JP2009215486A - Spherical phosphor particle, method for manufacturing the same, and resin composition and glass composition each containing the same - Google Patents

Spherical phosphor particle, method for manufacturing the same, and resin composition and glass composition each containing the same Download PDF

Info

Publication number
JP2009215486A
JP2009215486A JP2008062527A JP2008062527A JP2009215486A JP 2009215486 A JP2009215486 A JP 2009215486A JP 2008062527 A JP2008062527 A JP 2008062527A JP 2008062527 A JP2008062527 A JP 2008062527A JP 2009215486 A JP2009215486 A JP 2009215486A
Authority
JP
Japan
Prior art keywords
spherical
spherical phosphor
phosphor particles
particles
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008062527A
Other languages
Japanese (ja)
Other versions
JP5446106B2 (en
Inventor
Hideki Otsubo
英樹 大坪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Corp
Original Assignee
Ube Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Industries Ltd filed Critical Ube Industries Ltd
Priority to JP2008062527A priority Critical patent/JP5446106B2/en
Publication of JP2009215486A publication Critical patent/JP2009215486A/en
Application granted granted Critical
Publication of JP5446106B2 publication Critical patent/JP5446106B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spherical phosphor particle which has both of transparency, which is enough to form a transparent phosphor layer when sealed by a transparent resin or glass, and high packability, which is enough to keep the amount of a sealant low in durability to be used to a minimum, and excellent sphericity and to provide a method for manufacturing the spherical phosphor particle, and a resin composition and a glass composition each containing the spherical phosphor particle. <P>SOLUTION: The spherical phosphor particle contains A (A is one or more elements selected from Al, Ga, Ge, W, P, V, Zn, Si, B, Mg, Ca, Ba, Sr and Sc), Ln (Ln is one or more elements selected from Y, Gd, La, Sm, Dy, Ho, Er, Yb and Lu), O and R as an activator (R is one or more elements, which are selected from Eu, Tb, Ce, Sm, Tm, Pr, Nd, Dy, Ho, Er, Yb, Mn, Ti, Fe, Cr and Pb and are the elements other than the elements to be selected as Ln) being an activator as principal components and has an amorphous phase based on Ln, O and R being the activator as the principal phase and 1.0-1.1 average ratio of (the long side) to (the short side). <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、透光性及び充填性が良好な球状蛍光体粒子、その製造方法並びにそれが含有された樹脂組成物及びガラス組成物に関する。   The present invention relates to spherical phosphor particles having good translucency and filling properties, a method for producing the same, and a resin composition and a glass composition containing the spherical phosphor particles.

陰極線管やプラズマディスプレイ等のディスプレイ、或いは蛍光ランプ等で用いられる蛍光体は、電子線や紫外線で励起することにより発光し、特に粒径が数μm程度の場合に高い発光効率が得られるとされている。この種の蛍光体は、透光性を有する樹脂によって数μm〜十数μmの寸法の粒子状のものが封止されて使用される。蛍光体粒子は、フラックスを用いた固相反応により合成されることが多いため、その粒子形状は、不定形の多面体で多結晶体である。このため、蛍光体粒子は、均一に充填されずに蛍光層にムラが生じ、均一な発光を得ることが困難な場合があり、それに加えて、蛍光体粒子の充填率を大きくすることができず、励起光により劣化して透光性が悪化しやすい樹脂の含有率が高くなり、蛍光層の耐久性が悪くなりやすい。このため、良好な球形状の蛍光体粒子が開発されている(特許文献1乃至3)。
特公平7−45655号公報 特開平11−43672号公報 特開平8−109375号公報
Phosphors used in displays such as cathode ray tubes and plasma displays, or fluorescent lamps, emit light when excited by an electron beam or ultraviolet light, and high luminous efficiency is obtained especially when the particle size is about several μm. ing. This type of phosphor is used by sealing particles having a size of several μm to several tens of μm with a resin having translucency. Since phosphor particles are often synthesized by a solid-phase reaction using a flux, the particle shape is an irregular polyhedron and a polycrystal. For this reason, phosphor particles may not be uniformly filled, resulting in unevenness in the phosphor layer, and it may be difficult to obtain uniform light emission. In addition, the filling rate of the phosphor particles can be increased. However, the content of the resin, which is easily deteriorated by excitation light and easily deteriorates in transparency, increases, and the durability of the fluorescent layer tends to deteriorate. For this reason, favorable spherical phosphor particles have been developed (Patent Documents 1 to 3).
Japanese Patent Publication No. 7-45655 Japanese Patent Laid-Open No. 11-43672 JP-A-8-109375

しかしながら、特許文献1に記載の蛍光体粒子は、例えばYAl12:Tbとの記述があるように多結晶質であり、特許文献2に記載の蛍光体粒子は、複数の単結晶から構成されており、特許文献3に記載の蛍光体粒子は、その実施例に記載されているように結晶質のものであり、いずれも透明性が良いとはいえない。 However, the phosphor particles described in Patent Document 1 are polycrystalline as described in, for example, Y 3 Al 5 O 12 : Tb, and the phosphor particles described in Patent Document 2 include a plurality of single crystals. The phosphor particles described in Patent Document 3 are crystalline as described in the examples, and none of them is good in transparency.

そこで、本発明は、透明な樹脂又はガラスによって封止した際に透明な蛍光層を形成するに足る透明性と、耐久性が低い封止剤の使用を最小限に留め得る高充填性を併せ持つ球形状が良好な球状蛍光体粒子、その製造方法並びにそれが含有された樹脂組成物及びガラス組成物を提供することを目的とする。   Therefore, the present invention has both transparency sufficient to form a transparent fluorescent layer when sealed with a transparent resin or glass, and high fillability capable of minimizing the use of a sealant with low durability. An object of the present invention is to provide spherical phosphor particles having a good spherical shape, a method for producing the same, a resin composition containing the same, and a glass composition.

