JPH1090152A - Measuring apparatus for concentration of gas - Google Patents

Measuring apparatus for concentration of gas

Info

Publication number
JPH1090152A
JPH1090152A JP24737296A JP24737296A JPH1090152A JP H1090152 A JPH1090152 A JP H1090152A JP 24737296 A JP24737296 A JP 24737296A JP 24737296 A JP24737296 A JP 24737296A JP H1090152 A JPH1090152 A JP H1090152A
Authority
JP
Japan
Prior art keywords
circuit
gas
output
concentration
correction coefficient
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24737296A
Other languages
Japanese (ja)
Other versions
JP3317157B2 (en
Inventor
Gen Matsuno
玄 松野
Hiroto Shinozaki
博人 篠崎
Ichiro Tsubota
一郎 坪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP24737296A priority Critical patent/JP3317157B2/en
Publication of JPH1090152A publication Critical patent/JPH1090152A/en
Application granted granted Critical
Publication of JP3317157B2 publication Critical patent/JP3317157B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a measuring apparatus by which an output display value is corrected by a gas of an arbitrary kind in a simple operation and by which the concentration of the gas can be read out directly by providing a multiplication circuit which is used to multiply the output of a subtraction circuit by a correction factor. SOLUTION: A quartz oscillator-type odorant sensor 10 changes its resonance frequency by the concentration of an odorant material in the circumference, and an oscillator 20 is oscillated by the resonance frequency of the odorant sensor 10. The frequency is counted by a frequency counter 30. In a subtraction circuit 40, the output of a zero-point setting circuit 50, i.e., the resonance frequency at the point when the concentration of the odorant material is zero, is subtracted from the output of the frequency counter 30, and a frequency change which is in direct proportion to the concentration of the odorant material is output. The output (the frequency change) of the subtraction circuit 40 is input to a multiplication circuit 80, and it is multiplied by a correction factor so as to be converted into a value in units of ppm. A value which is obtained by the multiplication circuit 80 is displayed in units of ppm in an output display circuit 60.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、環境測定や作業環
境測定などに用いられるガス濃度測定装置に関し、簡単
な校正操作により多くの種類のガス濃度を測定できるよ
うにしたガス濃度測定装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas concentration measuring device used for environmental measurement and working environment measurement, and more particularly to a gas concentration measuring device capable of measuring many kinds of gas concentrations by a simple calibration operation. It is.

【0002】[0002]

【従来の技術】従来よりATカット水晶振動子の両面に
匂い分子またはガス分子(以下匂い分子という)吸着膜
を貼り付けた構造の水晶振動子式匂いセンサはよく知ら
れている。図3にこの種の匂いセンサ素子の一例を示
す。ATカット水晶基板で形成された水晶振動子11の
表面に、同図(ロ)に示すように金などで形成された金
属電極を介して脂質二分子膜12が形成されている。
2. Description of the Related Art Quartz crystal type odor sensors having a structure in which odor molecules or gas molecules (hereinafter referred to as odor molecules) adsorption films are adhered to both sides of an AT-cut crystal resonator are well known. FIG. 3 shows an example of this type of odor sensor element. A lipid bilayer film 12 is formed on the surface of a quartz oscillator 11 formed of an AT-cut quartz substrate via a metal electrode formed of gold or the like as shown in FIG.

【0003】一般に匂い分子は脂質膜に吸着し易い性質
がある。脂質二分子膜12に匂い物質が吸着すると、吸
着した分だけ膜の質量が増加する。これに伴い、水晶振
動子11の共振周波数は低下する。したがってこの共振
周波数を測定することにより匂いを測定することができ
る。
[0003] Generally, odor molecules have a property of being easily adsorbed on a lipid membrane. When the odorant is adsorbed on the lipid bilayer membrane 12, the mass of the membrane increases by the amount of the odorant. As a result, the resonance frequency of the crystal unit 11 decreases. Therefore, the odor can be measured by measuring the resonance frequency.

【0004】このような水晶振動子式匂いセンサ素子1
0は次のような特徴がある。 (1) 多くの種類のガス(匂い物質)に対して応答する。 (2) 単一種類の匂い物質に対し、ガス濃度とセンサ出力
(共振周波数変化)が直線的に比例する。 (3) 各物質に対するセンサの感度の違いは、その物質に
対する人間の臭覚特性の違いに近い。すなわち、人間の
閾値の小さな物質に対しては低濃度から応答するが、閾
値の大きな物質に対しては高濃度でも応答は小さい。
[0004] Such a crystal resonator type odor sensor element 1
0 has the following characteristics. (1) Responds to many types of gases (odorous substances). (2) For a single type of odor substance, the gas concentration and the sensor output (resonance frequency change) are linearly proportional. (3) The difference in sensitivity of the sensor for each substance is close to the difference in human odor characteristics for that substance. In other words, a response to a substance with a small threshold value of humans starts at a low concentration, but a response to a substance with a large threshold value is small even at a high concentration.

