JP2004205392A - Qcm device and sample measuring method - Google Patents

Qcm device and sample measuring method Download PDF

Info

Publication number
JP2004205392A
JP2004205392A JP2002376039A JP2002376039A JP2004205392A JP 2004205392 A JP2004205392 A JP 2004205392A JP 2002376039 A JP2002376039 A JP 2002376039A JP 2002376039 A JP2002376039 A JP 2002376039A JP 2004205392 A JP2004205392 A JP 2004205392A
Authority
JP
Japan
Prior art keywords
sample
measurement
quartz
sensor
quartz oscillator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002376039A
Other languages
Japanese (ja)
Inventor
Michiya Fujiki
道也 藤木
Katsuhei Hara
勝平 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
USI SYSTEM KK
Japan Science and Technology Agency
Original Assignee
USI SYSTEM KK
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by USI SYSTEM KK, Japan Science and Technology Agency filed Critical USI SYSTEM KK
Priority to JP2002376039A priority Critical patent/JP2004205392A/en
Publication of JP2004205392A publication Critical patent/JP2004205392A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a QCM device capable of accurate measurement by comparing simultaneously a frequency change following time elapse of a first vessel with a frequency change of a second vessel on the sample storing side, and by removing various noises entering from the outside of a measuring system for removing the difference. <P>SOLUTION: In this QCM device, both a first quartz oscillator sensor 2 and a second quartz oscillator sensor 3 are equipped with electrodes 4, 5 which are oscillators and the first vessel 6 and the second vessel 7 for storing a solvent, and supported as a pair on a support base 1. The first quartz oscillator sensor 2 and the second quartz oscillator sensor 3 are connected to a temperature adjustment device 8, a computer 9 and a display device 10. Hereby, measurement can be performed quickly by shortening a long time required for stabilizing the quartz oscillator, and accuracy dispersion of measurement data caused by dispersion of the quartz oscillator can be removed, and the problem of generation of a drift or a noise caused by an ambient temperature change can be solved. Consequently, measurement of a toxic chemical substance included in waste or the like can be performed from the standpoint of environmental conservation and health damage, and highly sensitive measurement can be performed with a trace of sample. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、水晶振動子の作用電極表面を試料ガスや試料溶液に晒したときの水晶振動子の発振周波数やインピーダンス等の電気的特性の変化から作用電極表面での試料成分の吸脱着を検知・定量するQCM(Quartz Crystal Microbalance)/EQCM(Electro Chemical Quartz Crystal Microbalance)装置及び試料測定方法に関する。
特に、少なくとも少なくとも2 つ以上の水晶振動子センサーを用いた複数チャンネルセンサー、温度補償回路を備えたQCM装置及び試料測定方法に関する。
【0002】
【従来の技術】
近年、気相や液相での成膜における膜厚をオンラインで計測する装置として、水晶振動子の共振周波数の変化から微小重量変化を測定するQCM(QuartzCrystal Microbalance)/EQCM(Electro Chemical Quartz Crystal Microbalance)測定装置(以下QCM装置と略称する)が知られている。
水晶振動子は薄い水晶板の表面と裏面とに金属電極を蒸着したもので、この電極上に弾性体の薄膜が付着した場合、付着物の重量と振動数変化が比例関係にあり、これにより、微小な質量を有する物質の質量を計測できる。
すなわち、水晶振動子の電極面に試料成分が成膜したり、あるいは物質の吸着が起きると表面に存在する物質の単位平面積当たりの重量に対応した周波数のシフトが起き、QCMセンサは、上記の周波数シフト現象を応用したもので、水晶振動子は広い温度範囲において周波数が安定しているため、安定した検出感度が期待でき、条件が揃えば1〜10ngの吸着物質の検出がリアルタイムで可能である。(例えば、特許文献1参照。)。
図3には、従来型のQCM装置が示され、該装置は、QCM本体11と、周波数カウンタ−12と、計測制御用コンピュ−タ13からなる。
前記QCM本体11に、水晶振動子取付アーム14により取り付けられた1個の水晶振動子15は、発振回路(不図)により振動し、発振回路の発振周波数は、周波数カウンタ−12よりカウントされ、計測制御用コンピュ−タ13により解析され、試料中の物質の質量などが表示される。
そして、1 個の水晶振動子の金属電極表面に物質が吸着すると、その重量変化に比例して水晶の共振周波数が変化し、単体として水晶振動子の表面に固定化すると、特定の物質の吸着量が測定できるのである。
【0003】
【特許文献1】
特開2001−153777号公報(第4頁 図3)
【0004】
【発明が解決しようとする課題】
しかし、従来型のQCM装置は、▲1▼ひとつの水晶振動子センサーで計測していた為、外からの温度変化などのノイズによって長時間計測した場合、本来計測したい周波数成分以外のデータと重なり計測誤差となっていた。また、▲2▼固定した温度になるよう温度コントロールを行い計測していた為、計測の自由度が狭かった、という問題点があった。
本発明は、従来の上記のような問題点を解消したもので、本発明によって、水晶振動子が安定するまで長時間を少なくし、すぐに測定ができるように、また、水晶振動子のバラツキによる測定データの精度にばらつきをなくし、また、周囲の温度変化によるドリフト及びノイズに問題があったのを解消し、更に、測定条件を替えたり水晶振動子を引き上げたりすると安定するまで時間を要する取り込み間隔が1 秒以上かかっていたものを、それ以下にしたQCM装置を提供することを目的とする。
【0005】
【課題を解決するための手段】
このため、本発明が採用した技術的解決手段は、支持台に支持された、第1水晶振動子センサーと、第2水晶振動子センサーとからなるQCM装置としたことである。
また、前記第1水晶振動子センサーと、第2水晶振動子センサーは、共に、振動子である電極と、溶媒または溶媒と試料を収容する容器と、温度補償回路付水晶発振回路を備えているQCM装置としたことである。
また、前記第1水晶振動子センサーと、第2水晶振動体は、温度調節装置及びコンピュータ、表示装置に連結されているQCM装置としたことである。
また、前記支持台に支持された、一対の第1水晶振動子センサーと、第2水晶振動子センサーを、複数設けた多チャンネル型としたQCM装置としたことである。
また、少なくとも2 つ以上の水晶振動子センサーを用い、別容器の同じ溶媒で計測を行い、一方には、計測すべき試料を注入しその周波数変化を計測、このとき溶媒のみの容器に同じように取り付けたセンサーの時間経過に伴う周波数変化を先ほどの試料の入った側の周波数変化とを同時に比較することにより、測定系の外から入る多様なノイズを相殺する試料成分の吸脱着を検知・定量を行なう試料測定方法としたことである。
また、試料の入った側の周波数変化とを同時に比較することにより、測定系の外から入る多様なノイズを相殺するする回路及びソフトウェアを用いて試料成分の吸脱着を検知・定量を行なう試料測定方法としたことである。
また、試料を収容する容器の温度をプログラムにより変化させながら測定を可能にする試料測定方法としたことである。
【0006】
【発明の実施形態】
図1は、本発明のQCM測定装置の基本構成図である。図2は、本発明の複数チャンネルセンサーを備えたQCM測定装置の斜視図である。
図1において、本発明のQCM測定装置は、支持台1に支持された、温度補償回路付水晶発振回路を備えた、基本センサーである第1水晶振動子センサー2と、温度補償回路付水晶発振回路を備えた、第2水晶振動子センサー3からなる。
前記第1水晶振動子センサー2と、第2水晶振動子センサー3は、共に、振動子である電極4、5と、溶媒を収容する第1容器6、第2容器7を備え、一対にして支持台1に支持されるものである。
前記第1水晶振動子センサー2と、第2水晶振動子センサー3は、温度調節装置8及びコンピュータ9、表示装置10に連結されている。
そして、試料の測定時には、前記第2水晶振動子センサー3に溶媒の外に測定する試料を挿入するものであり、測定結果をコンピュータ9で解析し、その結果を、表示装置9に表示するものである。溶媒の温度は、温度調節装置8によって、適宜温度を変えて測定するものである。
【0007】
次に、上記装置を用いて、具体的に、試料の測定手順を、図1に基づいて説明する。
▲1▼第1水晶振動子センサー2の第1容器6と、第2水晶振動子センサー3の第2容器7に、同じ溶媒を注入し、周波数変化の計測を行う。
▲2▼次に、第2水晶振動子センサー3の第2容器7に、計測すべき試料を注入しその周波数変化を計測する。
▲3▼このとき、溶媒のみの第1容器6の時間経過に伴う周波数変化と、前記▲2▼における試料の入った側の第2容器7の周波数変化とを同時に比較し、測定系の外から入る多様なノイズを相殺する回路及びソフトウエアを有するコンピュータ9で解析し、その結果を、表示装置10に表示するものである。
図2は、一対の水晶振動子センサーを、複数個設けた複数チャンネルセンサー、型のQCM装置で、これらを一つのセットにしたQCM装置である。
このような構造のセンサデバイスを使ったマルチチャンネルQCMシステムを構成するには、センサデバイスを前記のセンサデバイス収納装置に収納し、作用電極面を試料に晒す構造にされる。
このマルチチャンネル構造では、複数の成分を含む試料から各作用電極で各成分を個別に一括して検知・定量することができる。
【0008】
上記のように、本発明によって、水晶振動子のバラツキ補正回路や温度補償回路、ノイズ対策をした回路により、ナノgの測定ができる。
また、4ch センサーを1ブロックにブロックを交換することにより200ch以上の測定が可能とし、また、多チャンネル吸着測定をする為にブロック(8ch1ブロック) のセンサーを備え、最大250個(200ch)をスキャンして測定し、データの差による補正回路、温度補償回路、ノイズ対策をした回路を構成したQCM装置とする。
【0009】
【発明の効果】本発明の、支持台に支持された、一対の第1水晶振動子センサーと、第2水晶振動子センサーを設け、溶媒のみの第1容器の時間経過に伴う周波数変化と、試料の入った側の第2容器の周波数変化とを同時に比較し、その差分を排除する等測定系の外から入る多様なノイズを取り除いて、精度のよい測定をすることができる。
また、水晶振動子が安定するまで長時間を少なくし、すぐに測定ができるように、また、水晶振動子のバラツキによる測定データの精度にばらつきをなくし、また、周囲の温度変化によるドリフト及びノイズに問題があったのを解消する。
従って、環境保全や健康被害の立場から廃棄物等に含まれる有害な化学物質の計測、また、簡便で微量の試料で高感度計測ができる。
【図面の簡単な説明】
【図1】本発明の、QCM測定装置の基本構成図である。
【図2】本発明の、複数チャンネルセンサーを備えたQCM測定装置の斜視図である。
【図3】従来型の、QCM装置の全体図である。
【符号の説明】
1 支持台
2 第1水晶振動子センサ−
3 第2水晶振動子センサ−
4 電極
5 電極
6 第1容器
7 第2容器
8 温度調節装置
9 コンピュ−タ
10 表示装置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention detects adsorption and desorption of sample components on the working electrode surface from changes in electrical characteristics such as oscillation frequency and impedance of the quartz oscillator when the working electrode surface of the quartz oscillator is exposed to a sample gas or a sample solution. The present invention relates to a QCM (Quartz Crystal Microbalance) / EQCM (Electro Chemical Quartz Crystal Microbalance) device and a sample measurement method.
In particular, the present invention relates to a multi-channel sensor using at least two or more crystal oscillator sensors, a QCM device provided with a temperature compensation circuit, and a sample measurement method.
[0002]
[Prior art]
2. Description of the Related Art In recent years, as an apparatus for online measurement of a film thickness in film formation in a gas phase or a liquid phase, a QCM (Quartz Crystal Microbalance) / EQCM (Electro Chemical Quartz Crystal Microbalance) for measuring a minute weight change from a change in a resonance frequency of a quartz oscillator. 2. Description of the Related Art A measuring device (hereinafter, abbreviated as a QCM device) is known.
Quartz crystal resonators are metal electrodes deposited on the front and back surfaces of a thin quartz plate.When an elastic thin film adheres to this electrode, the weight of the adhered substance and the change in frequency are proportional to each other. The mass of a substance having a minute mass can be measured.
That is, when a sample component is deposited on the electrode surface of the crystal unit or when a substance is adsorbed, a frequency shift corresponding to the weight per unit area of the substance existing on the surface occurs, and the QCM sensor has The crystal oscillator has a stable frequency over a wide temperature range, so stable detection sensitivity can be expected. If conditions are met, 1 to 10 ng of adsorbed substances can be detected in real time. It is. (For example, refer to Patent Document 1).
FIG. 3 shows a conventional QCM device, which comprises a QCM main body 11, a frequency counter 12, and a measurement control computer 13.
One crystal resonator 15 attached to the QCM main body 11 by a crystal resonator mounting arm 14 vibrates by an oscillation circuit (not shown), and the oscillation frequency of the oscillation circuit is counted by a frequency counter -12. The data is analyzed by the measurement control computer 13 and the mass of the substance in the sample is displayed.
When a substance is adsorbed on the surface of the metal electrode of one crystal unit, the resonance frequency of the crystal changes in proportion to the weight change. The amount can be measured.
[0003]
[Patent Document 1]
JP 2001-153777 A (page 4 FIG. 3)
[0004]
[Problems to be solved by the invention]
However, the conventional QCM device measures (1) with a single crystal oscillator sensor, so if it is measured for a long time due to noise such as temperature changes from the outside, it will overlap with data other than the frequency components that you want to measure. It was a measurement error. Also, (2) there was a problem that the degree of freedom of measurement was narrow because the temperature was controlled and measured so as to be a fixed temperature.
The present invention has solved the above-described problems of the prior art, and according to the present invention, it is possible to reduce a long time until the crystal oscillator is stabilized, to perform measurement immediately, and to make the fluctuation of the crystal oscillator. Eliminates the problem of drift and noise caused by ambient temperature changes, and it takes time to stabilize if the measurement conditions are changed or the crystal unit is pulled up It is an object of the present invention to provide a QCM device in which the capture interval has taken one second or longer, but reduced to less than one second.
[0005]
[Means for Solving the Problems]
For this reason, the technical solution adopted by the present invention is that the QCM device includes a first quartz oscillator sensor and a second quartz oscillator sensor supported by a support base.
Each of the first and second quartz-crystal vibrating sensors includes an electrode serving as a vibrator, a solvent or a container containing a solvent and a sample, and a quartz oscillation circuit with a temperature compensation circuit. That is, it is a QCM device.
Further, the first crystal resonator sensor and the second crystal resonator are QCM devices connected to a temperature controller, a computer, and a display device.
Further, the present invention is a multi-channel type QCM device provided with a plurality of a pair of first and second quartz-crystal vibrating sensors supported by the support table.
In addition, using at least two or more quartz crystal sensors, measurement is performed in the same solvent in a separate container, and the sample to be measured is injected into one, and the frequency change is measured. By simultaneously comparing the frequency change over time of the sensor attached to the sample with the frequency change on the side where the sample entered, detection of adsorption and desorption of sample components that offset various noises entering from outside the measurement system That is, a sample measurement method for performing quantification was used.
Also, by simultaneously comparing the change in frequency on the side where the sample enters, and a circuit and software that cancels various noises entering from outside the measurement system, sample measurement that detects and quantifies adsorption and desorption of sample components It was a method.
Another object of the present invention is to provide a sample measuring method which enables measurement while changing the temperature of a container for accommodating a sample by a program.
[0006]
DETAILED DESCRIPTION OF THE INVENTION
FIG. 1 is a basic configuration diagram of a QCM measurement device according to the present invention. FIG. 2 is a perspective view of a QCM measuring device including the multi-channel sensor of the present invention.
In FIG. 1, a QCM measuring apparatus according to the present invention includes a first crystal oscillator sensor 2 as a basic sensor, which is provided with a crystal oscillation circuit with a temperature compensation circuit, supported by a support table 1, and a crystal oscillation with a temperature compensation circuit. It comprises a second quartz-crystal oscillator sensor 3 having a circuit.
Each of the first crystal oscillator sensor 2 and the second crystal oscillator sensor 3 includes electrodes 4 and 5 which are oscillators, and a first container 6 and a second container 7 which contain a solvent. It is supported by the support base 1.
The first crystal oscillator sensor 2 and the second crystal oscillator sensor 3 are connected to a temperature control device 8, a computer 9, and a display device 10.
When the sample is measured, the sample to be measured is inserted into the second quartz-crystal resonator sensor 3 outside the solvent, the measurement result is analyzed by the computer 9, and the result is displayed on the display device 9. It is. The temperature of the solvent is measured by changing the temperature appropriately by the temperature controller 8.
[0007]
Next, a procedure for measuring a sample using the above-described apparatus will be specifically described with reference to FIG.
(1) The same solvent is injected into the first container 6 of the first crystal unit sensor 2 and the second container 7 of the second crystal unit sensor 3, and the frequency change is measured.
{Circle around (2)} Next, a sample to be measured is injected into the second container 7 of the second quartz-crystal vibrator sensor 3 and its frequency change is measured.
(3) At this time, the frequency change of the first container 6 with only the solvent over time and the frequency change of the second container 7 on the side containing the sample in the above (2) are simultaneously compared, and the The analysis is performed by a computer 9 having a circuit and software for canceling various noises input from the computer, and the result is displayed on a display device 10.
FIG. 2 shows a QCM device of a multi-channel sensor type provided with a plurality of pairs of crystal oscillator sensors, and these are combined into one set.
In order to configure a multi-channel QCM system using a sensor device having such a structure, the sensor device is housed in the above-described sensor device housing device, and the working electrode surface is exposed to the sample.
In this multi-channel structure, each component can be individually detected and quantified collectively at each working electrode from a sample containing a plurality of components.
[0008]
As described above, according to the present invention, measurement of nano-g can be performed by a variation correction circuit of a crystal unit, a temperature compensation circuit, and a circuit taking measures against noise.
In addition, by exchanging the block for 4ch sensor to one block, it is possible to measure more than 200ch. Also, it has a block (8ch1block) sensor for multi-channel adsorption measurement, and scans up to 250 (200ch). And a QCM device comprising a correction circuit based on a difference in data, a temperature compensation circuit, and a circuit for noise suppression.
[0009]
According to the present invention, a pair of a first quartz oscillator sensor and a second quartz oscillator sensor supported by a support table are provided, and a frequency change of the first container containing only the solvent with time is provided. The frequency change of the second container on the side containing the sample is simultaneously compared, and various noises entering from outside the measurement system such as eliminating the difference can be removed, and accurate measurement can be performed.
In addition, the time required for the crystal unit to stabilize is reduced for a long period of time, so that measurements can be performed immediately.The accuracy of measurement data due to variations in the crystal unit is not dispersed, and drift and noise due to changes in ambient temperature are reduced. To eliminate the problem.
Therefore, harmful chemical substances contained in waste and the like can be measured from the standpoint of environmental protection and health hazards, and high-sensitivity measurement can be easily performed with a small amount of sample.
[Brief description of the drawings]
FIG. 1 is a basic configuration diagram of a QCM measurement device according to the present invention.
FIG. 2 is a perspective view of a QCM measuring apparatus including a multi-channel sensor according to the present invention.
FIG. 3 is an overall view of a conventional QCM device.
[Explanation of symbols]
1 support 2 first crystal oscillator sensor
3 2nd crystal oscillator sensor
4 Electrode 5 Electrode 6 First container 7 Second container 8 Temperature control device 9 Computer 10 Display device

Claims (7)

支持台に支持された、第1水晶振動子センサーと、第2水晶振動子センサーとからなるQCM装置。A QCM device comprising a first quartz oscillator sensor and a second quartz oscillator sensor supported by a support. 前記第1水晶振動子センサーと、第2水晶振動子センサーは、共に、振動子である電極と、溶媒または溶媒と試料を収容する容器と、温度補償回路付水晶発振回路を備えていること特徴とする請求項1記載のQCM装置。Each of the first and second quartz-crystal vibrating sensors includes an electrode serving as a vibrator, a solvent or a container for accommodating the solvent and the sample, and a quartz oscillation circuit with a temperature compensation circuit. The QCM device according to claim 1, wherein 前記第1水晶振動子センサーと、第2水晶振動体は、温度調節装置及びコンピュータ、表示装置に連結されていること特徴とする請求項1〜2のうちの1記載のQCM装置。3. The QCM device according to claim 1, wherein the first crystal resonator sensor and the second crystal resonator are connected to a temperature controller, a computer, and a display device. 前記支持台に支持された、一対の第1水晶振動子センサーと、第2水晶振動子センサーを、複数設けた多チャンネル型としたことを特徴とする請求項1〜3のうちの1記載のQCM装置。4. The multi-channel type provided with a plurality of a pair of first and second quartz-crystal vibrating sensors supported by the support table, according to claim 1. QCM device. 少なくとも2 つ以上の水晶振動子センサーを用い、別容器の同じ溶媒で計測を行い、一方には、計測すべき試料を注入しその周波数変化を計測、このとき溶媒のみの容器に同じように取り付けたセンサーの時間経過に伴う周波数変化を先ほどの試料の入った側の周波数変化とを同時に比較することにより、測定系の外から入る多様なノイズを相殺する試料成分の吸脱着を検知・定量を行なう試料測定方法。Use at least two or more quartz crystal sensors to measure with the same solvent in a separate container, and inject the sample to be measured and measure the frequency change in one of them. By simultaneously comparing the change in frequency over time of the sensor with the change in frequency on the side containing the sample, detection and quantification of the adsorption and desorption of sample components that offset various noises entering from outside the measurement system can be performed. The sample measurement method to be performed. 試料の入った側の周波数変化とを同時に比較することにより、測定系の外から入る多様なノイズを相殺するする回路及びソフトウェアを用いて試料成分の吸脱着を検知・定量を行なう請求項5記載の試料測定方法。6. A method for detecting and quantifying the adsorption and desorption of sample components by using a circuit and software for canceling various noises coming from outside the measurement system by simultaneously comparing the frequency change on the side where the sample enters and the software. Sample measurement method. 試料を収容する容器の温度をプログラムにより変化させながら測定を可能にする請求項5〜6のうちの1記載の試料測定方法。7. The sample measuring method according to claim 5, wherein the measurement can be performed while changing the temperature of the container containing the sample by a program.
JP2002376039A 2002-12-26 2002-12-26 Qcm device and sample measuring method Pending JP2004205392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002376039A JP2004205392A (en) 2002-12-26 2002-12-26 Qcm device and sample measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002376039A JP2004205392A (en) 2002-12-26 2002-12-26 Qcm device and sample measuring method

Publications (1)

Publication Number Publication Date
JP2004205392A true JP2004205392A (en) 2004-07-22

Family

ID=32813597

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002376039A Pending JP2004205392A (en) 2002-12-26 2002-12-26 Qcm device and sample measuring method

Country Status (1)

Country Link
JP (1) JP2004205392A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006064952A1 (en) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd Component measuring device
JP2007010361A (en) * 2005-06-28 2007-01-18 Ngk Insulators Ltd Voltage drive element
JP2007163369A (en) * 2005-12-15 2007-06-28 Sunrise Kogyo Kk Biosensor, measuring/analytical system, and examination method therefor
US7552639B2 (en) 2004-12-15 2009-06-30 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
US7555952B2 (en) 2004-12-28 2009-07-07 Nihon Dempa Kogyo Co., Ltd. Sensing device
US7677087B2 (en) 2004-12-15 2010-03-16 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
US7845230B2 (en) 2005-08-03 2010-12-07 Nihon Dempa Kogyo Co., Ltd. Concentration sensor and concentration detector
CN103868816A (en) * 2012-12-17 2014-06-18 精工电子有限公司 Qcm sensor
JP2014139566A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
JP2015099045A (en) * 2013-11-18 2015-05-28 セイコーインスツル株式会社 QCM sensor and cartridge

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265459A (en) * 1993-03-15 1994-09-22 Toshiba Corp Cracked gas detector
JPH06317511A (en) * 1993-05-10 1994-11-15 Sanyo Electric Co Ltd Odor detection device
JPH07103873A (en) * 1993-10-06 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> Gas detector and method for inspecting sensitivity of gas adsorbing film
JPH09131335A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Individual identifying method and individual identifying device
JPH10132646A (en) * 1996-10-29 1998-05-22 Ricoh Co Ltd Liquid phase surface treatment device, and method for measuring change in mass of a body to be treated using it
JPH1123245A (en) * 1997-06-27 1999-01-29 Hitachi Sci Syst:Kk Instrument for measuring thickness of vapor-deposited film using crystal resonator
JP2000283905A (en) * 1999-03-30 2000-10-13 Noboru Koyama Multichannel qcm sensor device
JP2000338022A (en) * 1999-05-25 2000-12-08 Hokuto Denko Kk Multi-channel qcm sensor device and multi-channel qcm measuring system
JP2001091416A (en) * 1999-09-27 2001-04-06 Tokyo Inst Of Technol Odor/gas flow visualizing device and odor/gas flow measurement device
JP2001099777A (en) * 1999-07-29 2001-04-13 Hitachi Ltd Corrosive environment monitoring device
JP2002243599A (en) * 2001-02-09 2002-08-28 Horiba Ltd Gas dilution device
JP2002529694A (en) * 1998-10-30 2002-09-10 カリフォルニア・インスティチュート・オブ・テクノロジー How to use sensor-based fluid detection device
JP2002544479A (en) * 1999-05-10 2002-12-24 フィッシャー コントロールズ インターナショナル, インコーポレイテッド High frequency measurement circuit with inherent noise reduction for resonant chemical sensors

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06265459A (en) * 1993-03-15 1994-09-22 Toshiba Corp Cracked gas detector
JPH06317511A (en) * 1993-05-10 1994-11-15 Sanyo Electric Co Ltd Odor detection device
JPH07103873A (en) * 1993-10-06 1995-04-21 Nippon Telegr & Teleph Corp <Ntt> Gas detector and method for inspecting sensitivity of gas adsorbing film
JPH09131335A (en) * 1995-11-08 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Individual identifying method and individual identifying device
JPH10132646A (en) * 1996-10-29 1998-05-22 Ricoh Co Ltd Liquid phase surface treatment device, and method for measuring change in mass of a body to be treated using it
JPH1123245A (en) * 1997-06-27 1999-01-29 Hitachi Sci Syst:Kk Instrument for measuring thickness of vapor-deposited film using crystal resonator
JP2002529694A (en) * 1998-10-30 2002-09-10 カリフォルニア・インスティチュート・オブ・テクノロジー How to use sensor-based fluid detection device
JP2000283905A (en) * 1999-03-30 2000-10-13 Noboru Koyama Multichannel qcm sensor device
JP2002544479A (en) * 1999-05-10 2002-12-24 フィッシャー コントロールズ インターナショナル, インコーポレイテッド High frequency measurement circuit with inherent noise reduction for resonant chemical sensors
JP2000338022A (en) * 1999-05-25 2000-12-08 Hokuto Denko Kk Multi-channel qcm sensor device and multi-channel qcm measuring system
JP2001099777A (en) * 1999-07-29 2001-04-13 Hitachi Ltd Corrosive environment monitoring device
JP2001091416A (en) * 1999-09-27 2001-04-06 Tokyo Inst Of Technol Odor/gas flow visualizing device and odor/gas flow measurement device
JP2002243599A (en) * 2001-02-09 2002-08-28 Horiba Ltd Gas dilution device

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7677087B2 (en) 2004-12-15 2010-03-16 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
WO2006064952A1 (en) * 2004-12-15 2006-06-22 Nihon Dempa Kogyo Co., Ltd Component measuring device
US7552639B2 (en) 2004-12-15 2009-06-30 Nihon Dempa Kogyo Co., Ltd. Quartz sensor and sensing device
US7554247B2 (en) 2004-12-15 2009-06-30 Nihon Dempa Kogyo Co., Ltd Component measuring device
US7555952B2 (en) 2004-12-28 2009-07-07 Nihon Dempa Kogyo Co., Ltd. Sensing device
JP4535502B2 (en) * 2005-06-28 2010-09-01 日本碍子株式会社 Substance detection element
JP2007010361A (en) * 2005-06-28 2007-01-18 Ngk Insulators Ltd Voltage drive element
US7845230B2 (en) 2005-08-03 2010-12-07 Nihon Dempa Kogyo Co., Ltd. Concentration sensor and concentration detector
JP2007163369A (en) * 2005-12-15 2007-06-28 Sunrise Kogyo Kk Biosensor, measuring/analytical system, and examination method therefor
CN103868816A (en) * 2012-12-17 2014-06-18 精工电子有限公司 Qcm sensor
US20140165702A1 (en) * 2012-12-17 2014-06-19 Seiko Instruments Inc. Qcm sensor
JP2014139566A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
JP2014139557A (en) * 2012-12-17 2014-07-31 Seiko Instruments Inc QCM sensor
US9645115B2 (en) * 2012-12-17 2017-05-09 Seiko Instruments Inc. QCM sensor
JP2015099045A (en) * 2013-11-18 2015-05-28 セイコーインスツル株式会社 QCM sensor and cartridge

Similar Documents

Publication Publication Date Title
JP5066551B2 (en) Piezoelectric sensor and sensing device
JP4897408B2 (en) Crystal oscillator
JP4566252B2 (en) Sensing device
US20100021346A1 (en) Sensing instrument
JP2004205392A (en) Qcm device and sample measuring method
TWI443338B (en) And a sensing means for sensing the sensing object in the liquid
JP3729181B2 (en) Measuring method, measuring signal output circuit and measuring apparatus
Ferrari et al. Multisensor array of mass microbalances for chemical detection based on resonant piezo-layers of screen-printed PZT
JP2006033195A (en) Crystal oscillator and detector
JP2006292733A (en) Quartz crystal microbalance sensor
JP2004340766A (en) Apparatus for detecting chemical substance
JP4646813B2 (en) Biosensor measurement system, viscosity measurement method, and trace mass measurement method
JP2004294356A (en) Qcm sensor unit
TW202328658A (en) Substance detection system
JP2004184256A (en) Qcm sensor apparatus and substance measuring method
JP3376417B2 (en) Calibration method for ultra-low-mass detectors using high-frequency quartz oscillators
JP2811315B2 (en) Piezoelectric gas sensor system
RU2543687C1 (en) Method of assessing quality of nitrogen-containing mineral fertilisers with application of biosensors
JP2011227033A (en) Sensing device
JP5708027B2 (en) Sensing device
RU114148U1 (en) DEVICE FOR MEASURING MOTION PARAMETERS BASED ON MICROMECHANICAL AND MOLECULAR ELECTRONIC SENSITIVE ELEMENTS
US20230400436A1 (en) Gas sensor devices containing cryptophane a sensing layer
JP4960171B2 (en) Sensing device
JP2006300742A (en) Chemical substance detection device using oscillation frequency adjusting system
JP2006010431A (en) Mass detector

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050401

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20051115

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060404