以上の目的を達成するため、本発明者らは、鋭意研究を重ねた結果、特定の元素を主成分とする非晶質相を主相とすることによって、透明な樹脂又はガラスによって封止した際に透明な蛍光層を形成するに足る透明性と、耐久性が低い封止剤の使用を最小限に留め得る高充填性を併せ持つ球形状が良好な球状蛍光体粒子を得ることができることを見出した。すなわち、本発明は、A(AはAl、Ga、Ge、W、P、V、Zn、Si、B、Mg、Ca、Ba、Sr及びScのいずれか一以上の元素)、Ln(LnはY、Gd、La、Sm、Dy、Ho、Er、Yb及びLuのいずれか一以上の元素)、O及び付活剤としてのR(RはEu、Tb、Ce、Sm、Tm、Pr、Nd、Dy、Ho、Er、Yb、Mn、Ti、Fe、Cr及びPbのいずれか一以上の元素であって、Lnとして選択される元素以外の元素)を主成分とする非晶質相を主相とし、長辺と短辺の比が平均で1.0〜1.1である球状蛍光体粒子である。   In order to achieve the above object, the present inventors have conducted intensive research, and as a result, the amorphous phase containing a specific element as a main component is used as a main phase, which is then sealed with a transparent resin or glass. It is possible to obtain spherical phosphor particles with good spherical shape that have both sufficient transparency to form a transparent fluorescent layer and high fillability that can minimize the use of a sealant with low durability. I found it. That is, the present invention relates to A (A is one or more elements of Al, Ga, Ge, W, P, V, Zn, Si, B, Mg, Ca, Ba, Sr, and Sc), Ln (Ln is Y, Gd, La, Sm, Dy, Ho, Er, Yb, and Lu), O, and R as an activator (R is Eu, Tb, Ce, Sm, Tm, Pr, Nd) , Dy, Ho, Er, Yb, Mn, Ti, Fe, Cr, and Pb, and an amorphous phase mainly composed of an element other than the element selected as Ln. Spherical phosphor particles having a phase ratio of 1.0 to 1.1 on average in the ratio of the long side to the short side.

また、本発明は、前記前記主成分を含有する溶融粒子を冷却凝固して前記非晶質相を形成せることによって球状蛍光体粒子を得る工程を有する球状蛍光体粒子の製造方法である。さらに、本発明は、上記球状蛍光体粒子が含有された樹脂組成物及びガラス組成物である。   The present invention is also a method for producing spherical phosphor particles, comprising a step of obtaining spherical phosphor particles by cooling and solidifying the molten particles containing the main component to form the amorphous phase. Furthermore, the present invention is a resin composition and a glass composition containing the spherical phosphor particles.

以上のように、本発明によれば、透明な樹脂又はガラスによって封止した際に透明な蛍光層を形成するに足る透明性と、耐久性が低い封止剤の使用を最小限に留め得る高充填性を併せ持つ球形状が良好な球状蛍光体粒子、その製造方法並びにそれが含有された樹脂組成物及びガラス組成物を提供することができる。 As described above, according to the present invention, transparency sufficient to form a transparent fluorescent layer when sealed with a transparent resin or glass and the use of a sealant with low durability can be minimized. It is possible to provide spherical phosphor particles having a high spherical shape and a good spherical shape, a method for producing the same, and a resin composition and a glass composition containing the same.

本発明に係る球状蛍光体粒子は、前記A、Ln、O及びRを主成分とする非晶質相を主相としているが、これらを主成分とする結晶相が前記非晶質相中に存在して良く、この結晶質相の長径は、200nm以下であることが好ましい。非晶質相中に存在する結晶質相の長径が200nm以下であれば、光の後方散乱が抑制されるため、透明性が損なわれることがない。ここで、結晶質相の長径とは、結晶質相が真球でない場合、最も長い直径を意味する。   The spherical phosphor particles according to the present invention have an amorphous phase mainly composed of A, Ln, O and R as a main phase, and the crystal phase mainly composed of these is contained in the amorphous phase. The major axis of this crystalline phase is preferably 200 nm or less. If the major axis of the crystalline phase present in the amorphous phase is 200 nm or less, the backscattering of light is suppressed, and transparency is not impaired. Here, the major axis of the crystalline phase means the longest diameter when the crystalline phase is not a true sphere.

このように結晶相が非晶質相中に存在する球状蛍光体粒子は、溶融粒子の溶融や凝固の条件を調整することにより、前記主成分を含有する溶融粒子を冷却凝固して前記非晶質相を形成せることによって得ることができ、また前記主成分を含有する溶融粒子を冷却凝固して前記A、Ln、O及びRを主成分とする非晶質相を主相とする球状粒子を得た後、該非晶質相を主相とする球状粒子を条件を調整しながら加熱することにより前記非晶質相の少なくとも一部を結晶化させることによって得ることができる。結晶相が非晶質相中に存在するものを得る場合の溶融粒子の溶融及び凝固の条件の調整は、例えば、溶融温度を低くすることや、溶融粒子が冷媒に投入される際の溶融粒子の温度を低くすることによって、非晶質相中に前記結晶質相が存在するものが得られやすくなる。一方、融点が高い組成、共晶組成から大きくずれる組成等の場合に、溶融時の温度や、溶融粒子が冷媒に投入される際の溶融粒子の温度を高くすることによって、前記非晶質相のみから構成されたものが得られやすくなる。   In this way, the spherical phosphor particles in which the crystalline phase is present in the amorphous phase can be obtained by cooling and solidifying the molten particles containing the main component by adjusting the melting and solidifying conditions of the molten particles. Spherical particles that can be obtained by forming a solid phase, and that are obtained by cooling and solidifying the molten particles containing the main component to form an amorphous phase containing A, Ln, O, and R as main components. Then, spherical particles having the amorphous phase as the main phase are heated while adjusting the conditions to crystallize at least a part of the amorphous phase. The adjustment of the melting and solidification conditions of the molten particles when obtaining a crystalline phase present in the amorphous phase can be achieved by, for example, lowering the melting temperature or melting particles when the molten particles are introduced into the refrigerant. By lowering the temperature, it is easy to obtain a product in which the crystalline phase is present in the amorphous phase. On the other hand, in the case of a composition having a high melting point, a composition greatly deviating from the eutectic composition, etc., the amorphous phase can be obtained by increasing the temperature at the time of melting or the temperature of the molten particles when the molten particles are introduced into the refrigerant. It becomes easy to obtain what consists only of.

本発明に係る球状蛍光体粒子において、A、Ln、O及びRを主成分とするとは、A、Ln、O及びRの非結晶化を妨げない範囲でA、Ln、O及びR以外の他の成分を微量に含ませても良いという趣旨であり、例えばA、Ln、O及びRが95重量%以上であることを意味する。さらに、非晶質相を主相とするとは、結晶質相を微量に含ませても良いという趣旨であり、例えば、非晶質相が70重量体積%以上であることを意味し、非晶質相のみから構成される場合、及び非晶質相中に結晶質相が存在する場合が含まれる。   In the spherical phosphor particles according to the present invention, A, Ln, O and R are the main components other than A, Ln, O and R as long as they do not hinder the non-crystallization of A, Ln, O and R. This means that a small amount of the above component may be contained, for example, A, Ln, O and R are 95% by weight or more. Furthermore, an amorphous phase as a main phase means that a crystalline phase may be contained in a very small amount. For example, it means that the amorphous phase is 70% by weight or more and is amorphous. The case where it consists only of a crystalline phase and the case where a crystalline phase exists in an amorphous phase are included.

本発明に係る球状蛍光体粒子において、Aとしては、Al、Ga、Ge、W、P、V、Zn、Si、B、Mg、Ca、Ba、Sr及びScのいずれか一以上の元素であれば良いが、Al、P、Si、Ga及びSrのいずれか一以上の元素であることが好ましい。Lnとしては、Y、Gd、La、Sm、Dy、Ho、Er、Yb及びLuのいずれか一以上の元素であれば良いが、Y、Gd、La及びLuのいずれか一以上の元素であることが好ましい。Rとしては、Eu、Tb、Ce、Sm、Tm、Pr、Nd、Dy、Ho、Er、Yb、Mn、Ti、Fe、Cr及びPbのいずれか一以上の元素であれば良いが、Eu、Tb、Ce、Sm、Tm及びPrであることが好ましい。以上の好ましい元素が選択された場合、良好な球形度を有し、かつ可視領域に高輝度な発光を呈する球状蛍光体粒子が得られやすい。AとしてAlが選択された場合に、更に、良好な球形度を有し、かつ可視領域に高輝度な発光を呈する球状蛍光体粒子が得られやすい。   In the spherical phosphor particle according to the present invention, A may be any one or more of Al, Ga, Ge, W, P, V, Zn, Si, B, Mg, Ca, Ba, Sr and Sc. However, it is preferably one or more elements of Al, P, Si, Ga, and Sr. Ln may be any one or more of Y, Gd, La, Sm, Dy, Ho, Er, Yb, and Lu, but any one or more of Y, Gd, La, and Lu. It is preferable. R may be any element selected from Eu, Tb, Ce, Sm, Tm, Pr, Nd, Dy, Ho, Er, Yb, Mn, Ti, Fe, Cr, and Pb. Tb, Ce, Sm, Tm and Pr are preferred. When the above preferable elements are selected, it is easy to obtain spherical phosphor particles having good sphericity and exhibiting high luminance emission in the visible region. When Al is selected as A, spherical phosphor particles having a good sphericity and exhibiting high-luminance emission in the visible region are easily obtained.

また、本発明に係る球状蛍光体粒子において、長辺とは、球状粒子の最も長い直径をいい、短辺とは、球状粒子の最も短い直径をいう。長辺と短辺の比の測定は、例えばレーザ顕微鏡を用いて行うことができる。本発明に係る球状粒子においては、レーザ顕微鏡を用いて、50個の球状粒子の測定を行い、その平均値を算出したものである。本発明に係る球状蛍光体粒子は、長辺と短辺の比が平均で1.0〜1.1である。長辺と短辺の比が1.1より大きくなると、透光性を有する樹脂及びガラスへの充填性が悪くなり、良好な蛍光が得られなくなる。また、本発明に係る球状蛍光体粒子の平均粒径は、500μm以下であることが好ましい。500μmより大きくなると、透光性を有する樹脂及びガラスへの充填性が悪くなり、良好な蛍光が得られなくなる。   In the spherical phosphor particles according to the present invention, the long side refers to the longest diameter of the spherical particles, and the short side refers to the shortest diameter of the spherical particles. The ratio of the long side to the short side can be measured using, for example, a laser microscope. The spherical particles according to the present invention are obtained by measuring 50 spherical particles using a laser microscope and calculating an average value thereof. The spherical phosphor particles according to the present invention have an average ratio of long side to short side of 1.0 to 1.1. When the ratio of the long side to the short side is larger than 1.1, the filling property into the resin and glass having translucency is deteriorated, and good fluorescence cannot be obtained. The average particle diameter of the spherical phosphor particles according to the present invention is preferably 500 μm or less. When the thickness is larger than 500 μm, the filling property into the resin and the glass having translucency is deteriorated, and good fluorescence cannot be obtained.

本発明に係る球状蛍光体粒子の製造方法は、上述のように前記主成分を含有する溶融粒子を冷却凝固して前記非晶質相を形成させて球状蛍光体粒子を得る工程を有するが、前記主成分を含有する溶融粒子とは、その構成成分が溶融状態を保った状態で球状化されたものである。このような溶融粒子は、例えば、フレーム法、アトマイズ法及びスピンディスク法によって得ることができ、特にフレーム法によることが好ましい。フレーム法は、一粒一粒が構成成分からなる粒子を融点以上の温度の高温域を通過させる方法であり、例えば、組成調製された粒子を化学炎又は熱プラズマ中に投入し溶融させ溶融状態の球状粒子を得る方法である。アトマイズ法は、坩堝等の中で構成成分からなる原料を溶融させて坩堝に開けられた吐出口より融液を噴出させる方法であり、スピンディスク法は、高速で回転するディスク上に融液を溶融状態を保った状態で衝突させる方法である。   The method for producing spherical phosphor particles according to the present invention includes the step of obtaining the spherical phosphor particles by cooling and solidifying the molten particles containing the main component to form the amorphous phase as described above. The molten particles containing the main component are those in which the constituent components are spheroidized in a molten state. Such molten particles can be obtained, for example, by a flame method, an atomizing method, and a spin disk method, and particularly preferably by a flame method. The flame method is a method in which particles each consisting of a constituent component are passed through a high temperature region having a temperature equal to or higher than the melting point. For example, the prepared particles are put into a chemical flame or thermal plasma to be melted and melted. It is the method of obtaining the spherical particle of this. The atomization method is a method in which a raw material composed of constituent components is melted in a crucible or the like, and a melt is ejected from a discharge port opened in the crucible. The spin disk method is a method in which a melt is applied to a disk that rotates at high speed. It is the method of making it collide in the state which maintained the molten state.

フレーム法は、スプレードライヤー等により粉末状の原料を造粒した粒子、及び原料を焼結又は溶融凝固させたバルク材料を粉砕し、所望の粒度分布になるように、調整した粒子等を用いることができ、その粒子をその凝集を抑制しながら化学炎又は熱プラズマ中に投入し、化学炎又は熱プラズマ中で溶融させることによって行われる。   In the flame method, particles prepared by granulating powdery raw materials with a spray dryer, etc., and bulk materials obtained by sintering or melting and solidifying the raw materials are pulverized to use particles adjusted so as to obtain a desired particle size distribution. It is performed by putting the particles into a chemical flame or thermal plasma while suppressing the aggregation and melting them in the chemical flame or thermal plasma.

また、フレーム法は、原料のコロイド液や有機金属重合体等の所望の組成比の元素を含む液状の前駆物質などを用いることができ、その液状原料を、ノズル等を用いて化学炎又は熱プラズマ中に噴霧し、化学炎又は熱プラズマ中で溶剤又は分散媒を蒸発させた上で溶融させることによって行われる。ノズルと化学炎又は熱プラズマの間に低温の加熱域を設け、液状原料中の溶剤又は分散媒を蒸発させた上で、化学炎又は熱プラズマ中に投入することもできる。   In the flame method, a liquid precursor containing an element having a desired composition ratio such as a raw material colloidal liquid or an organometallic polymer can be used. It is carried out by spraying into plasma and evaporating the solvent or dispersion medium in a chemical flame or thermal plasma and then melting it. It is also possible to provide a low-temperature heating zone between the nozzle and the chemical flame or thermal plasma and evaporate the solvent or dispersion medium in the liquid raw material, and then put it into the chemical flame or thermal plasma.

フレーム法において、化学炎の発生源としては、2400℃以上の高温が得られれば良く、例えば、酸素−アセチレンの混合ガスや、それに水素を加えた混合ガス等が高温を得やすいことから好適に用いられる。また、熱プラズマの発生源としては、酸素、窒素、アルゴン、炭酸ガス及びこれらの混合ガス、並びに水が用いられ、ガスが用いられる場合、誘導結合方式のプラズマ装置が用いられるが、水が用いられることが好ましい。   In the flame method, it is only necessary to obtain a high temperature of 2400 ° C. or higher as a generation source of the chemical flame. Used. In addition, oxygen, nitrogen, argon, carbon dioxide gas and mixed gas thereof, and water are used as a source of thermal plasma. When gas is used, an inductively coupled plasma apparatus is used, but water is used. It is preferred that

アトマイズ法又はスピンディスク法の場合、原料としては、粉体、成形体、焼結体及び凝固体のいずれでも良く、また、これらの二つ以上が組み合わせたものでも良い。これら原料をその融点より高い融点を有する坩堝、例えば、Mo、W、Ta、Ir、Pt製等の坩堝、又は水などによって冷却が施されたCu製の坩堝等に収容した後、溶融させる。溶融方法は、原料をその融点以上の温度に加熱することが可能な方法であれば、いかなる方法でも良く、例えば、高周波、プラズマ、レーザ、電子ビーム、光又は赤外線等を用いることができる。原料の溶融は、原料が蒸発又は分解せず、且つ坩堝が著しく消耗しない雰囲気で行われることが好ましい。大気中、不活性ガス中、真空中等、原料と用いられる坩堝の材質に応じて、最適な雰囲気が選択される。   In the case of the atomizing method or the spin disk method, the raw material may be any of powder, a molded body, a sintered body, and a solidified body, or a combination of two or more of these. These raw materials are accommodated in a crucible having a melting point higher than the melting point thereof, for example, a crucible made of Mo, W, Ta, Ir, Pt or the like, or a Cu crucible cooled by water or the like and then melted. The melting method may be any method as long as the raw material can be heated to a temperature equal to or higher than its melting point, and for example, high frequency, plasma, laser, electron beam, light, or infrared can be used. The raw material is preferably melted in an atmosphere in which the raw material is not evaporated or decomposed and the crucible is not significantly consumed. An optimum atmosphere is selected depending on the raw material and the material of the crucible used, such as in the air, in an inert gas, or in a vacuum.

アトマイズ法は、ガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させることによって球状の溶融粒子を形成することができる。スピンディスク法は、坩堝を傾転させる、アトマイズ法の場合と同様にガス圧等を用いて坩堝底部等にあけられた細孔より融液を噴出させるなどによって、回転するディスクに融液を衝突させて、球状の溶融粒子を形成することができる。   In the atomization method, spherical molten particles can be formed by ejecting a melt from pores opened in a crucible bottom or the like using gas pressure or the like. The spin disk method tilts the crucible, and in the same way as in the atomizing method, the melt collides with the rotating disk by, for example, jetting the melt from the pores opened at the bottom of the crucible using gas pressure etc. And spherical molten particles can be formed.

前記主成分を含有する溶融粒子は、これらの酸化物が原料として用いられるが、溶融した際に酸化物になるものであれば良く、水酸化物、炭酸塩等を用いても良い。これら原料の組成割合は、共晶組成を形成する割合、及びその割合の±10重量%の範囲であることが好ましい。例えば、Al、Y、O及び付活剤としてのEuから構成される球状蛍光体粒子の組成がこのような範囲である場合には、比較的低融点であることなどにより、非晶質化しやすく、球形状が良好な球状蛍光体粒子が得られやすくなるからである。   As the molten particles containing the main component, these oxides are used as raw materials, but any oxides may be used as long as they are melted, and hydroxides, carbonates, and the like may be used. The composition ratio of these raw materials is preferably in the range of forming a eutectic composition and in the range of ± 10% by weight of the ratio. For example, when the composition of the spherical phosphor particles composed of Al, Y, O and Eu as an activator is within such a range, it is likely to become amorphous due to its relatively low melting point. This is because it becomes easy to obtain spherical phosphor particles having a good spherical shape.

