JP2004218466A - Traverse-mounted compressor - Google Patents

Traverse-mounted compressor Download PDF

Info

Publication number
JP2004218466A
JP2004218466A JP2003004278A JP2003004278A JP2004218466A JP 2004218466 A JP2004218466 A JP 2004218466A JP 2003004278 A JP2003004278 A JP 2003004278A JP 2003004278 A JP2003004278 A JP 2003004278A JP 2004218466 A JP2004218466 A JP 2004218466A
Authority
JP
Japan
Prior art keywords
cylinder
rotary compression
compression element
oil
rotary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003004278A
Other languages
Japanese (ja)
Other versions
JP4225793B2 (en
Inventor
Hiroyuki Matsumori
裕之 松森
Takayasu Saito
隆泰 斎藤
Takashi Sato
孝 佐藤
Masaru Matsuura
大 松浦
Toshiyuki Ebara
俊行 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP2003004278A priority Critical patent/JP4225793B2/en
Publication of JP2004218466A publication Critical patent/JP2004218466A/en
Application granted granted Critical
Publication of JP4225793B2 publication Critical patent/JP4225793B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/30Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members
    • F04C18/34Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members
    • F04C18/356Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member
    • F04C18/3562Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation
    • F04C18/3564Rotary-piston pumps specially adapted for elastic fluids having the characteristics covered by two or more of groups F04C18/02, F04C18/08, F04C18/22, F04C18/24, F04C18/48, or having the characteristics covered by one of these groups together with some other type of movement between co-operating members having the movement defined in group F04C18/08 or F04C18/22 and relative reciprocation between the co-operating members with vanes reciprocating with respect to the outer member the inner and outer member being in contact along one line or continuous surfaces substantially parallel to the axis of rotation the surfaces of the inner and outer member, forming the working space, being surfaces of revolution
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/001Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids of similar working principle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C23/00Combinations of two or more pumps, each being of rotary-piston or oscillating-piston type, specially adapted for elastic fluids; Pumping installations specially adapted for elastic fluids; Multi-stage pumps specially adapted for elastic fluids
    • F04C23/008Hermetic pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To certainly feed a second rotary compression element with oil in a traverse-mounted compressor equipped with the second rotary element pressurized higher than the inside of an airtight container. <P>SOLUTION: A multistage compression rotary compressor 10 is equipped with a driving element 14 inside the traverse-mounted airtight container 12 and a compression mechanism 18 driven by the driving element 14. The compression mechanism 18 comprises first and second rotary compression elements 32, 34. A cooling medium compressed by the first rotary compression element 32 is discharged to the inside of the airtight container 12. Further, the discharged cooling medium with intermediate pressure is compressed by the second rotary compression element 34 to be discharged. In a cylinder 38 of the second rotary compression element 34, an oil feeding pathway 106 is formed which makes a low-pressure chamber LR of the cylinder 38 communicate with the bottom of the airtight container 12. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、横置き型の密閉容器内に駆動要素と、この駆動要素にて駆動される圧縮機構部とを備え、この圧縮機構部にて冷媒を圧縮して吐出する横置き型圧縮機に関するものである。
【0002】
【従来の技術】
従来よりこの種圧縮機としてのロータリコンプレッサ、特に第1の回転圧縮要素と第2の回転圧縮要素から成る圧縮機構部を備える多段圧縮式のロータリコンプレッサにおいては、通常縦型の密閉容器内上部に駆動要素を配置し、下部に当該駆動要素の回転軸で駆動される圧縮機構部を配置して構成されている。そして、第1の回転圧縮要素の吸込ポートから冷媒ガスがシリンダの低圧室側に吸入され、ローラとベーンの動作により圧縮されて、シリンダの高圧室側より吐出ポート、吐出消音室を経て密閉容器内に吐出される。このとき密閉容器内は中間圧となる(特許文献1参照)。
【0003】
この密閉容器内の中間圧の冷媒ガスは第2の回転圧縮要素の吸込ポートからシリンダの低圧室側に吸入され、ローラとベーンの動作により2段目の圧縮が行われて高温高圧の冷媒ガスとなり、高圧室側より吐出ポート、吐出消音室を経て、コンプレッサ外部の放熱器に流入する構成とされていた。
【0004】
また、係る縦型のロータリコンプレッサでは、圧縮機構部の下方に位置する密閉容器内底部がオイル溜めとされており、回転軸下端に構成されたオイルポンプによりオイル溜めからオイルが吸引され、圧縮機構部に供給されて圧縮機構部や回転軸の摺動部の摩耗を防ぎ、また、シールを確保していた。
【0005】
更に、この種ロータリコンプレッサでは、密閉容器を横置きとして高さ寸法を縮小したものもあり、その場合には回転軸は水平方向に延在して第1及び第2の回転圧縮要素は左右に並設されたかたちとなる。
【0006】
【特許文献1】
特開平2−294587号公報(第4頁、第5頁)。
【0007】
【発明が解決しようとする課題】
ところで、係る多段圧縮式のロータリコンプレッサの第2の回転圧縮要素を構成するシリンダ内は、中間圧の密閉容器内よりも高い圧力となる。また、第2の回転圧縮要素に吸い込まれる冷媒は、密閉容器内に吐出された段階でそれに溶け込んだオイルを分離させている。そのため、どうしても第2の回転圧縮要素のシリンダ内への給油が困難な状況となり、オイル切れが発生し易いと云う問題があった。
【0008】
本発明は、係る従来の技術的課題を解決するために成されたものであり、密閉容器内よりも高圧となる第2の回転圧縮要素を備えた横置き型圧縮機において、当該第2の回転圧縮要素への給油を確実に行うものである。
【0009】
【課題を解決するための手段】
即ち、請求項1の発明の横置き型圧縮機は、圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮して吐出するものであって、第2の回転圧縮要素のシリンダに、当該シリンダの低圧室と密閉容器内の底部とを連通する給油通路を形成し、密閉容器内と低圧室が略同圧であるため、密閉容器内底部に溜まっているオイルが、低圧室側の吸い込み冷媒の流れに引かれて第2の回転圧縮要素のシリンダに形成した給油通路を介して当該シリンダの低圧室に供給することが可能となる。
【0010】
また、請求項2の発明の横置き型圧縮機は、上記に加えて、第2の回転圧縮要素のシリンダ底部に形成された切欠を備え、給油通路をこの切欠内に開口させたので、密閉容器底部に溜まったオイルを切欠から給油通路内に円滑に流入させることができるようになるものである。
【0011】
また、請求項3の発明の横置き型圧縮機は、圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を第2の回転圧縮要素で圧縮して吐出するものであって、第1の回転圧縮要素のシリンダと第2の回転圧縮要素のシリンダ間に挟持される中間仕切板に、第2の回転圧縮要素のシリンダの低圧室と密閉容器内の底部とを連通する給油通路を形成したので、密閉容器内底部に溜まるオイルを、中間仕切板に形成した給油通路を介して第2の回転圧縮要素のシリンダの低圧室に供給することが可能となる。
【0012】
また、請求項4の発明の横置き型圧縮機は、上記各発明に加えて給油通路を、第2の回転圧縮要素のシリンダに傾斜して形成された吸込ポートの傾斜面に開口させたので、吸込ポートの角度を利用してシリンダに吸い込まれる冷媒の流れによりエジェクタ効果を発揮させることが可能となる。
【0013】
【発明の実施の形態】
次に、図面に基づき本発明の実施形態を詳述する。図1は本発明の横置き型圧縮機の実施例として、第1及び第2の回転圧縮要素32、34を備えた横置き型の内部中間圧型多段圧縮式(2段)ロータリコンプレッサ10の縦断正面図、図2は多段圧縮式ロータリコンプレッサ10の第2のシリンダ38の縦断側面図をそれぞれ示している。
【0014】
各図において、10は二酸化炭素(CO)を冷媒として使用する横置き型の内部中間圧型多段圧縮式ロータリコンプレッサで、この多段圧縮式ロータリコンプレッサ10は両端が密閉された横長円筒状の横置き型密閉容器12を備え、この密閉容器12の底部をオイル溜め15としている。密閉容器12は、容器本体12Aとこの容器本体12Aの開口を閉塞する略椀状のエンドキャップ(蓋体)12Bとで構成されている。
【0015】
この密閉容器12内には電動モータから成る駆動要素14と、水平方向に延在する駆動要素14の回転軸16により駆動される第1の回転圧縮要素32及び第2の回転圧縮要素34からなる圧縮機構部18が左右に並設して収納されている。また、密閉容器12の駆動要素14側の端部には円形の取付孔12Dが形成されており、この取付孔12Dには駆動要素14に電力を供給するためのターミナル20(配線を省略)が取り付けられている。
【0016】
駆動要素14は、密閉容器12の内周面に沿って環状に取り付けられたステータ22と、このステータ22の内側に若干の間隔を設けて挿入設置されたロータ24とからなる。このロータ24は中心を通り密閉容器12の軸心方向(水平方向)に延在する回転軸16に固定されている。
【0017】
回転軸16の圧縮機構部18側の端部には給油手段としてのオイルポンプ80が設けられている。このオイルポンプ80は、密閉容器12内の底部に形成されたオイル溜め15から潤滑油としてのオイルを吸い上げて圧縮機構部18や回転軸16の摺動部に供給し、摩耗を防止し、且つ、シール性をあげるために設けられており、このオイルポンプ80からは密閉容器12の底部に向かってオイル吸上パイプ80Aが降下し、オイル溜め15内にて開口している。
【0018】
また、前記ステータ22は、ドーナッツ状の電磁鋼板を積層した積層体26と、この積層体26の歯部に直巻き(集中巻き)方式により巻装されたステータコイル28を有している。そして、前記ロータ24もステータ22と同様に電磁鋼板の積層体30で形成され、この積層体30内に永久磁石MGを挿入して形成されている。
【0019】
前記第1の回転圧縮要素32と第2の回転圧縮要素34は第1及び第2のシリンダ40、38によりそれぞれ構成され、これらシリンダ40、38間には中間仕切板36が挟持されている。即ち、圧縮機構部18は、第1の回転圧縮要素32及び第2の回転圧縮要素34と、中間仕切板36などから構成される。各シリンダ40、38の外周は密閉容器12の内面に当接若しくは近接している。
【0020】
即ち、第1及び第2の回転圧縮要素32、34は、それぞれ中間仕切板36の両側(図1では左右)に配置された前記第1及び第2のシリンダ40、38と、180度の位相差を有して回転軸16に設けられた第1及び第2の偏心部44、42に嵌合され、第1及び第2のシリンダ40、38内を偏心回転する第1及び第2のローラ48、46と、これらローラ48、46にそれぞれ当接し、往復動してシリンダ40、38内をそれぞれ低圧室LR側と高圧室HR側(図2)とに区画する第1及び第2のベーン52、50と、シリンダ38の駆動要素14側の開口面とシリンダ40の駆動要素14とは反対側の開口面をそれぞれ閉塞して回転軸16の軸受けを兼用する支持部材54、56とから構成されている。
【0021】
両シリンダ40、38には第1及び第2のベーン52、50を摺動自在に収納するための案内溝70と、この案内溝70の外側には、第1及び第2のベーン52、50の外側端部に当接して、常時第1及び第2のベーン52、50をローラ48、46側に付勢するスプリング76、74が設けられている。更に、スプリング76、74の密閉容器12側には金属製のプラグ76A、74Aが設けられ、スプリング76、74の抜け止めの役目を果たす。また、第2のベーン50には背圧室70Aが構成され、この背圧室70Aにはシリンダ38内の高圧室HR側の圧力が背圧として印加される。
【0022】
尚、実施例の多段圧縮式ロータリコンプレッサ10では、ベーン52、50は各シリンダ40、38の最下部に位置して上下動するように構成されている(図2)また、各シリンダ40、38内部の低圧室LRに連通する吸込ポート162、161は図2に示す如く各ベーン52、50に隣接して形成されている。特に、吸込ポート162、161は、図3に示す如く支持部材56、54側が低く、中間仕切板36側が高くなるように傾斜して形成され、そこを傾斜面162A、161Aとされている。
【0023】
一方、支持部材54、56には、吸込ポート161、162にてシリンダ38、40内部の低圧室側LRとそれぞれ連通する吸込通路58、60と、一部を凹陥させ、この凹陥部をカバー66、68にてそれぞれ閉塞することにより形成される吐出消音室62、64とが設けられている。尚、図3において163は、シリンダ38内部の高圧室HRに連通して形成された吐出ポートである(シリンダ40側は図示せず)。
【0024】
第2の回転圧縮要素34のシリンダ38の吸込ポート161の延長線上に対応する位置の底部は、中間仕切板36側と支持部材54側に渡って内側に切り欠かれ、そこに回転軸16方向に所定寸法凹陥した切欠38Aが形成されている(図2、図3)。この切欠38Aは、密閉容器12底部のオイル溜め15内に位置している。そして、シリンダ38内には、この切欠38Aと吸込ポート161間に渡る給油通路106が形成されている。
【0025】
この給油通路106の上端は、シリンダ38に傾斜して形成された前記吸込ポート161の傾斜面161Aに開口すると共に、給油通路106の下端は切欠38A内に開口している。即ち、給油通路106は傾斜面161Aにおいて斜めの開口部106Aを有し、シリンダ38の低圧室LR側と密閉容器12底部のオイル溜め15とを連通させる。
【0026】
前記吐出消音室64と密閉容器12内は、シリンダ40、38や中間仕切板36、カバー66を貫通し、更に、このカバー66から離間して設けられた後述するバッフル板100も貫通して駆動要素14側に開口する図示しない連通路にて連通されており、連通路の端部には中間吐出管121が突設されている。この中間吐出管121から第1の回転圧縮要素32で圧縮された中間圧の冷媒ガスが密閉容器12内の駆動要素14側に吐出される。このとき冷媒ガス中には第1の回転圧縮要素32に供給されたオイルが混入しているが、このオイルも密閉容器12内の駆動要素14側に吐出されることになる。ここで、冷媒ガス中に混入したオイルは冷媒ガスから分離して密閉容器12内底部のオイル溜め15に貯留される。
【0027】
そして、前述したバッフル板100は密閉容器12内を駆動要素14側と圧縮機構部18側とに区画して、密閉容器12内に差圧を構成するために設けられる。このバッフル板100は、密閉容器12の内面との間に少許間隔を存して配設されたドーナッツ状の鋼板からなる。この場合、第1の回転圧縮要素32で圧縮され、密閉容器12内の駆動要素14側に吐出された中間圧の冷媒ガスは、密閉容器12とバッフル板100の間に形成された隙間を通って圧縮機構部18側に流入することになるが、係るバッフル板100の存在により、密閉容器12内にはバッフル板100の駆動要素14側の圧力は高く、圧縮機構部18側が低い差圧が構成される。
【0028】
そして、この差圧によって密閉容器12内底部のオイル溜め15に貯溜されたオイルは圧縮機構部18側に移動し、バッフル板100より圧縮機構部18側のオイルレベルが上昇する。この場合、密閉容器12底部のオイル溜め15に貯溜されたオイルの上面は、少なくともオイル吸上パイプ80A下端及び給油通路106の下端開口(切欠38A)より上まで満たされる。
【0029】
ここで、吸込ポート161の傾斜面161Aに開口させた給油通路106の開口部106Aと、吸込ポート161の傾斜面161Aの角度(第2の回転圧縮要素34の冷媒の吸気の流れ方向の角度)は、エジェクタ機能を生じやすい角度に構成する。これにより、吸込ポート161からシリンダ38の低圧室LR側に吸い込まれる冷媒ガスによって開口部106Aにエジェクタ機能が発生し、給油通路106内は低圧となるので、密閉容器12底部のオイル溜め15に貯溜されたオイルは、給油通路106内を吸い上げられて開口部106Aからシリンダ38の低圧室LR側に吸い込まれるようになる。一方、オイル吸上パイプ80Aの開口はオイル中に浸漬されるので、オイルポンプ80による圧縮機構部18の摺動部へのオイルの供給も円滑に行われる。
【0030】
そして、この場合の冷媒としては、地球環境にやさしく可燃性及び毒性等を考慮して自然冷媒である前記CO(二酸化炭素)を使用し、密閉容器12内に封入される潤滑油としてのオイルとしては、例えば鉱物油(ミネラルオイル)、アルキルベンゼン油、エーテル油、エステル油、PAG(ポリアルキルグリコール)等既存のオイルが使用される。
【0031】
密閉容器12の側面には、支持部材56と支持部材54の側部に対応する位置にスリーブ141、142、143がそれぞれ溶接固定されている。そして、スリーブ142内にはシリンダ40に冷媒を導入するための冷媒導入管94の一端が挿入接続され、吸込通路60に連通されている。そして、スリーブ141内にはシリンダ38に冷媒ガスを流入するための冷媒導入管92の一端が挿入接続され、この冷媒導入管92の一端はシリンダ38の吸込通路58と連通する。
【0032】
この冷媒導入管92は密閉容器12外の上側を通過してスリーブ144に至り、他端はスリーブ144内に挿入接続されてバッフル板100の駆動要素14側(駆動要素14とバッフル板100との間)の密閉容器12内上部に連通する。また、スリーブ143内には冷媒吐出管96が挿入され、この冷媒吐出管96の一端は吐出消音室62に連通されている。更に、密閉容器12の底部には取付用台座110が設けられている(図1)。
【0033】
以上の構成で次に動作を説明する。ターミナル20及び図示されない配線を介して駆動要素14のステータコイル28に通電されると、駆動要素14が起動してロータ24が回転する。この回転により回転軸16と一体に設けた第1及び第2の偏心部44、42に嵌合されたローラ48、46がシリンダ40、38内を偏心回転する。
【0034】
これにより、冷媒導入管94及び支持部材56に形成された吸込通路60を経由して吸込ポート162から第1の回転圧縮要素32のシリンダ40の低圧室LR側に吸入された冷媒(低圧)は、ローラ48とベーン52の動作により圧縮されて中間圧となり、シリンダ40の高圧室HR側より吐出消音室64に吐出され、そこから前述した連通路を経て中間吐出管121より密閉容器12内に吐出される。これによって、密閉容器12内は中間圧となり、冷媒ガスに混入しているオイルは密閉容器12の内面に付着し、密閉容器12の内面を伝わって底部のオイル溜め15に帰還する。
【0035】
そして、密閉容器12内の中間圧の冷媒ガスは、冷媒導入管92に流入して密閉容器12外の上側を通過し、吸込通路58から吸込ポート161を経て第2の回転圧縮要素34のシリンダ38の低圧室LR側に吸入される。このとき、吸込ポート161から冷媒が吸入される課程で吸込ポート161の傾斜面161Aと開口106Aの角度がエジェクタとして機能するので、密閉容器12内底部のオイル溜め15に貯溜されたオイルは給油通路106内に吸い上げられ、開口部106Aからシリンダ38の低圧室LR側に吸い込まれる。これによって、第2の回転圧縮要素34の摺動部へオイルの供給を極めて確実に行うことができる。給油通路106はシリンダ38に形成された切欠38A内において密閉容器12内面から離間して開口しているので、オイル溜め15内のオイルは円滑に流入できる。
【0036】
そして、シリンダ38の低圧室LR側に吸入された中間圧の冷媒ガスは、ローラ46とベーン50の動作により2段目の圧縮が行われて高温・高圧の冷媒ガスとなる。高温・高圧の冷媒ガスは、高圧室HR側から吐出ポート163を通り、支持部材54内に形成された吐出消音室62を経て、冷媒吐出管96から外部の図示しないガスクーラ(放熱器)などに流入する。このガスクーラで冷媒は放熱した後、図示しない減圧装置などで減圧され、これもまた図示しないエバポレータに流入する。
【0037】
そこで冷媒が蒸発し、その後、前記アキュムレータを経て冷媒導入管94から第1の回転圧縮要素32内に吸い込まれるサイクルを繰り返す。
【0038】
このように、密閉容器12内底部のオイル溜め15に貯溜されたオイルを給油通路106から直接吸込ポート161に吸い上げることができる。これにより、密閉容器12内よりも高圧となる第2の回転圧縮要素34のシリンダ38内の潤滑とシール性の確保がなされる。
【0039】
次に、図4には本発明の他の実施例の横置き型圧縮機としての多段圧縮式ロータリコンプレッサ10を示している。尚、この図において図1乃至図3と同一符号は同一若しくは同様の作用を奏するものとする。この場合もシリンダ38に設けられた吸込ポート161と密閉容器12内の底部のオイル溜め15との間に給油通路114を形成しているが、この給油通路114は、中間仕切板36に形成された縦通路116と第2のシリンダ38に形成された横通路118にて構成されている。
【0040】
第2のシリンダ38に形成された横通路118の一端は吸込ポート161の傾斜面161Aに位置して前述同様に開口すると共に、他端は中間仕切板36まで延在している。また、中間仕切板36に形成された縦通路116は下端が密閉容器12内の底部に開口すると共に、上端は第2のシリンダ38に形成された横通路118の高さまで延在し、そこで折れ曲がって横通路118の他端に連通している。即ち、給油通路114は吸込ポート161から横通路118、縦通路116を経て密閉容器12内の底部のオイル溜め15に開口している。そして、給油通路114は、吸込ポート161内の斜めの開口を開口部118Aとしている。他は前述同様に構成されている。
【0041】
これによって、前述同様に2段目の第2の回転圧縮要素34のシリンダ38内に円滑に給油を行うことができるようになる。特に、この場合には給油通路114の殆ど(縦通路116)が中間仕切板36に形成されることになるので、全てシリンダ38内に形成する場合に比して加工が容易となり、生産コストの低減が図れるようになる。
【0042】
【発明の効果】
以上詳述した如く本願の発明によれば、第2の回転圧縮要素のシリンダに、当該シリンダの低圧室と密閉容器内の底部とを連通する給油通路を形成したので、密閉容器内底部に溜まるオイルを、第2の回転圧縮要素のシリンダに形成した給油通路を介して当該シリンダの低圧室に供給することが可能となる。これにより、密閉容器内よりも高圧となる第2の回転圧縮要素のシリンダ内に確実に給油を行うことができるようになり、摺動部の潤滑とシール性を確保することができるようになるものである。
【0043】
また、請求項3の発明によれば、第1の回転圧縮要素のシリンダと第2の回転圧縮要素のシリンダ間に挟持される中間仕切板に、第2の回転圧縮要素のシリンダの低圧室と密閉容器内の底部とを連通する給油通路を形成したので、密閉容器内底部に溜まるオイルを、中間仕切板に形成した給油通路を介して第2の回転圧縮要素のシリンダの低圧室に供給することが可能となる。これにより、密閉容器内よりも高圧となる第2の回転圧縮要素のシリンダ内に確実に給油を行うことができるようになり、摺動部の潤滑とシール性を確保することができるようになる。特に、この場合は加工が比較的容易となるので、生産コストの高騰も抑制できるものである。
【0044】
また、請求項4の発明によれば、密閉容器内底部に溜まったオイルを給油通路内に円滑に吸い上げることができるようになり、第2の回転圧縮要素のシリンダ内への給油性能の更なる向上を図ることができるようになるものである。
【図面の簡単な説明】
【図1】本発明の実施例の横置き型の内部中間圧型多段圧縮式ロータリコンプレッサの縦断正面図(図2のA−A線断面に相当)である。
【図2】図1の多段圧縮式ロータリコンプレッサの第2のシリンダの縦断側面図である。
【図3】本発明の多段圧縮式ロータリコンプレッサの図2のB−B線断面図である。
【図4】本発明の他の実施例における多段圧縮式ロータリコンプレッサの図2のB−B線断面図である。
【符号の説明】
10 多段圧縮式ロータリコンプレッサ
12 密閉容器
12A 容器本体
15 オイル溜め
18 圧縮機構部
32 第1の回転圧縮要素
34 第2の回転圧縮要素
36 中間仕切板
38、40 シリンダ
38A 切欠
42、44 偏心部
46、48 ローラ
50 第2のベーン
52 第1のベーン
54 支持部材
58 吸込通路
106 給油通路
106A 開口部
161 吸込ポート
161A 傾斜面
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a horizontal compressor in which a driving element and a compression mechanism driven by the driving element are provided in a horizontal closed container, and the compression mechanism compresses and discharges the refrigerant. Things.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, in a rotary compressor as a compressor of this type, particularly in a multistage compression type rotary compressor having a compression mechanism section including a first rotary compression element and a second rotary compression element, usually a vertical compressor has an upper portion inside a closed container. A driving element is arranged, and a compression mechanism driven by a rotating shaft of the driving element is arranged below the driving element. Refrigerant gas is sucked into the low pressure chamber side of the cylinder from the suction port of the first rotary compression element, is compressed by the operation of the rollers and vanes, and is discharged from the high pressure chamber side of the cylinder through the discharge port and the discharge muffling chamber. It is discharged into. At this time, the inside of the sealed container has an intermediate pressure (see Patent Document 1).
[0003]
The intermediate-pressure refrigerant gas in the closed container is sucked into the low-pressure chamber side of the cylinder from the suction port of the second rotary compression element, and the second-stage compression is performed by the operation of the roller and the vane, so that the high-temperature and high-pressure refrigerant gas is discharged. Thus, the configuration is such that the gas flows from the high-pressure chamber through a discharge port and a discharge muffling chamber to a radiator outside the compressor.
[0004]
Further, in such a vertical rotary compressor, an oil reservoir is provided at the bottom of the sealed container located below the compression mechanism, and oil is sucked from the oil reservoir by an oil pump formed at the lower end of the rotating shaft, and the compression mechanism To prevent abrasion of the compression mechanism and the sliding part of the rotating shaft, and to secure a seal.
[0005]
Furthermore, in this type of rotary compressor, there is also a type in which the height is reduced by placing the closed container horizontally, and in this case, the rotating shaft extends in the horizontal direction, and the first and second rotary compression elements are moved to the left and right. It is in the form of juxtaposition.
[0006]
[Patent Document 1]
JP-A-2-294587 (pages 4 and 5).
[0007]
[Problems to be solved by the invention]
By the way, the pressure inside the cylinder constituting the second rotary compression element of the multistage compression type rotary compressor is higher than the pressure inside the closed vessel of the intermediate pressure. Further, the refrigerant sucked into the second rotary compression element separates oil dissolved therein at the stage when the refrigerant is discharged into the closed container. Therefore, it is difficult to supply the second rotary compression element into the cylinder, and there is a problem that oil shortage is likely to occur.
[0008]
The present invention has been made in order to solve such a conventional technical problem, and in a horizontal compressor having a second rotary compression element having a higher pressure than that in an airtight container, the present invention relates to This ensures that the rotary compression element is refueled.
[0009]
[Means for Solving the Problems]
That is, in the horizontal compressor according to the first aspect of the present invention, the compression mechanism section includes the first and second rotary compression elements, and the refrigerant compressed by the first rotary compression element is discharged into the closed container. Further, the discharged intermediate-pressure refrigerant is compressed and discharged by the second rotary compression element, and the cylinder of the second rotary compression element is provided with a low-pressure chamber of the cylinder and a bottom portion in the closed container. And the low-pressure chamber has substantially the same pressure in the closed container, so that the oil accumulated in the bottom of the closed container is drawn by the flow of the suction refrigerant on the low-pressure chamber side to the second pressure. The oil can be supplied to the low pressure chamber of the rotary compression element via an oil supply passage formed in the cylinder.
[0010]
In addition to the above, the horizontal type compressor according to the second aspect of the present invention further includes a notch formed in the bottom of the cylinder of the second rotary compression element, and the oil supply passage is opened in the notch. The oil accumulated in the bottom of the container can smoothly flow into the oil supply passage from the notch.
[0011]
Further, in the horizontal compressor according to the third aspect of the present invention, the compression mechanism section includes the first and second rotary compression elements, and the refrigerant compressed by the first rotary compression element is discharged into the closed container. Further, the discharged intermediate-pressure refrigerant is compressed and discharged by the second rotary compression element, and is sandwiched between the cylinder of the first rotary compression element and the cylinder of the second rotary compression element. The intermediate partition plate is provided with an oil supply passage communicating the low pressure chamber of the cylinder of the second rotary compression element with the bottom of the sealed container. It is possible to supply the low-pressure chamber of the cylinder of the second rotary compression element via the passage.
[0012]
Also, in the horizontal compressor according to the fourth aspect of the present invention, in addition to the above inventions, the oil supply passage is opened on the inclined surface of the suction port formed to be inclined in the cylinder of the second rotary compression element. The ejector effect can be exhibited by the flow of the refrigerant sucked into the cylinder using the angle of the suction port.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described in detail with reference to the drawings. FIG. 1 shows, as an embodiment of a horizontal compressor of the present invention, a longitudinal section of a horizontal internal multi-stage compression type (two-stage) rotary compressor 10 having first and second rotary compression elements 32 and 34. FIG. 2 is a front view, and FIG. 2 is a vertical sectional side view of a second cylinder 38 of the multistage rotary compressor 10.
[0014]
In each of the figures, reference numeral 10 denotes a horizontal internal-pressure multistage compression type rotary compressor using carbon dioxide (CO 2 ) as a refrigerant. The multistage compression type rotary compressor 10 has a horizontally long cylindrical shape with both ends sealed. The closed container 12 is provided with an oil reservoir 15 at the bottom. The closed container 12 includes a container body 12A and a substantially bowl-shaped end cap (lid) 12B for closing an opening of the container body 12A.
[0015]
A drive element 14 composed of an electric motor, a first rotary compression element 32 and a second rotary compression element 34 driven by the rotation shaft 16 of the drive element 14 extending in the horizontal direction are provided in the closed container 12. The compression mechanism units 18 are housed side by side on the left and right. A circular mounting hole 12D is formed at the end of the closed container 12 on the driving element 14 side, and a terminal 20 (wiring is omitted) for supplying power to the driving element 14 is formed in the mounting hole 12D. Installed.
[0016]
The driving element 14 includes a stator 22 annularly mounted along the inner peripheral surface of the closed casing 12, and a rotor 24 inserted inside the stator 22 with a slight space therebetween. The rotor 24 is fixed to a rotating shaft 16 that extends through the center in the axial direction (horizontal direction) of the sealed container 12.
[0017]
An oil pump 80 is provided at the end of the rotary shaft 16 on the side of the compression mechanism 18 as oil supply means. The oil pump 80 sucks up oil as a lubricating oil from an oil reservoir 15 formed at the bottom of the closed container 12 and supplies the lubricating oil to a sliding portion of the compression mechanism 18 and the rotary shaft 16 to prevent abrasion, and An oil suction pipe 80A descends from the oil pump 80 toward the bottom of the sealed container 12, and is opened in the oil reservoir 15.
[0018]
The stator 22 has a laminated body 26 in which donut-shaped electromagnetic steel sheets are laminated, and a stator coil 28 wound around the teeth of the laminated body 26 by a direct winding (concentrated winding) method. The rotor 24 is also formed of a laminated body 30 of electromagnetic steel sheets, like the stator 22, and is formed by inserting a permanent magnet MG into the laminated body 30.
[0019]
The first rotary compression element 32 and the second rotary compression element 34 are constituted by first and second cylinders 40 and 38, respectively, and an intermediate partition plate 36 is sandwiched between the cylinders 40 and 38. That is, the compression mechanism section 18 includes a first rotary compression element 32 and a second rotary compression element 34, an intermediate partition plate 36, and the like. The outer periphery of each of the cylinders 40 and 38 is in contact with or close to the inner surface of the closed container 12.
[0020]
That is, the first and second rotary compression elements 32 and 34 are respectively connected to the first and second cylinders 40 and 38 disposed on both sides (left and right in FIG. 1) of the intermediate partition plate 36 by 180 degrees. First and second rollers that are fitted to first and second eccentric portions 44 and 42 provided on the rotating shaft 16 with a phase difference and that rotate eccentrically in the first and second cylinders 40 and 38. First and second vanes 48, 46 contact the rollers 48, 46, respectively, and reciprocate to partition the cylinders 40, 38 into a low-pressure chamber LR side and a high-pressure chamber HR side (FIG. 2). 52, 50, and support members 54, 56 which respectively close the opening surface of the cylinder 38 on the drive element 14 side and the opening surface of the cylinder 40 on the side opposite to the drive element 14 and also serve as a bearing for the rotary shaft 16. Have been.
[0021]
Guide grooves 70 for slidably storing the first and second vanes 52, 50 are provided in both cylinders 40, 38, and first and second vanes 52, 50 are provided outside the guide grooves 70. Springs 76 and 74 are provided to contact the outer ends of the rollers and constantly bias the first and second vanes 52 and 50 toward the rollers 48 and 46. Further, metal plugs 76A and 74A are provided on the closed container 12 side of the springs 76 and 74, and serve to prevent the springs 76 and 74 from coming off. A back pressure chamber 70A is formed in the second vane 50, and the pressure on the high pressure chamber HR side in the cylinder 38 is applied to the back pressure chamber 70A as a back pressure.
[0022]
In the multi-stage compression type rotary compressor 10 of the embodiment, the vanes 52 and 50 are located at the lowermost positions of the cylinders 40 and 38 so as to move up and down (FIG. 2). The suction ports 162 and 161 communicating with the internal low pressure chamber LR are formed adjacent to the vanes 52 and 50 as shown in FIG. In particular, the suction ports 162 and 161 are formed so as to be inclined such that the support members 56 and 54 are lower and the intermediate partition plate 36 is higher as shown in FIG. 3, and are formed as inclined surfaces 162A and 161A.
[0023]
On the other hand, suction members 58 and 60 communicating with the low pressure chamber LR inside the cylinders 38 and 40 at the suction ports 161 and 162, respectively, are partially recessed in the support members 54 and 56, and these recesses are covered with a cover 66. , 68 are provided, respectively. In FIG. 3, reference numeral 163 denotes a discharge port formed so as to communicate with the high-pressure chamber HR inside the cylinder 38 (the cylinder 40 side is not shown).
[0024]
The bottom of the second rotary compression element 34 at a position corresponding to the extension of the suction port 161 of the cylinder 38 is cut inward across the intermediate partition plate 36 side and the support member 54 side, where Is formed with a notch 38A having a predetermined size (FIGS. 2 and 3). The notch 38A is located in the oil reservoir 15 at the bottom of the closed container 12. In the cylinder 38, an oil supply passage 106 is formed to extend between the notch 38A and the suction port 161.
[0025]
The upper end of the oil supply passage 106 is open to the inclined surface 161A of the suction port 161 formed to be inclined to the cylinder 38, and the lower end of the oil supply passage 106 is open to the notch 38A. That is, the oil supply passage 106 has an oblique opening portion 106A on the inclined surface 161A, and connects the low pressure chamber LR side of the cylinder 38 to the oil reservoir 15 at the bottom of the sealed container 12.
[0026]
The discharge muffling chamber 64 and the inside of the sealed container 12 penetrate through the cylinders 40 and 38, the intermediate partition plate 36, and the cover 66, and further drive through a baffle plate 100 described later provided separately from the cover 66. It communicates with a communication passage (not shown) that opens to the element 14 side, and an intermediate discharge pipe 121 is protruded from an end of the communication passage. The intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 is discharged from the intermediate discharge pipe 121 toward the drive element 14 in the closed casing 12. At this time, the oil supplied to the first rotary compression element 32 is mixed in the refrigerant gas, and this oil is also discharged to the drive element 14 side in the closed container 12. Here, the oil mixed in the refrigerant gas is separated from the refrigerant gas and stored in the oil reservoir 15 at the bottom of the closed container 12.
[0027]
The above-mentioned baffle plate 100 is provided to divide the inside of the closed container 12 into the drive element 14 side and the compression mechanism section 18 side, and to form a differential pressure in the closed container 12. The baffle plate 100 is made of a donut-shaped steel plate disposed at a small distance from the inner surface of the closed container 12. In this case, the intermediate-pressure refrigerant gas compressed by the first rotary compression element 32 and discharged to the drive element 14 side in the sealed container 12 passes through a gap formed between the sealed container 12 and the baffle plate 100. However, due to the presence of the baffle plate 100, the pressure on the drive element 14 side of the baffle plate 100 is high and the differential pressure on the compression mechanism portion 18 side is low due to the presence of the baffle plate 100. Be composed.
[0028]
Then, due to this differential pressure, the oil stored in the oil reservoir 15 at the bottom of the closed container 12 moves to the compression mechanism 18 side, and the oil level on the compression mechanism 18 side rises from the baffle plate 100. In this case, the upper surface of the oil stored in the oil reservoir 15 at the bottom of the sealed container 12 is filled at least above the lower end of the oil suction pipe 80A and the lower end opening (notch 38A) of the oil supply passage 106.
[0029]
Here, the angle between the opening 106A of the oil supply passage 106 opened to the inclined surface 161A of the suction port 161 and the inclined surface 161A of the suction port 161 (the angle in the flow direction of the intake air of the refrigerant of the second rotary compression element 34). Are formed at an angle that easily causes the ejector function. Thereby, an ejector function is generated in the opening 106A by the refrigerant gas sucked from the suction port 161 to the low pressure chamber LR side of the cylinder 38, and the pressure in the oil supply passage 106 becomes low, so that the oil is stored in the oil reservoir 15 at the bottom of the closed container 12. The sucked oil is sucked up in the oil supply passage 106 and is sucked into the low pressure chamber LR side of the cylinder 38 from the opening 106A. On the other hand, the opening of the oil suction pipe 80A is immersed in the oil, so that the oil pump 80 smoothly supplies the oil to the sliding portion of the compression mechanism 18.
[0030]
As the refrigerant in this case, the CO 2 (carbon dioxide), which is a natural refrigerant in consideration of flammability and toxicity, which is friendly to the global environment, is used, and an oil as a lubricating oil sealed in the closed container 12 is used. For example, existing oils such as mineral oil (mineral oil), alkylbenzene oil, ether oil, ester oil, and PAG (polyalkyl glycol) are used.
[0031]
Sleeves 141, 142, and 143 are fixed to the side surfaces of the sealed container 12 at positions corresponding to the side portions of the support members 56 and 54, respectively, by welding. One end of a refrigerant introduction pipe 94 for introducing refrigerant into the cylinder 40 is inserted and connected into the sleeve 142, and communicates with the suction passage 60. One end of a refrigerant introduction pipe 92 for flowing refrigerant gas into the cylinder 38 is inserted into the sleeve 141 and one end of the refrigerant introduction pipe 92 communicates with the suction passage 58 of the cylinder 38.
[0032]
The refrigerant introduction pipe 92 passes through the upper side of the outside of the closed container 12 to reach the sleeve 144, and the other end is inserted and connected into the sleeve 144 to be connected to the drive element 14 side of the baffle plate 100 (the drive element 14 and the baffle plate 100 The upper part of the closed container 12 communicates with the upper part. A refrigerant discharge pipe 96 is inserted into the sleeve 143, and one end of the refrigerant discharge pipe 96 is connected to the discharge muffling chamber 62. Further, a mounting pedestal 110 is provided at the bottom of the sealed container 12 (FIG. 1).
[0033]
Next, the operation of the above configuration will be described. When the stator coil 28 of the driving element 14 is energized via the terminal 20 and the wiring (not shown), the driving element 14 starts and the rotor 24 rotates. By this rotation, the rollers 48 and 46 fitted to the first and second eccentric portions 44 and 42 provided integrally with the rotating shaft 16 eccentrically rotate inside the cylinders 40 and 38.
[0034]
As a result, the refrigerant (low pressure) sucked from the suction port 162 to the low pressure chamber LR side of the cylinder 40 of the first rotary compression element 32 via the refrigerant introduction pipe 94 and the suction passage 60 formed in the support member 56. , Are compressed to an intermediate pressure by the operation of the roller 48 and the vane 52, discharged from the high pressure chamber HR side of the cylinder 40 to the discharge muffling chamber 64, and from there through the communication passage into the closed container 12 through the intermediate discharge pipe 121. Discharged. As a result, the pressure inside the closed container 12 becomes an intermediate pressure, and the oil mixed in the refrigerant gas adheres to the inner surface of the closed container 12 and returns to the bottom oil reservoir 15 along the inner surface of the closed container 12.
[0035]
Then, the intermediate-pressure refrigerant gas in the sealed container 12 flows into the refrigerant introduction pipe 92 and passes above the outside of the sealed container 12, and passes from the suction passage 58 to the cylinder of the second rotary compression element 34 through the suction port 161. It is sucked into the low pressure chamber LR side of 38. At this time, the angle between the inclined surface 161A of the suction port 161 and the opening 106A functions as an ejector in a process in which the refrigerant is sucked from the suction port 161. It is sucked up into the inside 106 and is sucked into the low pressure chamber LR side of the cylinder 38 from the opening 106A. This makes it possible to supply the oil to the sliding portion of the second rotary compression element 34 very reliably. Since the oil supply passage 106 is open in the notch 38A formed in the cylinder 38 at a distance from the inner surface of the closed container 12, the oil in the oil reservoir 15 can flow in smoothly.
[0036]
Then, the intermediate-pressure refrigerant gas sucked into the low-pressure chamber LR side of the cylinder 38 is subjected to the second-stage compression by the operation of the roller 46 and the vane 50 to become a high-temperature and high-pressure refrigerant gas. The high-temperature and high-pressure refrigerant gas passes through the discharge port 163 from the high-pressure chamber HR, passes through the discharge muffling chamber 62 formed in the support member 54, and flows from the refrigerant discharge pipe 96 to an external gas cooler (radiator) (not shown). Inflow. After the refrigerant radiates heat in the gas cooler, the pressure is reduced by a pressure reducing device (not shown) or the like, and also flows into an evaporator (not shown).
[0037]
Then, a cycle in which the refrigerant evaporates and thereafter is sucked into the first rotary compression element 32 from the refrigerant introduction pipe 94 through the accumulator is repeated.
[0038]
In this manner, the oil stored in the oil reservoir 15 at the bottom of the closed container 12 can be sucked directly from the oil supply passage 106 to the suction port 161. As a result, lubrication and sealing performance in the cylinder 38 of the second rotary compression element 34, which has a higher pressure than in the sealed container 12, are ensured.
[0039]
Next, FIG. 4 shows a multi-stage rotary compressor 10 as a horizontal compressor according to another embodiment of the present invention. In this figure, the same reference numerals as those in FIGS. 1 to 3 have the same or similar functions. In this case as well, an oil supply passage 114 is formed between the suction port 161 provided in the cylinder 38 and the oil reservoir 15 at the bottom in the sealed container 12, and this oil supply passage 114 is formed in the intermediate partition plate 36. A vertical passage 116 and a horizontal passage 118 formed in the second cylinder 38.
[0040]
One end of the horizontal passage 118 formed in the second cylinder 38 is located on the inclined surface 161A of the suction port 161 and is opened as described above, and the other end extends to the intermediate partition plate 36. The vertical passage 116 formed in the intermediate partition plate 36 has a lower end opening to the bottom in the closed container 12 and an upper end extending to the height of the horizontal passage 118 formed in the second cylinder 38, where it is bent. And communicates with the other end of the lateral passage 118. That is, the oil supply passage 114 is opened from the suction port 161 to the oil reservoir 15 at the bottom in the sealed container 12 via the horizontal passage 118 and the vertical passage 116. The oil supply passage 114 has an oblique opening in the suction port 161 as an opening 118A. Others are configured as described above.
[0041]
This makes it possible to smoothly supply oil into the cylinder 38 of the second rotary compression element 34 in the second stage as described above. In particular, in this case, most of the oil supply passage 114 (vertical passage 116) is formed in the intermediate partition plate 36, so that processing is easier than when all are formed in the cylinder 38, and production costs are reduced. The reduction can be achieved.
[0042]
【The invention's effect】
According to the invention of the present application, as described in detail above, the cylinder of the second rotary compression element is formed with the oil supply passage that communicates the low-pressure chamber of the cylinder with the bottom of the closed vessel, and thus accumulates at the bottom of the closed vessel. The oil can be supplied to the low pressure chamber of the second rotary compression element via an oil supply passage formed in the cylinder. Accordingly, it is possible to reliably supply oil to the cylinder of the second rotary compression element having a higher pressure than in the closed container, and it is possible to ensure lubrication and sealing of the sliding portion. Things.
[0043]
According to the invention of claim 3, the low pressure chamber of the cylinder of the second rotary compression element is provided on the intermediate partition plate sandwiched between the cylinder of the first rotary compression element and the cylinder of the second rotary compression element. Since the oil supply passage communicating with the bottom in the closed container is formed, the oil accumulated in the bottom in the closed container is supplied to the low pressure chamber of the cylinder of the second rotary compression element via the oil supply passage formed in the intermediate partition plate. It becomes possible. Accordingly, it is possible to reliably supply oil to the cylinder of the second rotary compression element having a higher pressure than in the closed container, and it is possible to ensure lubrication and sealing of the sliding portion. . In particular, in this case, since the processing is relatively easy, it is possible to suppress a rise in production cost.
[0044]
According to the fourth aspect of the present invention, it is possible to smoothly suck up the oil accumulated in the bottom of the closed container into the oil supply passage, and further improve the oil supply performance of the second rotary compression element into the cylinder. It is possible to improve it.
[Brief description of the drawings]
FIG. 1 is a vertical sectional front view (corresponding to a cross section taken along line AA in FIG. 2) of a horizontal type internal intermediate pressure type multistage compression type rotary compressor of an embodiment of the present invention.
FIG. 2 is a vertical sectional side view of a second cylinder of the multi-stage compression type rotary compressor of FIG. 1;
FIG. 3 is a cross-sectional view of the multi-stage compression type rotary compressor of the present invention, taken along line BB of FIG. 2;
FIG. 4 is a cross-sectional view of the multi-stage compression type rotary compressor according to another embodiment of the present invention, taken along line BB of FIG. 2;
[Explanation of symbols]
Reference Signs List 10 multistage rotary compressor 12 closed container 12A container body 15 oil reservoir 18 compression mechanism 32 first rotary compression element 34 second rotary compression element 36 intermediate partition plate 38, 40 cylinder 38A notch 42, 44 eccentric part 46, 48 roller 50 second vane 52 first vane 54 support member 58 suction passage 106 oil supply passage 106A opening 161 suction port 161A inclined surface

Claims (4)

圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を前記第2の回転圧縮要素で圧縮して吐出する横置き型圧縮機において、
前記第2の回転圧縮要素のシリンダに、当該シリンダの低圧室と前記密閉容器内の底部とを連通する給油通路を形成したことを特徴とする横置き型圧縮機。
The compression mechanism section includes first and second rotary compression elements, discharges the refrigerant compressed by the first rotary compression element into the closed container, and further discharges the discharged intermediate-pressure refrigerant to the second container. In a horizontal compressor that compresses and discharges with a rotary compression element of 2,
A horizontal compressor in which a cylinder of the second rotary compression element is provided with an oil supply passage for communicating a low-pressure chamber of the cylinder with a bottom of the closed vessel.
前記第2の回転圧縮要素のシリンダ底部に形成された切欠を備え、前記給油通路は該切欠内に開口することを特徴とする請求項1の横置き型圧縮機。2. The horizontal compressor according to claim 1, further comprising a notch formed in a bottom of a cylinder of the second rotary compression element, wherein the oil supply passage is opened in the notch. 圧縮機構部を第1及び第2の回転圧縮要素から構成し、当該第1の回転圧縮要素で圧縮された冷媒を前記密閉容器内に吐出し、更にこの吐出された中間圧の冷媒を前記第2の回転圧縮要素で圧縮して吐出する横置き型圧縮機において、
前記第1の回転圧縮要素のシリンダと第2の回転圧縮要素のシリンダ間に挟持される中間仕切板に、前記第2の回転圧縮要素のシリンダの低圧室と前記密閉容器内の底部とを連通する給油通路を形成したことを特徴とする横置き型圧縮機。
The compression mechanism section includes first and second rotary compression elements, discharges the refrigerant compressed by the first rotary compression element into the closed container, and further discharges the discharged intermediate-pressure refrigerant to the second container. In a horizontal compressor that compresses and discharges with a rotary compression element of 2,
The low pressure chamber of the cylinder of the second rotary compression element and the bottom of the closed vessel are communicated with an intermediate partition plate sandwiched between the cylinder of the first rotary compression element and the cylinder of the second rotary compression element. A horizontal compressor having a refueling passage formed therein.
前記給油通路は、前記第2の回転圧縮要素のシリンダに傾斜して形成された吸込ポートの傾斜面に開口することを特徴とする請求項1、請求項2又は請求項3の横置き型圧縮機。4. The horizontal type compression according to claim 1, wherein said oil supply passage opens on an inclined surface of a suction port formed to be inclined in a cylinder of said second rotary compression element. Machine.
JP2003004278A 2003-01-10 2003-01-10 Horizontal type compressor Expired - Fee Related JP4225793B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003004278A JP4225793B2 (en) 2003-01-10 2003-01-10 Horizontal type compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003004278A JP4225793B2 (en) 2003-01-10 2003-01-10 Horizontal type compressor

Publications (2)

Publication Number Publication Date
JP2004218466A true JP2004218466A (en) 2004-08-05
JP4225793B2 JP4225793B2 (en) 2009-02-18

Family

ID=32895300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003004278A Expired - Fee Related JP4225793B2 (en) 2003-01-10 2003-01-10 Horizontal type compressor

Country Status (1)

Country Link
JP (1) JP4225793B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1520989A3 (en) * 2003-09-30 2008-11-05 Sanyo Electric Co., Ltd. Horizontal type rotary compressor
WO2013069071A1 (en) * 2011-11-09 2013-05-16 三洋電機株式会社 Horizontally mounted compressor
CN106704186A (en) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 Compressor and vehicle with same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1520989A3 (en) * 2003-09-30 2008-11-05 Sanyo Electric Co., Ltd. Horizontal type rotary compressor
WO2013069071A1 (en) * 2011-11-09 2013-05-16 三洋電機株式会社 Horizontally mounted compressor
JP2013100778A (en) * 2011-11-09 2013-05-23 Sanyo Electric Co Ltd Horizontally mounted compressor
CN103917781A (en) * 2011-11-09 2014-07-09 三洋电机株式会社 Horizontally mounted compressor
CN106704186A (en) * 2017-01-24 2017-05-24 广东美芝制冷设备有限公司 Compressor and vehicle with same

Also Published As

Publication number Publication date
JP4225793B2 (en) 2009-02-18

Similar Documents

Publication Publication Date Title
JP2003269356A (en) Horizontal type rotary compressor
JP4307945B2 (en) Horizontal rotary compressor
JP2004027970A (en) Multistage compression type rotary compressor
JP4289975B2 (en) Multi-stage rotary compressor
JP2004218466A (en) Traverse-mounted compressor
JP3935855B2 (en) Rotary compressor
JP5935035B2 (en) Horizontal type compressor
JP3778867B2 (en) Horizontal multi-stage rotary compressor
JP3935854B2 (en) Rotary compressor
JP4024067B2 (en) Horizontal multi-stage rotary compressor
JP4136747B2 (en) Rotary compressor
JP4263047B2 (en) Horizontal type compressor
JP2005147071A (en) Horizontal type multi-stage compression rotary compressor, and air conditioner having the same for automobile
JP4063568B2 (en) Horizontal multistage compression rotary compressor
JP2006307687A (en) Compressor
JP2004169617A (en) Horizontal compressor
JP2005036741A (en) Horizontal compressor
JP2005256709A (en) Lateral rotary compressor and air conditioner for vehicle
JP2004092469A (en) Rotary compressor
JP4093801B2 (en) Horizontal rotary compressor
JP2004019599A (en) Multiple-stage compression type rotary compressor
JP4100969B2 (en) Rotary compressor
JP2004011548A (en) Internal intermediate-pressure multiple stage compression type rotary compressor
JP2005256669A (en) Lateral rotary compressor and air conditioner for vehicle
JP2004011536A (en) Rotary compressor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050408

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080417

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081125

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111205

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121205

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131205

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees