JP2004217796A - Spherical rare earth oxide-based phosphor and method for producing the same - Google Patents

Spherical rare earth oxide-based phosphor and method for producing the same Download PDF

Info

Publication number
JP2004217796A
JP2004217796A JP2003007224A JP2003007224A JP2004217796A JP 2004217796 A JP2004217796 A JP 2004217796A JP 2003007224 A JP2003007224 A JP 2003007224A JP 2003007224 A JP2003007224 A JP 2003007224A JP 2004217796 A JP2004217796 A JP 2004217796A
Authority
JP
Japan
Prior art keywords
phosphor
rare earth
earth oxide
spherical
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003007224A
Other languages
Japanese (ja)
Inventor
Takashi Hase
堯 長谷
Yukio Tokunaga
幸男 徳永
Kenichi Matsunobu
健一 松延
Masataka Matsuo
正孝 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasei Optonix Ltd
Krosaki Harima Corp
Original Assignee
Kasei Optonix Ltd
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasei Optonix Ltd, Krosaki Harima Corp filed Critical Kasei Optonix Ltd
Priority to JP2003007224A priority Critical patent/JP2004217796A/en
Publication of JP2004217796A publication Critical patent/JP2004217796A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rare earth oxide-based phosphor capable of forming a fluorescent membrane having improved resolution even when being excited by an electron beam with high current density; and to provide a method for producing the phosphor. <P>SOLUTION: The rare earth oxide-based phosphor comprises spherical particles having 3-9 μm median particle diameter, and ≤0.25 quartile deviation value (QD) of the weight distribution of particle diameters. Fired particles of a raw material for the phosphor are reheated in a floated state to melt the particles, and the melted particles are rapidly cooled to make the particles spherical. The obtained particles are subjected to dispersion and classification treatment to provide the objective phosphor. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、蛍光膜にして高電流密度の電子線で励起して発光させた際、輝度劣化が少なく、解像度が良好であり、特に背面投写型テレビジョン(PRT)や高輝度ディスプレー管(CDT)の蛍光膜用として好適であり、更に蛍光体をマウントした発光ダイオード素子(LED)、蛍光体を用いたカラープラズマディスプレー(PDP)、高演色性ランプ(FL)、冷陰極管(CCFL)等の種々の用途に推奨される球状の希土類酸化物系蛍光体並びにその製造方法に関する。
【0002】
【従来の技術】
テレビジョン(TV)の大型化に伴い、PRTが海外を中心に普及している。PRTはそれぞれ青(B)、緑(G)、赤(R)の蛍光体からなる蛍光面をもった7インチ程度の3つの小型ブラウン管(投写管)からの発光をレンズを用いて背面からスクリーン上に拡大投写してこれらを合成して1つの画像を再生するTVであり、そのための各色の投射管は通常の一般のブラウン管に比べて50〜100倍の高い電流密度で動作させる。 従って、PRTに使用される蛍光体には、一般に発光輝度が高いこと、できるだけ輝度と電流密度との関係においてリニアリティがある(γ特性が良好である)こと、長時間の電子線励起に対して劣化や発光輝度の低下(輝度劣化)が少ないこと、蛍光面の温度が上昇しても輝度低下が少ない(温度特性が良好である)こと等の特性を有することが要求される。その上、近年は、ブラウン管の表示画像の高解像度化の要求が高まり、従来より各色投射管における電子ビームのスポット径を絞る必要性が生じてきている。
【0003】
現在、PRT用の蛍光体としては、赤色としてY:Euが、緑色としてY(Al,Ga)12:Tb、YAl12:Tb、YSiO:Tb、ZnSiO:Mn等が、また、青色としてはZnS:Ag,Alが主に用いられている。
ところで、PRT用の上記蛍光体の中でも、YSiO:Tb、Y(Al,Ga)12:Tb、Y:Eu等の希土類酸化物系蛍光体は発光色度が良好で発光効率が比較的高く、γ特性も優れており、また温度変化に対して輝度の変化が比較的少なく総合的に見てバランスの取れた蛍光体として実用されている。
【0004】
しかし、これらYSiO:Tb、Y(Al,Ga)12:Tb、Y:Euをはじめとする希土類酸化物系蛍光体は、これを用いて実際の蛍光膜とした時の解像度で見ると必ずしも満足すべきものではなく、輝度劣化改善と共に蛍光膜とした時の解像度の一層の改善が望まれていた。
このような要望に対し、解像度を上げるための蛍光膜構造の改善策の1つの方法として、高温プラズマ溶射法により製造した球状粒子の蛍光体を用いる方法が検討されている(特許文献1、2等参照)。しかし、これらプラズマ法は実用性において球状化の処理能力が低いという欠点を有する上、品質面においても好ましい蛍光膜を得るためには粒度、粒度分布など粒子構成の面でも不満足であった。
【0005】
【特許文献1】
特公平7−45655号公報
【特許文献2】
特開平11−043672号公報
【0006】
【発明が解決しようとする課題】
本発明は、PRTをはじめとする高電流密度の電子線で動作させる上記映像表示装置においてその蛍光膜として用いた場合、電子線が蛍光膜に照射された際に得られるフォーカスパターンの広がりをより一層少なくし、映像の解像度の改善がはかれる球状希土類酸化物系蛍光体及び実用化が容易で生産能力の大きい方法でその蛍光体が得られる蛍光体の製造方法を提供することを目的とするものである。
【0007】
【課題を解決するための手段】
本発明者らは上記目的を達成するため、蛍光膜に電子線を照射した際のフォーカスと、蛍光膜として用いられる蛍光体の粒子形状及び粒度依存性等との関係について鋭意検討を行った結果、特にYSiO:Tb、Y(Al,Ga)12:Tb、Y:Euをはじめとする希土類元素で付活した希土類の珪酸塩、アルミノガリウム酸塩、酸化物などの希土類酸化物系蛍光体において、特定の製造方法を採用することによりこの蛍光体の粒子形状を出来るだけ球状にすると共に、特定の粒子径及び粒子径分布となるように蛍光体粉体特性を設計することによって、これをPRTなどの蛍光膜に適用した際にフォーカスの広がりが改善さることを見出し本発明に至った。
【0008】
本発明の希土類酸化物系蛍光体並びにその製造方法は以下の構成からなる。
(1) 形状がほぼ球状であって、中央粒子径が3〜9μmであり、かつ粒径重量分布の4分位偏差値(QD)が0.25以下であることを特徴とする球状希土類酸化物系蛍光体。
(2) 前記粒径重量分布の4分位偏差値(QD)が0.10〜0.20であることを特徴とする前記(1)記載の球状希土類酸化物系蛍光体。
(3) 前記蛍光体の組成式が(Ln1−x Ln’・mSiOであることを特徴とする前記(1)または(2)記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、Ln’はTb、EuおよびCeの中の各少なくとも1種であり、x及びmはそれぞれ1×10−3≦x≦2×10−1、及び0.95≦m≦2.05なる条件を満足する数を表す。)
【0009】
(4) 前記蛍光体の組成式が(Ln1−x Ln’・n(Al1−y Gaであることを特徴とする前記(1)または(2)記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、Ln’はTb、EuおよびCeの中の各少なくとも1種であり、x、y及びnはそれぞれ1×10−3≦x≦2×10−1、0≦y≦0.6及び0.45≦n≦1.75なる条件を満足する数を表す。)
(5) 前記蛍光体の組成式が(Ln1−x Euであることを特徴とする前記(1)または(2)記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、xは1×10−3≦x≦2×10−1なる条件を満足する数を表す。)
(6) 前記組成式におけるLnがYであることを特徴とする前記(3)〜(5)のいずれかに記載の球状希土類酸化物系蛍光体。
【0010】
(7) 前記蛍光体の粒子表面がアルカリ土類金属の燐酸塩化合物で被覆されていることを特徴とする前記(1)〜(6)のいずれかに記載の球状希土類酸化物系蛍光体。
(8)希土類酸化物系蛍光体の原料混合物を焼成して焼成物を得る原料焼成工程と、前記原料焼成工程で得られた前記焼成物粒子を火炎中に投射し再加熱して溶融し、次いで溶融状態の前記焼成物粒子を冷却して捕集する球状化工程と、前記球状化工程で得られた前記焼成物粒子を分散、分級手段により分散させ分級する工程とを少なくとも含むことを特徴とする前記(1)〜(7)のいずれかに記載の球状希土類酸化物系蛍光体の製造方法。
(9)前記焼成物粒子の前記球状化工程における前記再加熱して溶融する手段をバーナーから噴射される火炎による、火炎溶射法によって行うことを特徴とする前記(8)記載の球状希土類酸化物系蛍光体の製造方法。
【0011】
【発明の実施の形態】
以下、本発明を更に詳細に説明する。
本発明の蛍光体の製造方法は、基本的には所望の蛍光体の原料混合物を焼成して各原料を熱反応させてその焼成物を得る工程(原料焼成工程)と、該原料焼成工程で得られた焼成物の粉体粒子を浮遊状態で該粒子が熔融し得る温度下で再加熱して該粒子を溶融した後、これを冷却して該焼成物の粉体粒子形状をほぼ球状化する工程(球状化工程)と、前記原料焼成工程で得られた焼成物の粉体粒子及び前記球状化工程で得られた球状化された前記焼成物の粉体粒子の少なくとも一方の焼成物の粉体粒子を分散、分級処理して所定の粒子径並びに粒子径分布となるように分級する工程(分級工程)からなる。
【0012】
先ず、蛍光体原料としては、所望の組成の希土類酸化物系蛍光体の母体並びに付活剤を構成する各金属元素の酸化物もしくはこれらの硝酸塩、炭酸塩、水酸化物、蓚酸塩等の化合物を目的とする蛍光体組成に相当する化学量論量秤取し、更に必要に応じてこれにアルカリ金属及び/又はアルカリ土類金属のバロゲン化物やハロゲン化アンモニウム、酸化硼素、硼酸等をフラックスとして配合し、湿式又は乾式で充分に混合する。上記蛍光体原料中、希土類化合物からなる原料は一旦溶解してから溶液の状態で混合し、蓚酸塩等で共沈させた後、これと残りの原料化合物及びフラックスと混合する方がより発光特性の良い蛍光体を得ることができる。なお、本発明の蛍光体を製造する場合、使用する蛍光体原料のうち、特に希土類原料に関しては例えば小さな原料を選択すれば、小さい粒子径の希土類酸化物系蛍光体を得ることが出来るし、逆に大きい粒子径の原料を選択すれば、大きい粒子径の蛍光体が得られやすいので、目的とする粒子径に応じた所定粒子径を持つ希土類化合物原料を選択することが好ましい。また、上記原料中の母体構成原料は粒子形状が球状のものや粒径分布の狭い原料を使用することにより、本発明の蛍光体の粒子形状や粒度分布の制御がより容易となる。
【0013】
この蛍光体原料混合物をアルミナルツボ等の耐熱容器に充填し、中性雰囲気中もしくは還元雰囲気中、1000〜1700℃で1〜12時間、1回以上焼成する。但し、得られる蛍光体の発光輝度をより高め得る点で、少なくとも必ず一度は1300℃以上で焼成することが必要である。また、付活剤の原料としてEuの化合物を用いる場合は、赤色発光輝度の点で蛍光体原料混合物は中性雰囲気もしくは空気中で焼成することが好ましい。
【0014】
上述のようにして焼成を終えた焼成物を粉砕し、薄い鉱酸で洗浄した後、水洗を行い、更に脱イオン水をガラス玉、アルミナボール等のメディアと共にボールミル容器に入れて数時間回転分散させて分散処理を施す。
このようにして得られた蛍光体原料混合物の焼成物は電子線などで励起すると発光はするが、その粒子の形状が必ずしも球状をなしていなくて、蛍光膜とした際、解像度の良好な蛍光膜が得られない。そこで次にこの焼成物粒子を球状化する処理を施す。
【0015】
本発明の蛍光体の製造方法において、原料混合物の焼成とその後の分散、分級処理により得られた焼成物の形状を球状化するには、この焼成物を水洗し焼成物塊をほぐして粉体化した粉体粒子を粉体供給容器に入れ、搬送ガスと共に浮遊させ、溶射バーナーによる溶射法でこの焼成物の粒子をその粒子が溶融し得る温度で再度急激に加熱して溶融した後に急冷することによって得ることが出来る。焼成物を溶射法により球状化する方法としては、前述のように原料粉末もしくは原料を一旦焼成して蛍光体となったものを高温プラズマ中に浮遊させながら熔融して球状化する方法(高温プラズマ法)が従来より提案されていて(特許文献1、2等参照)、本発明においてもこの方法も採用することが出来る。しかしながら、高温プラズマ法によるとプラズマ化さる高温域の長さが短いため、火炎中に充分な溶融温度域を確保することが出来ず、大量生産には不向きで工業的には好ましくない。これに対し、燃料ガスを燃焼させたバーナーから噴射される火炎中に焼成物を供給浮遊させて加熱しこれを溶融する、いわゆる火炎溶射法によるとプラズマ法に比べて火炎長が長く、火炎中に十分な溶融温度域を確保出来て比較的量産に適しているところから、本発明の製造方法においては溶射法の中でも特に火炎溶射法によって球状化する方法によるのがより好ましい。
【0016】