次に、球状の溶融粒子を冷却して非晶質相を形成させるが、この冷却工程は、例えば、球状の溶融粒子を冷媒に投入して急冷凝固することによって行うことができる。前記主成分を含有する溶融粒子であれば、液体冷媒による急冷によって非平衡状態での凝固が可能になり、この球状粒子は、溶融時の原子構造がほぼ維持された状態で凝固されるために、凝固収縮が極めて小さく、球形状が良好な球状粒子が得られやすい。また、冷媒による急冷を用いることによって、凝固前の粒子同士の接触を抑制し、良好な球形状を作ることができる。冷媒としては、非可燃性の媒体が好ましく、例えば、ヘリウムガス、水、液体窒素、液体アルゴン等を用いることができる。得られた非晶質相からなる球状粒子の長辺と短辺の比を平均で1.0〜1.1に調整しても良い。当該非晶質球状粒子は、液体冷媒による急冷によって溶融時の原子構造がほぼ維持された状態で凝固されたものであり、凝固収縮が極めて小さく、球形状が良好な球状粒子が得られる。   Next, the spherical molten particles are cooled to form an amorphous phase. This cooling step can be performed, for example, by putting the spherical molten particles into a refrigerant and rapidly solidifying them. The molten particles containing the main component can be solidified in a non-equilibrium state by rapid cooling with a liquid refrigerant, and the spherical particles are solidified in a state where the atomic structure at the time of melting is substantially maintained. In addition, it is easy to obtain spherical particles having extremely small solidification shrinkage and good spherical shape. In addition, by using quenching with a refrigerant, it is possible to suppress contact between particles before solidification and to form a good spherical shape. As the refrigerant, a non-flammable medium is preferable, and for example, helium gas, water, liquid nitrogen, liquid argon, or the like can be used. You may adjust the ratio of the long side of the spherical particle which consists of an obtained amorphous phase to a short side to 1.0-1.1 on an average. The amorphous spherical particles are solidified in a state in which the atomic structure at the time of melting is substantially maintained by quenching with a liquid refrigerant, and spherical particles having a very small solidification shrinkage and a good spherical shape can be obtained.

次に、本発明に係る球状蛍光体粒子の製造方法において、前記非晶質相中に前記結晶質相が存在するものを得る場合、非晶質相を含む球状粒子を加熱して結晶質相を析出させたり、結晶性を向上させることにより、その一部を結晶化させるが、この際の加熱温度は、800℃以上であることが好ましく、1000〜1700℃であることがさらに好ましい。加熱処理の温度、時間、昇温速度等を適宜選択することにより、構造を制御することができ、目的に応じた構造の球状粒子を製造することができる。例えば、融点に近い温度での加熱による結晶質相の析出や結晶性の向上を図る場合には、結晶相が粗大化して良好な球形状を維持できなくなることを抑制するために、大きな昇温速度及び短い加熱時間が選択される。   Next, in the method for producing spherical phosphor particles according to the present invention, when obtaining the crystalline phase in the amorphous phase, the spherical phase containing the amorphous phase is heated to obtain the crystalline phase. A part thereof is crystallized by precipitating or improving crystallinity, and the heating temperature at this time is preferably 800 ° C. or higher, more preferably 1000 to 1700 ° C. By appropriately selecting the temperature, time, heating rate, etc. of the heat treatment, the structure can be controlled, and spherical particles having a structure suitable for the purpose can be produced. For example, in the case where the crystalline phase is precipitated or the crystallinity is improved by heating at a temperature close to the melting point, a large temperature rise is performed in order to prevent the crystalline phase from coarsening and maintaining a good spherical shape. The speed and short heating time are selected.

球状粒子の加熱方法は、球状粒子を800℃以上融点以下の温度で加熱することが可能な方法であれば特に限定されず、抵抗加熱、サセプターを用いた高周波誘導加熱、レーザ加熱、電子ビーム加熱、光加熱、赤外線加熱等いかなる方式を用いても良い。   The method for heating the spherical particles is not particularly limited as long as the spherical particles can be heated at a temperature of 800 ° C. or higher and the melting point or lower. Resistance heating, high frequency induction heating using a susceptor, laser heating, electron beam heating Any method such as light heating or infrared heating may be used.

一般的に、酸化アルミニウム、酸化マグネシウム等のセラミックス製、又は、モリブデン、タンタル、白金、イリジウム等の高融点金属製の坩堝等に微小球を収容して坩堝ごと加熱を行う方法、微小球を所定の温度勾配と均熱領域が設けられた前記坩堝と同様の素材からなる管状炉中を移動させながら加熱を行う方法、又は、微小球を、所定の温度勾配と均熱領域が設けられた前記坩堝と同様の素材からなる縦型管状炉中を落下させながら加熱を行う方法等が採用される。   Generally, microspheres are stored in a crucible made of ceramics such as aluminum oxide or magnesium oxide or a high melting point metal such as molybdenum, tantalum, platinum, iridium, etc., and the microspheres are heated. A method of heating while moving in a tubular furnace made of the same material as the crucible provided with a temperature gradient and a soaking area, or a microsphere, the predetermined temperature gradient and soaking area provided A method of heating while dropping in a vertical tubular furnace made of the same material as the crucible is employed.

球状粒子の加熱処理は、大気中、不活性ガス中、還元性ガス中、炭化水素ガス中、真空中などいかなる雰囲気で行われても良いが、用いられる坩堝及び加熱方式等により制限を受ける場合がある。   The heat treatment of the spherical particles may be performed in any atmosphere, such as in the air, in an inert gas, in a reducing gas, in a hydrocarbon gas, or in a vacuum, but is limited by the crucible and heating method used. There is.

この後、必要に応じて、球状蛍光体粒子の洗浄や熱処理が行われ、所望の球状蛍光体粒子が製造される。洗浄は、アセトン、イソプロピルアルコール等の有機溶剤、又は各種の酸によって、目的に応じてその処理がなされる。また、還元されやすい組成の球状蛍光体粒子の場合、酸素共存下で加熱されることにより、より良好な蛍光を示すことがあるため、空気中、酸素中での熱処理が400℃以上の温度で施されて所望の球状蛍光体粒子が製造される。   Thereafter, if necessary, the spherical phosphor particles are washed or heat-treated to produce desired spherical phosphor particles. The cleaning is performed according to the purpose with an organic solvent such as acetone or isopropyl alcohol, or various acids. In addition, in the case of spherical phosphor particles having a composition that is easily reduced, heat treatment in the presence of oxygen may show better fluorescence. Therefore, heat treatment in air or oxygen is performed at a temperature of 400 ° C. or higher. To produce desired spherical phosphor particles.

次に、本発明に係る球状蛍光体粒子が含有された少なくとも可視領域において透光性を有する樹脂組成物及びガラス組成物、並びにこれらの製造方法について説明する。   Next, a resin composition and a glass composition having translucency at least in the visible region containing the spherical phosphor particles according to the present invention, and methods for producing these will be described.

本発明に係る球状蛍光体粒子は、極めて流動性が良いため、樹脂又はガラスに充填する際に極めて良好な成形性を示す。得られた球状蛍光体粒子は、所望の充填率が得られるよう篩等によって分級された後、必要に応じて表面処理が施されて更に充填率を向上させることができる。表面処理剤としては、一般にシラン系カップリング剤が用いられるが、他にチタネート系及びアルミネート系カップリング剤を用いることもできる。   Since the spherical phosphor particles according to the present invention have extremely good fluidity, they exhibit extremely good moldability when filled into a resin or glass. The obtained spherical phosphor particles can be classified by a sieve or the like so as to obtain a desired filling rate, and then subjected to surface treatment as necessary to further improve the filling rate. As the surface treatment agent, a silane coupling agent is generally used, but titanate and aluminate coupling agents can also be used.

本発明に係る樹脂組成物としては、シリコーン樹脂及びエポキシ樹脂を用いることができるが、成形時に必要な流動性を有するとともに、光によって短時間の間に著しく失透しないものであれば特に限定されない。また成形時、必要に応じて硬化剤、硬化促進剤等が添加される。   As the resin composition according to the present invention, a silicone resin and an epoxy resin can be used. However, the resin composition is not particularly limited as long as it has the fluidity required at the time of molding and does not devitrify significantly by light in a short time. . Moreover, a hardening | curing agent, a hardening accelerator, etc. are added as needed at the time of shaping | molding.

本発明に係るガラス組成物としては、融点が1000℃以下で、成形時の温度で本発明の球状蛍光体粒子と著しく反応しない組成物を用いることができる。   As the glass composition according to the present invention, it is possible to use a composition having a melting point of 1000 ° C. or lower and does not significantly react with the spherical phosphor particles of the present invention at the molding temperature.

本発明に係る球状蛍光体粒子、樹脂組成物及びガラス組成物は、少なくとも可視領域において透光性を有する。   The spherical phosphor particles, resin composition, and glass composition according to the present invention have translucency at least in the visible region.

実施例1
次に、本発明に係る球状蛍光体粒子の実施例1について説明する。原料にはα−Al粉末、Y粉末及びTb粉末を用いた。α−Al粉末、Y粉末及びTb粉末を重量比で前者から65.3:29.3:5.4の割合で水を用いた湿式ボールミルによって混合し、スプレードライヤーを用いて得られたスラリーを造粒乾燥して平均粒径11μmの顆粒状の粒子を得た。
Example 1
Next, Example 1 of the spherical phosphor particles according to the present invention will be described. Α-Al 2 O 3 powder, Y 2 O 3 powder and Tb 4 O 7 powder were used as raw materials. The α-Al 2 O 3 powder, Y 2 O 3 powder and Tb 4 O 7 powder are mixed by a wet ball mill using water at a ratio of 65.3: 29.3: 5.4 from the former in a weight ratio and sprayed. The slurry obtained using a drier was granulated and dried to obtain granular particles having an average particle diameter of 11 μm.

酸素及びアセチレンの混合ガスの燃焼により形成された火炎中に、混合ガスの噴出方向と平行に得られた顆粒状の粒子を供給し、火炎中で溶融球状化した後、火炎先端を流水中へ入射させることで溶融粒子を流水中へ投入し凝固させることによって実施例1に係る球状蛍光体粒子を得た。   Granular particles obtained in parallel to the jet direction of the mixed gas are supplied into the flame formed by the combustion of the mixed gas of oxygen and acetylene, and melted and spheroidized in the flame. The spherical phosphor particles according to Example 1 were obtained by introducing the molten particles into running water and allowing them to solidify.

得られた実施例1に係る球状蛍光体粒子は、平均粒径8μmであり、その長辺と短辺の比は平均で1.02であった。実施例1に係る球状蛍光体粒子は、Cu−Kα線を用いたX線回折、透過電子顕微鏡観察及び透過電子顕微鏡に設置された半導体X線検出器による特性X線の分析により、Al、Y、O及びTbからなる非晶質相から構成されていることがわかった。   The obtained spherical phosphor particles according to Example 1 had an average particle size of 8 μm, and the ratio of the long side to the short side was 1.02 on average. Spherical phosphor particles according to Example 1 were obtained by analyzing X-ray diffraction using Cu-Kα rays, observation with a transmission electron microscope, and analysis of characteristic X-rays using a semiconductor X-ray detector installed in the transmission electron microscope. , O and Tb were found to be composed of an amorphous phase.

実施例1に係る球状蛍光体粒子をアセトンによって洗浄し乾燥した後、透明なシリコーン樹脂により封止して厚さ0.4mmの透明な成形物を作製し、蛍光スペクトルを測定した。380nmの励起波長で励起した際のこの成形物の蛍光スペクトルを図1に示す。   The spherical phosphor particles according to Example 1 were washed with acetone and dried, and then sealed with a transparent silicone resin to produce a transparent molded product having a thickness of 0.4 mm, and the fluorescence spectrum was measured. FIG. 1 shows the fluorescence spectrum of this molded product when excited at an excitation wavelength of 380 nm.

また、実施例1に係る球状蛍光体粒子をアセトンによって洗浄し乾燥した後、透明なビスマス系ガラスにより封止して上記と同様の透明な成形物を作製し、蛍光スペクトルを測定したところ、図1と同様な蛍光スペクトル図を得た。   Moreover, after washing | cleaning and drying the spherical fluorescent substance particle which concerns on Example 1 with acetone, it sealed with transparent bismuth type | system | group glass, and produced the transparent molded product similar to the above, and when the fluorescence spectrum was measured, A fluorescence spectrum similar to 1 was obtained.

実施例2
次に、本発明に係る球状蛍光体粒子の実施例2について説明する。原料組成を、α−Al粉末、Y粉末及びEu粉末を重量比で前者から63.9:22.3:13.8の割合に変更した以外は実施例1と同様の方法によって、実施例2に係る球状蛍光体粒子を得た。
Example 2
Next, Example 2 of the spherical phosphor particles according to the present invention will be described. Example 1 except that the raw material composition was changed from α-Al 2 O 3 powder, Y 2 O 3 powder and Eu 2 O 3 powder to a ratio of 63.9: 22.3: 13.8 from the former by weight ratio. By the same method, spherical phosphor particles according to Example 2 were obtained.

実施例2に係る球状蛍光体粒子は、平均粒径8μmであり、その長辺と短辺の比は平均で1.02であった。実施例2に係る球状蛍光体粒子は、Cu−Kα線を用いたX線回折、透過電子顕微鏡観察及び透過電子顕微鏡に設置された半導体X線検出器による特性X線の分析により、Al、Y、O及びEuからなる非晶質相から構成されていることがわかった。   The spherical phosphor particles according to Example 2 had an average particle diameter of 8 μm, and the ratio of the long side to the short side was 1.02 on average. The spherical phosphor particles according to Example 2 are obtained by analyzing X-ray diffraction using Cu-Kα rays, observation with a transmission electron microscope, and analysis of characteristic X-rays with a semiconductor X-ray detector installed in the transmission electron microscope. It was found to be composed of an amorphous phase composed of O, O and Eu.

実施例2に係る球状蛍光体粒子をアセトンによって洗浄し乾燥して空気中800℃で加熱した後、透明なシリコーン樹脂により封止して、厚さ0.4mmの透明な成形物を作製した。380nmの励起波長で励起した際の蛍光スペクトルを測定し、図2に示す蛍光スペクトル図を得た。   The spherical phosphor particles according to Example 2 were washed with acetone, dried, heated in air at 800 ° C., and then sealed with a transparent silicone resin to produce a transparent molded product having a thickness of 0.4 mm. The fluorescence spectrum when excited at an excitation wavelength of 380 nm was measured, and the fluorescence spectrum diagram shown in FIG. 2 was obtained.

実施例3
次に、本発明に係る球状蛍光体粒子の実施例3について説明する。実施例1及び2で得られたAl、Y、O及びTbからなる非晶質相から構成される球状粒子及びAl、Y、O及びEuからなる非晶質相から構成される球状粒子を混合した後、透明なシリコーン樹脂により封止して、厚さ0.4mmの透明な成形物を作製した。この成形物が380nmの励起波長の励起によって白色発光を呈することが確認された。
Example 3
Next, Example 3 of the spherical phosphor particles according to the present invention will be described. The spherical particles composed of the amorphous phase composed of Al, Y, O and Tb and the spherical particles composed of the amorphous phase composed of Al, Y, O and Eu obtained in Examples 1 and 2 were mixed. Then, it was sealed with a transparent silicone resin to produce a transparent molded product having a thickness of 0.4 mm. It was confirmed that this molded product exhibited white light emission by excitation with an excitation wavelength of 380 nm.

比較例1
比較例1として、溶融粒子を空気中で凝固させた以外は実施例1と同様の方法で球状粒子を得た。比較例1に係る球状粒子は、平均粒径8μmであり、Cu−Kα線を用いたX線回折、透過電子顕微鏡観察及び透過電子顕微鏡に設置された半導体X線検出器による特性X線の分析により、α−Al及びTbを含有するYAl12から構成されていることがわかった。
Comparative Example 1
As Comparative Example 1, spherical particles were obtained in the same manner as in Example 1 except that the molten particles were solidified in the air. The spherical particles according to Comparative Example 1 have an average particle size of 8 μm, X-ray diffraction using Cu-Kα rays, observation with a transmission electron microscope, and analysis of characteristic X-rays using a semiconductor X-ray detector installed in the transmission electron microscope. Thus, it was found that it was composed of Y 3 Al 5 O 12 containing α-Al 2 O 3 and Tb.

この比較例1に係る球状粒子をアセトンによって洗浄し乾燥した後、透明なシリコーン樹脂及びビスマス系ガラスにより封止して厚さ0.2mm及び0.4mmの透明な成形物を作製したところ、いずれも成形物を得ることができなかった。   The spherical particles according to Comparative Example 1 were washed with acetone and dried, and then sealed with a transparent silicone resin and bismuth glass to produce transparent molded products having a thickness of 0.2 mm and 0.4 mm. No molded product could be obtained.

実施例1で得られた球状蛍光体粒子の380nmの励起波長による蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum by the excitation wavelength of 380 nm of the spherical fluorescent substance particle obtained in Example 1. FIG. 実施例2で得られた球状蛍光体粒子の380nmの励起波長による蛍光スペクトルを示す図である。It is a figure which shows the fluorescence spectrum by the excitation wavelength of 380 nm of the spherical fluorescent substance particle obtained in Example 2. FIG.

Claims (7)

A(AはAl、Ga、Ge、W、P、V、Zn、Si、B、Mg、Ca、Ba、Sr及びScのいずれか一以上の元素)、Ln(LnはY、Gd、La、Sm、Dy、Ho、Er、Yb及びLuのいずれか一以上の元素)、O及び付活剤としてのR(RはEu、Tb、Ce、Sm、Tm、Pr、Nd、Dy、Ho、Er、Yb、Mn、Ti、Fe、Cr及びPbのいずれか一以上の元素であって、Lnとして選択される元素以外の元素)を主成分とする非晶質相を主相とし、長辺と短辺の比が平均で1.0〜1.1である球状蛍光体粒子。   A (A is Al, Ga, Ge, W, P, V, Zn, Si, B, Mg, Ca, Ba, Sr, and Sc), Ln (Ln is Y, Gd, La, One or more of Sm, Dy, Ho, Er, Yb, and Lu), O, and R as an activator (R is Eu, Tb, Ce, Sm, Tm, Pr, Nd, Dy, Ho, Er) , Yb, Mn, Ti, Fe, Cr, and Pb, and the main phase is an amorphous phase mainly composed of an element other than the element selected as Ln, Spherical phosphor particles having a short side ratio of 1.0 to 1.1 on average. 前記主成分を含有する溶融粒子を冷却凝固して前記非晶質相を形成させたことを特徴とする請求項1記載の球状蛍光体粒子。   The spherical phosphor particles according to claim 1, wherein the amorphous particles are formed by cooling and solidifying the molten particles containing the main component. 前記非晶質相中に結晶質相が存在することを特徴とする請求項1又は2記載の球状蛍光体粒子。   3. The spherical phosphor particles according to claim 1, wherein a crystalline phase is present in the amorphous phase. 前記結晶質相の長径は、200nm以下であることを特徴とする請求項3記載の球状蛍光体粒子。   4. The spherical phosphor particles according to claim 3, wherein the major axis of the crystalline phase is 200 nm or less. 前記主成分を含有する溶融粒子を冷却凝固して前記非晶質相を形成せることによって請求項1記載の球状蛍光体粒子を得る工程を有する球状蛍光体粒子の製造方法。   The method for producing spherical phosphor particles, comprising the step of obtaining the spherical phosphor particles according to claim 1 by cooling and solidifying the molten particles containing the main component to form the amorphous phase. 請求項1乃至4いずれか記載の球状蛍光体粒子が含有された樹脂組成物。   A resin composition containing the spherical phosphor particles according to claim 1. 請求項1乃至4いずれか記載の球状蛍光体粒子が含有されたガラス組成物。   A glass composition containing the spherical phosphor particles according to claim 1.
JP2008062527A 2008-03-12 2008-03-12 Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same Expired - Fee Related JP5446106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008062527A JP5446106B2 (en) 2008-03-12 2008-03-12 Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008062527A JP5446106B2 (en) 2008-03-12 2008-03-12 Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same

Publications (2)

Publication Number Publication Date
JP2009215486A true JP2009215486A (en) 2009-09-24
JP5446106B2 JP5446106B2 (en) 2014-03-19

Family

ID=41187674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008062527A Expired - Fee Related JP5446106B2 (en) 2008-03-12 2008-03-12 Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same

Country Status (1)

Country Link
JP (1) JP5446106B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same
JP2012208024A (en) * 2011-03-30 2012-10-25 Toyoda Gosei Co Ltd Measuring method of florescence spectrum of fluorescent body and measuring device
JP2015044938A (en) * 2013-08-28 2015-03-12 東芝マテリアル株式会社 Phosphor, method for producing the same, and led lamp using the phosphor
JP2015131912A (en) * 2014-01-14 2015-07-23 国立大学法人宇都宮大学 Transparent fluorescent substance and production method of the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201989A (en) * 1985-11-07 1987-09-05 Kasei Optonix Co Ltd Production of phosphor
JP2003231881A (en) * 2002-02-12 2003-08-19 Toshiba Corp Phosphor, method for producing phosphor and cathode- ray tube
JP2004217796A (en) * 2003-01-15 2004-08-05 Kasei Optonix Co Ltd Spherical rare earth oxide-based phosphor and method for producing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201989A (en) * 1985-11-07 1987-09-05 Kasei Optonix Co Ltd Production of phosphor
JP2003231881A (en) * 2002-02-12 2003-08-19 Toshiba Corp Phosphor, method for producing phosphor and cathode- ray tube
JP2004217796A (en) * 2003-01-15 2004-08-05 Kasei Optonix Co Ltd Spherical rare earth oxide-based phosphor and method for producing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same
JP2012208024A (en) * 2011-03-30 2012-10-25 Toyoda Gosei Co Ltd Measuring method of florescence spectrum of fluorescent body and measuring device
JP2015044938A (en) * 2013-08-28 2015-03-12 東芝マテリアル株式会社 Phosphor, method for producing the same, and led lamp using the phosphor
JP2015131912A (en) * 2014-01-14 2015-07-23 国立大学法人宇都宮大学 Transparent fluorescent substance and production method of the same

Also Published As

Publication number Publication date
JP5446106B2 (en) 2014-03-19

Similar Documents

Publication Publication Date Title
JP5522033B2 (en) Transparent phosphor and method for producing the same
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
Kang et al. Preparation of nonaggregated Y2O3: Eu phosphor particles by spray pyrolysis method
Jung et al. Improved photoluminescence of BaMgAl10O17 blue phosphor prepared by spray pyrolysis
Kang et al. Brightness and decay time of Zn 2 SiO 4: Mn phosphor particles with spherical shape and fine size
JP5446106B2 (en) Spherical phosphor particles, process for producing the same, resin composition and glass composition containing the same
WO2002088275A1 (en) Phosphor and production method therefor
TWI538983B (en) Yttrium cerium aluminum garnet phosphors and light emitting devices
JP4124056B2 (en) Method for producing phosphor powder
JP2000336353A (en) Production of fluorescent aluminate
JP2000087033A (en) Production of phosphor
Kang et al. Green-emitting yttrium silicate phosphor particles prepared by large scale ultrasonic spray pyrolysis
JP4266488B2 (en) Phosphor made of hollow particles, method for producing the same, and phosphor slurry
JP2004277543A (en) Method for producing phosphor particle
JP2000109825A (en) Preparation of terbium-activated yttrium aluminate fluorescent substance
JP2009215134A (en) Water resistant spherical particle, resin composition containing it, its producing method, filler being aggregation of the water resistant spherical particle and semiconductor resin sealing agent containing the filler
KR100560585B1 (en) Preparation Method of Blue BAM Phosphor
JP2002069441A (en) Method of producing acid sulfide fluorescent substance
JP2000096048A (en) Production of terbium-activated yttrium silicate fluorescent substance
JP2002322472A (en) Fluorophor and method for producing the same
JP2005002157A (en) Method for producing phosphor
JP2002322470A (en) Fluorophor and method for producing the same
JP2001107042A (en) Production method of phosphor powder
JP2009215257A (en) Particles for use in radiotherapy and production method thereof
Toda et al. Morphology Control of High Luminance Phosphors

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120822

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130409

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131203

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131216

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees