JP2015169581A - Physical property dependence type pressure gauge and hydrogen concentration measurement device - Google Patents

Physical property dependence type pressure gauge and hydrogen concentration measurement device Download PDF

Info

Publication number
JP2015169581A
JP2015169581A JP2014045655A JP2014045655A JP2015169581A JP 2015169581 A JP2015169581 A JP 2015169581A JP 2014045655 A JP2014045655 A JP 2014045655A JP 2014045655 A JP2014045655 A JP 2014045655A JP 2015169581 A JP2015169581 A JP 2015169581A
Authority
JP
Japan
Prior art keywords
hydrogen
pressure
gas
pressure gauge
physical property
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014045655A
Other languages
Japanese (ja)
Other versions
JP6364209B2 (en
Inventor
久男 北條
Hisao Hojo
久男 北條
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Vacuum Products Corp
Original Assignee
Vacuum Products Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Vacuum Products Corp filed Critical Vacuum Products Corp
Priority to JP2014045655A priority Critical patent/JP6364209B2/en
Publication of JP2015169581A publication Critical patent/JP2015169581A/en
Application granted granted Critical
Publication of JP6364209B2 publication Critical patent/JP6364209B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hydrogen concentration measurement device capable of measuring hydrogen concentration in measured gas with high sensitivity without restricting kinds of measured gas, and a physical property dependence type pressure gauge used in the hydrogen concentration measurement device.SOLUTION: A physical property dependence type pressure gauge 30 includes a pressure measurement element 31, a container 32 storing the pressure measurement element and having an opening 34B, and a hydrogen permeation film 35 arranged in the opening of the container. In the container, gas other than hydrogen is stored, and hydrogen can be introduced or derived through the hydrogen permeation film. The pressure measurement element detects pressure depending on the physical property of mixture gas in the container.

Description

本発明は、気体中の水素濃度を計測するために用いられる物性依存式圧力計及びそれを用いた水素濃度測定装置等に関する。   The present invention relates to a physical property dependent pressure gauge used for measuring a hydrogen concentration in a gas, a hydrogen concentration measuring apparatus using the same, and the like.

近年、原子力発電所での水素爆発を契機として、水素濃度の測定が注目されている。原子炉内のような過酷環境下での使用を予定している水素濃度計は、例えば特許文献1,2に開示されている。   In recent years, the measurement of hydrogen concentration has attracted attention as a result of a hydrogen explosion at a nuclear power plant. For example, Patent Documents 1 and 2 disclose hydrogen concentration meters that are scheduled to be used in a harsh environment such as in a nuclear reactor.

一方、既知である2種類の気体からなる混合気体(例えばオゾンと酸素の混合気体)の濃度を求める方法として、混合気体の粘性・熱伝導率・密度・分子量およびそれらの関数としての混合気体の物性値を測定し、純粋気体固有の物性値をもとに気体の濃度を算出する手法が知られている(特許文献3)。   On the other hand, as a method for obtaining the concentration of a known mixed gas composed of two kinds of gases (for example, a mixed gas of ozone and oxygen), the viscosity, thermal conductivity, density, molecular weight of the mixed gas, and the mixed gas as a function thereof are described. A method is known in which a physical property value is measured and a gas concentration is calculated based on a physical property value unique to pure gas (Patent Document 3).

特開平6−130177号公報JP-A-6-130177 特許第5170600号公報Japanese Patent No. 5170600 特許第3336384号公報Japanese Patent No. 3336384

特許文献1の水素濃度計の内部に例えばプラスチックを備えたものがあり、耐熱性の点で課題がある。特許文献2の水素濃度計は、中性子と陽子(水素の原子核)との弾性散乱によって生成された反跳陽子が有する電離能を用いることで監視対象気体の水素濃度を決定するものであるが、検出感度の点で課題がある。特許文献3は既知である2種類の気体からなる混合気体の濃度を測定するものであるので、多成分の気体を有する空気中の水素濃度の検出には適さない。   Some hydrogen concentration meters of Patent Document 1 are provided with, for example, plastic, and there is a problem in terms of heat resistance. The hydrogen concentration meter of Patent Document 2 determines the hydrogen concentration of a monitoring target gas by using the ionization ability of a recoil proton generated by elastic scattering between neutrons and protons (hydrogen nuclei). There is a problem in terms of detection sensitivity. Since patent document 3 measures the density | concentration of the mixed gas which consists of two types of known gas, it is not suitable for the detection of the hydrogen concentration in the air which has multicomponent gas.

そこで、本発明の目的は、被測定気体である空気中の水素濃度を測定する場合を含め、被測定気体の種類に制約なく被測定気体中の水素濃度を高感度で測定することができる水素濃度測定装置及びそれに用いられる物性依存式圧力計を提供することにある。   Accordingly, an object of the present invention is to detect hydrogen concentration in the gas to be measured with high sensitivity regardless of the type of gas to be measured, including the case of measuring the hydrogen concentration in the air to be measured. An object of the present invention is to provide a concentration measuring device and a physical property dependent pressure gauge used therefor.

(1)本発明の一態様は、
圧力測定素子と、
前記圧力測定素子を収容する、開口を有する容器と、
前記容器の前記開口に配置される水素透過膜と、
を有し、
前記容器内には、水素以外の気体が収容され、かつ、前記水素透過膜を通過して水素が導入出可能であり、
前記圧力測定素子は、前記容器内の前記気体と水素との混合気体の物性に依存する圧力を検出する物性依存式圧力計に関する。
本発明の一態様によれば、水素透過膜を透過する水素透過量は、被測定気体中の水素分圧の平方根と、容器内の混合気体中の水素分圧の平方根の差に比例する。よって、被測定気体中の水素分圧(濃度)が高まれば、水素透過膜を介して被測定気体中の水素が容器内に導入される。容器内の混合気体(容器内の気体+水素)の見掛け上の物性(粘性・熱伝導率・密度・分子量またはそれらの関数等)は、容器内の気体の物性と水素の物性とが異なることから、水素透過膜を介して容器内に導入される水素濃度に応じて変化する。物性依存式圧力計の圧力測定素子は、容器内の混合気体の物性に依存する圧力を検出する。この圧力測定素子にて測定される圧力は、被測定気体中の水素濃度を反映する。特に、水素透過膜は水素以外の気体を透過しないので、物性依存式圧力計内の圧力測定素子が環境に作用され難くなり、測定誤差の要因を排除して、高感度・高精度の水素濃度検出が可能となる。また、水素透過膜は水素以外の気体を透過しないので、水素以外の被測定気体は、物性依存式圧力計の圧力測定素子に接触しない。従って、物性依存式圧力計を用いる上で、被測定気体の種類に制約はない。
(1) One aspect of the present invention is
A pressure measuring element;
A container having an opening for accommodating the pressure measuring element;
A hydrogen permeable membrane disposed in the opening of the container;
Have
In the container, gas other than hydrogen is accommodated, and hydrogen can be introduced and extracted through the hydrogen permeable membrane,
The pressure measuring element relates to a physical property dependent pressure gauge that detects a pressure depending on a physical property of a mixed gas of the gas and hydrogen in the container.
According to one aspect of the present invention, the amount of hydrogen permeating through the hydrogen permeable membrane is proportional to the difference between the square root of the hydrogen partial pressure in the gas to be measured and the square root of the hydrogen partial pressure in the mixed gas in the container. Therefore, if the hydrogen partial pressure (concentration) in the measurement gas increases, hydrogen in the measurement gas is introduced into the container through the hydrogen permeable membrane. The apparent physical properties (viscosity, thermal conductivity, density, molecular weight, or their function, etc.) of the gas mixture in the container (gas + hydrogen in the container) differ between the physical properties of the gas in the container and the physical properties of hydrogen. From this, it changes according to the hydrogen concentration introduced into the container through the hydrogen permeable membrane. The pressure measuring element of the physical property dependent pressure gauge detects a pressure depending on the physical properties of the mixed gas in the container. The pressure measured by this pressure measuring element reflects the hydrogen concentration in the gas to be measured. In particular, since hydrogen permeable membranes do not transmit gases other than hydrogen, the pressure measuring element in the physical property-dependent pressure gauge is less likely to be affected by the environment, eliminating the cause of measurement errors and providing highly sensitive and accurate hydrogen concentration. Detection is possible. Further, since the hydrogen permeable membrane does not transmit gas other than hydrogen, the gas to be measured other than hydrogen does not contact the pressure measuring element of the physical property dependent pressure gauge. Therefore, there are no restrictions on the type of gas to be measured in using the physical property dependent pressure gauge.

(2)本発明の一態様では、前記気体は、水素の粘性値(μ・Pa・s)に対して一桁以上異なる粘性値を有する気体とすることができる。
物性依存式圧力計は、依存する物性として例えば気体の粘性を挙げることができる。水素の粘性値は、8.8(μ・Pa・s)である。容器内の気体の粘性値が水素の粘性値に対して例えば大ききほど、水素透過膜を介して容器内に導入される水素が混合された容器内の混合気体の見掛け上の粘性値は小さくなり、物性(粘性)依存式圧力計にて測定されるね混合気体の見掛け上の圧力は下がる。容器内の気体の粘性値と水素の粘性値との差が大きければ、容器内に導入される水素濃度に応じて物性(粘性)依存式圧力計の出力変化は大きい。本発明の一態様によれば、水素の粘性値に対して一桁以上異なる粘性値を有する気体を用いることで、水素濃度に対する測定感度を向上させることができる。
(2) In one mode of the present invention, the gas may be a gas having a viscosity value that differs by one digit or more with respect to the viscosity value (μ · Pa · s) of hydrogen.
The physical property-dependent pressure gauge can include, for example, gas viscosity as a dependent physical property. The viscosity value of hydrogen is 8.8 (μ · Pa · s). As the viscosity value of the gas in the container is larger than the viscosity value of hydrogen, for example, the apparent viscosity value of the mixed gas in the container mixed with hydrogen introduced into the container through the hydrogen permeable membrane decreases. As a result, the apparent pressure of the mixed gas measured by the physical property (viscosity) dependent pressure gauge decreases. If the difference between the viscosity value of the gas in the container and the viscosity value of hydrogen is large, the output change of the physical property (viscosity) -dependent pressure gauge is large according to the hydrogen concentration introduced into the container. According to one embodiment of the present invention, the measurement sensitivity with respect to the hydrogen concentration can be improved by using a gas having a viscosity value that differs by one digit or more with respect to the viscosity value of hydrogen.

(3)本発明の一態様では、前記気体は空気とすることができる。
空気の粘性値は17.08(μ・Pa・s)であり、水素の粘性値に対して一桁以上異なる粘性値を有する。
(3) In one aspect of the present invention, the gas may be air.
The viscosity value of air is 17.08 (μ · Pa · s), and the viscosity value differs by one digit or more from the viscosity value of hydrogen.

(4)本発明の一態様では、前記気体は窒素とすることができる。
窒素の粘性値は17.6(μ・Pa・s)であり、水素の粘性値に対して一桁以上異なる粘性値を有する。
(4) In one embodiment of the present invention, the gas may be nitrogen.
The viscosity value of nitrogen is 17.6 (μ · Pa · s), and the viscosity value differs by one digit or more from the viscosity value of hydrogen.

(5)本発明の一態様では、前記水素透過膜を不純物から保護するフィルターをさらに有することができる。
物性依存式圧力計が例えば原子炉内で使用される場合、原子炉事故時に多量に発生する水蒸気等により水素透過膜が汚染されることを防止できる。
(5) In one mode of the present invention, it can further have a filter which protects the above-mentioned hydrogen permeable film from impurities.
When the physical property-dependent pressure gauge is used in a nuclear reactor, for example, it is possible to prevent the hydrogen permeable membrane from being contaminated by water vapor or the like that is generated in a large amount in the event of a nuclear reactor accident.

(6)本発明の一態様では、前記圧力測定素子は音叉型水晶振動子とすることができる。
本発明の一態様によれば、圧力測定素子としての音叉型水晶振動子は、粘性(摩擦)を利用して圧力を測定することから、混合気体の物性(粘性)に依存した圧力を測定することができる。
(6) In one aspect of the present invention, the pressure measuring element may be a tuning fork type crystal resonator.
According to one aspect of the present invention, the tuning fork type crystal resonator as the pressure measuring element measures the pressure using the viscosity (friction), and thus measures the pressure depending on the physical property (viscosity) of the mixed gas. be able to.

(7)本発明の他の態様は、
被測定気体中の水素濃度を測定する水素濃度測定装置であって、
上述した(1)〜(6)のいずれかに記載の物性依存式圧力計と、
前記被測定気体と接して、前記被測定気体の物性値に依存しない圧力を測定する感圧式圧力計と、
前記物性依存式圧力計で測定される第1圧力と、前記感圧式圧力計で測定される第2圧力と、既知の水素濃度及び既知の被測定体の圧力の下で前記物性依存式圧力計により予め取得された検量線とに基づいて、前記被測定気体中の水素濃度を求める濃度演算器と、
を有する水素濃度測定装置に関する。
本発明の他の態様によれば、(1)〜(6)にて説明した物性依存式圧力計と組み合わせて感圧式圧力計が用いられる。被測定気体と接する感圧式圧力計は、被測定気体の物性の影響を受けずに被測定気体の圧力を検出する。物性依存式圧力計は第1圧力を出力する。感圧式圧力計は第2圧力を出力する。濃度演算器は、第1圧力及び第2圧力と検量線とを用いて水素濃度を求めることができる。ここで検稜線は、既知の水素濃度及び被測定体の既知の圧力の下で物性依存式圧力計により予め取得されたものである。
(7) Another aspect of the present invention is:
A hydrogen concentration measuring device for measuring a hydrogen concentration in a gas to be measured,
The physical property dependent pressure gauge according to any one of (1) to (6) above,
A pressure-sensitive pressure gauge that is in contact with the gas to be measured and measures a pressure that does not depend on a physical property value of the gas to be measured;
The physical property-dependent pressure gauge under a first pressure measured by the physical property-dependent pressure gauge, a second pressure measured by the pressure-sensitive pressure gauge, a known hydrogen concentration and a known pressure of a measured object A concentration calculator for obtaining a hydrogen concentration in the measurement gas based on a calibration curve acquired in advance by
The present invention relates to a hydrogen concentration measuring apparatus having
According to another aspect of the present invention, a pressure sensitive pressure gauge is used in combination with the physical property dependent pressure gauge described in (1) to (6). The pressure-sensitive pressure gauge in contact with the gas to be measured detects the pressure of the gas to be measured without being affected by the physical properties of the gas to be measured. The physical property dependent pressure gauge outputs the first pressure. The pressure-sensitive pressure gauge outputs the second pressure. The concentration calculator can determine the hydrogen concentration using the first pressure, the second pressure, and the calibration curve. Here, the ridge line is acquired in advance by a physical property-dependent pressure gauge under a known hydrogen concentration and a known pressure of the object to be measured.

本発明の一実施形態に係る水素濃度測定装置のブロック図である。It is a block diagram of the hydrogen concentration measuring device concerning one embodiment of the present invention. 図1に示す水素濃度測定装置に用いられる気体の物性に依存する圧力を測定する物性依存式圧力計(例えば粘性式圧力計)の分解斜視図である。FIG. 2 is an exploded perspective view of a physical property-dependent pressure gauge (for example, a viscous pressure gauge) that measures a pressure depending on the physical properties of a gas used in the hydrogen concentration measurement apparatus shown in FIG. 1. 水素透過薄膜の一例であるパラジウム膜での水素の透過原理を示す図である。It is a figure which shows the permeation | transmission principle of hydrogen in the palladium membrane which is an example of a hydrogen permeable thin film. 窒素の粘性係数を用いたときの水晶振動子式圧力計の指示変化を示す特性図である。It is a characteristic view which shows the instruction | indication change of the crystal oscillator type pressure gauge when the viscosity coefficient of nitrogen is used. 水晶振動子の共振抵抗の気体圧力による変化を示す特性図である。It is a characteristic view which shows the change by the gas pressure of the resonance resistance of a crystal oscillator. 水素を混入させたときの水晶振動子式圧力計の指示変化を示す特性図である。It is a characteristic view which shows the instruction | indication change of the crystal oscillator type pressure gauge when hydrogen is mixed. 空気に水素を混合していったときの圧力に対する水晶振動子式圧力計の指示変化(検量線)を示す特性図である。It is a characteristic view which shows the instruction | indication change (calibration curve) of the quartz oscillator type pressure gauge with respect to the pressure when mixing hydrogen with air. チャンバーを含む実験装置の概略図である。It is the schematic of the experimental apparatus containing a chamber. 図8の実験装置にてチャンバー内に水素を導入したときの水晶振動子式圧力計の表示出力の変化を示す特性図である。It is a characteristic view which shows the change of the display output of a crystal oscillator type pressure gauge when hydrogen is introduce | transduced in the chamber with the experimental apparatus of FIG. 図10(A)〜図10(D)は、容器内の気体を空気とし、温度を室温から150℃に昇温させたときの水素濃度(%)とプリアンプ出力(V)との関係を示す特性図である。10A to 10D show the relationship between the hydrogen concentration (%) and the preamplifier output (V) when the gas in the container is air and the temperature is raised from room temperature to 150 ° C. FIG. 図11(A)〜図11(C)は、容器内の気体を空気とし、温度を200℃から300℃に昇温させたときの水素濃度(%)とプリアンプ出力(V)との関係を示す特性図である。11A to 11C show the relationship between the hydrogen concentration (%) and the preamplifier output (V) when the gas in the container is air and the temperature is raised from 200 ° C. to 300 ° C. FIG. 図12(A)〜図12(D)は、容器内の気体を窒素とし、温度を室温から150℃に昇温させたときの水素濃度(%)とプリアンプ出力(V)との関係を示す特性図である。12 (A) to 12 (D) show the relationship between the hydrogen concentration (%) and the preamplifier output (V) when the gas in the container is nitrogen and the temperature is raised from room temperature to 150 ° C. FIG. 図13(A)〜図13(C)は、容器内の気体を窒素とし、温度を200℃から300℃に昇温させたときの水素濃度(%)とプリアンプ出力(V)との関係を示す特性図である。FIGS. 13A to 13C show the relationship between the hydrogen concentration (%) and the preamplifier output (V) when the gas in the container is nitrogen and the temperature is raised from 200 ° C. to 300 ° C. FIG. 水素濃度測定装置の制御系システム図である。It is a control system figure of a hydrogen concentration measuring device. 水素濃度測定装置の他の制御系システム図である。It is another control system figure of a hydrogen concentration measuring device. 水素濃度測定装置の制御系ブロック図である。It is a control system block diagram of a hydrogen concentration measuring device. 図2に示す物性依存式圧力計に、不純物の通過を阻止して水素透過膜を保護するフィルターを追加した例を示す図である。It is a figure which shows the example which added the filter which blocks | prevents passage of an impurity and protects a hydrogen permeable film to the physical property dependence type pressure gauge shown in FIG.

1.水素濃度測定装置の概要
以下、本発明の実施形態について説明する。図1は、本発明の一実施形態に係る水素濃度測定装置のブロック図である。図1において、例えばチャンバー10内の被測定気体の水素濃度を測定する水素濃度測定装置20は、物性依存式圧力計30と、感圧式圧力計40と、濃度演算器50とを有する。物性依存式圧力計30及び感圧式圧力計40は、パイプ11を介してチャンバー10と接続されている。
1. Outline of Hydrogen Concentration Measuring Device Hereinafter, embodiments of the present invention will be described. FIG. 1 is a block diagram of a hydrogen concentration measuring apparatus according to an embodiment of the present invention. In FIG. 1, for example, a hydrogen concentration measuring device 20 that measures the hydrogen concentration of a gas to be measured in a chamber 10 includes a physical property-dependent pressure gauge 30, a pressure-sensitive pressure gauge 40, and a concentration calculator 50. The physical property-dependent pressure gauge 30 and the pressure-sensitive pressure gauge 40 are connected to the chamber 10 via the pipe 11.

気体の物性(粘性・熱伝導率・密度・分子量またはそれらの関数等)に応じて圧力が変化する物性依存式圧力計30としては、例えば粘性(摩擦)を利用する水晶摩擦真空計やスピニングロータゲージ、熱伝導を利用する熱電対真空計やピラニー真空計、そのほかクヌーセン真空計等を用いることができ、また、電離現象を利用する例えば熱陰極電離真空計、冷陰極電離真空計、放射線電離真空計等を使用することができる。   Examples of the physical property-dependent pressure gauge 30 whose pressure changes according to the physical properties of gas (viscosity, thermal conductivity, density, molecular weight, or a function thereof) include a quartz friction vacuum gauge and a spinning rotor that use viscosity (friction). Gauges, thermocouple vacuum gauges and Pirani vacuum gauges that use heat conduction, Knudsen vacuum gauges, etc. can also be used. Also, for example, hot cathode ionization vacuum gauges, cold cathode ionization vacuum gauges, radiation ionization vacuums that use ionization phenomena A meter or the like can be used.

感圧式圧力計40としては、例えば液柱差真空計、圧縮真空計、隔膜真空計、ブルドン管真空計等を用いることができる。   As the pressure-sensitive pressure gauge 40, for example, a liquid column differential gauge, a compression gauge, a diaphragm gauge, a Bourdon tube gauge, etc. can be used.

2.物性依存式圧力計
図2は、図1に示す水素濃度測定装置20に用いられる物性依存式圧力計である例えば粘性式圧力計30中のセンサー素子30Aの分解斜視図である。図2において、センサー素子30Aは、圧力測定素子である例えば音叉型水晶振動子31と、音叉型水晶振動子31を収容する容器32とを含む。このため、粘性式圧力計30を水晶振動子式圧力計30とも称する。容器32は、基部33及びシリンダー34を含む。シリンダー34の一端側の開口34Aは基部33と連結される。シリンダー34の他端側の開口34Bは、水素透過膜35で覆われている。
2. Physical Property Dependent Pressure Gauge FIG. 2 is an exploded perspective view of sensor element 30A in, for example, viscosity pressure gauge 30 which is a physical property dependent pressure gauge used in hydrogen concentration measuring apparatus 20 shown in FIG. In FIG. 2, the sensor element 30 </ b> A includes, for example, a tuning fork type crystal resonator 31 that is a pressure measuring element, and a container 32 that houses the tuning fork type crystal resonator 31. For this reason, the viscous pressure gauge 30 is also referred to as a quartz vibrator pressure gauge 30. The container 32 includes a base 33 and a cylinder 34. An opening 34 </ b> A on one end side of the cylinder 34 is connected to the base portion 33. The opening 34 </ b> B on the other end side of the cylinder 34 is covered with a hydrogen permeable film 35.

水素透過膜35は、水素を透過するものであれば種類は問わない。ただし、高分子膜、セラミック膜、ゼオライト膜、ナノカーボン材料等の細孔を利用すると、耐熱性や水素選択性の問題が生じる場合がある。よって、金属表面で分子が原子に解離して透過する水素透過性金属薄膜を用いることが好ましい。水素透過膜35は、例えば多孔質体の上に水素透過性金属薄膜を形成することで、機械的強度が補償される。水素透過性金属薄膜は薄いほど水素透過性が良く、水素透過薄膜だけでは機械的強度を補償できないからである。水素透過性金属薄膜としては、パラジウム(PD)、バナジウム(V)、ニオブ(NB)、タンタル(Ta)、またはそのいずれかを含むの合金、Nb−TiNi合金、ジルコニウム(Zr)とニッケル(Ni)から成るアモルファス合金等を挙げることができる。   The hydrogen permeable membrane 35 may be of any type as long as it is permeable to hydrogen. However, when pores such as polymer membranes, ceramic membranes, zeolite membranes, and nanocarbon materials are used, problems of heat resistance and hydrogen selectivity may occur. Therefore, it is preferable to use a hydrogen-permeable metal thin film in which molecules dissociate into atoms and permeate on the metal surface. The hydrogen permeable film 35 is compensated for mechanical strength, for example, by forming a hydrogen permeable metal thin film on a porous body. This is because the thinner the hydrogen-permeable metal thin film, the better the hydrogen permeability, and the mechanical strength cannot be compensated only by the hydrogen-permeable thin film. Examples of the hydrogen permeable metal thin film include palladium (PD), vanadium (V), niobium (NB), tantalum (Ta), or an alloy containing any of them, Nb-TiNi alloy, zirconium (Zr) and nickel (Ni An amorphous alloy made of

水素透過膜35は、図1に示すパイプ11を介してチャンバー10内の被測定気体と接触可能である。基部33が音叉型水晶振動子31の電極31Aに接続されたリード線31Bを支持することで、音叉型水晶振動子31は、リード線31B以外が容器32と非接触の状態で容器32内に収容される。基部33には、リード線31Bに導通し、かつ、容器32の外部に露出する外部端子36が設けられている。また、容器32内には、水素とは異なる気体、例えば空気が封入されている。   The hydrogen permeable membrane 35 can come into contact with the gas to be measured in the chamber 10 through the pipe 11 shown in FIG. The base 33 supports the lead wire 31B connected to the electrode 31A of the tuning-fork type crystal resonator 31, so that the tuning-fork type crystal resonator 31 is not in contact with the container 32 except for the lead wire 31B. Be contained. The base 33 is provided with an external terminal 36 that is electrically connected to the lead wire 31 </ b> B and exposed to the outside of the container 32. In addition, a gas different from hydrogen, such as air, is enclosed in the container 32.

なお、粘性式圧力計30は、図2に示すセンサー素子30Aに接続される駆動・検出回路100(図16参照)。駆動・検出回路100は、音叉型水晶振動子31に駆動信号を供給し、その出力信号を検出するものである。駆動・検出回路100をセンサー素子30Aの出力段として見ると前置増幅するプリアンプとしての機能を有することから、本明細書では駆動・検出回路100をプリアンプとも称する。   The viscous pressure gauge 30 is a drive / detection circuit 100 connected to the sensor element 30A shown in FIG. 2 (see FIG. 16). The drive / detection circuit 100 supplies a drive signal to the tuning fork crystal unit 31 and detects an output signal thereof. When the drive / detection circuit 100 is viewed as an output stage of the sensor element 30A, the drive / detection circuit 100 has a function as a preamplifier for preamplification. Therefore, in this specification, the drive / detection circuit 100 is also referred to as a preamplifier.

3.水素透過膜の水素透過原理
図3は、水素透過膜35中の水素透過薄膜の一例であるパラジウム膜35Aでの水素の透過原理を示している。図1に示すチャンバー10内の被測定気体は、パイプ11を介して粘性式圧力計30のパラジウム膜35Aと接触する。チャンバー10内の被測定気体中に水素が存在すれば、水素分子はパラジウム膜35Aの表面に吸着される。吸着水素分子は、パラジウム膜35Aにて水素原子に解離する。さらに水素原子は、原子状水素(プロトン)と電子へと解離する。この原子状水素(プロトン)と電子とは、パラジウム膜35A内に拡散する。パラジウム膜35A中にて容器32側に拡散した原子状水素(プロトン)と電子とは、再結合して水素原子となる。その水素原子は水素分子に再結合して、パラジウム膜35Aから脱離して、容器32中の空気と混合される。
3. Hydrogen Permeation Principle of Hydrogen Permeation Membrane FIG. 3 shows the hydrogen permeation principle in a palladium membrane 35A which is an example of a hydrogen permeable thin film in the hydrogen permeable membrane 35. The gas to be measured in the chamber 10 shown in FIG. 1 comes into contact with the palladium film 35 </ b> A of the viscous pressure gauge 30 through the pipe 11. If hydrogen is present in the gas to be measured in the chamber 10, hydrogen molecules are adsorbed on the surface of the palladium film 35A. The adsorbed hydrogen molecules are dissociated into hydrogen atoms at the palladium film 35A. Furthermore, hydrogen atoms dissociate into atomic hydrogen (protons) and electrons. The atomic hydrogen (proton) and electrons diffuse into the palladium film 35A. Atomic hydrogen (proton) and electrons diffused toward the container 32 in the palladium film 35A are recombined to form hydrogen atoms. The hydrogen atoms recombine with hydrogen molecules, desorb from the palladium film 35A, and are mixed with the air in the container 32.

パラジウム膜35Aの水素透過量J(Nml/min・cm)は、次式(2)で求められる。
J=α(PH(1)1/2−PH(2)1/2)…(2)
ここで、αは水素透過速度、PH(1)はチャンバー10内の被測定気体の水素分圧、PH(2)は容器32内の混合気体中の水素分圧である。上述の通りパラジウム膜35Aでは水素分子が解離して原子状水素(プロトン)となることから、チャンバー10内の被測定気体の水素分圧PH(1)の平方根と、容器32内の混合気体中の水素分圧PH(2)の平方根との差に比例する。また、水素透過量Jはパラジウム膜35Aの膜厚に反比例する。従って、水素透過量Jは、(PH(1)1/2−PH(2)1/2)が大きいほど、及び/又はパラジウム膜35Aの膜厚が薄いほど、大きくなる。なお、(PH(1)1/2−PH(2)1/2)の値が正であれば水素は容器32側に透過し、(PH(1)1/2−PH(2)1/2)の値が負であれば水素はチャンバー10側に透過する。よって、容器32内の水素濃度は、チャンバー10内の水素濃度と相関がある。
The hydrogen permeation amount J (Nml / min · cm 2 ) of the palladium membrane 35A is obtained by the following equation (2).
J = α (PH 2 (1) 1/2 −PH 2 (2) 1/2 ) (2)
Here, α is the hydrogen permeation rate, PH 2 (1) is the hydrogen partial pressure of the gas to be measured in the chamber 10, and PH 2 (2) is the hydrogen partial pressure in the mixed gas in the container 32. As described above, in the palladium film 35A, the hydrogen molecules are dissociated to become atomic hydrogen (protons). Therefore, the square root of the hydrogen partial pressure PH 2 (1) of the gas to be measured in the chamber 10 and the mixed gas in the container 32 It is proportional to the difference from the square root of the hydrogen partial pressure PH 2 (2). The hydrogen permeation amount J is inversely proportional to the film thickness of the palladium film 35A. Therefore, the hydrogen permeation amount J increases as (PH 2 (1) 1/2 -PH 2 (2) 1/2 ) increases and / or the thickness of the palladium film 35A decreases. If the value of (PH 2 (1) 1/2 -PH 2 (2) 1/2 ) is positive, hydrogen permeates to the container 32 side, and (PH 2 (1) 1/2 -PH 2 ( 2) If the value of 1/2 ) is negative, hydrogen permeates to the chamber 10 side. Therefore, the hydrogen concentration in the container 32 is correlated with the hydrogen concentration in the chamber 10.

このように、容器32に水素透過膜35を配置することにより、水素透過膜35は容器32内に水素以外は透過させない。そのため、音叉型水晶振動子31に不純物が付着することを防止でき、チャンバー10内の被測定気体の組成変動による悪影響が音叉型水晶振動子31に及ばなくなる。そのため、環境に作用され難くなり、測定誤差の要因を排除して、高感度・高精度の水素濃度検出が可能となる。   As described above, by disposing the hydrogen permeable film 35 in the container 32, the hydrogen permeable film 35 does not allow other than hydrogen to pass through the container 32. Therefore, it is possible to prevent impurities from adhering to the tuning fork type crystal resonator 31, and the adverse effect due to the composition variation of the gas to be measured in the chamber 10 does not affect the tuning fork type crystal resonator 31. Therefore, it becomes difficult to be affected by the environment, and it is possible to detect the hydrogen concentration with high sensitivity and high accuracy by eliminating the cause of the measurement error.

4.音叉型水晶振動子による気体の計測原理
振動している音叉型水晶振動子31の受ける抗力は、容器32内の混合気体(例えば空気又は窒素+水素)の圧力のみならず混合気体の粘性にも敏感である。気体の粘性はガス種固有のものであるから、ガス種が異なれば音叉型水晶振動子31の受ける抗力も異なる。その例を図4に示す。水晶振動子式圧力計30にて各種ガス(水素、アルゴン、ヘリウム)の圧力をそれぞれ計測した場合(いずれも、容器32内に窒素を収容することを想定して、水晶振動子式圧力計30は窒素の粘性値を使用する)、計測対象の気体の圧力に対する該気体(水素、アルゴン、ヘリウム)の圧力測定値を示している。窒素よりも粘性の低い水素は見かけ上圧力が低く計測され、粘性が大きいアルゴンは計測した圧力が大きくなる。これは粘性が小さい気体では同じ圧力でも抗力が小さくなることによる。水晶振動子の共振インピーダンスの変化ΔZは全圧力領域(分子流・中間流・粘性流)において次の統一式で表されることが知られている。
4). Principle of gas measurement by tuning fork type crystal resonator The drag received by the vibrating tuning fork type crystal resonator 31 is not only the pressure of the mixed gas (for example, air or nitrogen + hydrogen) in the container 32 but also the viscosity of the mixed gas. Sensitive. Since the viscosity of the gas is specific to the gas type, the drag received by the tuning fork type crystal resonator 31 varies with the gas type. An example is shown in FIG. When the pressures of various gases (hydrogen, argon, helium) are measured by the quartz oscillator pressure gauge 30 (all assuming that nitrogen is accommodated in the container 32, the quartz oscillator pressure gauge 30 Indicates the pressure measurement value of the gas (hydrogen, argon, helium) with respect to the pressure of the gas to be measured. Hydrogen whose viscosity is lower than that of nitrogen is measured with a low apparent pressure, and argon with a high viscosity has a large measured pressure. This is due to the fact that the drag becomes small even at the same pressure in the case of a gas having a low viscosity. It is known that the change ΔZ of the resonance impedance of the crystal resonator is expressed by the following unified formula in the entire pressure region (molecular flow, intermediate flow, viscous flow).

ここで、式(1)において、Cは定数、Rは音叉型水晶振動子31の厚さ、ωは共振周波数、ηは気体の粘性率、ρは気体の密度である。 Here, in Equation (1), C is a constant, R is the thickness of the tuning fork crystal unit 31, ω is the resonance frequency, η is the gas viscosity, and ρ is the gas density.

実際の水晶振動子式圧力計30では、音叉型水晶振動子31の共振抵抗の変化を読み取り、それを圧力変化として算出している。共振抵抗の圧力による変化の理論上の特性を図5に示す。圧力10Pa以上、特に大気圧付近では共振抵抗は粘性と気体分子の密度の双方に依存し、ともにそれらの平方根に比例して変化する。減圧から大気圧まで圧力を変えた場合に、共振抵抗の変化分はガスの分子量が大きいほど大きくなり、その大きさは気体分子の分子量の平方根に比例する。   In the actual quartz crystal type pressure gauge 30, the change in the resonance resistance of the tuning fork type crystal resonator 31 is read and calculated as a pressure change. FIG. 5 shows the theoretical characteristics of the change in resonance resistance due to pressure. At a pressure of 10 Pa or more, particularly near atmospheric pressure, the resonance resistance depends on both the viscosity and the density of the gas molecules, and both change in proportion to their square roots. When the pressure is changed from reduced pressure to atmospheric pressure, the amount of change in the resonance resistance increases as the molecular weight of the gas increases, and the magnitude is proportional to the square root of the molecular weight of the gas molecule.

なお、水晶振動子式圧力計30の出力から気体分子の密度に依存した圧力を除外することができる。気体分子の密度に依存した圧力は、感圧式圧力計40の出力と相関がある。つまり、同じ水素濃度であっても、チャンバー10内の気体圧力が高ければ、水晶振動子式圧力計30の出力も大きくなる。このことから、水晶振動子式圧力計30の出力を感圧式圧力計40の出力でオーサライズして、気体の粘性に依存した圧力を取得することが好ましい。それにより、測定される水素濃度の精度を高めることができる。   In addition, the pressure depending on the density of the gas molecules can be excluded from the output of the quartz oscillator type pressure gauge 30. The pressure depending on the density of gas molecules has a correlation with the output of the pressure-sensitive pressure gauge 40. That is, even if the hydrogen concentration is the same, if the gas pressure in the chamber 10 is high, the output of the quartz oscillator pressure gauge 30 also increases. For this reason, it is preferable to authorize the output of the quartz oscillator pressure gauge 30 with the output of the pressure-sensitive pressure gauge 40 to obtain a pressure depending on the viscosity of the gas. Thereby, the accuracy of the measured hydrogen concentration can be increased.

5.水素濃度測定装置での測定原理
容器32内の空気に水素を混入していったときの粘性の変化を水晶振動子式圧力計30の指示値変化として観測した例を図6に示す。ここで、水晶振動子式圧力計30の容器32には空気が収容され、水晶振動子式圧力計30は空気の粘性値を使用している。
5. Principle of Measurement with Hydrogen Concentration Measurement Device FIG. 6 shows an example in which the change in viscosity when hydrogen is mixed into the air in the container 32 is observed as a change in the indicated value of the quartz vibrator type pressure gauge 30. Here, air is accommodated in the container 32 of the quartz oscillator pressure gauge 30, and the quartz oscillator pressure gauge 30 uses the viscosity value of air.

ここで、水素と空気等の物性の相違は次の通りである。先ず、水素の分子量は2.0016(g/mole)であり、水素の粘性は8.8(μ・Pa・s)である。空気は、窒素78%、酸素21%、Ar0.9%、CO20.03%等を含む。空気の分子量は28.966(g/mole)であり、空気の粘性は17.08(μ・Pa・s)であり、いずれも水素と比較して一桁以上大きい。空気の主要気体である窒素の分子量は28.0134(g/mole)であり、窒素の粘性は28.0134(μ・Pa・s)であり、いずれも水素と比較して一桁以上大きい。空気の他の主要気体である酸素の分子量は31.9988(g/mole)であり、酸素の粘性は20.4(μ・Pa・s)であり、いずれも水素と比較して一桁以上大きい。   Here, the difference in physical properties such as hydrogen and air is as follows. First, the molecular weight of hydrogen is 2.0016 (g / mole), and the viscosity of hydrogen is 8.8 (μ · Pa · s). The air contains 78% nitrogen, 21% oxygen, 0.9% Ar, 0.03% CO2, and the like. The molecular weight of air is 28.966 (g / mole), and the viscosity of air is 17.08 (μ · Pa · s), both of which are one or more orders of magnitude higher than hydrogen. The molecular weight of nitrogen, which is the main gas of air, is 28.0134 (g / mole), and the viscosity of nitrogen is 28.0134 (μ · Pa · s), both of which are one or more orders of magnitude higher than hydrogen. The molecular weight of oxygen, the other main gas of air, is 31.9998 (g / mole), and the viscosity of oxygen is 20.4 (μ · Pa · s), both of which are more than an order of magnitude compared to hydrogen. large.

図6では、チャンバー10内の被測定気体の圧力を計測する感圧式圧力計(BARATRON)40の指示値は、水素の導入前後でほとんど変化しない。一方、水晶振動子式圧力計30の指示値としては、水素の混入によって空気のみの粘性よりも小さくなり、見かけの圧力が下がる。このように水素と空気とでは質量及び粘性が大きく異なるため、容器32内にて空気と水素とが混合した場合には、その混合気体の平均質量及び粘性が低下する。そこで、チャンバー10内での水素漏洩前後の水晶振動子式圧力計30により、容器32内の混合気体の物性変化に依存した圧力することにより、水素濃度を見積ることは容易である。   In FIG. 6, the indication value of the pressure-sensitive pressure gauge (BARATRON) 40 that measures the pressure of the gas to be measured in the chamber 10 hardly changes before and after the introduction of hydrogen. On the other hand, the indication value of the quartz oscillator type pressure gauge 30 becomes smaller than the viscosity of only air due to the mixing of hydrogen, and the apparent pressure decreases. As described above, since the mass and viscosity of hydrogen and air are greatly different, when air and hydrogen are mixed in the container 32, the average mass and viscosity of the mixed gas are reduced. Therefore, it is easy to estimate the hydrogen concentration by applying a pressure depending on the change in the physical properties of the mixed gas in the container 32 with the quartz oscillator pressure gauge 30 before and after the hydrogen leakage in the chamber 10.

水素混入による水晶振動子式圧力計30の圧力指示値の変化は、図7に示すように全圧力領域で観測され、減圧下でも観測される。水晶振動子式圧力計30での計測圧力の変化量は、気体の粘性と被測定気体の濃度比と単調な関係がある。水晶振動子式圧力計30による水素検出の応答速度は、図8に示す実験装置での実験により求めることができる。図8に示すように、ロータリーポンプ(RP)60により空気を導入可能なチャンバー10に、空気を大気圧まで導入後、既知の水素ガスをマスフローメータ(MFC)61を介して導入する。その時のチャンバー10内の圧力変化から求めた。図9がその結果を示し、横軸に時間、左縦軸に音叉型水晶振動子31の出力変化を、水素導入前の出力を1.0として表している。図9の右縦軸は水素濃度を示している。水素導入後の指示値の不規則な変化は、流れの乱れによるものである。この結果から、水晶振動子式圧力計30の水素検出の応答速度は約1秒と短いことが分かる。   The change in the pressure indication value of the quartz oscillator type pressure gauge 30 due to hydrogen mixing is observed in the entire pressure region as shown in FIG. 7, and is also observed under reduced pressure. The amount of change in the measurement pressure in the quartz oscillator type pressure gauge 30 has a monotonous relationship between the viscosity of the gas and the concentration ratio of the gas to be measured. The response speed of hydrogen detection by the quartz oscillator type pressure gauge 30 can be obtained by an experiment with an experimental apparatus shown in FIG. As shown in FIG. 8, a known hydrogen gas is introduced through a mass flow meter (MFC) 61 after air is introduced to atmospheric pressure into a chamber 10 into which air can be introduced by a rotary pump (RP) 60. It calculated | required from the pressure change in the chamber 10 at that time. FIG. 9 shows the results, with the horizontal axis representing time, the left vertical axis representing the output change of the tuning fork type crystal resonator 31, and the output before hydrogen introduction as 1.0. The right vertical axis in FIG. 9 indicates the hydrogen concentration. The irregular change in the indicated value after the introduction of hydrogen is due to flow disturbance. From this result, it can be seen that the response speed of the hydrogen detection of the quartz oscillator type pressure gauge 30 is as short as about 1 second.

図2に示す水晶振動子式圧力計30では、大気圧近傍において、音叉型水晶振動子31の共振抵抗が粘性と圧力の双方のパラメータに依存する。そのため、容器32内の混合気体の圧力を感圧式圧力計40で計測し、水晶振動子式圧力計30の圧力成分を消去することにより、容器32内の混合気体の粘性に依存した圧力を得る。   In the quartz resonator type pressure gauge 30 shown in FIG. 2, the resonance resistance of the tuning fork type quartz resonator 31 depends on both viscosity and pressure parameters in the vicinity of atmospheric pressure. Therefore, the pressure of the mixed gas in the container 32 is measured by the pressure-sensitive pressure gauge 40, and the pressure component of the quartz oscillator pressure gauge 30 is eliminated, thereby obtaining a pressure depending on the viscosity of the mixed gas in the container 32. .

水晶振動子式圧力計30の圧力と、感圧式圧力計40の圧力と、図6に示す既知濃度及び圧力に対する水晶振動子式圧力計30の指示値の取得データ(検量線)とから、水素濃度を算出できる。すなわち図1において、チャンバー10内の被測定気体の絶対圧力を感圧式圧力計40で計測し、容器32内の混合気体の粘性に依存した圧力を水晶振動子式圧力計30で計測し、濃度演算器50は図6に示す既知の検量線と計測圧力との比較を行い、水素濃度を算出することができる。この際、上述した通り、水晶振動子式圧力計30の出力は、感圧式圧力計40の出力によりオーソライズして、気体の粘性に依存した圧力を用いることが好ましい。   From the pressure of the quartz oscillator pressure gauge 30, the pressure of the pressure sensitive pressure gauge 40, and the acquired data (calibration curve) of the indicated value of the quartz oscillator pressure gauge 30 for the known concentration and pressure shown in FIG. The concentration can be calculated. That is, in FIG. 1, the absolute pressure of the gas to be measured in the chamber 10 is measured by the pressure-sensitive pressure gauge 40, the pressure depending on the viscosity of the mixed gas in the container 32 is measured by the quartz oscillator pressure gauge 30, and the concentration is measured. The computing unit 50 can compare the known calibration curve shown in FIG. 6 with the measured pressure to calculate the hydrogen concentration. At this time, as described above, it is preferable that the output of the quartz oscillator pressure gauge 30 is authorized by the output of the pressure-sensitive pressure gauge 40 and a pressure depending on the viscosity of the gas is used.

6.測定結果
図10(A)〜図10(D)及び図11(A)〜図11(C)は、容器32内の気体を空気とし、温度を室温から300℃に昇温させたときの水素濃度(%)とプリアンプ出力電圧(V)との関係を示す特性図である。図12(A)〜図12(D)及び図13(A)〜図13(C)は、容器32内の気体を窒素とし、温度を室温から300℃に昇温させたときの水素濃度(%)とプリアンプ出力(V)との関係を示す特性図である。ここで、図10〜図13の横軸が水素濃度(%)であり、縦軸がプリアンプ出力電圧(V)である。また、図10〜図13中のQOは水晶振動子式圧力計30の出力であり、PQOはQOを感圧式圧力計40の出力である全圧でノーマライズした値であり、NQOはPQOをさらに温度でノーマライズした値である。容器32内の気体を空気としても窒素としても、水素とは表1に示すように粘性値が大きく異なるので、高感度でリニアな特性を得ることができた。なお、250℃及び300℃でのデータのばらつきは、装置に使用された半田が溶融したことが原因であり、ワイヤーボンディングなどの接合手段への変更により解消できる。
6). Measurement Results FIGS. 10A to 10D and FIGS. 11A to 11C show hydrogen when the gas in the container 32 is air and the temperature is raised from room temperature to 300 ° C. It is a characteristic view showing the relationship between density (%) and preamplifier output voltage (V). 12 (A) to 12 (D) and FIGS. 13 (A) to 13 (C) show the hydrogen concentration when the gas in the container 32 is nitrogen and the temperature is raised from room temperature to 300 ° C. %) And a preamplifier output (V). Here, the horizontal axis of FIGS. 10 to 13 is the hydrogen concentration (%), and the vertical axis is the preamplifier output voltage (V). Further, QO in FIGS. 10 to 13 is an output of the quartz oscillator type pressure gauge 30, PQO is a value obtained by normalizing QO with a total pressure as an output of the pressure-sensitive pressure gauge 40, and NQO further represents PQO It is the value normalized by temperature. Regardless of whether the gas in the container 32 is air or nitrogen, the viscosity value is significantly different from that of hydrogen as shown in Table 1, so that a highly sensitive and linear characteristic can be obtained. Note that the variation in data at 250 ° C. and 300 ° C. is caused by melting of the solder used in the apparatus, and can be eliminated by changing to the joining means such as wire bonding.

7.水素濃度測定装置の制御部
水晶振動子式圧力計30と感圧式圧力計40とを含む図1に示す水素濃度測定装置20うち、感圧式圧力計40はチャンバー10内に設置されている感圧式圧力計をそのまま利用することができる。
7). Control Unit of Hydrogen Concentration Measurement Device Among the hydrogen concentration measurement device 20 shown in FIG. 1 including the crystal oscillator type pressure gauge 30 and the pressure sensitive pressure gauge 40, the pressure sensitive pressure gauge 40 is a pressure sensitive type installed in the chamber 10. The pressure gauge can be used as it is.

図14は、チャンバー(例えば原子炉)10に、図2のセンサー素子30Aに駆動・検出動回路(プリアンプ)100を加えた水晶振動子式圧力計30を例えば最大16個設置し、最大16個のコントロールユニット80(濃度演算器50)で濃度を算出する。各々の水晶振動子式圧力計30で1秒以内に測定される測定結果は、図示しない表示部にて表示することができる。   14 shows, for example, a maximum of 16 quartz crystal type pressure gauges 30 in which a drive / detection circuit (preamplifier) 100 is added to the sensor element 30A of FIG. The control unit 80 (concentration calculator 50) calculates the concentration. The measurement results measured within 1 second by each crystal oscillator pressure gauge 30 can be displayed on a display unit (not shown).

図15は図14と同じく最大16個の水晶振動子式圧力計30の信号を、アナログスイッチ91によって切り換えて一台のコントロールユニット90(濃度演算器50)で濃度を算出する例を示している。この場合、各水晶振動子式圧力計30のサンプリング時間は1秒/chとなり、最大16チャンネルを使用したときは1チャンネルの濃度表示は16秒毎となる。   FIG. 15 shows an example in which the signal of up to 16 crystal oscillator type pressure gauges 30 is switched by an analog switch 91 and the concentration is calculated by one control unit 90 (concentration calculator 50) as in FIG. . In this case, the sampling time of each crystal oscillator type pressure gauge 30 is 1 second / ch, and when a maximum of 16 channels are used, the density display of one channel is every 16 seconds.

なお、図13に示すコントロールユニット80及び図14に示すコントロールユニット90には、チャンバー10内に設置されている感圧式圧力計40も接続されるが、図13及び図14では省略されている。   A pressure-sensitive pressure gauge 40 installed in the chamber 10 is also connected to the control unit 80 shown in FIG. 13 and the control unit 90 shown in FIG. 14, but is omitted in FIGS. 13 and 14.

図16に、図14または図15に示す水晶振動子式圧力計30及びコントロールユニット80(90)の制御系ブロック図を示す。図15において、水晶振動子式圧力計30のセンサー素子30Aは、駆動・検出回路(プリアンプ)100に接続される。駆動・検出回路100(プリアンプ)は、センサー素子30A内の音叉型水晶振動子31に駆動回路101から駆動信号を供給し、音叉型水晶振動子31で検出された信号を増幅して出力するものである。   FIG. 16 shows a control system block diagram of the crystal oscillator type pressure gauge 30 and the control unit 80 (90) shown in FIG. 14 or FIG. In FIG. 15, the sensor element 30 </ b> A of the crystal resonator type pressure gauge 30 is connected to a drive / detection circuit (preamplifier) 100. The drive / detection circuit 100 (preamplifier) supplies a drive signal from the drive circuit 101 to the tuning fork crystal resonator 31 in the sensor element 30A, and amplifies and outputs the signal detected by the tuning fork crystal resonator 31. It is.

センサー素子30Aからの信号は、電流電圧変換器102にて電圧変換され、32KHz増幅器103で増幅された後、全波整流回路104で32KHz交流信号を直流にして、濃度演算器50に出力する。また、32KHz増幅器103からの32KHz交流信号は、位相検出器105に入力されて位相検出される。アナログスイッチ106は、位相検出器105の出力に基づいて32KHzの正負に交互に反転する矩形波信号を生成し、駆動回路101に供給する。駆動回路101は正負の矩形波信号を駆動信号として用いて音叉型水晶振動子31を駆動する。駆動・検出回路(プリアンプ)100内の回路に供給される基準電圧は、基準電圧生成部109にて生成される。基板温度が変化すると、駆動・検出回路(プリアンプ)100は同一水素濃度であっても出力電圧が変動する。そのため、駆動・検出回路(プリアンプ)100が搭載される基板には温度センサー107が設けられる。電圧補正部108は、温度センサー107からの検出信号に基づいて、基準電圧生成部109にて生成される基準電圧を補正する補正信号を出力する。それにより、駆動・検出回路(プリアンプ)100は温度補償される。なお、基準電圧生成部109からは温度モニター信号が出力され、濃度演算部50に供給される。   The signal from the sensor element 30 </ b> A is voltage-converted by the current-voltage converter 102, amplified by the 32 KHz amplifier 103, converted to a direct current of the 32 KHz AC signal by the full-wave rectifier circuit 104, and output to the concentration calculator 50. The 32 KHz AC signal from the 32 KHz amplifier 103 is input to the phase detector 105 to detect the phase. Based on the output of the phase detector 105, the analog switch 106 generates a rectangular wave signal that is alternately inverted between positive and negative at 32 KHz, and supplies it to the drive circuit 101. The drive circuit 101 drives the tuning fork type crystal resonator 31 using positive and negative rectangular wave signals as drive signals. A reference voltage supplied to a circuit in the drive / detection circuit (preamplifier) 100 is generated by a reference voltage generation unit 109. When the substrate temperature changes, the output voltage of the drive / detection circuit (preamplifier) 100 varies even at the same hydrogen concentration. Therefore, a temperature sensor 107 is provided on the substrate on which the drive / detection circuit (preamplifier) 100 is mounted. The voltage correction unit 108 outputs a correction signal for correcting the reference voltage generated by the reference voltage generation unit 109 based on the detection signal from the temperature sensor 107. As a result, the temperature of the drive / detection circuit (preamplifier) 100 is compensated. A temperature monitor signal is output from the reference voltage generator 109 and supplied to the concentration calculator 50.

濃度演算器50では、全波整流回路104の出力を、16ビット分解能のA/D変換器51でデジタル値に変換し、RAM及びROM内蔵のCPU52に入力される。CPU52に接続されたフラッシュメモリー53には、気体の粘性と気体濃度の関係(図7に示す検量線)及び駆動・検出回路(プリアンプ)100の出力電圧対温度特性のデータを予め記憶させている   In the density calculator 50, the output of the full-wave rectifier circuit 104 is converted to a digital value by a 16-bit resolution A / D converter 51 and input to a CPU 52 having a RAM and a ROM. The flash memory 53 connected to the CPU 52 stores in advance the relationship between the gas viscosity and the gas concentration (calibration curve shown in FIG. 7) and the output voltage versus temperature characteristic data of the drive / detection circuit (preamplifier) 100.

駆動・検出回路(プリアンプ)100が搭載されるプリアンプ基板に設置してある温度センサー107によってプリアンプ基板温度を決定し、プリアンプ基板温度による出力電圧を補正した後、実際に計測された水晶振動子式圧力計30の粘性情報と検量線データから、水素濃度をCPU52で算出し、ディスプレス110に表示する。水晶振動子式圧力計30の出力に含まれる上述した気体密度に依存した圧力成分を除去するために、チャンバー10内の圧力を検出する感圧式圧力計40の出力が利用される。   The preamplifier substrate temperature is determined by the temperature sensor 107 installed on the preamplifier substrate on which the drive / detection circuit (preamplifier) 100 is mounted, and the output voltage due to the preamplifier substrate temperature is corrected. From the viscosity information of the pressure gauge 30 and calibration curve data, the hydrogen concentration is calculated by the CPU 52 and displayed on the display 110. In order to remove the above-described pressure component depending on the gas density included in the output of the quartz oscillator type pressure gauge 30, the output of the pressure-sensitive pressure gauge 40 that detects the pressure in the chamber 10 is used.

水素濃度の測定精度は、粘性式圧力計として採用している水晶振動子式圧力計30のセンサーである音叉型水晶振動子31のインピーダンス変化量を可能な限り安定、かつ分解能よく読み取るためのコストパフォーマンスの良い電子回路とソフト等で決定される。   The measurement accuracy of the hydrogen concentration is the cost for reading the impedance change amount of the tuning-fork type crystal resonator 31 which is a sensor of the crystal resonator type pressure gauge 30 employed as a viscous pressure gauge as stable and with high resolution as possible. It is determined by electronic circuits with good performance and software.

以上、本発明の実施形態について説明したが、本発明は上述した実施形態に限定されるものではない。例えば、被測定気体は空気に限らずどのような気体であっても良い。容器32に収容される気体も、空気や窒素に限らず、水素とは異なる粘性値を有し、水素とは反応せず、しかも水素に対する粘性値の差が大きいものほど良い。水素の粘性値(μ・Pa・s)に対して一桁以上異なる粘性値を有する他の気体として、He、Ne、Kr、Xe等を挙げることができる。容器32内に収容される水素以外の気体は、単体ガスに限らず、空気のように各種気体の混合気体であってもよい。   As mentioned above, although embodiment of this invention was described, this invention is not limited to embodiment mentioned above. For example, the gas to be measured is not limited to air but may be any gas. The gas accommodated in the container 32 is not limited to air or nitrogen, but has a viscosity value different from that of hydrogen, does not react with hydrogen, and has a larger difference in viscosity value with respect to hydrogen. Examples of other gases having a viscosity value different by one digit or more with respect to the viscosity value (μ · Pa · s) of hydrogen include He, Ne, Kr, and Xe. The gas other than hydrogen stored in the container 32 is not limited to a single gas, but may be a mixed gas of various gases such as air.

図17は、図2に示す物性依存式圧力計30に、不純物の通過を阻止して水素透過膜35を保護するフィルター37を追加した例を示している。フィルター37は、支持体38に固定され、支持体38は物性依存式圧力計30のシリンダー34に例えばコバールガラス等を介在して装着される。物性依存式圧力計30が例えば原子炉内で使用される場合、原子炉事故時に多量に発生する水蒸気により水素透過膜35が汚染されることをフィルター37により防止できる。フィルター37は、例えばSUS316L微粒子焼結体等の多孔質体を用いることができる。   FIG. 17 shows an example in which a filter 37 that prevents the passage of impurities and protects the hydrogen permeable membrane 35 is added to the physical property dependent pressure gauge 30 shown in FIG. The filter 37 is fixed to a support 38, and the support 38 is attached to the cylinder 34 of the physical property-dependent pressure gauge 30 with, for example, Kovar glass interposed therebetween. When the physical property dependent pressure gauge 30 is used in, for example, a nuclear reactor, the filter 37 can prevent the hydrogen permeable membrane 35 from being contaminated by a large amount of water vapor generated in a nuclear reactor accident. As the filter 37, for example, a porous body such as a SUS316L fine particle sintered body can be used.

10 チャンバー、11 パイプ、20 水素濃度測定装置、30 物性依存式圧力計(粘性式圧力計、水晶振動子式圧力計)、30A センサー素子、31 圧力測定素子(音叉型水晶振動子)、32 容器、33 基部、34 シリンダー、34B 開口、35 水素透過膜、40 感圧式圧力計、50 濃度演算器、51 AD変換器、52 CPU、53 フラッシュメモリ、80,90 コントロールユニット、100 駆動・検出回路(プリアンプ)、101 駆動回路、102 電流電圧変換器、103 32KHz増幅器、104 全波整流回路、105 位相検出器、106 アナログスイッチ、110 ディスプレイ   10 chambers, 11 pipes, 20 hydrogen concentration measuring device, 30 physical property dependent pressure gauge (viscosity pressure gauge, crystal oscillator pressure gauge), 30A sensor element, 31 pressure measurement element (tuning fork type crystal oscillator), 32 container , 33 base, 34 cylinder, 34B opening, 35 hydrogen permeable membrane, 40 pressure sensitive pressure gauge, 50 concentration calculator, 51 AD converter, 52 CPU, 53 flash memory, 80, 90 control unit, 100 drive / detection circuit ( Preamplifier), 101 drive circuit, 102 current-voltage converter, 103 32 KHz amplifier, 104 full-wave rectifier circuit, 105 phase detector, 106 analog switch, 110 display

Claims (7)

圧力測定素子と、
前記圧力測定素子を収容する、開口を有する容器と、
前記容器の前記開口に配置される水素透過膜と、
を有し、
前記容器内には、水素以外の気体が収容され、かつ、前記水素透過膜を通過して水素が導入出可能であり、
前記圧力測定素子は、前記容器内の前記気体と水素との混合気体の物性に依存する圧力を検出することを特徴とする物性依存式圧力計。
A pressure measuring element;
A container having an opening for accommodating the pressure measuring element;
A hydrogen permeable membrane disposed in the opening of the container;
Have
In the container, gas other than hydrogen is accommodated, and hydrogen can be introduced and extracted through the hydrogen permeable membrane,
The physical property dependent pressure gauge, wherein the pressure measuring element detects a pressure depending on a physical property of a mixed gas of the gas and hydrogen in the container.
請求項1において、
前記気体は、水素の粘性値(μ・Pa・s)に対して一桁以上異なる粘性値を有することを特徴とする物性依存式圧力計。
In claim 1,
The physical property-dependent pressure gauge, wherein the gas has a viscosity value that differs by one digit or more with respect to a viscosity value (μ · Pa · s) of hydrogen.
請求項2において、
前記気体は空気であることを特徴とする物性依存式圧力計。
In claim 2,
The physical property-dependent pressure gauge, wherein the gas is air.
請求項2において、
前記気体は窒素であることを特徴とする物性依存式圧力計。
In claim 2,
The physical property-dependent pressure gauge, wherein the gas is nitrogen.
請求項1乃至4のいずれか1項において、
前記水素透過膜を不純物から保護するフィルターをさらに有することを特徴とする物性依存式圧力計。
In any one of Claims 1 thru | or 4,
A physical property dependent pressure gauge further comprising a filter for protecting the hydrogen permeable membrane from impurities.
請求項1乃至5のいずれか1項において、
前記圧力測定素子は、音叉型水晶振動子であることを特徴とする物性依存式圧力計。
In any one of Claims 1 thru | or 5,
The physical property-dependent pressure gauge, wherein the pressure measuring element is a tuning fork type crystal resonator.
被測定気体中の水素濃度を測定する水素濃度測定装置であって、
請求項1乃至6のいずれか1項に記載の物性依存式圧力計と、
前記被測定気体と接して、前記被測定気体の物性値に依存しない圧力を測定する感圧式圧力計と、
前記物性依存式圧力計で測定される第1圧力と、前記感圧式圧力計で測定される第2圧力と、既知の水素濃度及び既知の被測定体の圧力の下で前記物性依存式圧力計により予め取得された検量線とに基づいて、前記被測定気体中の水素濃度を求める濃度演算器と、
を有することを特徴とする水素濃度測定装置。
A hydrogen concentration measuring device for measuring a hydrogen concentration in a gas to be measured,
The physical property dependent pressure gauge according to any one of claims 1 to 6,
A pressure-sensitive pressure gauge that is in contact with the gas to be measured and measures a pressure that does not depend on a physical property value of the gas to be measured;
The physical property-dependent pressure gauge under a first pressure measured by the physical property-dependent pressure gauge, a second pressure measured by the pressure-sensitive pressure gauge, a known hydrogen concentration and a known pressure of a measured object A concentration calculator for obtaining a hydrogen concentration in the measurement gas based on a calibration curve acquired in advance by
A hydrogen concentration measuring apparatus comprising:
JP2014045655A 2014-03-07 2014-03-07 Hydrogen concentration measuring device Active JP6364209B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014045655A JP6364209B2 (en) 2014-03-07 2014-03-07 Hydrogen concentration measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014045655A JP6364209B2 (en) 2014-03-07 2014-03-07 Hydrogen concentration measuring device

Publications (2)

Publication Number Publication Date
JP2015169581A true JP2015169581A (en) 2015-09-28
JP6364209B2 JP6364209B2 (en) 2018-07-25

Family

ID=54202426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014045655A Active JP6364209B2 (en) 2014-03-07 2014-03-07 Hydrogen concentration measuring device

Country Status (1)

Country Link
JP (1) JP6364209B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022219674A1 (en) * 2021-04-12 2022-10-20 Q’z株式会社 Hydrogen leak detector

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130177A (en) * 1992-10-21 1994-05-13 Toshiba Corp Nuclear reactor monitor
JPH09145585A (en) * 1995-11-22 1997-06-06 Nok Corp Method for measuring concentration of hydrogen and hydrogen sensor being employed therein
JP2001330543A (en) * 2000-05-25 2001-11-30 Natl Inst Of Advanced Industrial Science & Technology Meti Concentration measuring method and concentration measuring instrument for two kind of mixed gas
JP2002372487A (en) * 2001-06-13 2002-12-26 Araco Corp Gas sensor
JP2004219386A (en) * 2003-01-17 2004-08-05 Vacuum Products Kk Concentration measuring instrument for gas mixture comprising two kinds of gases
JP2005257394A (en) * 2004-03-10 2005-09-22 Honda Motor Co Ltd Hydrogen detection device
JP2009087867A (en) * 2007-10-02 2009-04-23 Nippon Soken Inc Fuel cell
JP2009295377A (en) * 2008-06-04 2009-12-17 Toyota Boshoku Corp Fuel cell system
JP2012230071A (en) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd Hydrogen gas sensor
JP5170600B1 (en) * 2012-08-11 2013-03-27 和浩 山本 Hydrogen concentration meter
JP2013257174A (en) * 2012-06-11 2013-12-26 Vacuum Products Kk Manufacturing method of device having electrode film, and film formation apparatus

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06130177A (en) * 1992-10-21 1994-05-13 Toshiba Corp Nuclear reactor monitor
JPH09145585A (en) * 1995-11-22 1997-06-06 Nok Corp Method for measuring concentration of hydrogen and hydrogen sensor being employed therein
JP2001330543A (en) * 2000-05-25 2001-11-30 Natl Inst Of Advanced Industrial Science & Technology Meti Concentration measuring method and concentration measuring instrument for two kind of mixed gas
JP2002372487A (en) * 2001-06-13 2002-12-26 Araco Corp Gas sensor
JP2004219386A (en) * 2003-01-17 2004-08-05 Vacuum Products Kk Concentration measuring instrument for gas mixture comprising two kinds of gases
JP2005257394A (en) * 2004-03-10 2005-09-22 Honda Motor Co Ltd Hydrogen detection device
JP2009087867A (en) * 2007-10-02 2009-04-23 Nippon Soken Inc Fuel cell
JP2009295377A (en) * 2008-06-04 2009-12-17 Toyota Boshoku Corp Fuel cell system
JP2012230071A (en) * 2011-04-27 2012-11-22 Murata Mfg Co Ltd Hydrogen gas sensor
JP2013257174A (en) * 2012-06-11 2013-12-26 Vacuum Products Kk Manufacturing method of device having electrode film, and film formation apparatus
JP5170600B1 (en) * 2012-08-11 2013-03-27 和浩 山本 Hydrogen concentration meter

Also Published As

Publication number Publication date
JP6364209B2 (en) 2018-07-25

Similar Documents

Publication Publication Date Title
CN104303126B (en) Method of, and apparatus for, providing gas mixture
JP5990322B2 (en) Method and apparatus for measuring the true content of a cylinder of gas under pressure
CN104303127B (en) Method of, and apparatus for, providing a gas mixture
CN108828065B (en) Method and apparatus for measuring molecular weight of gas
ES2671716T3 (en) Method and apparatus for measuring the true content of a gas cylinder under pressure
US20100107735A1 (en) Gas Sensor
US20070068493A1 (en) Hydrogen sensor
JP5419082B2 (en) Calibration method and calibration device for standard mixed gas leak micropore filter
JP2004219386A (en) Concentration measuring instrument for gas mixture comprising two kinds of gases
JP6364209B2 (en) Hydrogen concentration measuring device
JP5172442B2 (en) Ammonia measuring device, ammonia measuring device, chlorine measuring device and chlorine measuring device
Niu et al. The novel measurement method of liquid level and density in airtight container
RU108142U1 (en) CONTROL FURNACE
CA2387673A1 (en) Apparatus and method for generating moisture standards in gases
Chen et al. An accurate way to determine the ionic conductivity of mixed ionic–electronic conducting (MIEC) ceramics
RU2556288C2 (en) Analyser of total pressure, density and partial pressure of water vapours in low vacuum
JP2020159998A (en) Hydrogen amount sensor, hydrogen amount measurement device, and hydrogen storage and release system
JP6975440B2 (en) Concentration measuring device for two-kind mixed gas
RU207887U1 (en) ACOUSTIC GAS ANALYZER
CN217278222U (en) Ozone concentration control system and semiconductor device
JP2019148432A (en) Gas detection device with electrochemical gas sensor, and gas detection method
Sebők et al. Calibration of a novel instrument for the investigation of small permeation fluxes of gases through membranes
JP2013156273A (en) Micropore filter for gas leak calibrated in advance
JP2009103584A (en) Steam pressure measurement device
Hoffmann et al. MEMS-Based Hydrogen Sensors: A State of the Art Review

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170303

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171219

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180605

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180702

R150 Certificate of patent or registration of utility model

Ref document number: 6364209

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250