図1は火炎溶射装置を用いて本発明の蛍光体を製造する方法の要部を示す概念図であるが、上述のようにして分散処理された原料焼成物の粉体粒子を火炎溶射装置を用いて球状化するには、溶射バーナー1に燃料ガスとして例えばプロパンガスと酸素を供給してプレミックスし、その後溶射バーナー1でこれを燃焼させて火炎2を発生させ、この火炎2中に溶融させたい原料焼成物の粒子を粉体供給機(図示せず)より酸素、窒素などの搬送用ガスと共に溶射バーナー1の先端から噴射し、燃料ガスの燃焼により生じる火炎2中においてこれを2000℃前後の温度で瞬時加熱、溶融させる。粉体は一般的な場合バーナー噴出後極めて短時間例えば、0.003秒で溶融を開始し、形状として丸みを帯び始める。さらに0.01秒を経過したところでほぼ球状となり溶融が完了する。得られた該焼成物の溶融粒子3は溶射バーナー1から噴射される火炎2の直下に設けられた冷却水4が供給されている捕集容器(水槽)5に落下させて急冷され、球状の固体状蛍光体粒子6となって捕集回収される。このようにして得られた蛍光体はSEM写真での観察によると長径、短形のアスペクト比が、従来の蛍光体粒子ではほぼ1.2以上であるの対し、この様にして得た本発明の蛍光体はその大部分がかなり1に近くなりはっきり球状粒子になっていることが確認できる。なお、本発明の蛍光体において球状粒子とは、SEM写真観察での粒子の長径と短径のアスペクト比がほぼ1.0〜1.2である粒子をおよそ60%以上含有する蛍光体をいうものとする。
【0017】
火炎2を生成させるための燃料としては、例えばLPG(Liquefied PetroleumGas)−酸素の混合ガスによって行う。LPGの具体例にはプロパン(C)、n−ブタン(C10)、I−ブタン(C10)、プロピレン(C)等があるが、このうち発熱量が最も高いことから焼成物粒子の球状化処理が効率的であることに加え、さらにはコスト、供給性等からプロパンの使用が特に好ましい。
ここで得られた球状粒子の粒度分布は最終的に得られる本発明の球状蛍光体の粒度分布に大きく左右されるので、この分散処理の途中で採取し、粒径や粒度分布を測定して確認しながら行うことによって分散処理の程度を調整し、更に得られたスラリーを脱イオン水にて希釈後、ストークスの原理を用いた水簸等の分級手段によって粗大粒子や微少粒子を除去して、ほぼ中央粒径が3〜9μmの範囲となり、また粒子の重量分布の広がりの尺度を表す4分位偏差値(Quartil Deviation=QD)が0.25以下となるよう上記分散、分級処理の程度が調整される。なお、上記を含め、本発明における粒子径並びに粒度分布はコールターカウンターを用いて測定しこれを重量換算で解析した値である。このようにして本発明の希土類酸化物系蛍光体を製造することができる。
【0018】
蛍光膜に電子線を照射してこれを発光させた際に得られるフォーカスの広がりと蛍光膜構成とは強い相関があり、異なった粒度分布を有する蛍光体についてそれぞれ同一の塗布重量で蛍光膜を形成して電子線を照射しその時のフォーカスの広がりを見ると、蛍光膜の膜厚が薄くなればフォーカスの広がりが小さくなる傾向があり、結果的に解像度が良くなることになる。従って、フォーカス特性を計る簡便な代用評価法として、同一重量の蛍光体で蛍光膜のテストピースを作製し、得られる蛍光膜の断面膜厚を測定することによってそのフォーカス特性が評価出来るが、このようにして粒子径や粒度分布の異なる種々の球状希土類酸化物系蛍光体蛍光体について加速電圧が20KVで電流密度が2μA/cmである電子線を照射してフォーカス特性を評価したところ、粒度分布に関しては粒径重量分布のQDがほぼ0.25以下、より好ましくは0.10〜0.20であるような粒度分布を有する球状希土類酸化物系球状蛍光体からなる蛍光膜は、従来の希土類酸化物系蛍光体からなる蛍光膜に比べてフォーカスの良い蛍光膜が得られることがわかった。QDが0.25より大である粒径分布を持った蛍光体を用いて蛍光膜を形成すると、蛍光膜が厚くなり、フォーカスの広がりが大きくなる。また、逆にQDが0.10より小である粒径分布を持った蛍光体により蛍光膜を形成すると、蛍光膜が極端に薄く膜の緻密性が悪くなり、フォーカス以前の問題として、ガラス基板の膜焼けの現象が現れて使用できない。
【0019】
また、粒子径に関しては中央粒径はおよそ3〜9μmとするのが好ましいことが確認された。中央粒径がおよそ9μmより大である希土類酸化物系蛍光体を用いた蛍光膜では、蛍光膜の初期輝度は向上する傾向にあるものの蛍光膜を形成する際の膜厚が目的の設計の膜厚より厚くなって、フォーカスが悪くなり、そのため解像度が悪化し目的とする解像度特性が得られないので好ましくない。一方、中央粒径がおよそ3μmより小さい希土類酸化物系蛍光体を蛍光膜として用いると、得られる蛍光膜の発光輝度が低下するので好ましくない。
【0020】
上述のようにして得られた本発明の球状希土類酸化物系蛍光体は、原料混合物を高温で焼成しただけの従来の希土類酸化物系蛍光体とは異なり、形状が球状で、その中央粒径がおよそ3〜9μmであり、また粒子の重量分布の広がりの尺度を表すQDが0.25以下であって、これをPRTなどの蛍光膜とした時、その塗膜構造は改善され、これを発光させたときの輝度劣化が少なく、フォーカス特性が改善された。
なお、このようにして得られた蛍光体は更にその表面にCa、Zn及びMg等の中の少なくとも1種以上のアルカリ土類金属の燐酸塩を通常の湿式法で被覆処理を施しておくと、蛍光膜を形成する際の蛍光体塗布性が向上するためにより好ましい。
【0021】
【実施例】
次に実施例により本発明を説明する。
〔実施例1〕
21.0g
Tb 2.6g
SiO 6.1g
上記の蛍光体原料を充分に混合し、アルミナルツボに詰めて還元雰囲気中において1600℃で2時間焼成した。得られた焼成物に分散処理を施した後、図1に示したような機能を有するハンディー型溶射装置(黒崎播磨株式会社製)を用い、上記焼成物を粉体輸送ガスとして窒素と共に輸送し、プロパンガス15Nm/hと燃焼酸素ガス60Nm/hで輸送された混合ガスを燃焼させ、溶射ノズルよりおよそ2000℃の高温の火炎と共に溶射噴出させてその粒子を溶融させ、これを水中で蛍光体として捕集した。得られた蛍光体に分散、分級処理を施してからその蛍光体表面に燐酸カルシウムを被覆させて実施例1の希土類珪酸塩蛍光体を得た。
このようにして製造された実施例1の蛍光体について、X線回折分析並びに化学分析によりその結晶の組成を調べたところ、組成が(Y0.93Tb0.07SiOである希土類珪酸塩蛍光体であった。
コールターカウンターによりこの蛍光体の粒子径並びに粒径分布を測定したところ、中央粒径が7.0μmであり、粒径重量分布のQDが0.17であった。
【0022】
この実施例1の蛍光体の電子顕微鏡写真を撮影したところ、図2−(a)に示したようにほぼ球状の粒子からなる蛍光体であった。
次に、酢酸バリウム水溶液(クッション液)の入った容器の底に2cm×2cmのガラス板を沈めておき、その中にカリ水ガラスを含有する液に実施例1の蛍光体1gを縣濁させたスラリーを投入して攪拌後そのまま静置し、蛍光体をこのガラス板の一面に沈降させた後、上澄みのクッション液を抜き取り、これを乾燥してガラス板上に実施例1の蛍光体からなる蛍光膜を作製し、この蛍光膜のフォーカス特性を簡便評価するため、この蛍光膜の断面膜厚を電子顕微鏡で測定したところ、膜厚は19μmであった。
【0023】
〔比較例1〕
実施例1において、蛍光体原料の混合物を1600℃で2時間焼成して得られた焼成物に分散処理を施した後、得られた焼成物の粒子を溶射装置により溶融することなくその表面に蛍光体に燐酸カルシウムを被覆させた以外は実施例1の蛍光体と同様にして比較例1の蛍光体を得た。
このようにして製造された比較例1の蛍光体についてX線回折分析並びに化学分析によりその結晶の組成を調べたところ、組成は実施例1の蛍光体と同様に(Y0.93Tb0.07SiOであった。
【0024】
また、この比較例1の蛍光体について実施例1と同様にしてコールターカウンターで粒子径並びに粒度分布を測定したところ、中央粒径が6.0μmであり、粒径重量分布のQDは0.21であった。
この比較例1の蛍光体の電子顕微鏡写真を撮影したところ、図2−(b)に示したように板状で不規則な形状の粒子からなる蛍光体であった。
この比較例1の蛍光体1gを用いて実施例1と同様にしてガラス板に比較例1の蛍光体からなる蛍光膜を作製し、この蛍光膜のフォーカス特性を簡便評価するため、その膜厚を測定したところ膜厚は24μmであった。
【0025】
〔実施例2〕
21.0g
Eu 2.50g
BaCl・2HO 0.33g
BO 0.2g
上記の蛍光体原料を充分に混合し、アルミナルツボに詰めて酸化雰囲気中において1400℃で2時間焼成した。得られた焼成物に分散処理を施した後、この焼成物の粒子を実施例1において使用したハンディー型溶射装置を用いて実施例1と同様にして溶融させ、これを水中で蛍光体として捕集した。得られた蛍光体に分散、分級処理を施してからその蛍光体表面に燐酸亜鉛を被覆させて実施例2の蛍光体を得た。
このようにして製造された実施例2の蛍光体をX線回折分析並びに化学分析によりその結晶の組成を調べたところ、組成が(Y0.93Eu0.07であった。
【0026】
また、コールターカウンターでこの蛍光体の粒子径並びに粒度分布を測定したところ、中央粒径が7.0μmであり、粒径重量分布のQDは0.19であった。
この実施例2の蛍光体の電子顕微鏡写真を撮影したところ、図3−(a)に示したようにその大部分がほぼ球状の粒子からなる蛍光体であった。
実施例1の蛍光体と同様の方法でこの蛍光体1gをガラス板のテストピース上に沈降塗布して蛍光膜を作製し、この蛍光膜のフォーカス特性を簡便評価するため、この蛍光膜の断面膜厚を電子顕微鏡で測定したところ、膜厚は20μmであった。
【0027】
〔比較例2〕
実施例2において、蛍光体原料混合物を1400℃で2時間焼成した後、得られた焼成物の粒子を溶射装置により溶融することなく分散、分級処理及びその表面に蛍光体に燐酸亜鉛を被覆させた以外は実施例2の蛍光体と同様にして比較例2の蛍光体を得た。
このようにして製造された比較例2の蛍光体についてX線回折分析並びに化学分析によりその結晶の組成を調べたところ、組成は実施例2の蛍光体と同様に(Y0.93Eu0.07であった。
【0028】
また、この比較例2の蛍光体を実施例1と同様にしてコールターカウンターで粒子径並びに粒径分布を測定したところ、中央粒径が6.0μmであり粒径重量分布のQDは0.21であった。
この比較例2の蛍光体の電子顕微鏡写真を撮影したところ、図3−(b)に示したように板状で不規則な形状の粒子からなる蛍光体であった。
この蛍光体1gを用いて実施例1と同様にしてガラス板に比較例2からなる蛍光膜を作製し、この蛍光膜のフォーカス特性を簡便評価するため、その膜厚を測定したところ膜厚は23μmであった。
【0029】
〔評価〕
上記実施例1と比較例1との比較、並びに実施例2と比較例2との比較から分かるように、本発明のYSiO:Tb蛍光体、Y:Eu蛍光体(実施例1及び2の各蛍光体)ともそれぞれの組成の従来の蛍光体(比較例1及び2の各蛍光体)とは違ってその粒子形状がとも明確に球状化している。またそれぞれの本発明の蛍光体(実施例1及び2の蛍光体)からな蛍光膜の膜厚が、従来の蛍光体(比較例1及び2の蛍光体)からなる蛍光膜に比べて同一塗布重量の同一蛍光体からなる蛍光膜同士で比べると、本発明の蛍光体からなる蛍光膜の方が従来の蛍光体からなる蛍光膜に比べて膜厚の小さい蛍光膜が得られ、これに高電流密度の電子線を照射した場合にフォーカスが小さくなり、フォーカス特性が改善されることを示している。
【0030】
【発明の効果】
本発明の蛍光体は上記の構成を採用することにより、特に高電流密度の電子線を照射して動作させる映像表示装置用の蛍光膜として用いた場合、電子線が蛍光膜に照射された際に得られるフォーカスパターンの広がりをより一層少なくすることが出来、その結果映像の解像度を改善することができる。
【図面の簡単な説明】
【図1】本発明の蛍光体の製造の際に用いられる火炎溶射法について説明するための概念図である。
【図2】本発明の実施例1の希土類酸化物系蛍光体並びに比較例1の従来の希土類酸化物系蛍光体の粒子の形状を例示する電子顕微鏡写真である。
【図3】本発明の実施例2の希土類酸化物系蛍光体並びに比較例2の従来の希土類酸化物系蛍光体の粒子の形状を例示する電子顕微鏡写真である。
[0001]
TECHNICAL FIELD OF THE INVENTION
According to the present invention, when a fluorescent film is excited by an electron beam having a high current density to emit light, luminance degradation is small and resolution is excellent. In particular, a rear projection television (PRT) or a high luminance display tube (CDT) is used. ) Is suitable for use as a fluorescent film, and further includes a light emitting diode element (LED) mounted with a phosphor, a color plasma display (PDP) using the phosphor, a high color rendering lamp (FL), a cold cathode fluorescent lamp (CCFL), and the like. The present invention relates to a spherical rare earth oxide-based phosphor recommended for various uses and a method for producing the same.
[0002]
[Prior art]
With the enlargement of television (TV), PRTs have become popular mainly overseas. The PRT emits light from three small 7-inch cathode ray tubes (projection tubes) each having a phosphor screen composed of blue (B), green (G), and red (R) phosphors from the rear surface using a lens. This is a TV that reproduces one image by magnifying and projecting them on top, and the projection tubes of each color for that are operated at a current density 50 to 100 times higher than that of a general cathode ray tube. Therefore, the phosphor used for the PRT generally has high emission luminance, has linearity in the relationship between luminance and current density as much as possible (good γ characteristics), and is resistant to prolonged electron beam excitation. It is required to have characteristics such as less deterioration and lowering of emission luminance (luminance deterioration), and less decrease in luminance (good temperature characteristics) even when the temperature of the phosphor screen increases. In addition, in recent years, there has been an increasing demand for higher resolution of a display image of a cathode ray tube, and it has conventionally been necessary to reduce the spot diameter of an electron beam in each color projection tube.
[0003]
Currently, as a phosphor for PRT, Y 2 O 3 as the red: Eu is, Y 3 (Al, Ga) as a green 5 O 12: Tb, Y 3 Al 5 O 12: Tb, Y 2 SiO 5: Tb , Zn 2 SiO 4 : Mn, etc., and for blue, ZnS: Ag, Al is mainly used.
By the way, among the phosphors for PRT, rare earth oxide phosphors such as Y 2 SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, and Y 2 O 3 : Eu have emission chromaticity. It has good luminous efficiency, is excellent in γ characteristics, and has a relatively small change in luminance with respect to temperature change.
[0004]
However, these rare earth oxide-based phosphors such as Y 2 SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, and Y 2 O 3 : Eu can be used to form an actual phosphor film. It is not always satisfactory in view of the resolution at the time when the phosphor film is formed, and further improvement of the resolution when the phosphor film is formed is desired along with the improvement of the luminance degradation.
In response to such a demand, a method of using a phosphor of spherical particles manufactured by a high-temperature plasma spraying method has been studied as one method of improving the structure of the phosphor film to increase the resolution (Patent Documents 1 and 2). Etc.). However, these plasma methods have the drawback that the spheroidizing processing ability is low in practicality, and they are also unsatisfactory in terms of particle configuration such as particle size and particle size distribution in order to obtain a preferable phosphor film in terms of quality.
[0005]
[Patent Document 1]
Japanese Patent Publication No. Hei 7-45655 [Patent Document 2]
JP-A-11-043662
[Problems to be solved by the invention]
The present invention, when used as the fluorescent film in the above-described image display device operated with a high current density electron beam such as a PRT, can increase the spread of a focus pattern obtained when the electron beam is irradiated on the fluorescent film. It is an object of the present invention to provide a spherical rare earth oxide-based phosphor capable of further improving the resolution of an image and a method for producing the phosphor that can be obtained by a method that is easy to put into practical use and has a large production capacity. It is.
[0007]
[Means for Solving the Problems]
The present inventors have conducted intensive studies on the relationship between the focus when irradiating the phosphor film with an electron beam and the particle shape and particle size dependency of the phosphor used as the phosphor film in order to achieve the above object. In particular, rare earth silicates, aluminogallates, and oxides activated by rare earth elements such as Y 2 SiO 5 : Tb, Y 3 (Al, Ga) 5 O 12 : Tb, and Y 2 O 3 : Eu In a rare-earth oxide-based phosphor such as the one described above, by adopting a specific manufacturing method, the particle shape of the phosphor is made as spherical as possible, and the phosphor powder characteristics are adjusted so as to have a specific particle size and particle size distribution. The present inventors have found that the spread of the focus can be improved when this is applied to a fluorescent film such as a PRT by designing the present invention.
[0008]
The rare earth oxide-based phosphor of the present invention and a method for producing the same have the following configurations.
(1) Spherical rare earth oxidation characterized by being substantially spherical in shape, having a median particle diameter of 3 to 9 μm, and a quartile deviation (QD) of a particle size weight distribution of 0.25 or less. Substance-based phosphor.
(2) The spherical rare earth oxide-based phosphor according to (1), wherein a quartile deviation value (QD) of the particle size weight distribution is 0.10 to 0.20.
(3) The spherical rare earth oxide-based phosphor according to the above (1) or (2), wherein the composition formula of the phosphor is (Ln 1-x Ln ′ x ) 2 O 3 .mSiO 2 . (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, Ln ′ is at least one of Tb, Eu and Ce, and x and m are each 1 It represents a number that satisfies the conditions of × 10 −3 ≦ x ≦ 2 × 10 −1 and 0.95 ≦ m ≦ 2.05.)
[0009]
(4) The above (1) or (2), wherein the composition formula of the phosphor is (Ln 1-x Ln ′ x ) 2 O 3 .n (Al 1- yG ay ) 2 O 3. The spherical rare earth oxide-based phosphor according to the above. (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, Ln ′ is at least one of Tb, Eu and Ce, and x, y and n are The numbers satisfy the conditions of 1 × 10 −3 ≦ x ≦ 2 × 10 −1 , 0 ≦ y ≦ 0.6 and 0.45 ≦ n ≦ 1.75, respectively.)
(5) The spherical rare earth oxide-based phosphor according to the above (1) or (2), wherein the composition formula of the phosphor is (Ln 1-x Eu x ) 2 O 3 . (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, and x represents a number satisfying a condition of 1 × 10 −3 ≦ x ≦ 2 × 10 −1 . )
(6) The spherical rare earth oxide-based phosphor according to any of (3) to (5), wherein Ln in the composition formula is Y.
[0010]
(7) The spherical rare earth oxide-based phosphor according to any one of (1) to (6), wherein the particle surface of the phosphor is coated with a phosphate compound of an alkaline earth metal.
(8) a raw material firing step of firing the raw material mixture of the rare earth oxide-based phosphor to obtain a fired product, and projecting the fired material particles obtained in the raw material firing step into a flame, reheating and melting, Then, a spheroidizing step of cooling and collecting the fired product particles in a molten state, and a step of dispersing the fired material particles obtained in the spheroidizing process, and dispersing and classifying the particles by a classification means, are characterized by including at least The method for producing a spherical rare earth oxide-based phosphor according to any one of the above (1) to (7).
(9) The spherical rare earth oxide according to (8), wherein the means for reheating and melting in the spheroidizing step of the fired particles is performed by a flame spraying method using a flame injected from a burner. Method for producing a phosphor.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in more detail.
The method for producing a phosphor of the present invention basically comprises a step of firing a raw material mixture of a desired phosphor and thermally reacting each raw material to obtain a fired product (a raw material firing step); The powder particles of the obtained fired material are reheated at a temperature at which the particles can be melted in a floating state to melt the particles, and then cooled to make the shape of the powder particles of the fired material substantially spherical. (Sphering step), and powdered particles of at least one of the powder particles of the fired material obtained in the raw material firing step and the spheroidized powder particles of the fired material obtained in the spheroidizing step. It comprises a step of classifying the powder particles into a predetermined particle size and a particle size distribution by performing a dispersion and classification process (classification process).
[0012]
First, as a phosphor raw material, an oxide of each metal element or a compound of a nitrate, a carbonate, a hydroxide, an oxalate or the like constituting a matrix of a rare earth oxide-based phosphor having a desired composition and an activator. A stoichiometric amount corresponding to the intended phosphor composition is further measured, and if necessary, alkali metal and / or alkaline earth metal barogenide, ammonium halide, boron oxide, boric acid, etc. are used as a flux. Mix and mix well by wet or dry method. In the phosphor raw material, the raw material composed of the rare earth compound is once dissolved, mixed in a solution state, coprecipitated with oxalate or the like, and then mixed with the remaining raw material compound and the flux, whereby the luminous characteristics are more improved. A phosphor with good quality can be obtained. In the case of producing the phosphor of the present invention, among the phosphor raw materials used, particularly with respect to the rare earth raw material, for example, if a small raw material is selected, a rare earth oxide-based phosphor having a small particle diameter can be obtained. Conversely, if a raw material having a large particle size is selected, a phosphor having a large particle size can be easily obtained. Therefore, it is preferable to select a rare earth compound raw material having a predetermined particle size according to a target particle size. In addition, the use of a raw material having a spherical particle shape or a narrow particle size distribution as the base constituent raw material in the above raw materials makes it easier to control the particle shape and particle size distribution of the phosphor of the present invention.
[0013]
This phosphor raw material mixture is filled in a heat-resistant container such as an alumina crucible and fired once or more at 1000 to 1700 ° C. for 1 to 12 hours in a neutral atmosphere or a reducing atmosphere. However, in order to further increase the emission luminance of the obtained phosphor, it is necessary to fire at least once at 1300 ° C. or more. When a Eu compound is used as a raw material of the activator, the phosphor raw material mixture is preferably fired in a neutral atmosphere or air in terms of red emission luminance.
[0014]
The fired product after firing as described above is pulverized, washed with a thin mineral acid, washed with water, and further deionized water is put into a ball mill container together with media such as glass balls, alumina balls, and rotated and dispersed for several hours. Then, dispersion processing is performed.
The fired product of the phosphor raw material mixture thus obtained emits light when excited by an electron beam or the like, but the shape of the particles is not necessarily spherical. No film is obtained. Then, a process for spheroidizing the fired particles is performed next.
[0015]
In the method for producing the phosphor of the present invention, in order to make the shape of the fired product obtained by firing the raw material mixture and the subsequent dispersion and classification treatments, the fired material is washed with water, and the fired material mass is loosened to obtain a powder. The powdered particles are put into a powder supply container, floated together with the carrier gas, and the particles of this fired product are rapidly heated again by a thermal spraying method at a temperature at which the particles can be melted by a thermal spraying method using a thermal spray burner, and then quenched. Can be obtained by: As described above, as a method of spheroidizing a fired product by a thermal spraying method, a method in which a raw material powder or a material which has been once baked to become a phosphor is melted while being suspended in a high-temperature plasma to form a spheroid (high-temperature plasma Method) has been proposed (see Patent Documents 1 and 2), and this method can also be employed in the present invention. However, according to the high-temperature plasma method, since the length of the high-temperature region where plasma is formed is short, a sufficient melting temperature region cannot be secured in the flame, which is not suitable for mass production and is not industrially preferable. On the other hand, according to the so-called flame spraying method, the fired material is supplied and floated in the flame injected from the burner that burns the fuel gas, heated and melted. In the production method of the present invention, a method of spheroidizing by a flame spraying method is more preferable in the production method of the present invention, since a sufficient melting temperature range can be secured and the method is relatively suitable for mass production.
[0016]
FIG. 1 is a conceptual diagram showing a main part of a method for producing a phosphor of the present invention using a flame spraying apparatus. The powder particles of the raw material fired material dispersed as described above are used in a flame spraying apparatus. For spheroidization, for example, propane gas and oxygen are supplied as a fuel gas to the spraying burner 1 and premixed, and then the mixture is burned by the spraying burner 1 to generate a flame 2 and melt in the flame 2. Particles of the fired raw material to be made are injected from a powder feeder (not shown) together with a carrier gas such as oxygen and nitrogen from the tip of the thermal spray burner 1, and are heated to 2000 ° C. in a flame 2 generated by burning fuel gas. Instantaneous heating and melting at temperatures before and after. In general, the powder starts melting in a very short time, for example, 0.003 seconds after the ejection of the burner, and starts to take on a round shape. Further, after the elapse of 0.01 second, it becomes substantially spherical and melting is completed. The obtained molten particles 3 of the fired product are dropped into a collecting vessel (water tank) 5 provided with cooling water 4 provided immediately below the flame 2 injected from the thermal spray burner 1 and quenched. The solid phosphor particles 6 are collected and collected. Observation with a SEM photograph of the phosphor thus obtained has a major axis and a short aspect ratio of about 1.2 or more in conventional phosphor particles, whereas the present invention thus obtained has It can be confirmed that most of the phosphors are considerably close to 1 and are clearly spherical particles. In the phosphor of the present invention, the term “spherical particles” refers to a phosphor containing about 60% or more of particles having an aspect ratio of a major axis to a minor axis of about 1.0 to 1.2 in SEM photograph observation. Shall be.
[0017]
The fuel for generating the flame 2 is, for example, a mixed gas of LPG (Liquid Petroleum Gas) -oxygen. Propane Examples of the LPG (C 3 H 8), n- butane (C 4 H 10), I- butane (C 4 H 10), there is a propylene (C 3 H 6) or the like, of which heat generation amount Is the highest, and the use of propane is particularly preferred from the viewpoints of efficient spheroidization of the calcined material particles, cost, supplyability, and the like.
Since the particle size distribution of the spherical particles obtained here largely depends on the particle size distribution of the finally obtained spherical phosphor of the present invention, it is collected during the dispersion treatment, and the particle size and the particle size distribution are measured. Adjust the degree of dispersion treatment by checking while performing, further dilute the obtained slurry with deionized water, remove coarse particles and fine particles by classifying means such as elutriation using Stokes principle , The degree of dispersion and classification so that the quartile deviation value (Quartil Deviation = QD), which represents a measure of the spread of the weight distribution of the particles, is 0.25 or less. Is adjusted. In addition, the particle diameter and particle size distribution in the present invention including the above are values measured by using a Coulter counter and analyzed in terms of weight. Thus, the rare earth oxide-based phosphor of the present invention can be manufactured.
[0018]
There is a strong correlation between the spread of the focus obtained when irradiating the phosphor film with an electron beam and emitting light, and the construction of the phosphor film, and the phosphor film with different particle size distributions is coated with the same coating weight. When the formed film is irradiated with an electron beam and the spread of the focus is observed, the spread of the focus tends to become smaller as the thickness of the fluorescent film becomes smaller, and as a result, the resolution is improved. Therefore, as a simple substitute evaluation method for measuring the focus characteristic, the focus characteristic can be evaluated by preparing a test piece of the fluorescent film with the same weight of the phosphor and measuring the cross-sectional film thickness of the obtained fluorescent film. The focus characteristics of various spherical rare earth oxide-based phosphors having different particle diameters and particle size distributions were evaluated by irradiating an electron beam having an acceleration voltage of 20 KV and a current density of 2 μA / cm 2. Regarding the distribution, a phosphor film made of a spherical rare earth oxide-based spherical phosphor having a particle size distribution such that the QD of the particle size distribution is approximately 0.25 or less, more preferably 0.10 to 0.20, is a conventional phosphor film. It has been found that a fluorescent film having better focus can be obtained as compared with a fluorescent film made of a rare earth oxide-based phosphor. When a phosphor film is formed using a phosphor having a particle size distribution having a QD larger than 0.25, the phosphor film becomes thicker and the focus spreads larger. Conversely, if the phosphor film is formed of a phosphor having a particle size distribution with a QD of less than 0.10, the phosphor film becomes extremely thin and the film becomes less dense. Can not be used due to the appearance of film burning phenomenon.
[0019]
In addition, it was confirmed that the median particle diameter is preferably about 3 to 9 μm. In a phosphor film using a rare earth oxide-based phosphor having a median particle size larger than about 9 μm, the initial luminance of the phosphor film tends to be improved, but the film thickness when forming the phosphor film is designed to be a target film. When the thickness is greater than the thickness, the focus deteriorates, and therefore, the resolution deteriorates, and the desired resolution characteristic cannot be obtained. On the other hand, it is not preferable to use a rare-earth oxide-based phosphor having a median particle diameter of less than about 3 μm as a phosphor film because the emission luminance of the resulting phosphor film is reduced.
[0020]
The spherical rare earth oxide-based phosphor of the present invention obtained as described above is different from the conventional rare earth oxide-based phosphor in which the raw material mixture is simply fired at a high temperature, and has a spherical shape and a median particle diameter. Is about 3 to 9 μm, and the QD, which is a measure of the spread of the weight distribution of the particles, is 0.25 or less. When this is used as a phosphor film such as PRT, the coating film structure is improved. There was little luminance degradation when emitting light, and the focus characteristics were improved.
The phosphor thus obtained may be further coated on its surface with a phosphate of at least one kind of alkaline earth metal of Ca, Zn, Mg or the like by a usual wet method. This is more preferable because the coating property of the phosphor when forming the phosphor film is improved.
[0021]
【Example】
Next, the present invention will be described with reference to examples.
[Example 1]
Y 2 O 3 21.0 g
2.6 g of Tb 4 O 7
6.1 g of SiO 2
The above phosphor materials were sufficiently mixed, packed in an alumina crucible, and fired at 1600 ° C. for 2 hours in a reducing atmosphere. After subjecting the obtained fired product to a dispersion treatment, the fired product was transported together with nitrogen as a powder transport gas using a hand-held thermal spraying device (manufactured by Kurosaki Harima Co., Ltd.) having a function as shown in FIG. , by burning propane gas 15 Nm 3 / h and the combustion oxygen gas 60 Nm 3 / h in the transported mixed gas, the particles are melted by spraying ejected together than approximately 2000 ° C. high temperature flame spraying nozzle, which in water Collected as phosphor. The obtained phosphor was dispersed and classified, and then the phosphor surface was coated with calcium phosphate to obtain a rare earth silicate phosphor of Example 1.
When the composition of the thus-produced phosphor of Example 1 was examined by X-ray diffraction analysis and chemical analysis, the rare earth element having the composition of (Y 0.93 Tb 0.07 ) 2 SiO 5 was obtained. It was a silicate phosphor.
When the particle size and the particle size distribution of the phosphor were measured with a Coulter counter, the median particle size was 7.0 μm, and the QD of the particle size weight distribution was 0.17.
[0022]
When an electron microscope photograph of the phosphor of Example 1 was taken, it was a phosphor composed of substantially spherical particles as shown in FIG.
Next, a 2 cm × 2 cm glass plate was submerged at the bottom of a container containing an aqueous barium acetate solution (cushion liquid), and 1 g of the phosphor of Example 1 was suspended in a liquid containing potassium water glass. The slurry was put into the flask, stirred, and allowed to stand. After the phosphor was allowed to settle on one surface of the glass plate, the supernatant cushion liquid was drawn out, and this was dried and dried on the glass plate from the phosphor of Example 1. In order to easily evaluate the focus characteristics of the fluorescent film, a cross-sectional film thickness of the fluorescent film was measured with an electron microscope. As a result, the film thickness was 19 μm.
[0023]
[Comparative Example 1]
In Example 1, after performing a dispersion treatment on a fired material obtained by firing a mixture of phosphor raw materials at 1600 ° C. for 2 hours, particles of the obtained fired material are applied to the surface thereof without being melted by a thermal spraying device. A phosphor of Comparative Example 1 was obtained in the same manner as the phosphor of Example 1 except that the phosphor was coated with calcium phosphate.
When the composition of the crystal of the phosphor of Comparative Example 1 thus manufactured was examined by X-ray diffraction analysis and chemical analysis, the composition was the same as that of the phosphor of Example 1 (Y 0.93 Tb . 07 ) 2 SiO 5 .
[0024]
When the particle size and the particle size distribution of the phosphor of Comparative Example 1 were measured by a Coulter counter in the same manner as in Example 1, the median particle size was 6.0 μm, and the QD of the particle size weight distribution was 0.21. Met.
When an electron micrograph of the phosphor of Comparative Example 1 was taken, it was a phosphor composed of plate-like and irregularly shaped particles as shown in FIG.
Using 1 g of the phosphor of Comparative Example 1, a phosphor film made of the phosphor of Comparative Example 1 was formed on a glass plate in the same manner as in Example 1, and the film thickness was determined in order to easily evaluate the focus characteristics of the phosphor film. Was found to be 24 μm.
[0025]
[Example 2]
Y 2 O 3 21.0 g
Eu 2 O 3 2.50 g
BaCl 2 · 2H 2 O 0.33g
H 3 BO 3 0.2g
The above phosphor materials were sufficiently mixed, packed in an alumina crucible, and fired at 1400 ° C. for 2 hours in an oxidizing atmosphere. After subjecting the obtained fired product to a dispersion treatment, the particles of the fired product are melted in the same manner as in Example 1 using the handy type thermal spraying apparatus used in Example 1, and this is captured as a phosphor in water. Gathered. The obtained phosphor was dispersed and classified, and then the phosphor surface was coated with zinc phosphate to obtain a phosphor of Example 2.
When the composition of the crystal of the phosphor of Example 2 thus manufactured was examined by X-ray diffraction analysis and chemical analysis, the composition was (Y 0.93 Eu 0.07 ) 2 O 3 .
[0026]
When the particle size and particle size distribution of this phosphor were measured by a Coulter counter, the median particle size was 7.0 μm, and the QD of the particle size weight distribution was 0.19.
When the electron microscope photograph of the phosphor of Example 2 was taken, as shown in FIG. 3A, the phosphor was mostly composed of substantially spherical particles.
In the same manner as in the phosphor of Example 1, 1 g of the phosphor was settled and applied on a test piece of a glass plate to produce a phosphor film. In order to easily evaluate the focus characteristics of the phosphor film, the phosphor film was cut. When the surface film thickness was measured with an electron microscope, the film thickness was 20 μm.
[0027]
[Comparative Example 2]
In Example 2, after the phosphor material mixture was fired at 1400 ° C. for 2 hours, the particles of the obtained fired material were dispersed and classified without being melted by a thermal spraying apparatus, and the phosphor was coated with zinc phosphate on the surface thereof. A phosphor of Comparative Example 2 was obtained in the same manner as in Example 2 except for the above.
When the composition of the crystal of the phosphor of Comparative Example 2 thus manufactured was examined by X-ray diffraction analysis and chemical analysis, the composition was the same as that of the phosphor of Example 2 (Y 0.93 Eu 0.20) . 07 ) 2 O 3 .
[0028]
When the particle size and the particle size distribution of the phosphor of Comparative Example 2 were measured with a Coulter counter in the same manner as in Example 1, the median particle size was 6.0 μm, and the QD of the particle size weight distribution was 0.21. Met.
An electron micrograph of the phosphor of Comparative Example 2 was taken, and as shown in FIG. 3- (b), the phosphor was composed of plate-like and irregularly shaped particles.
Using 1 g of this phosphor, a phosphor film of Comparative Example 2 was formed on a glass plate in the same manner as in Example 1, and the film thickness was measured to easily evaluate the focus characteristics of the phosphor film. It was 23 μm.
[0029]
[Evaluation]
As can be seen from the comparison between Example 1 and Comparative Example 1 and the comparison between Example 2 and Comparative Example 2, Y 2 SiO 5 : Tb phosphor and Y 2 O 3 : Eu phosphor of the present invention (implementation) Unlike the conventional phosphors of the respective compositions (each of the phosphors of Examples 1 and 2) (the respective phosphors of Comparative Examples 1 and 2), their particle shapes are clearly spherical. Further, the thickness of the fluorescent film made of each of the phosphors of the present invention (the phosphors of Examples 1 and 2) is the same as that of the conventional phosphor (the phosphors of Comparative Examples 1 and 2). Compared with phosphor films made of the same phosphor having the same weight, the phosphor film made of the phosphor of the present invention has a smaller thickness than the phosphor film made of the conventional phosphor. This shows that the focus becomes smaller when the electron beam of the current density is irradiated, and the focus characteristic is improved.
[0030]
【The invention's effect】
The phosphor of the present invention adopts the above configuration, particularly when used as a phosphor film for a video display device operated by irradiating a high current density electron beam, when the phosphor film is irradiated with the electron beam. Can further reduce the spread of the focus pattern obtained as a result, and as a result, the resolution of the video can be improved.
[Brief description of the drawings]
FIG. 1 is a conceptual diagram for explaining a flame spraying method used in manufacturing a phosphor of the present invention.
FIG. 2 is an electron micrograph illustrating the shapes of particles of the rare earth oxide-based phosphor of Example 1 of the present invention and the conventional rare earth oxide-based phosphor of Comparative Example 1.
FIG. 3 is an electron micrograph illustrating the shapes of particles of the rare earth oxide-based phosphor of Example 2 of the present invention and the conventional rare earth oxide-based phosphor of Comparative Example 2.

Claims (9)

形状がほぼ球状であって、中央粒子径が3〜9μmであり、かつ粒径重量分布の4分位偏差値(QD)が0.25以下であることを特徴とする球状希土類酸化物系蛍光体。A spherical rare-earth oxide-based fluorescent material having a substantially spherical shape, a central particle diameter of 3 to 9 μm, and a quartile deviation value (QD) of the particle weight distribution of 0.25 or less. body. 前記粒径重量分布の4分位偏差値(QD)が0.10〜0.20であることを特徴とする請求項1記載の球状希土類酸化物系蛍光体。The spherical rare earth oxide-based phosphor according to claim 1, wherein a quartile deviation value (QD) of the particle size weight distribution is 0.10 to 0.20. 前記蛍光体の組成式が(Ln1−x Ln’・mSiOであることを特徴とする請求項1または2記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、Ln’はTb、EuおよびCeの中の各少なくとも1種であり、x及びmはそれぞれ1×10−3≦x≦2×10−1、及び0.95≦m≦2.05なる条件を満足する数を表す。)The composition formula of the phosphor (Ln 1-x Ln 'x ) 2 O 3 · wherein the mSiO a 2 claim 1 or 2 spherical rare earth oxide phosphor according. (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, Ln ′ is at least one of Tb, Eu and Ce, and x and m are each 1 It represents a number that satisfies the conditions of × 10 −3 ≦ x ≦ 2 × 10 −1 and 0.95 ≦ m ≦ 2.05.) 前記蛍光体の組成式が(Ln1−x Ln’・n(Al1−y Gaであることを特徴とする請求項1または2記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、Ln’はTb、EuおよびCeの中の各少なくとも1種であり、x、y及びnはそれぞれ1×10−3≦x≦2×10−1、0≦y≦0.6及び0.45≦n≦1.75なる条件を満足する数を表す。)The composition formula of the phosphor (Ln 1-x Ln 'x ) 2 O 3 · n (Al 1-y Ga y) according to claim 1 or 2 spherical rare earth oxide, wherein the a 2 O 3 System phosphor. (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, Ln ′ is at least one of Tb, Eu and Ce, and x, y and n are The numbers satisfy the conditions of 1 × 10 −3 ≦ x ≦ 2 × 10 −1 , 0 ≦ y ≦ 0.6 and 0.45 ≦ n ≦ 1.75, respectively.) 前記蛍光体の組成式が(Ln1−x Euであることを特徴とする請求項1または2記載の球状希土類酸化物系蛍光体。(但し、上記組成式において、LnはY、La、Gd及びLuの中の少なくとも1種であり、xは1×10−3≦x≦2×10−1なる条件を満足する数を表す。)The spherical rare earth oxide-based phosphor according to claim 1, wherein a composition formula of the phosphor is (Ln 1-x Eu x ) 2 O 3 . (However, in the above composition formula, Ln is at least one of Y, La, Gd and Lu, and x represents a number satisfying a condition of 1 × 10 −3 ≦ x ≦ 2 × 10 −1 . ) 前記組成式におけるLnがYであることを特徴とする請求項3〜5のいずれか1項に記載の球状希土類酸化物系蛍光体。The spherical rare earth oxide-based phosphor according to any one of claims 3 to 5, wherein Ln in the composition formula is Y. 前記蛍光体の粒子表面がアルカリ土類金属の燐酸塩化合物で被覆されていることを特徴とする請求項1〜6のいずれか1項に記載の球状希土類酸化物系蛍光体。The spherical rare earth oxide-based phosphor according to any one of claims 1 to 6, wherein a particle surface of the phosphor is coated with a phosphate compound of an alkaline earth metal. 希土類酸化物系蛍光体の原料混合物を焼成して焼成物を得る原料焼成工程と、前記原料焼成工程で得られた前記焼成物粒子を火炎中に投射し再加熱して溶融し、次いで溶融状態の前記焼成物粒子を冷却して捕集する球状化工程と、前記球状化工程で得られた前記焼成物粒子を分散、分級手段により分散させ分級する工程とを少なくとも含むことを特徴とする請求項1〜7のいずれか1項に記載の球状希土類酸化物系蛍光体の製造方法。A raw material firing step of firing a raw material mixture of the rare earth oxide-based phosphor to obtain a fired product, and projecting the fired material particles obtained in the raw material firing step into a flame, reheating and melting, and then in a molten state A spheroidizing step of cooling and collecting the calcined material particles, and a step of dispersing and calcining the calcined material particles obtained in the spheroidizing step by a classifying means. Item 8. The method for producing a spherical rare earth oxide-based phosphor according to any one of items 1 to 7. 前記焼成物粒子の前記球状化工程における前記再加熱して溶融する手段をバーナーから噴射される火炎による、火炎溶射法によって行うことを特徴とする請求項8記載の球状希土類酸化物系蛍光体の製造方法9. The spherical rare earth oxide-based phosphor according to claim 8, wherein the means for reheating and melting in the spheroidizing step of the fired material particles is performed by a flame spraying method using a flame injected from a burner. Production method
JP2003007224A 2003-01-15 2003-01-15 Spherical rare earth oxide-based phosphor and method for producing the same Pending JP2004217796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003007224A JP2004217796A (en) 2003-01-15 2003-01-15 Spherical rare earth oxide-based phosphor and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003007224A JP2004217796A (en) 2003-01-15 2003-01-15 Spherical rare earth oxide-based phosphor and method for producing the same

Publications (1)

Publication Number Publication Date
JP2004217796A true JP2004217796A (en) 2004-08-05

Family

ID=32897383

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003007224A Pending JP2004217796A (en) 2003-01-15 2003-01-15 Spherical rare earth oxide-based phosphor and method for producing the same

Country Status (1)

Country Link
JP (1) JP2004217796A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264062A (en) * 2004-03-19 2005-09-29 Nemoto & Co Ltd Phosphor
JP2007103818A (en) * 2005-10-07 2007-04-19 Nichia Chem Ind Ltd Light emitting device, phosphor for light emitting element and manufacturing method therefor
JP2009215486A (en) * 2008-03-12 2009-09-24 Ube Ind Ltd Spherical phosphor particle, method for manufacturing the same, and resin composition and glass composition each containing the same
WO2011059184A2 (en) * 2009-11-10 2011-05-19 서울대학교 산학협력단 Fluorescent body and a production method therefor
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same
US8492680B2 (en) 2005-08-11 2013-07-23 Kurabe Industrial Co., Ltd. Heating device for seat

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005264062A (en) * 2004-03-19 2005-09-29 Nemoto & Co Ltd Phosphor
JP4503321B2 (en) * 2004-03-19 2010-07-14 根本特殊化学株式会社 Phosphor
US8492680B2 (en) 2005-08-11 2013-07-23 Kurabe Industrial Co., Ltd. Heating device for seat
JP2007103818A (en) * 2005-10-07 2007-04-19 Nichia Chem Ind Ltd Light emitting device, phosphor for light emitting element and manufacturing method therefor
JP2009215486A (en) * 2008-03-12 2009-09-24 Ube Ind Ltd Spherical phosphor particle, method for manufacturing the same, and resin composition and glass composition each containing the same
WO2011059184A2 (en) * 2009-11-10 2011-05-19 서울대학교 산학협력단 Fluorescent body and a production method therefor
WO2011059184A3 (en) * 2009-11-10 2011-11-03 서울대학교 산학협력단 Fluorescent body and a production method therefor
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same

Similar Documents

Publication Publication Date Title
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
KR20100128336A (en) Metal silicon nitride or metal silicon oxynitride submicron phosphor particles and methods for synthesizing these phosphors
JP4351253B2 (en) Alkaline earth or rare earth metal aluminate precursor compounds, processes for their preparation and their use as emitter precursors in particular
JP5712916B2 (en) Yttrium cerium aluminum garnet phosphor and light emitting device
JP2004217796A (en) Spherical rare earth oxide-based phosphor and method for producing the same
JP2004162057A (en) Phosphor
JP2010265447A (en) Red phosphor, method for producing the same, and light-emitting element
JPH08170077A (en) Fluorescent substance, its production, luminescent screen and cathode ray tube using the fluophor
JP3559210B2 (en) Heat-resistant, water-resistant, high-brightness, long-lasting yellow-green luminescent color phosphor and a method for producing the same
JP2002080847A (en) Rare earth silicate phosphor and luminescent screen using the same
JP4790794B2 (en) Red phosphor, red light emitting device or device, and white light emitting device or device
KR20070064663A (en) Precursor compound and crystallised compound of the alkaline-earth aluminate type, and methods of preparing and using the crystallised compound as phosphor
WO2018147185A1 (en) Fluorescent material powder, light-emitting device, and method for producing fluorescent material powder
JP3399245B2 (en) Manufacturing method of rare earth oxide phosphor
JP2002194347A (en) Fluorescent substance, method for producing the same and luminous device
JP2000336353A (en) Production of fluorescent aluminate
JPH1088127A (en) Production of rare earth element aluminate fluorescent substance
JPH09316444A (en) Production of yttrium silicate fluorescent substance
JP3585967B2 (en) Phosphor manufacturing method
JP2003292949A (en) High-luminance luminescent material and method of producing the same
JP2003183644A (en) Method of production for silicate fluorescent substance
JP2003231881A (en) Phosphor, method for producing phosphor and cathode- ray tube
JP4023222B2 (en) Method for producing silicate phosphor
JP2008088397A (en) Phosphor and process for producing the same
JP2004051931A (en) Rare earth silicate phosphor