被測定ガスの分解が無いことにより、サンプリングガスを多量に用意したり、またそれを廃棄する必要が無く、気体濃度の変化に対応して即時に濃度を測定することができる2成分混合気体の濃度測定装置を提供することにある。   Yet another object of the present invention is that there is no decomposition of the gas to be measured, so there is no need to prepare a large amount of sampling gas or to discard it, and the concentration is measured immediately in response to changes in the gas concentration. An object of the present invention is to provide an apparatus for measuring the concentration of a binary gas mixture that can be used.

本発明の一態様は、構成気体が既知で濃度が未知の2成分混合気体の濃度測定装置において、
前記混合気体と接触する濃度測定用水晶振動子と、
前記混合気体と接触した前記水晶振動子の共振抵抗値と共振周波数とを計測する計測部と、
計測された前記共振抵抗値と前記共振周波数とに基づいて、前記混合気体の濃度を算出する演算部と、
前記濃度測定用水晶振動子が特定温度範囲となるように、前記濃度測定用水晶振動子を温調する温調部と、
を有することを特徴とする。
One aspect of the present invention is an apparatus for measuring a concentration of a binary gas mixture having a known constituent gas and an unknown concentration.
A concentration measuring crystal resonator in contact with the mixed gas;
A measurement unit for measuring a resonance resistance value and a resonance frequency of the crystal resonator in contact with the mixed gas;
Based on the measured resonance resistance value and the resonance frequency, a calculation unit that calculates the concentration of the mixed gas;
A temperature control unit for controlling the temperature of the concentration measuring crystal resonator so that the concentration measuring crystal resonator is in a specific temperature range;
It is characterized by having.

濃度測定用水晶振動子は、被測定対象の混合気体と直接接触するので、その物性例えば粘性や分子密度によって変動する圧力を測定できる。この圧力Pは、水晶振動子の共振周波数fと共振抵抗値Zとの関数、つまりP=F(f),P=F(Z)となる。結局、被測定気体の濃度変化に応じて変化する物性値を反映した圧力は、共振周波数fと共振抵抗値zとからそれぞれ求めることができる。よって、上記各関数から圧力Pを消去することで、被測定気体の濃度は、共振周波数fと共振抵抗値Zとから一義的に求めることができる。この際、共振周波数fと共振抵抗値Zは温度依存性を有するので、本発明の一態様では、温調部によって濃度測定用水晶振動子を特定温度範囲に保持している。   Since the concentration measuring crystal resonator is in direct contact with the gas mixture to be measured, it is possible to measure the pressure that varies depending on its physical properties such as viscosity and molecular density. This pressure P is a function of the resonance frequency f of the crystal resonator and the resonance resistance value Z, that is, P = F (f), P = F (Z). Eventually, the pressure reflecting the physical property value that changes according to the change in the concentration of the gas to be measured can be obtained from the resonance frequency f and the resonance resistance value z. Therefore, by eliminating the pressure P from the above functions, the concentration of the gas to be measured can be uniquely determined from the resonance frequency f and the resonance resistance value Z. At this time, since the resonance frequency f and the resonance resistance value Z have temperature dependency, in one embodiment of the present invention, the temperature measuring unit holds the concentration measuring crystal resonator in a specific temperature range.

本発明の一態様において、前記混合気体が通過する通路と、前記通路に連通され、前記濃度測定用水晶振動子が配置される測定室と、前記測定室を温調する恒温槽とをさらに有することができる。こうして、測定室内の混合気体及び濃度測定用水晶振動子を特定温度範囲に保持できる。   1 aspect of this invention, It further has the channel | path through which the said mixed gas passes, the measurement chamber which is connected to the said channel | path, and in which the said crystal | crystallization resonator for density | concentration measurement is arrange | positioned, and the thermostat which temperature-controls the said measurement chamber be able to. In this way, the mixed gas in the measurement chamber and the concentration measuring crystal resonator can be maintained in a specific temperature range.

本発明に一態様において、前記濃度測定用水晶振動子と接触する前記混合気体と、前記濃度測定用水晶振動子との温度差が一定値以下となるように、前記混合気体を前記濃度測定用水晶振動子まで案内する熱交換器をさらに有することができる。こうすると、混合気体は、熱交換器により熱交換され、濃度測定用水晶振動子に接触する前に、特定温度範囲に温調される。   In one embodiment of the present invention, the gas mixture is used for the concentration measurement so that a temperature difference between the gas mixture contacting the concentration measurement crystal resonator and the crystal resonator for concentration measurement is a predetermined value or less. A heat exchanger for guiding to the crystal unit can be further included. In this way, the mixed gas is heat-exchanged by the heat exchanger, and the temperature is adjusted to a specific temperature range before coming into contact with the concentration measuring crystal resonator.

本発明の一態様において、前記演算部は、前記計測部からの前記濃度測定用水晶振動子の共振抵抗値と固有共振抵抗値との差、および前記計測部からの前記濃度測定用水晶振動子の共振周波数と固有共振周波数後の差に基づいて、前記混合気体の濃度を演算することができる。ここで、固有共振抵抗及び固有共振周波数は予め測定しておくことができる。なお、固有共振抵抗値及び固有共振周波数は温度が一定である限り不変のため、濃度演算から省略することもできるが、それらを演算の基礎として用いることもできる。   In one aspect of the present invention, the calculation unit includes a difference between a resonance resistance value and a natural resonance resistance value of the concentration measurement crystal resonator from the measurement unit, and the concentration measurement crystal resonator from the measurement unit. Based on the difference between the resonance frequency and the natural resonance frequency, the concentration of the mixed gas can be calculated. Here, the natural resonance resistance and the natural resonance frequency can be measured in advance. Since the natural resonance resistance value and the natural resonance frequency are unchanged as long as the temperature is constant, they can be omitted from the concentration calculation, but they can also be used as the basis of the calculation.

本発明の他の態様は、構成気体が既知で濃度が未知の2成分混合気体の濃度測定装置において、
前記混合気体と接触する濃度測定用水晶振動子と、
前記混合気体と接触した前記水晶振動子の共振抵抗値と共振周波数とを計測する計測部と、
前記濃度測定用水晶振動子と隣接して配置された温度測定子をさらに有し、
前記温度測定子からの測定情報に基づいて、前記濃度測定用水晶振動子の温度依存性を補正し、補正された前記共振抵抗値と前記共振周波数とに基づいて、前記混合気体の濃度を算出する演算部と、
を有することを特徴とする。
Another aspect of the present invention is a device for measuring a concentration of a two-component mixed gas whose constituent gas is known and whose concentration is unknown,
A concentration measuring crystal resonator in contact with the mixed gas;
A measurement unit for measuring a resonance resistance value and a resonance frequency of the crystal resonator in contact with the mixed gas;
A temperature probe disposed adjacent to the concentration measuring crystal unit;
Based on the measurement information from the temperature probe, the temperature dependency of the concentration measuring crystal resonator is corrected, and the concentration of the mixed gas is calculated based on the corrected resonance resistance value and the resonance frequency. An arithmetic unit to perform,
It is characterized by having.

本発明の一態様では温調部を設けて濃度測定用水晶振動子を特定温度範囲に維持したが、本発明の他の態様では、それに代えて、あるいはそれに加えて、温度測定子からの測定情報に基づいて、濃度測定用水晶振動子の温度依存性を補正するように構成した。   In one aspect of the present invention, a temperature control unit is provided to maintain the concentration measuring crystal resonator in a specific temperature range. However, in another aspect of the present invention, measurement from a temperature gauge is used instead of or in addition thereto. Based on the information, the temperature dependency of the quartz crystal resonator for concentration measurement was corrected.

本発明の他の態様において、前記温度測定子は、前記混合気体と隔離する密閉容器内に封入されるか、さらには、密閉容器内に既知の気体を封入することができる。こうして、温度測定素子は混合気体の物性に影響されずに温度を測定できる。   In another aspect of the present invention, the temperature gauge may be enclosed in a sealed container that is isolated from the mixed gas, or may be sealed with a known gas in the sealed container. Thus, the temperature measuring element can measure the temperature without being influenced by the physical properties of the mixed gas.

本発明の他の態様において、前記温度測定子は、温度測定用水晶振動子にて形成され、
前記計測部は、前記温度測定用水晶振動子の共振周波数を計測し、前記補正部は、前記温度測定用水晶振動子の共振周波数と温度との特性に基づいて、前記濃度測定用水晶振動子の温度依存性を補正することができる。
In another aspect of the present invention, the temperature measuring element is formed of a temperature measuring crystal resonator,
The measurement unit measures a resonance frequency of the temperature measurement crystal resonator, and the correction unit determines the concentration measurement crystal resonator based on the characteristics of the resonance frequency and temperature of the temperature measurement crystal resonator. The temperature dependence of can be corrected.

本発明の他の態様において、前記演算部は、前記計測部からの前記濃度測定用水晶振動子の共振抵抗値と固有共振抵抗値との差、前記計測部からの前記濃度測定用水晶振動子の共振周波数と固有共振周波数後の差、および前記温度測定用水晶振動子の共振周波数より得られる温度補償量に基づいて、前記混合気体の濃度を演算することができる。ここで、固有共振抵抗及び固有共振周波数は例えば特定温度下にて予め測定しておくことができる。   In another aspect of the present invention, the calculation unit includes a difference between a resonance resistance value and a natural resonance resistance value of the concentration measurement crystal resonator from the measurement unit, and the concentration measurement crystal resonator from the measurement unit. The concentration of the mixed gas can be calculated based on the difference between the resonance frequency and the resonance frequency after the natural resonance frequency and the temperature compensation amount obtained from the resonance frequency of the crystal resonator for temperature measurement. Here, the natural resonance resistance and the natural resonance frequency can be measured in advance at a specific temperature, for example.

本発明の他の態様において、前記温度測定子は、熱電対にて形成することができる。この場合、前記演算部は、前記計測部からの前記濃度測定用水晶振動子の共振抵抗値と固有共振抵抗値との差、前記計測部からの前記濃度測定用水晶振動子の共振周波数と固有共振周波数後の差、および前記熱電対からの測定の温度より得られる温度補償量に基づいて、前記混合気体の濃度を演算することができる。   In another aspect of the present invention, the temperature probe can be formed by a thermocouple. In this case, the calculation unit is configured such that the difference between the resonance resistance value and the natural resonance resistance value of the concentration measurement crystal resonator from the measurement unit, the resonance frequency and the specific frequency of the concentration measurement crystal resonator from the measurement unit. Based on the difference after the resonance frequency and the temperature compensation amount obtained from the temperature measured from the thermocouple, the concentration of the mixed gas can be calculated.

本発明の一態様及び他の態様において、前記演算部は、前記濃度測定用水晶振動子の共振抵抗値および共振周波数のばらつきを、組成既知の気体の圧力が異なる少なくとも2点、もしくは組成既知の気体の濃度が異なる少なくとも2点で校正する校正結果を記憶するメモリをさらに有することができる。これにより、濃度測定用水晶振動子を交換しても、濃度測定用水晶振動子の共振抵抗値および共振周波数のばらつきに依存した濃度測定精度の劣化を防止できる。   In one embodiment and another embodiment of the present invention, the calculation unit may vary the resonance resistance value and the resonance frequency of the crystal resonator for concentration measurement at least two points with different gas pressures with known compositions, or with known compositions. A memory for storing calibration results for calibration at at least two points having different gas concentrations can be further provided. Thereby, even if the quartz crystal resonator for concentration measurement is replaced, it is possible to prevent the deterioration of the concentration measurement accuracy depending on the resonance resistance value and the resonance frequency variation of the quartz crystal resonator for concentration measurement.

本発明の一態様及び他の態様において、前記濃度測定用水晶振動子は、音叉型水晶振動子にて形成することができる。   In one embodiment and another embodiment of the present invention, the concentration measuring crystal resonator can be formed of a tuning fork crystal resonator.

<第1の実施の形態>
図1に本発明の第1実施形態である濃度測定装置を示す。図1において、配管10は、混合気体例えばオゾン/酸素の2成分混合気体を供給するものである。この配管10の一端には、ガス供給源が接続される。配管10の他端には、基板上に例えば酸化膜を形成する半導体製造装置に接続されている。ガス供給源として例えば液化オゾンを収容したボンベを用いた場合、配管10には気化された高濃度オゾンを供給することができ、成膜スピードを上げることができる。これに限らず、低濃度オゾンと高濃度酸素とを配管10に供給しても良い。なお、配管10に供給される混合気体の濃度が変動するため、その濃度測定の必要性がある。
<First Embodiment>
FIG. 1 shows a concentration measuring apparatus according to the first embodiment of the present invention. In FIG. 1, a pipe 10 supplies a mixed gas, for example, a binary mixed gas of ozone / oxygen. A gas supply source is connected to one end of the pipe 10. The other end of the pipe 10 is connected to a semiconductor manufacturing apparatus that forms, for example, an oxide film on the substrate. For example, when a cylinder containing liquefied ozone is used as the gas supply source, vaporized high-concentration ozone can be supplied to the pipe 10 and the film formation speed can be increased. Not limited to this, low concentration ozone and high concentration oxygen may be supplied to the pipe 10. In addition, since the density | concentration of the mixed gas supplied to the piping 10 fluctuates, the density | concentration needs to be measured.

配管10の途中に連通する測定室12には、2成分混合気体の濃度を測定する濃度測定用水晶振動子20が配置されている。この濃度測定用水晶振動子20は、2成分混合気体の濃度に応じて、共振周波数fと共振抵抗値zとが変化する。なお、後述する通り、測定室12を配管10とは別個に設けず、配管10内を測定室としても良い。   A concentration measuring crystal resonator 20 for measuring the concentration of the two-component mixed gas is disposed in the measurement chamber 12 that communicates with the pipe 10. In the crystal resonator 20 for concentration measurement, the resonance frequency f and the resonance resistance value z change according to the concentration of the two-component mixed gas. As will be described later, the measurement chamber 12 may not be provided separately from the pipe 10 and the inside of the pipe 10 may be used as the measurement chamber.

測定室12は、濃度測定用水晶振動子20が特定の温度範囲例えば20℃±0.2℃に収まるように加熱または冷却する温調部を備え、本実施形態では温調部を恒温槽30にて形成している。   The measurement chamber 12 includes a temperature control unit that heats or cools the concentration measurement crystal resonator 20 so as to be within a specific temperature range, for example, 20 ° C. ± 0.2 ° C. In this embodiment, the temperature control unit is the thermostat 30. Is formed.

濃度測定用水晶振動子20は、混合気体に接触し、混合気体の濃度変化に応じて共振抵抗値及び共振周波数が変化する。本実施形態では水晶振動子20を音叉型水晶振動子にて構成している。この水晶振動子20は、常温で動作し、また気体への接触面も金、石英、ステンレスのみであり、オゾンを分解する要因がない。   The concentration measuring crystal resonator 20 is in contact with the mixed gas, and the resonance resistance value and the resonance frequency change according to the concentration change of the mixed gas. In the present embodiment, the crystal unit 20 is configured by a tuning fork type crystal unit. The quartz crystal resonator 20 operates at room temperature, and the contact surface with the gas is only gold, quartz, and stainless steel, and there is no factor for decomposing ozone.

ここで、濃度測定用水晶振動子20は、被測定対象の混合気体と直接接触するので、その物性例えば粘性や分子密度によって変動する圧力を測定できる。この圧力Pは、水晶振動子20の共振周波数fと共振抵抗値Zとの関数、つまりP=F(f),P=F(Z)となる。結局、被測定気体の濃度変化に応じて変化する物性値を反映した圧力は、共振周波数fと共振抵抗値zとからそれぞれ求めることができる。よって、上記各関数から圧力Pを消去することで、被測定気体の濃度は、共振周波数fと共振抵抗値Zとから一義的に求めることができる(後述の図3参照)。この際、共振周波数fと共振抵抗値Zは温度依存性を有するので、本実施形態では、恒温槽30によって水晶振動子20を一定温度範囲に保持している。   Here, since the crystal resonator 20 for concentration measurement is in direct contact with the gas mixture to be measured, it is possible to measure a pressure that varies depending on its physical properties such as viscosity and molecular density. The pressure P is a function of the resonance frequency f and the resonance resistance value Z of the crystal unit 20, that is, P = F (f), P = F (Z). Eventually, the pressure reflecting the physical property value that changes according to the change in the concentration of the gas to be measured can be obtained from the resonance frequency f and the resonance resistance value z. Therefore, by eliminating the pressure P from the above functions, the concentration of the gas to be measured can be uniquely obtained from the resonance frequency f and the resonance resistance value Z (see FIG. 3 described later). At this time, since the resonance frequency f and the resonance resistance value Z have temperature dependence, in the present embodiment, the crystal unit 20 is held in a constant temperature range by the thermostat 30.

図1では、濃度測定用水晶振動子20に接続される計測部40が設けられ、この計測部40より、濃度測定用水晶振動子20の共振周波数fと共振抵抗値Zが出力される。計測部40に接続された濃度演算部50がさらに設けられ、濃度測定用水晶振動子20の共振周波数値fと共振抵抗値Zに基づいて、2成分混合気体の濃度が演算される。   In FIG. 1, a measuring unit 40 connected to the concentration measuring crystal resonator 20 is provided, and the resonance frequency f and the resonance resistance value Z of the concentration measuring crystal resonator 20 are output from the measuring unit 40. A concentration calculation unit 50 connected to the measurement unit 40 is further provided, and the concentration of the two-component mixed gas is calculated based on the resonance frequency value f and the resonance resistance value Z of the concentration measuring crystal resonator 20.

図2は、計測部40内に配置され、濃度測定用水晶振動子20に接続された発振回路60の一例を示している。図2は、米国特許第5,228,344に開示された発振回路と同じ構成を有している。図2に示す発振器60は、電流電圧変換器100、第1の全波整流器102、減衰器104、比較器106、電圧制御減衰器108、第2の全波整流器110を有する。   FIG. 2 shows an example of an oscillation circuit 60 arranged in the measurement unit 40 and connected to the concentration measuring crystal resonator 20. FIG. 2 has the same configuration as the oscillation circuit disclosed in US Pat. No. 5,228,344. The oscillator 60 shown in FIG. 2 includes a current-voltage converter 100, a first full-wave rectifier 102, an attenuator 104, a comparator 106, a voltage-controlled attenuator 108, and a second full-wave rectifier 110.

ここで、水晶振動子20の固有共振抵抗値をZとする。水晶振動子20が混合気体の雰囲気中に配置された時に、水晶振動子20が発振器60を介して振動すると、第2の全波整流器110からは、測定された共振抵抗値Zの逆数1/Zが得られる。発振器60からの共振抵抗値Zの逆数1/Z(アナログ値)は、図2に示すA/D変換器120を介して濃度演算部50に入力される。 Here, the natural resonance resistance of the quartz oscillator 20 and Z 0. When the crystal resonator 20 vibrates via the oscillator 60 when the crystal resonator 20 is disposed in the mixed gas atmosphere, the reciprocal 1 of the measured resonance resistance value Z 1 is obtained from the second full-wave rectifier 110. / Z 1 is obtained. The reciprocal 1 / Z 1 (analog value) of the resonance resistance value Z 1 from the oscillator 60 is input to the concentration calculation unit 50 via the A / D converter 120 shown in FIG.

この固有共振抵抗値Zと測定された共振抵抗値Zとの差ΔZ=Z−Zが、粘性(濃度)に依存した混合気体の圧力に相当する。ここで、固有共振抵抗値Zは温度依存性を有するが、本実施形態では温度は一定範囲に維持されるので、固有共振抵抗値Zも一定とみなすことができる。よって、本実施形態での濃度演算では、固有共振抵抗値Zを必ずしも測定する必要はない。 The difference ΔZ = Z 0 −Z 1 between the natural resonance resistance value Z 0 and the measured resonance resistance value Z 1 corresponds to the pressure of the mixed gas depending on the viscosity (concentration). Here, although the natural resonance resistance value Z 0 has temperature dependence, in this embodiment, since the temperature is maintained in a certain range, the natural resonance resistance value Z 0 can also be regarded as constant. Therefore, it is not always necessary to measure the specific resonance resistance value Z 0 in the concentration calculation in the present embodiment.

一方、発振器60は、水晶振動子20の共振周波数fを出力するように構成されている。この共振周波数fもまた、粘性(濃度)に依存した混合気体の圧力を反映している。Bここで、水晶振動子20の固有共振周波数をfとする。この固有共振周波数fと測定された共振周波数fとの差Δf=f−fが、粘性(濃度)に依存した混合気体の圧力を反映している。ここで、固有共振周波数fは温度依存性を有するが、本実施形態では温度は一定範囲に維持されるので、固有共振周波数fも一定とみなすことができる。よって、本実施形態での濃度演算では、固有共振周波数fを必ずしも測定する必要はない。 On the other hand, the oscillator 60 is configured to output the resonance frequency f 1 of the crystal resonator 20. This resonance frequency f 1 also reflects the pressure of the mixed gas depending on the viscosity (concentration). B Here, let the natural resonance frequency of the crystal resonator 20 be f 0 . The difference Δf = f 0 −f 1 between the natural resonance frequency f 0 and the measured resonance frequency f 1 reflects the pressure of the mixed gas depending on the viscosity (concentration). Here, the natural resonance frequency f 0 has temperature dependence. However, in this embodiment, the temperature is maintained in a certain range, so that the natural resonance frequency f 0 can also be regarded as constant. Therefore, the concentration operation in the present embodiment, it is not always necessary to measure the natural resonant frequency f 0.

発振器60からの共振周波数fは、図2に示す周波数カウンタ130にてカウントされた後に、デジタル値として濃度演算部50に入力される。 The resonance frequency f 1 from the oscillator 60 is counted by the frequency counter 130 shown in FIG. 2 and then input to the concentration calculation unit 50 as a digital value.

次に、濃度演算部50での濃度演算方法について説明する。   Next, a density calculation method in the density calculation unit 50 will be described.

濃度演算部50はメモリ52を有し、このメモリ52には図3に示すように、純粋酸素の他、多数の既知濃度(図3では5vol%のオゾン−95vol%の酸素混合気体のみを示す)について、予め測定した水晶振動子20の共振周波数fと共振抵抗値Zとの検量線A,Bが記憶されている。図3はその一部を示しているが、例えば1vol%おきに異なる濃度の2成分混合気体を用いて水晶振動子20の共振周波数fと共振抵抗値Zが予め測定されて、検量線としてメモリ52に格納されている。   The concentration calculation unit 50 has a memory 52. As shown in FIG. 3, the memory 52 shows not only pure oxygen but also many known concentrations (in FIG. 3, only 5 vol% ozone-95 vol% oxygen mixed gas). ), The calibration curves A and B of the resonance frequency f and the resonance resistance value Z of the crystal resonator 20 measured in advance are stored. FIG. 3 shows a part thereof. For example, the resonance frequency f and the resonance resistance value Z of the crystal resonator 20 are measured in advance using a two-component mixed gas having different concentrations every 1 vol%, and stored as a calibration curve. 52.

なお、図3に示す検量線は、横軸を固有共振抵抗値Zと測定された共振抵抗値Zとの差ΔZ=Z−Zとし、縦軸を固有共振周波数fと測定された共振周波数fとの差Δf=f−fとすることができる。ただし、上述した通り、温度が一定である限り、固有共振抵抗値Z及び固有共振周波数fは一定とみなせるので、横軸を共振抵抗値Zとし、縦軸を共振周波数fとしても良い。 In the calibration curve shown in FIG. 3, the horizontal axis represents the difference ΔZ = Z 0 −Z 1 between the natural resonance resistance value Z 0 and the measured resonance resistance value Z 1, and the vertical axis represents the natural resonance frequency f 0. The difference Δf = f 0 −f 1 with respect to the resonance frequency f 1 can be obtained. However, as described above, as long as the temperature is constant, the natural resonance resistance value Z 0 and the natural resonance frequency f 0 can be regarded as constant, so the horizontal axis is the resonance resistance value Z 1 and the vertical axis is the resonance frequency f 1. good.

ここで、濃度が未知の混合気体が配管10を通過した時、水晶振動子20からの情報に基づいて、その混合気体の粘性(濃度)に依存した共振周波数f図3の縦軸座標位置)が求められる。一方、水晶振動子20からの情報に基づいて、その混合気体の粘性(濃度)に依存した共振抵抗値Z図3の横軸座標位置)が求められる。この縦、横座標位置から、未知の混合気体の図3中の座標位置Cが求まる。濃度演算部40は、図3中の座標位置と、純粋酸素の特性Aと、5vol%のオゾン−酸素濃度の特性Bとに基づいて、未知の混合気体中のオゾン濃度を、補間演算などにて測定することができる。 Here, when a gas mixture having an unknown concentration passes through the pipe 10, the resonance frequency f 1 depending on the viscosity (concentration) of the gas mixture based on information from the crystal resonator 20 (the vertical axis coordinates in FIG. 3 ) . Position). On the other hand, based on the information from the crystal unit 20, a resonance resistance value Z 1 (horizontal axis coordinate position in FIG. 3 ) depending on the viscosity (concentration) of the mixed gas is obtained. From the vertical and horizontal coordinate positions, the coordinate position C in FIG. 3 of the unknown gas mixture is obtained. The concentration calculation unit 40 interpolates the ozone concentration in an unknown gas mixture based on the coordinate position C in FIG. 3, the characteristic A of pure oxygen, and the characteristic B of ozone-oxygen concentration of 5 vol%. Can be measured.

このように、本実施形態によれば、一つの水晶振動子20によって、組成既知の2成分混合気体の濃度を正確に測定することができる。   As described above, according to this embodiment, the concentration of the two-component gas mixture having a known composition can be accurately measured by one crystal resonator 20.

<第2の実施の形態>
図4は、通路10と測定室12とを結ぶ連結通路200に熱交換器210を配置した変形例を示している。熱交換器210は、通路10より測定室12に導入されて濃度測定用水晶振動子20と接触する混合気体と、濃度測定用水晶振動子20との温度差が一定値以下となるように、混合気体を濃度測定用水晶振動子20まで案内するものである。この熱交換器210は、例えば、連結通路200の相対向する内壁200a,200bより交互に突出する熱交換用フィン202を有する。なお、熱交換器210の構造は、図4に示すものに限らず、上述の機能を有するものであれば良い。そして、温調部である恒温槽30は、測定室12及び連結通路200を囲んで配置される。
<Second Embodiment>
FIG. 4 shows a modification in which the heat exchanger 210 is arranged in the connecting passage 200 connecting the passage 10 and the measurement chamber 12. The heat exchanger 210 is introduced into the measurement chamber 12 from the passage 10 so that the temperature difference between the mixed gas contacting the concentration measuring crystal resonator 20 and the concentration measuring crystal resonator 20 is a certain value or less. The gas mixture is guided to the crystal resonator 20 for concentration measurement. The heat exchanger 210 includes, for example, heat exchange fins 202 that protrude alternately from the opposing inner walls 200a and 200b of the connecting passage 200. Note that the structure of the heat exchanger 210 is not limited to that shown in FIG. And the thermostat 30 which is a temperature control part is arrange | positioned surrounding the measurement chamber 12 and the connection channel | path 200. FIG.

通路10に導入された混合気体は、恒温槽30にて温調された連結通路200及び熱交換用フィン202と接触することで熱交換され、濃度測定用水晶振動子20に到達する前に、恒温槽30の温調温度まで加熱または冷却される。この結果、濃度測定用推進振動子20の共振抵抗値及び共振周波数値を一定温度範囲で計測することができ、検出される混合気体濃度の精度がより高まる。   The mixed gas introduced into the passage 10 is heat-exchanged by coming into contact with the connection passage 200 and the heat-exchange fins 202 that are temperature-controlled in the thermostat 30, and before reaching the concentration measuring crystal resonator 20, It is heated or cooled to the temperature control temperature of the thermostat 30. As a result, the resonance resistance value and the resonance frequency value of the concentration measurement propulsion vibrator 20 can be measured in a constant temperature range, and the accuracy of the detected mixed gas concentration is further increased.

<第3の実施の形態>
図5は、通路10中に濃度測定用水晶振動子20を配設した変形例を示している。通路10中に配置した濃度測定用水晶振動子20と接触する混合気体の温度をコントロールするために、濃度測定用水晶振動子20を囲んで、金属メッシュ220が一重、二重もしくは多重に配設されている。
<Third Embodiment>
FIG. 5 shows a modification in which the concentration measuring crystal resonator 20 is disposed in the passage 10. In order to control the temperature of the mixed gas in contact with the concentration measuring crystal resonator 20 disposed in the passage 10, the metal mesh 220 is disposed in a single, double or multiple manner so as to surround the concentration measuring crystal resonator 20. Has been.

図5では、濃度測定用水晶振動子20及びその周囲の混合気体を温調する温調部は、例えば金属メッシュ220を特定温度範囲例えば20℃±0.2℃に温調するものであっても良い。   In FIG. 5, the temperature adjustment unit that adjusts the temperature of the concentration measuring crystal resonator 20 and the surrounding mixed gas adjusts the temperature of the metal mesh 220 to a specific temperature range, for example, 20 ° C. ± 0.2 ° C. Also good.

図5に示す実施形態では、通路10内に配設された濃度測定用水晶振動子20に接触する混合気体は、金属メッシュ220を通過する際に、さらには金属メッシュ220内にて停留することで、温調部にて温調される。よって、図4の実施形態と同様に、濃度測定用水晶振動子20と接触する混合気体と、濃度測定用水晶振動子20との温度差が一定値以下となる。   In the embodiment shown in FIG. 5, the mixed gas contacting the concentration measuring crystal resonator 20 disposed in the passage 10 is further retained in the metal mesh 220 when passing through the metal mesh 220. Then, the temperature is controlled by the temperature control unit. Therefore, as in the embodiment of FIG. 4, the temperature difference between the gas mixture in contact with the concentration measuring crystal resonator 20 and the concentration measuring crystal resonator 20 becomes a certain value or less.

<第4の実施の形態>
図6は、測定室12を恒温槽30にて囲む代わりに、測定室12内に、濃度測定用水晶振動子20と隣接させて、温度測定子230を配設した実施形態を示している。図6に示す温度測定子230は温度測定用水晶振動子例えば音叉型水晶振動子にて形成されている。この温度測定用水晶振動子230は、混合気体と隔離するための密閉容器240内に配置されている。この密閉容器240内は真空とされるか、あるいは組成既知の気体、好ましくは窒素、アルゴン等の不活性気体が封入される。
<Fourth embodiment>
FIG. 6 shows an embodiment in which a temperature measuring element 230 is disposed in the measurement chamber 12 so as to be adjacent to the concentration measuring crystal resonator 20 instead of surrounding the measurement chamber 12 with the thermostat 30. The temperature measuring element 230 shown in FIG. 6 is formed of a temperature measuring crystal resonator such as a tuning fork crystal resonator. The temperature measuring crystal unit 230 is disposed in a sealed container 240 for isolation from a mixed gas. The sealed container 240 is evacuated or filled with a gas having a known composition, preferably an inert gas such as nitrogen or argon.

温度測定用水晶振動子230には、温度計測部250が接続され、温度計測部250にて検出される温度T(または温度Tと相関を有する温度測定用水晶振動子230の共振周波数f)が、濃度演算部260に出力される。   A temperature measurement unit 250 is connected to the temperature measurement crystal unit 230, and a temperature T detected by the temperature measurement unit 250 (or a resonance frequency f of the temperature measurement crystal unit 230 having a correlation with the temperature T) is detected. , And output to the concentration calculation unit 260.

図6に示す計測部40及び温度計測部240は、図2に示す発振回路60にてそれぞれ形成するものでもよいが、図7に示すように構成することもできる。   The measurement unit 40 and the temperature measurement unit 240 shown in FIG. 6 may be formed by the oscillation circuit 60 shown in FIG. 2, but may be configured as shown in FIG.

図7に示すように、濃度測定用水晶振動子20及び温度測定用水晶振動子230の出力端に2連スイッチ310を設けることで、図2発振器60を2つ設ける代わりに、一つの発振器300にて構成している。2連スイッチ310は、高速で切り換え可能な半導体スイッチなどにて構成することができる。   As shown in FIG. 7, by providing a double switch 310 at the output ends of the concentration measuring crystal resonator 20 and the temperature measuring crystal resonator 230, one oscillator 300 is provided instead of two oscillators 60 in FIG. It consists of. The double switch 310 can be configured by a semiconductor switch or the like that can be switched at high speed.

このようにすれば、濃度測定用及び温度測定用水晶振動子20,230に対して、周波数カウンタ130及びA/D変換器120に加えて、発振器300を共用させることができ、測測定装置がさらに小型化される。   In this way, the oscillator 300 can be shared in addition to the frequency counter 130 and the A / D converter 120 for the crystal resonators 20 and 230 for concentration measurement and temperature measurement, and the measurement device can be used. Further downsizing.

次に、温度測定用水晶振動子230の共振周波数fに基づいて、濃度演算の温度補償を行なう例について説明する。   Next, an example of performing temperature compensation for concentration calculation based on the resonance frequency f of the temperature measuring crystal unit 230 will be described.

図8は、温度測定用水晶振動子230の共振周波数fと温度との相関を示す特性図である。この温度測定用水晶振動子230は、密閉容器240内に配置されるため混合気体の圧力の影響を受けずに、図8に示すようにほぼリニアな特性を有する共振周波数f−温度T特性に基づいて、測定された共振周波数fから温度Tを測定することができる。この温度測定用水晶振動子230の共振周波数f−温度T特性は、図6に示す温度計測部250または濃度演算部260内のメモリに記憶され、その特性に基づいて測定された共振周波数f(例えば32.746kHz)から温度T(例えば24℃)を求めることができる。   FIG. 8 is a characteristic diagram showing the correlation between the resonance frequency f and the temperature of the crystal resonator 230 for temperature measurement. Since the temperature measuring crystal unit 230 is arranged in the sealed container 240, it is not affected by the pressure of the mixed gas, and has a resonance frequency f-temperature T characteristic having a substantially linear characteristic as shown in FIG. Based on this, the temperature T can be measured from the measured resonance frequency f. The resonance frequency f-temperature T characteristic of the crystal unit 230 for temperature measurement is stored in the memory in the temperature measurement unit 250 or the concentration calculation unit 260 shown in FIG. 6 and is measured based on the characteristic. For example, the temperature T (for example, 24 ° C.) can be obtained from 32.746 kHz.

図9は、濃度測定用水晶振動子20より計測される共振抵抗値Zt(=z1+ΔZt)及び共振周波数ft(=f1+Δft)の温度依存性を示す特性図である。   FIG. 9 is a characteristic diagram showing the temperature dependence of the resonance resistance value Zt (= z1 + ΔZt) and the resonance frequency ft (= f1 + Δft) measured by the crystal resonator 20 for concentration measurement.

ここで、共振周波数f1とは、特定温度例えば20℃の時の濃度測定用水晶振動子20の共振周波数であり、恒温槽30を用いた第1〜第3の実施形態の濃度測定用水晶振動子20にて検出できるデータである。しかし、恒温槽30を用いない本実施の形態では、例えば温度T=24℃では、濃度測定用水晶振動子20の共振周波数ft=f+Δftとなり、温度依存成分Δftだけ変位している。よって、濃度演算部50には、補正部が設けられ、この補正部にて任意温度Tにて測定された濃度測定用水晶振動子20の共振周波数ftをΔftだけ修正して、20℃±0.2℃の時の濃度測定用水晶振動子20の共振周波数f1を温度補償して求める。 Here, the resonance frequency f1 is the resonance frequency of the concentration measuring crystal resonator 20 at a specific temperature, for example, 20 ° C., and the concentration measuring crystal vibrations of the first to third embodiments using the thermostat 30. This is data that can be detected by the child 20. However, in the present embodiment that does not use the thermostatic chamber 30, for example, at a temperature T = 24 ° C., the resonance frequency ft = f 1 + Δft of the concentration measuring crystal resonator 20 is obtained, and the temperature-dependent component Δft is displaced. Therefore, the concentration calculation unit 50 is provided with a correction unit, which corrects the resonance frequency ft of the concentration measuring crystal resonator 20 measured at an arbitrary temperature T by Δft by Δft to obtain 20 ° C. ± 0. The resonance frequency f1 of the crystal resonator 20 for concentration measurement at 2 ° C. is obtained by temperature compensation.

図9に示すように、任意温度tでの濃度測定用水晶振動子20の共振周波数ftは、20℃の時の共振周波数f1に加えて温度変動成分Δftを含んでいる。図6の温度計測部250または濃度演算部260は、温度tと対応付けて温度変動成分Δftを記憶するメモリを有している。よって、温度測定用水晶振動子240より温度Tが計測されると、それに対応する温度変動成分Δftが分かる。このため、特定温度例えば20℃の時の濃度測定用水晶振動子20の共振周波数f1は、f1=ft−Δftを演算して求めることができる。温度依存性を有する共振抵抗値Ztの温度補償についても同様にして行なうことができる。   As shown in FIG. 9, the resonance frequency ft of the concentration-measuring crystal resonator 20 at an arbitrary temperature t includes a temperature fluctuation component Δft in addition to the resonance frequency f1 at 20 ° C. The temperature measurement unit 250 or the concentration calculation unit 260 in FIG. 6 has a memory that stores the temperature variation component Δft in association with the temperature t. Therefore, when the temperature T is measured by the temperature measuring crystal resonator 240, the temperature variation component Δft corresponding to the temperature T is known. Therefore, the resonance frequency f1 of the concentration measuring crystal resonator 20 at a specific temperature, for example, 20 ° C. can be obtained by calculating f1 = ft−Δft. The temperature compensation of the resonance resistance value Zt having temperature dependency can be performed in the same manner.

こうして、実温度Tにおける濃度測定用水晶振動子20の共振抵抗値Zt及び共振周波数ftを温度補償して、特定温度例えば20℃の時の濃度測定用水晶振動子20の共振抵抗値Z1及び共振周波数f1を求め、それらに基づいて図3の検量線から混合気体の濃度を演算することができる。   In this way, the resonance resistance value Zt and the resonance frequency ft of the concentration measuring crystal resonator 20 at the actual temperature T are temperature compensated, and the resonance resistance value Z1 and the resonance of the concentration measuring crystal resonator 20 at a specific temperature, for example, 20 ° C. The frequency f1 is obtained, and based on these, the concentration of the mixed gas can be calculated from the calibration curve of FIG.

なお、図6では測定室12の周囲に恒温槽を配置していないが、測定室12に恒温槽を配置することもできる。この場合、濃度測定用水晶振動子20及びその周囲の混合気体を温調でき、しかも、温度測定用水晶振動子230からの測定情報に基づいて検出される温度に基づいて、検出される混合気体濃度を温度補償することができ、濃度検出精度がさらに高まる。   In addition, although the thermostat is not arrange | positioned around the measurement chamber 12 in FIG. 6, a thermostat can also be arrange | positioned in the measurement chamber 12. FIG. In this case, the temperature of the concentration measuring crystal resonator 20 and the surrounding mixed gas can be controlled, and the detected mixed gas is based on the temperature detected based on the measurement information from the temperature measuring crystal resonator 230. The concentration can be temperature compensated, and the concentration detection accuracy is further increased.

図6に示す温度測定子230は、必ずしも水晶振動子に限らず、他の温度測定素子例えば熱電対であってもよい。熱電対も混合気体と接触して汚染されることを防止するために、真空あるいは組成既知の気体が封入された密閉容器240内に配置される。   The temperature measuring element 230 shown in FIG. 6 is not necessarily limited to a crystal resonator, and may be another temperature measuring element such as a thermocouple. In order to prevent the thermocouple from coming into contact with the mixed gas and being contaminated, the thermocouple is arranged in a sealed container 240 in which a gas having a known composition or a vacuum is enclosed.

また、図6の演算部260は、計測部40からの濃度測定用水晶振動子20の共振抵抗値と固有共振抵抗値との差、計測部40からの濃度測定用水晶振動子の共振周波数と固有共振周波数後の差、および温度測定用水晶振動子230の共振周波数(または熱電対から得られる温度)より得られる温度補償量に基づいて、混合気体の濃度を演算することができる。ここで、固有共振抵抗及び固有共振周波数は例えば特定温度例えば20℃下にて予め測定しておくか、あるいは任意温度で測定したものを特定温度例えば20℃での固有共振抵抗値及び固有共振周波数に補正して求めることができる。   6 is the difference between the resonance resistance value and the natural resonance resistance value of the concentration measurement crystal resonator 20 from the measurement unit 40, and the resonance frequency of the concentration measurement crystal resonator from the measurement unit 40. Based on the difference after the natural resonance frequency and the temperature compensation amount obtained from the resonance frequency (or temperature obtained from the thermocouple) of the temperature measuring crystal resonator 230, the concentration of the mixed gas can be calculated. Here, the natural resonance resistance and the natural resonance frequency are measured in advance at a specific temperature, for example, 20 ° C., or measured at an arbitrary temperature, and the specific resonance resistance value and the natural resonance frequency at a specific temperature, for example, 20 ° C. It can be obtained by correcting.

また、演算部260は、濃度測定用水晶振動子20の共振抵抗値および共振周波数のばらつきを、組成既知の気体の圧力が異なる少なくとも2点、もしくは組成既知の気体の濃度が異なる少なくとも2点で校正する校正結果を記憶するメモリをさらに有することができる。これにより、濃度測定用水晶振動子20を交換しても、濃度測定用水晶振動子の共振抵抗値および共振周波数のばらつきに依存した濃度測定精度の劣化を防止できる。   In addition, the calculation unit 260 changes the resonance resistance value and the resonance frequency of the crystal resonator 20 for concentration measurement at at least two points where the pressures of the gases with known compositions are different or at least two points with different concentrations of the gases with known compositions. A memory for storing a calibration result to be calibrated may be further included. As a result, even if the concentration measuring crystal resonator 20 is replaced, it is possible to prevent the deterioration of the concentration measuring accuracy depending on the variation in the resonance resistance value and the resonance frequency of the concentration measuring crystal resonator.

本発明は、上述した実施形態に限定されるものではなく、本発明の要旨の範囲内で種々の変形実施が可能である。   The present invention is not limited to the embodiments described above, and various modifications can be made within the scope of the gist of the present invention.

本発明の第1実施形態に係る濃度測定装置の概略説明図である。It is a schematic explanatory drawing of the density | concentration measuring apparatus which concerns on 1st Embodiment of this invention. 図1中の計測部に配置される発振器の一例を示す回路図である。It is a circuit diagram which shows an example of the oscillator arrange | positioned at the measurement part in FIG. 図1中の濃度測定用水晶振動子の共振抵抗値及び共振周波数と、混合気体の濃度との相関を示す特性図ある。FIG. 2 is a characteristic diagram showing a correlation between a resonance resistance value and a resonance frequency of the concentration measuring crystal resonator in FIG. 1 and a concentration of a mixed gas. 通路と測定室との間に熱交換器を配設した変形例を示す概略説明図である。It is a schematic explanatory drawing which shows the modification which arrange | positioned the heat exchanger between the channel | path and the measurement chamber. 濃度測定用水晶振動子を通路内に設けた金属メッシュ内に配置した変形例を示す概略説明図である。It is a schematic explanatory drawing which shows the modification which has arrange | positioned the crystal oscillator for density | concentration in the metal mesh provided in the channel | path. 濃度測定用水晶振動子に加えて温度測定素子を追加した変形例の概略説明図である。It is a schematic explanatory drawing of the modification which added the temperature measuring element in addition to the crystal oscillator for density | concentration measurement. 図6に示す濃度測定用及び温度測定用水晶振動子に共用される発振器を有する濃度測定装置の概略説明図である。FIG. 7 is a schematic explanatory diagram of a concentration measuring apparatus having an oscillator shared by the concentration measuring and temperature measuring crystal resonators shown in FIG. 6. 温度測定用水晶振動子の共振周波数−温度の相関を示す特性図である。It is a characteristic view which shows the correlation of the resonant frequency-temperature of the crystal oscillator for temperature measurement. 濃度測定用水晶振動子の共振抵抗値及び共振周波数の温度依存特性を示す特性図である。It is a characteristic view which shows the temperature dependence characteristic of the resonance resistance value and resonance frequency of the crystal resonator for density | concentration measurement.

符号の説明Explanation of symbols

10 配管、12 測定室、20 濃度測定用水晶振動子、30 温調部(恒温槽)、40 計測部、50,260 濃度演算部、52 メモリ、60 発振器、120 A/D変換器、130 周波数カウンタ、210 熱交換器、220 金属メッシュ、230 温度測定用水晶振動子、240 密閉容器、250 温度計測部 10 piping, 12 measuring chamber, 20 crystal resonator for concentration measurement, 30 temperature control unit (constant temperature chamber), 40 measuring unit, 50, 260 concentration calculating unit, 52 memory, 60 oscillator, 120 A / D converter, 130 frequency Counter, 210 heat exchanger, 220 metal mesh, 230 crystal resonator for temperature measurement, 240 airtight container, 250 temperature measurement unit

Claims (13)

構成気体が既知で濃度が未知の2成分混合気体の濃度測定装置において、
前記混合気体と接触することで、前記混合気体の濃度変化に応じて共振抵抗値及び共振周波数が変化する、感応膜が形成されていない濃度測定用水晶振動子と、
前記混合気体と接触した前記水晶振動子の共振抵抗値と共振周波数とを計測する計測部と、
第1メモリを有し、前記第1メモリに記憶された情報と、計測された前記共振抵抗値及び前記共振周波数とに基づいて、前記混合気体の濃度を算出する演算部と、
前記濃度測定用水晶振動子が特定温度範囲となるように、前記濃度測定用水晶振動子を温調する温調部と、
を有し、
前記第1メモリには、濃度が既知の前記混合気体と接触させた時の前記水晶振動子の共振抵抗値と共振周波数とに基づいて予め作成された検量線が記憶されていることを特徴とする2成分混合気体の濃度測定装置。
In the concentration measurement device for a binary gas mixture with known constituent gas and unknown concentration,
A concentration measuring crystal resonator in which a resonance film and a resonance frequency change according to a change in the concentration of the mixed gas by contacting with the mixed gas, and a sensitive film is not formed ,
A measurement unit for measuring a resonance resistance value and a resonance frequency of the crystal resonator in contact with the mixed gas;
An arithmetic unit that has a first memory and calculates the concentration of the mixed gas based on the information stored in the first memory and the measured resonance resistance value and the resonance frequency;
A temperature control unit for controlling the temperature of the concentration measuring crystal resonator so that the concentration measuring crystal resonator is in a specific temperature range;
Have
The first memory stores a calibration curve prepared in advance based on a resonance resistance value and a resonance frequency of the crystal resonator when the gas mixture is brought into contact with the gas mixture having a known concentration. An apparatus for measuring the concentration of a two-component gas mixture.
請求項1において、
前記混合気体が通過する通路と、
前記通路に連通され、前記濃度測定用水晶振動子が配置される測定室と、
前記測定室を温調する恒温槽と、
を有することを特徴とする2成分混合気体の濃度測定装置。
In claim 1,
A passage through which the mixed gas passes;
A measurement chamber that is in communication with the passage and in which the crystal resonator for concentration measurement is disposed;
A thermostatic chamber for controlling the temperature of the measurement chamber;
An apparatus for measuring a concentration of a two-component mixed gas, comprising:
請求項1または2において、
前記濃度測定用水晶振動子と接触する前記混合気体と、前記濃度測定用水晶振動子との温度差が一定値以下となるように、前記混合気体を前記濃度測定用水晶振動子まで案内する熱交換器をさらに有することを特徴とする2成分混合気体の濃度測定装置。
In claim 1 or 2,
Heat that guides the mixed gas to the concentration measuring crystal resonator so that a temperature difference between the mixed gas contacting the concentration measuring crystal resonator and the concentration measuring crystal resonator is a predetermined value or less. An apparatus for measuring a concentration of a two-component gas mixture, further comprising an exchanger.
請求項1乃至3のいずれかにおいて、
前記第1メモリには、前記計測部からの前記濃度測定用水晶振動子の共振抵抗値と固有共振抵抗値との差、および前記計測部からの前記濃度測定用水晶振動子の共振周波数と固有共振周波数後の差に基づいて、前記特定温度における前記検量線が記憶されていることを特徴とする2成分混合気体の濃度測定装置。
In any one of Claims 1 thru | or 3,
The first memory includes a difference between a resonance resistance value and a natural resonance resistance value of the concentration measurement crystal resonator from the measurement unit, and a resonance frequency and a specific property of the concentration measurement crystal resonator from the measurement unit. An apparatus for measuring a concentration of a two-component gas mixture, wherein the calibration curve at the specific temperature is stored based on a difference after a resonance frequency.
構成気体が既知で濃度が未知の2成分混合気体の濃度測定装置において、
前記混合気体と接触することで、前記混合気体の濃度変化に応じて共振抵抗値及び共振周波数が変化する、感応膜が形成されていない濃度測定用水晶振動子と、
前記混合気体と接触した前記水晶振動子の共振抵抗値と共振周波数とを計測する計測部と、
前記濃度測定用水晶振動子と隣接して配置された温度測定子と、
補正部と第1メモリとを含み、前記補正部が前記温度測定子からの測定情報に基づいて前記濃度測定用水晶振動子の温度依存性を補正し、補正後の特定温度における前記共振抵抗値及び前記共振周波数と、前記第1メモリに記憶された情報とに基づいて、前記混合気体の濃度を算出する演算部と、
を有し、
前記第1メモリには、濃度が既知の前記混合気体と接触させた時の前記水晶振動子の前記特定温度における共振抵抗値と共振周波数とに基づいて予め作成された検量線が記憶されていることを特徴とする2成分混合気体の濃度測定装置。
In the concentration measurement device for a binary gas mixture with known constituent gas and unknown concentration,
A concentration measuring crystal resonator in which a resonance film and a resonance frequency change according to a change in the concentration of the mixed gas by contacting with the mixed gas, and a sensitive film is not formed ,
A measurement unit for measuring a resonance resistance value and a resonance frequency of the crystal resonator in contact with the mixed gas;
A temperature probe arranged adjacent to the concentration measuring crystal resonator;
A correction unit and a first memory, wherein the correction unit corrects the temperature dependence of the concentration-measuring crystal resonator based on measurement information from the temperature probe, and the resonance resistance value at the corrected specific temperature And a calculation unit that calculates the concentration of the mixed gas based on the resonance frequency and the information stored in the first memory ;
I have a,
The first memory stores a calibration curve prepared in advance based on a resonance resistance value and a resonance frequency of the crystal resonator at the specific temperature when the gas mixture is brought into contact with the gas mixture having a known concentration. An apparatus for measuring the concentration of a two-component gas mixture.
請求項5において、
前記温度測定子は、前記混合気体と隔離する密閉容器内に封入されていることを特徴とする2成分混合気体の濃度測定装置。
In claim 5,
The temperature measuring element is enclosed in an airtight container that is isolated from the mixed gas.
請求項5において、
前記温度測定子は、前記混合気体と隔離する密閉容器内に配置され、かつ、前記密閉容器内には既知の気体が封入れさていることを特徴とする2成分混合気体の濃度測定装置。
In claim 5,
The temperature measuring element is disposed in a sealed container that is isolated from the mixed gas, and a known gas is sealed in the sealed container, and the concentration measuring apparatus for a two-component mixed gas is characterized in that
請求項5乃至7のいずれかにおいて、
前記温度測定子は、温度測定用水晶振動子にて形成され、
前記計測部は、前記温度測定用水晶振動子の共振周波数を計測し、
前記補正部は、前記温度測定用水晶振動子の共振周波数と温度との特性に基づいて、前記濃度測定用水晶振動子の温度依存性を補正することを特徴とする2成分混合気体の濃度測定装置。
In any of claims 5 to 7,
The temperature measuring element is formed of a temperature measuring crystal resonator,
The measurement unit measures a resonance frequency of the temperature measuring crystal resonator,
The correction unit corrects the temperature dependence of the concentration measuring crystal resonator based on the characteristics of the resonance frequency and temperature of the temperature measuring crystal resonator, and measures the concentration of the two-component gas mixture apparatus.
請求項5乃至7のいずれかにおいて、
前記温度測定子は、熱電対にて形成されていることを特徴とする2成分混合気体の濃度測定装置。
In any of claims 5 to 7,
The temperature measuring element is formed by a thermocouple.
請求項5乃至9のいずれかにおいて、
前記第1メモリには、前記計測部から出力され前記補正部にて補正された前記濃度測定用水晶振動子の共振抵抗値と固有共振抵抗値との差、前記計測部から出力され前記補正部にて補正された前記濃度測定用水晶振動子の共振周波数と固有共振周波数後の差に基づいて予め作成された前記検量線が記憶されていることを特徴とする2成分混合気体の濃度測定装置。
In any one of Claims 5 thru | or 9 ,
Wherein the first memory, the resonance resistance of the concentration determination quartz oscillator has been corrected by the correcting unit is output from the measuring unit and the difference between the natural resonance resistance, output from the measuring unit and the correction the concentration of 2-component gas mixture, characterized in that the calibration curve prepared in advance on the basis of the difference after the resonant frequency and the natural resonance frequency of the corrected the concentration determination quartz oscillator at parts are stored measuring device.
請求項1乃至10のいずれかにおいて、In any one of Claims 1 thru | or 10.
前記第1メモリに記憶される前記検量線は非直線であることを特徴とする2成分混合気体の濃度測定装置。  The concentration measurement apparatus for a two-component gas mixture, wherein the calibration curve stored in the first memory is non-linear.
請求項1乃至11のいずれかにおいて、
前記演算部は、前記濃度測定用水晶振動子の共振抵抗値および共振周波数のばらつきを、組成既知の気体の圧力が異なる少なくとも2点、もしくは組成既知の気体の濃度が異なる少なくとも2点で校正する校正結果を記憶する第2メモリをさらに有することを特徴とする2成分混合気体の濃度測定装置。
In any one of Claims 1 thru | or 11,
The arithmetic unit calibrates the variation in the resonance resistance value and resonance frequency of the concentration measuring crystal resonator at at least two points where the gas pressures with known compositions are different or at least two points where the gas concentrations with known compositions are different. A two-component gas concentration measuring device further comprising a second memory for storing a calibration result.
請求項1乃至12のいずれかにおいて、
前記濃度測定用水晶振動子は、音叉型水晶振動子にて形成されていることを特徴とする2成分混合気体の濃度測定装置。
In any one of Claims 1 to 12,
The concentration measuring apparatus for two-component gas mixture, wherein the concentration measuring crystal resonator is formed of a tuning fork type crystal resonator.
JP2004049769A 2004-02-25 2004-02-25 Concentration measuring device for binary gas mixture Expired - Lifetime JP4266850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004049769A JP4266850B2 (en) 2004-02-25 2004-02-25 Concentration measuring device for binary gas mixture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004049769A JP4266850B2 (en) 2004-02-25 2004-02-25 Concentration measuring device for binary gas mixture

Publications (2)

Publication Number Publication Date
JP2005241355A JP2005241355A (en) 2005-09-08
JP4266850B2 true JP4266850B2 (en) 2009-05-20

Family

ID=35023244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004049769A Expired - Lifetime JP4266850B2 (en) 2004-02-25 2004-02-25 Concentration measuring device for binary gas mixture

Country Status (1)

Country Link
JP (1) JP4266850B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5626502B2 (en) * 2009-01-23 2014-11-19 セイコーエプソン株式会社 Stress detector
PL2458377T3 (en) 2010-11-29 2020-02-28 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the molecular weight of a gas
EP2458348B1 (en) 2010-11-29 2013-08-14 Air Products And Chemicals, Inc. Method of, and apparatus for, measuring the mass flow rate of a gas
JP5769167B2 (en) * 2011-07-01 2015-08-26 国立研究開発法人産業技術総合研究所 Gas molecular weight measuring device
PL2667160T3 (en) 2012-05-24 2021-05-04 Air Products And Chemicals, Inc. Method of, and Apparatus for, Regulating the Mass Flow Rate of a Gas
ES2556783T3 (en) 2012-05-24 2016-01-20 Air Products And Chemicals, Inc. Method and apparatus for measuring the physical properties of biphasic fluids
PL2667159T3 (en) 2012-05-24 2022-05-02 Air Products And Chemicals, Inc. Method of, and Apparatus for, Measuring the Mass Flow Rate of a Gas
EP2667277B1 (en) * 2012-05-24 2017-12-27 Air Products And Chemicals, Inc. Method of, and apparatus for, providing a gas mixture
PL2667176T3 (en) 2012-05-24 2015-07-31 Air Prod & Chem Apparatus for measuring the true contents of a cylinder of gas under pressure
ES2659146T3 (en) 2012-05-24 2018-03-14 Air Products And Chemicals, Inc. Method and apparatus for providing a gas mixture
JP6975440B2 (en) * 2017-01-11 2021-12-01 Q’z株式会社 Concentration measuring device for two-kind mixed gas

Also Published As

Publication number Publication date
JP2005241355A (en) 2005-09-08

Similar Documents

Publication Publication Date Title
JP4266850B2 (en) Concentration measuring device for binary gas mixture
JP2004219386A (en) Concentration measuring instrument for gas mixture comprising two kinds of gases
US5294378A (en) Calibrating apparatus for isothermally introducing moisture into a stream of dry gas at a very slow rate
CN108828065B (en) Method and apparatus for measuring molecular weight of gas
US11629998B2 (en) Radiation temperature measuring device
JP2004163293A (en) Method and apparatus for measuring ozone gas concentration
US8148691B1 (en) Calibration methodology for NDIR dew point sensors
Merlone et al. Design and capabilities of the temperature control system for the Italian experiment based on precision laser spectroscopy for a new determination of the Boltzmann constant
Leming et al. Sublimation pressures of solid Ar, Kr, and Xe
Astrov et al. Precision gas thermometry between 2.5 K and 308 K
JP2006241516A (en) Production method for thin film by gaseous mixture and apparatus for the same
JP6581439B2 (en) Gas sensor calibration apparatus, gas sensor calibration method, and gas sensor
Cuccaro et al. Development of a low frost-point generator operating at sub-atmospheric pressure
Amano et al. Trace-moisture generator designed for performance tests of trace-moisture analyzers
Abe A marked improvement in the reliability of the measurement of trace moisture in gases—Establishment of metrological traceability and a performance evaluation of trace moisture analyzers—
JP5229802B2 (en) Gas detector
Ricker et al. Determination of distortion corrections for a fixed length optical cavity pressure standard
JP3756919B2 (en) How to measure dead volume fluctuation
Vega-Maza et al. A Humidity Generator for Temperatures up to 200° C and Pressures up to 1.6 MPa
Szakáll et al. On the temperature dependent characteristics of a photoacoustic water vapor detector for airborne application
EP3348969B1 (en) Measurement of a fluid parameter and sensor device therefore
Charnley et al. The direct measurement of the isothermal Joule-Thomson coefficient for gases
Haselden et al. Equilibrium properties of the carbon dioxide+ propylene and carbon dioxide+ cyclopropane systems at low temperatures
JP5096081B2 (en) Fluorine gas measuring method and apparatus
JP2004198328A (en) Method and apparatus for measuring composition of multi-component mixed gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080924

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081125

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090203

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090217

R150 Certificate of patent or registration of utility model

Ref document number: 4266850

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120227

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150227

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term