【0005】このようなセンサ素子を用いた典型的なガ
ス濃度測定装置の構成例を図4に示す。水晶振動子式匂
いセンサ素子10は周囲の匂い物質濃度によって共振周
波数が変化しており、発振器20は匂いセンサ素子10
の共振周波数で発振する。
FIG. 4 shows a configuration example of a typical gas concentration measuring device using such a sensor element. The resonance frequency of the crystal oscillator type odor sensor element 10 changes depending on the concentration of the odor substance in the surroundings.
It oscillates at the resonance frequency of

【0006】その周波数は周波数カウンタ30により計
数される。減算回路40では周波数カウンタ30の出力
からゼロ点設定回路50の出力、すなわち匂い物質濃度
がゼロの時の共振周波数を減算し、匂い物質濃度に正比
例した周波数変化Δfを出力する。この周波数変化Δf
は出力表示回路60において表示される。
The frequency is counted by a frequency counter 30. The subtraction circuit 40 subtracts the output of the zero point setting circuit 50, that is, the resonance frequency when the odor substance concentration is zero, from the output of the frequency counter 30, and outputs a frequency change Δf that is directly proportional to the odor substance concentration. This frequency change Δf
Are displayed on the output display circuit 60.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、このよ
うなガス濃度測定装置では次のような問題があった。 (1) 出力表示が周波数変化(Hz単位)で表示されるた
め、ガス濃度測定装置として使用する場合は表示値に何
らかの換算係数を乗じる計算を行わなければならない。 (2) 出力表示が周波数変化(Hz単位)で表示されるた
め、匂いセンサとして使用する場合でもまた同様に表示
出力と匂いの強度との関係が直観的でなく分かり難い。 (3) センサ素子を交換した場合、素子の感度のばらつき
が原因となって同じ濃度のガスに対する出力表示値に誤
差が生じる。
However, such a gas concentration measuring device has the following problems. (1) Since the output display is displayed in a frequency change (Hz unit), when used as a gas concentration measuring device, a calculation must be performed by multiplying the display value by some conversion coefficient. (2) Since the output display is displayed with a frequency change (in Hz), the relationship between the display output and the odor intensity is similarly intuitive and difficult to understand even when used as an odor sensor. (3) When the sensor element is replaced, an error occurs in an output display value for a gas having the same concentration due to a variation in sensitivity of the element.

【0008】本発明の目的は、このような点に鑑み、周
波数カウンタの出力を補正することにより、簡単な操作
で出力表示値を任意の種類のガスで校正し、そのガス濃
度を直読できるようにしたガス濃度測定装置を実現する
ことにある。
In view of the foregoing, it is an object of the present invention to correct the output display value of an arbitrary type of gas by a simple operation by correcting the output of a frequency counter so that the gas concentration can be read directly. It is an object of the present invention to realize a gas concentration measuring device.

【0009】[0009]

【課題を解決するための手段】このような目的を達成す
るために本願の第1の発明では、ATカットの水晶振動
子表面に匂い分子吸着膜を貼付した構造の水晶振動子式
匂いセンサ素子と、このセンサ素子の共振周波数で発振
する発振器と、前記共振周波数を計数する周波数カウン
タと、匂い物質濃度がゼロの時の前記センサ素子の共振
周波数を設定するゼロ点設定回路と、前記周波数カウン
タの出力から前記ゼロ点設定回路の出力を減算する減算
回路と、この減算回路の出力を表示する出力表示回路を
備え、前記センサ素子に吸着された被測定ガスの濃度を
測定するガス濃度測定装置において、校正操作時に前記
減算回路の出力を受け校正ガスの濃度に対する補正係数
を求める補正係数設定回路と、前記減算回路の出力に前
記補正係数を乗じるための乗算回路を備えたことを特徴
とする。
According to a first aspect of the present invention, there is provided a quartz resonator type odor sensor element having a structure in which an odor molecule adsorption film is attached to the surface of an AT-cut quartz resonator. An oscillator that oscillates at the resonance frequency of the sensor element, a frequency counter that counts the resonance frequency, a zero point setting circuit that sets the resonance frequency of the sensor element when the odor substance concentration is zero, and the frequency counter A subtraction circuit for subtracting the output of the zero point setting circuit from the output of the sensor, an output display circuit for displaying the output of the subtraction circuit, and a gas concentration measuring device for measuring the concentration of the gas to be measured adsorbed on the sensor element. A correction coefficient setting circuit that receives an output of the subtraction circuit during a calibration operation and obtains a correction coefficient for the concentration of the calibration gas; and multiplies the output of the subtraction circuit by the correction coefficient. Characterized by comprising a multiplication circuit for.

【0010】[0010]

【作用】減算回路と出力表示回路の間に挿入された乗算
回路で、センサ素子の共振周波数の計数値(減算回路の
出力)に補正係数を乗じる。補正係数は、センサ素子に
校正ガスを与えたときの共振周波数の係数値の、校正ガ
ス濃度に対する係数である。補正係数は補正係数設定回
路で求める。このように補正係数を乗じることにより、
出力表示回路ではガス濃度の直読表示ができる。
The multiplication circuit inserted between the subtraction circuit and the output display circuit multiplies the count value of the resonance frequency of the sensor element (the output of the subtraction circuit) by a correction coefficient. The correction coefficient is a coefficient of the coefficient value of the resonance frequency when the calibration gas is supplied to the sensor element with respect to the calibration gas concentration. The correction coefficient is obtained by a correction coefficient setting circuit. By multiplying the correction coefficient in this way,
The output display circuit can directly display the gas concentration.

【0011】[0011]

【発明の実施の形態】以下図面を用いて本発明を詳しく
説明する。図1は本発明に係るガス濃度測定装置の一実
施例を示す構成図である。なお、図4と同等部分には同
一符号を付し、その部分の説明は省略する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below in detail with reference to the drawings. FIG. 1 is a configuration diagram showing one embodiment of a gas concentration measuring device according to the present invention. The same parts as those in FIG. 4 are denoted by the same reference numerals, and the description of those parts will be omitted.

【0012】図において、図4と異なるところは、補正
係数設定回路70と乗算回路80を付加した点である。
乗算回路80は、減算回路40の出力に対して補正係数
K1を乗じ、その値を出力表示回路60へ入力する。補
正係数K1は補正係数設定回路70より与えられる。
FIG. 4 differs from FIG. 4 in that a correction coefficient setting circuit 70 and a multiplication circuit 80 are added.
The multiplication circuit 80 multiplies the output of the subtraction circuit 40 by the correction coefficient K1 and inputs the value to the output display circuit 60. The correction coefficient K1 is provided from the correction coefficient setting circuit 70.

【0013】補正係数設定回路70は次のような校正動
作により補正係数K1を決定する。まずはじめにあらか
じめ決められた濃度CO[ppm]の校正ガス(例えば
トルエン)を匂いセンサ素子10に供給する。このとき
補正係数設定回路70にはCOに比例した出力ΔfOが入
力されている。
The correction coefficient setting circuit 70 determines the correction coefficient K1 by the following calibration operation. First, a calibration gas (for example, toluene) having a predetermined concentration C O [ppm] is supplied to the odor sensor element 10. Output Delta] f O is inputted in proportion to the C O In this case the correction factor setting circuit 70.

【0014】次に校正動作を行うことを装置に指令する
ため校正信号を校正信号入力端子71より入力する。こ
れにより補正係数設定回路70では、 K1=CO/ΔfO の式に基づいてK1の値を求める。
Next, a calibration signal is input from a calibration signal input terminal 71 to instruct the apparatus to perform a calibration operation. As a result, the correction coefficient setting circuit 70 determines the value of K1 based on the equation K1 = C O / Δf O.

【0015】図1に示すような構成における動作を次に
説明する。水晶振動子式匂いセンサ素子10は周囲の匂
い物質濃度によって共振周波数が変化しており、発振器
20は匂いセンサ素子10の共振周波数で発振する。そ
の周波数は周波数カウンタ30により計数される。減算
回路40では周波数カウンタ30の出力からゼロ点設定
回路50の出力、すなわち匂い物質濃度がゼロの時の共
振周波数を減算し、匂い物質濃度に正比例した周波数変
化Δfを出力する。なお、ここまでの動作は従来例と同
じである。
The operation of the configuration shown in FIG. 1 will now be described. The resonance frequency of the crystal resonator type odor sensor element 10 changes depending on the concentration of the odor substance in the surroundings, and the oscillator 20 oscillates at the resonance frequency of the odor sensor element 10. The frequency is counted by the frequency counter 30. The subtraction circuit 40 subtracts the output of the zero point setting circuit 50, that is, the resonance frequency when the odor substance concentration is zero, from the output of the frequency counter 30, and outputs a frequency change Δf that is directly proportional to the odor substance concentration. The operation up to this point is the same as in the conventional example.

【0016】減算回路40の出力(周波数変化Δf)は
乗算回路80に入力され、ここで補正係数K1が乗じら
れ、ppm単位の値に変換される。補正係数K1は上述
した校正方法によりあらかじめ求められている。乗算回
路80で得られた値は出力表示回路60においてppm
単位で表示される。
The output (frequency change Δf) of the subtraction circuit 40 is input to a multiplication circuit 80, where it is multiplied by a correction coefficient K1 and converted to a value in ppm. The correction coefficient K1 is obtained in advance by the above-described calibration method. The value obtained by the multiplication circuit 80 is expressed in ppm in the output display circuit 60.
Displayed in units.

【0017】水晶振動子式匂いセンサ素子10の出力は
ガス濃度に対して直線的な比例関係にあり(リニアであ
り)、また他の構成要素も入力と出力との関係がリニア
であるため、出力表示回路60にはppmで表示したガ
ス濃度の値が直接表示されることになる。
The output of the crystal oscillator type odor sensor element 10 is linearly proportional to the gas concentration (linear), and the other components have a linear relationship between input and output. The output display circuit 60 directly displays the value of the gas concentration expressed in ppm.

【0018】ただし、水晶振動子式匂いセンサ素子10
は校正ガス(例えばトルエン)以外のガスにも感度を持
ち、その感度はガスの種類によって異なるので、表示値
は正確にはトルエン校正の匂いセンサ出力値であるとい
うことができる。被測定ガスがトルエンであることがあ
らかじめ分かっている場合には、このセンサをトルエン
濃度計として用いることができる。
However, the crystal oscillator type odor sensor element 10
Has sensitivity to gases other than the calibration gas (for example, toluene), and the sensitivity varies depending on the type of gas. Therefore, it can be said that the displayed value is exactly the output value of the odor sensor of the toluene calibration. If it is known in advance that the gas to be measured is toluene, this sensor can be used as a toluene concentration meter.

【0019】このガス濃度測定装置を人間の感じる臭気
の強度に対応した値を測定する「匂いセンサ」として用
いる場合にも、ΔfをHz単位で直接表示したのでは直
感的にどのくらいの濃度なのか分かり難いが、トルエン
校正のppm表示とすることによって、直感的に分かり
易い表示値となる。
When this gas concentration measuring device is used as an "odor sensor" for measuring a value corresponding to the intensity of odor perceived by a human, if the Δf is directly displayed in units of Hz, what is the intuitive level? Although it is difficult to understand, by displaying the ppm value of the toluene calibration, the display value becomes intuitively easy to understand.

【0020】被測定ガスがトルエンとは別の種類のガ
ス、例えばキシレンである場合でも、校正ガスの濃度を
規定値(CO)に合わせておきさえすれば、上記と全く
同じ校正動作で補正係数を求めることができ、その補正
係数で補正することによりキシレン濃度を直接ppm表
示することができる。
Even when the gas to be measured is a gas of a different type from toluene, for example, xylene, correction is performed by the same calibration operation as described above, as long as the concentration of the calibration gas is adjusted to a specified value (C O ). The coefficient can be obtained, and the xylene concentration can be directly displayed in ppm by correcting with the correction coefficient.

【0021】図2は本発明の他の実施例である。なお、
ここでは乗算回路80は第1の乗算回路と呼ぶ。90は
温度センサ、100は温度補正係数設定回路、110は
第3の乗算回路、120はガス種選択回路、130はガ
ス種補正係数設定回路、140は第2の乗算回路であ
る。他の構成要素は図1に示す構成要素と同じである。
FIG. 2 shows another embodiment of the present invention. In addition,
Here, the multiplication circuit 80 is referred to as a first multiplication circuit. 90 is a temperature sensor, 100 is a temperature correction coefficient setting circuit, 110 is a third multiplication circuit, 120 is a gas type selection circuit, 130 is a gas type correction coefficient setting circuit, and 140 is a second multiplication circuit. Other components are the same as those shown in FIG.

【0022】減算回路40と乗算回路80の間に乗算回
路110が挿入され、その乗数すなわち温度補正係数
(この係数をK3とする)は温度補正係数設定回路10
0と温度センサ90によって設定される。また、乗算回
路80と出力表示回路60の間には第2の乗算回路14
0が挿入され、その乗数すなわちガス種補正係数(この
係数をK2とする)はガス種補正係数設定回路130に
よって設定される。
A multiplication circuit 110 is inserted between the subtraction circuit 40 and the multiplication circuit 80, and its multiplier, that is, the temperature correction coefficient (this coefficient is K3) is set in the temperature correction coefficient setting circuit 10.
0 and set by the temperature sensor 90. The second multiplication circuit 14 is provided between the multiplication circuit 80 and the output display circuit 60.
0 is inserted, and the multiplier, that is, the gas type correction coefficient (this coefficient is referred to as K2) is set by the gas type correction coefficient setting circuit 130.

【0023】まず、第3の乗算回路110の動作につい
て説明する。水晶振動子式匂いセンサ素子10は、同種
類、同濃度のガスに対しても温度によってその共振周波
数変化Δfが異なることがわかっている。一定温度にお
いてはΔfはガス濃度に比例するため、その比例係数が
温度の関数になっているということになる。その関数は
あらかじめ測定することができる。
First, the operation of the third multiplying circuit 110 will be described. It is known that the quartz resonator type odor sensor element 10 has a resonance frequency change Δf that varies depending on the temperature even for gases of the same type and concentration. Since Δf is proportional to the gas concentration at a constant temperature, the proportional coefficient is a function of the temperature. The function can be measured in advance.

【0024】この装置では、温度センサ90で測定され
た温度に対し、温度補正係数設定回路100が、ある基
準温度(例えば23゜C)を基準とした温度補正係数K
3を出力する(測定温度が基準温度に等しい場合は、K
3=1となる)。第3の乗算回路110は共振周波数変
化Δfにその温度補正係数K3を乗じた値を出力する。
この出力は、周囲温度によらずガス濃度に比例した値と
なっている。これにより、校正動作を行ったときと実際
の測定時の周囲温度が異なっても常に正確なガス濃度を
表示することができる。
In this apparatus, the temperature correction coefficient setting circuit 100 calculates a temperature correction coefficient K based on a certain reference temperature (for example, 23 ° C.) with respect to the temperature measured by the temperature sensor 90.
3 is output (if the measured temperature is equal to the reference temperature, K
3 = 1). The third multiplying circuit 110 outputs a value obtained by multiplying the resonance frequency change Δf by the temperature correction coefficient K3.
This output is a value proportional to the gas concentration regardless of the ambient temperature. Thereby, an accurate gas concentration can always be displayed even if the ambient temperature at the time of the calibration operation is different from that at the time of the actual measurement.

【0025】次に第2の乗算回路140の動作を説明す
る。本実施例では図1に示す実施例の場合と異なり校正
用ガスの種類は、例えばトルエンにあらかじめ定められ
ている。ガス種選択回路120は、例えば筐体上のスイ
ッチなどにより、測定しようとするガスの種類を設定す
る。ガス種補正係数設定回路130はガス種選択回路1
20によって選択されたガスの種類に基づきガス種の違
いによる水晶振動子式匂いセンサ素子10の感度差を補
正するためのガス種補正係数K2を計算し、第2の乗算
回路140に設定する。
Next, the operation of the second multiplication circuit 140 will be described. In this embodiment, unlike the embodiment shown in FIG. 1, the type of the calibration gas is predetermined to, for example, toluene. The gas type selection circuit 120 sets the type of gas to be measured by, for example, a switch on the housing. The gas type correction coefficient setting circuit 130 is a gas type selection circuit 1
A gas type correction coefficient K2 for correcting a sensitivity difference of the crystal oscillator type odor sensor element 10 due to a difference in gas type is calculated based on the type of gas selected by 20 and set in the second multiplication circuit 140.

【0026】第2の乗算回路140は第1の乗算回路8
0の出力にガス種補正係数K2を乗じた値を出力表示回
路60に出力する。いまガス種選択回路120によって
校正用ガスと同じ種類のガス(例えばトルエン)が選択
されたときには、ガス種補正係数K2の値は、K2=1
である。異なるガス、例えばキシレンが選択されたとき
には、キシレンがトルエンの5倍のセンサ感度があると
すれば、K2=0.2である。
The second multiplying circuit 140 includes the first multiplying circuit 8
A value obtained by multiplying the output of 0 by the gas type correction coefficient K2 is output to the output display circuit 60. When the same type of gas (for example, toluene) as the calibration gas is selected by the gas type selection circuit 120, the value of the gas type correction coefficient K2 is K2 = 1.
It is. When a different gas, for example xylene, is selected, K2 = 0.2, provided that xylene has a sensor sensitivity five times that of toluene.

【0027】このように第2の乗算回路140を設けた
ことによって、定められた校正用ガス(例えばトルエ
ン)で一旦校正を行っておけば、測定したいガス種が例
えばキシレンに変わっても、新たに校正動作をやり直す
ことなしにガス濃度を直読することができる。
By providing the second multiplying circuit 140 in this way, once the calibration is performed once with a predetermined calibration gas (for example, toluene), even if the gas type to be measured is changed to, for example, xylene, it is newly obtained. The gas concentration can be read directly without having to repeat the calibration operation.

【0028】なお、本発明の以上の説明は、説明および
例示を目的として特定の好適な実施例を示したに過ぎな
い。したがって本発明はその本質から逸脱せずに多くの
変更、変形をなし得ることは当業者に明らかである。例
えば、すべての実施例において、出力表示回路60は視
覚的な表示器の代わりに電圧その他の電気信号等を出力
する出力回路によって置き換えて構成することもでき
る。
It is to be noted that the above description of the present invention has been presented by way of explanation and illustration only of particular preferred embodiments. Thus, it will be apparent to one skilled in the art that the present invention may be modified or modified in many ways without departing from its essentials. For example, in all the embodiments, the output display circuit 60 may be replaced with an output circuit that outputs a voltage or other electric signal instead of a visual display.

【0029】[0029]

【発明の効果】以上説明したように本発明によれば次の
ような効果がある。図1に示すような構成においては、 (1) 簡単な操作でセンサ素子の感度のばらつきを校正
(スパン校正)することができる。 (2) ガス濃度計として用いる場合、ガス濃度をppm単
位で直読できる。 (3) 匂いセンサとして用いる場合、概念の理解し難いH
z表示の代わりに、ある特定のガス種、例えばトルエン
のppm単位の濃度換算表示を用いることによって、匂
い強度を直感的に理解することができる。 (4) 校正用ガスの種類にはよらず、同じ操作によってガ
ス濃度をppm単位で直読できる。また、図2に示すよ
うな構成では、 (1) センサ感度の温度ドリフトをキャンセルすることが
できる。 (2) 校正時と測定時の周囲温度が異なっても正しいガス
濃度を検出し表示することができる。 (3) ガス種をスイッチ等で選択することにより、校正用
ガスとは異なる種類のガスを測定する場合でも、校正用
ガスで一度校正しておけば改めて校正し直すことなしに
ガス濃度をppm単位で表示することができる。
As described above, according to the present invention, the following effects can be obtained. In the configuration as shown in FIG. 1, (1) it is possible to calibrate the sensitivity variation of the sensor element (span calibration) with a simple operation. (2) When used as a gas concentration meter, the gas concentration can be read directly in ppm. (3) When used as an odor sensor, it is difficult to understand the concept of H
The odor intensity can be intuitively understood by using a concentration conversion display in ppm of a specific gas type, for example, toluene, instead of the z display. (4) The gas concentration can be read directly in ppm by the same operation regardless of the type of calibration gas. Further, in the configuration as shown in FIG. 2, (1) the temperature drift of the sensor sensitivity can be canceled. (2) The correct gas concentration can be detected and displayed even if the ambient temperature during calibration differs from the ambient temperature during measurement. (3) By selecting the gas type with a switch, etc., even when measuring a gas different from the calibration gas, once the calibration gas is used, the gas concentration can be measured without re-calibration. It can be displayed in units.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明に係るガス濃度測定装置の一実施例を示
す構成図
FIG. 1 is a configuration diagram showing one embodiment of a gas concentration measuring device according to the present invention.

【図2】本発明の他の実施例を示す構成図FIG. 2 is a configuration diagram showing another embodiment of the present invention.

【図3】水晶振動子式匂いセンサ素子の構成図FIG. 3 is a configuration diagram of a quartz oscillator type odor sensor element.

【図4】従来のガス濃度測定装置の一例を示す構成図で
ある。
FIG. 4 is a configuration diagram illustrating an example of a conventional gas concentration measurement device.

【符号の説明】[Explanation of symbols]

10 水晶振動子式匂いセンサ素子 20 発振器 30 周波数カウンタ 40 減算回路 50 ゼロ点設定回路 60 出力表示回路 70 補正係数設定回路 80 乗算回路 90 温度センサ 100 温度補正係数設定回路 110 第3の乗算回路 120 ガス種選択回路 130 ガス種補正係数設定回路 140 第2の乗算回路 Reference Signs List 10 Oscillator type odor sensor element 20 Oscillator 30 Frequency counter 40 Subtraction circuit 50 Zero point setting circuit 60 Output display circuit 70 Correction coefficient setting circuit 80 Multiplication circuit 90 Temperature sensor 100 Temperature correction coefficient setting circuit 110 Third multiplication circuit 120 Gas Type selection circuit 130 Gas type correction coefficient setting circuit 140 Second multiplication circuit

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】ATカットの水晶振動子表面に匂い分子吸
着膜を貼付した構造の水晶振動子式匂いセンサ素子と、
このセンサ素子の共振周波数で発振する発振器と、前記
共振周波数を計数する周波数カウンタと、匂い物質濃度
がゼロの時の前記センサ素子の共振周波数を設定するゼ
ロ点設定回路と、前記周波数カウンタの出力から前記ゼ
ロ点設定回路の出力を減算する減算回路と、この減算回
路の出力を表示する出力表示回路を備え、前記センサ素
子に吸着された被測定ガスの濃度を測定するガス濃度測
定装置において、 校正操作時に前記減算回路の出力を受け校正ガスの濃度
に対する補正係数を求める補正係数設定回路と、 前記減算回路の出力に前記補正係数を乗じるための乗算
回路を備えたことを特徴とするガス濃度測定装置。
1. A quartz crystal type odor sensor element having a structure in which an odor molecule adsorption film is attached to the surface of an AT-cut quartz crystal resonator,
An oscillator that oscillates at the resonance frequency of the sensor element, a frequency counter that counts the resonance frequency, a zero point setting circuit that sets the resonance frequency of the sensor element when the odor substance concentration is zero, and an output of the frequency counter A subtraction circuit that subtracts the output of the zero point setting circuit from an output display circuit that displays the output of the subtraction circuit, and a gas concentration measurement device that measures the concentration of the gas to be measured adsorbed on the sensor element. A gas concentration comprising: a correction coefficient setting circuit that receives an output of the subtraction circuit during a calibration operation and obtains a correction coefficient for a concentration of a calibration gas; and a multiplication circuit for multiplying the output of the subtraction circuit by the correction coefficient. measuring device.
【請求項2】前記水晶振動子式匂いセンサ素子はガス分
子吸着膜が貼付されたガスセンサであることを特徴とす
る請求項1記載のガス濃度測定装置。
2. The gas concentration measuring device according to claim 1, wherein the quartz oscillator type odor sensor element is a gas sensor having a gas molecule adsorption film attached thereto.
【請求項3】選択されたガス種に応じた補正係数を求め
るガス種補正係数設定回路と、 前記乗算回路と出力表示回路の間に挿入され前記乗算回
路の出力に前記ガス種に応じた補正係数を乗じるための
第2の乗算回路を備えたことを特徴とする請求項1また
は請求項2記載のガス濃度測定装置。
3. A gas type correction coefficient setting circuit for obtaining a correction coefficient according to a selected gas type, and a correction according to the gas type, which is inserted between the multiplication circuit and an output display circuit. 3. The gas concentration measurement device according to claim 1, further comprising a second multiplication circuit for multiplying the coefficient.
【請求項4】前記被測定ガスの温度を測定する温度セン
サと、 この温度センサの出力により温度補正係数を求める温度
補正係数設定回路と、前記減算回路と乗算回路の間に挿
入され前記減算回路の出力に前記温度補正係数を乗じる
第3の乗算回路を備えたことを特徴とする請求項1また
は請求項2または請求項3記載のガス濃度測定装置。
4. A temperature sensor for measuring a temperature of the gas to be measured, a temperature correction coefficient setting circuit for obtaining a temperature correction coefficient from an output of the temperature sensor, and the subtraction circuit inserted between the subtraction circuit and the multiplication circuit. 4. The gas concentration measuring apparatus according to claim 1, further comprising a third multiplying circuit for multiplying an output of the gas by the temperature correction coefficient.
JP24737296A 1996-09-19 1996-09-19 Gas concentration measurement device Expired - Fee Related JP3317157B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24737296A JP3317157B2 (en) 1996-09-19 1996-09-19 Gas concentration measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24737296A JP3317157B2 (en) 1996-09-19 1996-09-19 Gas concentration measurement device

Publications (2)

Publication Number Publication Date
JPH1090152A true JPH1090152A (en) 1998-04-10
JP3317157B2 JP3317157B2 (en) 2002-08-26

Family

ID=17162457

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24737296A Expired - Fee Related JP3317157B2 (en) 1996-09-19 1996-09-19 Gas concentration measurement device

Country Status (1)

Country Link
JP (1) JP3317157B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300742A (en) * 2005-04-21 2006-11-02 Shizuoka Prefecture Chemical substance detection device using oscillation frequency adjusting system
JP2009281858A (en) * 2008-05-22 2009-12-03 Shimizu Corp Method of manufacturing quartz vibrator and pollution concentration measuring instrument
JP2018173686A (en) * 2017-03-31 2018-11-08 新コスモス電機株式会社 Inspection processing system for gas detector
CN111007143A (en) * 2018-10-05 2020-04-14 三星电子株式会社 Gas sensor and gas sensing method for providing self-calibration
WO2020218179A1 (en) * 2019-04-22 2020-10-29 太陽誘電株式会社 Arithmetic device, arithmetic method, and gas detection system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7205549B2 (en) * 2018-10-30 2023-01-17 日本電気株式会社 Odor sensor data correction device, odor sensor data correction method, and program

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006300742A (en) * 2005-04-21 2006-11-02 Shizuoka Prefecture Chemical substance detection device using oscillation frequency adjusting system
JP2009281858A (en) * 2008-05-22 2009-12-03 Shimizu Corp Method of manufacturing quartz vibrator and pollution concentration measuring instrument
JP2018173686A (en) * 2017-03-31 2018-11-08 新コスモス電機株式会社 Inspection processing system for gas detector
CN111007143A (en) * 2018-10-05 2020-04-14 三星电子株式会社 Gas sensor and gas sensing method for providing self-calibration
CN111007143B (en) * 2018-10-05 2024-05-28 三星电子株式会社 Gas sensor and gas sensing method for providing self-calibration
WO2020218179A1 (en) * 2019-04-22 2020-10-29 太陽誘電株式会社 Arithmetic device, arithmetic method, and gas detection system
JP2020176989A (en) * 2019-04-22 2020-10-29 太陽誘電株式会社 Operation device, method for operation, and gas detection system

Also Published As

Publication number Publication date
JP3317157B2 (en) 2002-08-26

Similar Documents

Publication Publication Date Title
EP0773440B1 (en) Method of determining magnetic powder concentration and apparatus used for the method
JP2004219386A (en) Concentration measuring instrument for gas mixture comprising two kinds of gases
JP6128772B2 (en) Chemical analyzer calibration method and chemical analyzer
JP3317157B2 (en) Gas concentration measurement device
JPS6382354A (en) Gas testing method and device
NL8103262A (en) VIBRATION INSTRUMENT.
US20050081635A1 (en) Measuring method, measurement-signal output circuit, and measuring apparatus
JP2006033195A (en) Crystal oscillator and detector
Sahu et al. Design and fabrication of data logger to measure the ambient parameters in gas detector R&D
JP2019120672A (en) Gas detection sensor device
EP0470853B1 (en) Method of measuring pressures using a tuning fork crystal oscillator
JP2004205392A (en) Qcm device and sample measuring method
US20070247444A1 (en) Method for measuring pressure resistance of touch panel
JPH09229841A (en) Smell measuring apparatus
JP2748196B2 (en) Correction method of temperature dependence of chemical sensor
JPH0769246B2 (en) Leakage position detection device
JPH08101156A (en) Sensing device for atmospheric gas
JP3143060B2 (en) Gas detection method
JP3131958B2 (en) Odor measuring device
JP3404092B2 (en) Gas sensor
JPH07260730A (en) Environment sensor output correction device
JPH06265512A (en) Method for calibrating electrolyte analyzer
RU2329473C2 (en) Instrument for level monitoring (level meter)
JP5626502B2 (en) Stress detector
US6133042A (en) Modulated oxygen-flux method and apparatus to improve the performance of a calorimetric gas sensor

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080614

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090614

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100614

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110614

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130614

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140614

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees