JPH1088127A - Production of rare earth element aluminate fluorescent substance - Google Patents

Production of rare earth element aluminate fluorescent substance

Info

Publication number
JPH1088127A
JPH1088127A JP23892896A JP23892896A JPH1088127A JP H1088127 A JPH1088127 A JP H1088127A JP 23892896 A JP23892896 A JP 23892896A JP 23892896 A JP23892896 A JP 23892896A JP H1088127 A JPH1088127 A JP H1088127A
Authority
JP
Japan
Prior art keywords
rare earth
phosphor
particle
earth element
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP23892896A
Other languages
Japanese (ja)
Other versions
JP3785689B2 (en
Inventor
Yasunobu Noguchi
泰延 野口
Masahiro Yoneda
昌弘 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichia Chemical Industries Ltd
Original Assignee
Nichia Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichia Chemical Industries Ltd filed Critical Nichia Chemical Industries Ltd
Priority to JP23892896A priority Critical patent/JP3785689B2/en
Publication of JPH1088127A publication Critical patent/JPH1088127A/en
Application granted granted Critical
Publication of JP3785689B2 publication Critical patent/JP3785689B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Luminescent Compositions (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a rare earth element aluminate fluorescent substance improved in a brightness-electric current characteristic (γ characteristic), a temperature characteristic and a life characteristic. SOLUTION: This method for producing a rare earth element aluminate fluorescent substance comprises sintering a raw material mixture containing at least a rare earth element oxide and alumina or an aluminum compound capable of being easily converted into the alumina at a high temperature. Therein, the rare earth element oxide satisfies the following conditions, and has a spherical particle shape and a uniform particle distribution. The raw material mixture is sintered in a temperature range of 1350-1650 deg.C. D1 /Ds <=1.5; 1.0<=Da <=6.0; 1.0<=Dm <=12.0; 1.0<=Dm /Da <=2.0, and 0<=σlog <=0.30. Therein, D1 is the major axis (μm) of the particle; Ds is the minor axis (μm); Da is an average particle diameter (μm); Dm is a middle particle diameter (μm); σlog is an index representing the width of a particle size distribution.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、希土類アルミネート蛍
光体の製造方法に係り、特に、投写管用緑色発光蛍光体
として使用される、γ特性及び温度特性が良好で、かつ
長寿命な希土類アルミネート蛍光体の製造方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a rare-earth aluminate phosphor, and more particularly to a rare-earth aluminum phosphor having a good .gamma. The present invention relates to a method for producing a nate phosphor.

【0002】[0002]

【従来の技術】大型画面用のカラーテレビは、青、緑、
赤のモノクロームCRT3個を用いてスクリーン上に拡
大投写し、カラー映像を写し出す投写型ディスプレイが
使用されている。大画面であって、しかも高輝度の映像
を実現するには、モノクロームCRT(投写管)の蛍光
面には高電圧、高電流が印加して使用される。その為に
蛍光面を構成する蛍光体には次のような特性が要求され
る。
2. Description of the Related Art Color televisions for large screens are blue, green,
2. Description of the Related Art A projection display that uses three red monochrome CRTs to project an enlarged image on a screen to project a color image is used. In order to realize a large-screen and high-luminance video, a high voltage and a high current are applied to a fluorescent screen of a monochrome CRT (projection tube). Therefore, the following characteristics are required for the phosphor constituting the phosphor screen.

【0003】(1)投写管の内面に塗布される蛍光体に
は、高電流を流しても輝度が飽和しない輝度−電流特性
(γ特性)の良好な蛍光体が望まれる。これは、大画面
上にしかも高輝度に拡大投写する必要からの条件であ
る。
(1) As a phosphor applied to the inner surface of a projection tube, a phosphor having good luminance-current characteristics (γ characteristics) that does not saturate the luminance even when a high current flows is desired. This is a condition because it is necessary to perform enlarged projection on a large screen with high luminance.

【0004】(2)高温でも安定に高輝度な発光を有す
る蛍光体である。(温度特性)投写管用蛍光体には上述
したように極めて大きな電力が投入される。これは通常
のCRTに比べ、およそ100倍程度にも達する。その
為に、発光に使用されなかったエネルギーは全て熱を発
生する。その結果、投写管内部の蛍光体は100°C以
上にも加熱されることとなり、高温でも輝度低下の起こ
りにくい蛍光体であることが要求される。
(2) A phosphor that emits light with high luminance stably even at high temperatures. (Temperature Characteristics) An extremely large electric power is supplied to the phosphor for the projection tube as described above. This is about 100 times that of a normal CRT. Therefore, any energy not used for light emission generates heat. As a result, the phosphor inside the projection tube is heated to 100 ° C. or higher, and it is required that the phosphor be hardly reduced in luminance even at a high temperature.

【0005】(3)高付加の条件で励起発光されても長
寿命である。さらに、このような大電流が流されて使用
される為に、結晶の破壊の起こり難くい安定した結晶構
造の蛍光体であることが要求される。
(3) It has a long life even when excited and emitted under high load conditions. Further, since such a large current is applied to the phosphor, the phosphor is required to be a phosphor having a stable crystal structure which is unlikely to be broken.

【0006】蛍光体母体或いは付活剤が希土類元素で構
成される希土類蛍光体は、一般的にこれらの(1)〜
(3)の特性に優れているため投写管用に適しており、
投写管用緑色発光蛍光体としてTb(テルビウム)で付
活された(Y1-xTbx3(Al1-yGay512蛍光体
(但し、RはTb及びCeからなる群から選ばれた少な
くとも一種であり、1×10-3≦x≦2×10-1、0≦
y≦1である)が用いられる。この蛍光体は母体結晶が
ガーネット構造であり、高温度下の使用に比較的強い希
土類アルミネート蛍光体である。
[0006] Rare earth phosphors whose phosphor matrix or activator is composed of a rare earth element are generally (1) to (4)
It is suitable for projection tubes because it has excellent characteristics of (3).
Was activated by Tb (terbium) as a green-emitting phosphor for a projection tube (Y 1-x Tb x) 3 (Al 1-y Ga y) 5 O 12 phosphor (where, R represents a group consisting of Tb and Ce At least one kind selected, 1 × 10 −3 ≦ x ≦ 2 × 10 −1 , 0 ≦
y ≦ 1) is used. This phosphor is a rare earth aluminate phosphor whose host crystal has a garnet structure and is relatively strong for use at high temperatures.

【0007】[0007]

【発明が解決しようとする課題】上述したガーネット構
造の希土類アルミネート蛍光体は上述した(1)〜
(3)の特性を満たし、現在投写管用緑色発光蛍光体と
して最も実用的な蛍光体の一つであるが、本発明の課題
は、これらの特性を更に改善できる希土類アルミネート
蛍光体を提供することにある。すなわち、輝度−電流特
性(γ特性)、温度特性、寿命特性が更に良好である希
土類アルミネート蛍光体を提供することを目的とする。
The rare earth aluminate phosphor having a garnet structure described above is described in (1) to (4) above.
The present invention is one of the most practical phosphors as a green light emitting phosphor for a projection tube, which satisfies the characteristic of (3), but an object of the present invention is to provide a rare earth aluminate phosphor which can further improve these characteristics. It is in. That is, an object of the present invention is to provide a rare-earth aluminate phosphor having better luminance-current characteristics (γ characteristics), temperature characteristics, and life characteristics.

【0008】[0008]

【課題を解決するための手段】本発明者は、前記課題を
解決するには蛍光体そのものの結晶安定性を改善するこ
とがポイントであると考えた。そして、特に、希土類酸
化物原料の粒子的性質に着目して、これが最終の蛍光体
の上述した発光性能に大きく影響すると考え、多くの希
土類酸化物の粒子について鋭意検討した結果、蛍光体原
料として最適な粒子形状、粒径、粒度分布が存在し、最
適な焼成温度と組み合わせることで、上述した課題を解
決できることを見いだし本発明を完成させるに至った。
Means for Solving the Problems The present inventor considered that the key to solving the above problems was to improve the crystal stability of the phosphor itself. In particular, paying attention to the particle properties of the rare earth oxide raw material, it is thought that this greatly affects the above-described luminescence performance of the final phosphor, and as a result of earnestly examining many rare earth oxide particles, as a phosphor raw material The present inventors have found that there are optimal particle shapes, particle diameters, and particle size distributions, and that the above-mentioned problems can be solved by combining the particles with an optimal firing temperature, and have completed the present invention.

【0009】すなわち、本発明の希土類アルミネート蛍
光体の製造方法は、次に(1)項〜(3)項を特徴とす
る。
That is, the method for producing a rare earth aluminate phosphor of the present invention is characterized by the following items (1) to (3).

【0010】(1)希土類酸化物と、アルミナあるいは
高温で加熱すると容易にアルミナになるアルミニウム化
合物を少なくとも含む混合原料を、焼成する希土類アル
ミネート蛍光体の製造方法において、前記希土類酸化物
は、次の条件を満たし、粒子形状が球状で粒のそろった
粒度分布をもち、前記混合原料を1350〜1650°
Cの範囲で焼成することを特徴とする希土類アルミネー
ト蛍光体の製造方法。
(1) In a method for producing a rare-earth aluminate phosphor, a rare-earth oxide and alumina or a mixed material containing at least an aluminum compound which easily becomes alumina when heated at a high temperature is fired. And the particle shape is spherical and has a uniform particle size distribution, and the mixed raw material is 1350-1650 °
A method for producing a rare earth aluminate phosphor characterized by firing in the range of C.

【0011】Dl/Ds≦1.5 1.0≦Da≦6.0 1.0≦Dm≦12.0 1.0≦Dm/Da≦2.0 0≦σlog≦0.30 ここで、Dlは粒子の長径(μm)、Dsは短径(μ
m)、Daは平均粒径(μm)、Dmは中央粒径(μ
m)、σlogは粒度分布の広がりを示す指標である。
D l / D s ≦ 1.5 1.0 ≦ D a ≦ 6.0 1.0 ≦ D m ≦ 12.0 1.0 ≦ D m / D a ≦ 2.0 0 ≦ σ log ≦ 0.30 here, Dl is the major axis of the particle (μm), D s is the short diameter (mu
m), D a is the average particle diameter (μm), D m is the median particle size (mu
m) and σ log are indices indicating the spread of the particle size distribution.

【0012】(2)前記希土類酸化物は、イットリウム
(Y)と、テルビウム(Tb)、またはセリウム(C
e)から選ばれる少なくとも1種の共沈酸化物であるこ
とを特徴とする(1)項に記載の希土類アルミネート蛍
光体の製造方法。
(2) The rare earth oxide is composed of yttrium (Y), terbium (Tb), or cerium (C
e) At least one coprecipitated oxide selected from the group consisting of: e) a method for producing a rare earth aluminate phosphor according to item 1);

【0013】(3)前記希土類アルミネート蛍光体の組
成式は、(Y1-xx3(Al1-yGay512で表され
ることを特徴とする(1)項に記載の希土類アルミネー
ト蛍光体の製造方法。(但し、RはTb及びCeからな
る群から選ばれた少なくとも一種であり、1×10-3
x≦2×10-1、0≦y≦1である)
(3) The composition formula of the rare earth aluminate phosphor is represented by (Y 1-x R x ) 3 (Al 1-y G ay ) 5 O 12. 3. The method for producing a rare earth aluminate phosphor according to item 1. (Where R is at least one selected from the group consisting of Tb and Ce, and 1 × 10 −3
x ≦ 2 × 10 −1 and 0 ≦ y ≦ 1)

【発明の実施の形態】本発明において使用する希土類酸
化物の粒子の特徴は、粒子形状が球形であり、粒子の大
きさが1.0〜6.0μm程度であり、粒のそろった粒
度分布を持つことが特徴である。このような粒子の特徴
を持つ希土類酸化物は、特開平3−271117号、特
開平3−271118号、及び特開平8−59233号
公報に開示される方法により得ることができる。
BEST MODE FOR CARRYING OUT THE INVENTION The characteristics of the rare earth oxide particles used in the present invention are that the particle shape is spherical, the particle size is about 1.0 to 6.0 μm, and the particle size distribution is uniform. The feature is to have. Rare earth oxides having such particle characteristics can be obtained by the methods disclosed in JP-A-3-271117, JP-A-3-271118, and JP-A-8-59233.

【0014】例えば、特開平8−59233号公報に
は、希土類イオンと蓚酸イオンとの反応において、反応
開始から濾別、水洗までの間、−5°C以上20°C以
下に保つとともに有機塩基の共存下に希土類蓚酸塩を沈
殿させ、濾別水洗後−5°C以上20°C以下の水蒸気
未飽和の空気流中におくこと、または、−20°C以上
20°C以下での真空乾燥あるいは凍結真空乾燥によっ
て付着水を除去した後、焼成する方法が開示されてい
る。本発明において、これらの方法により得られる球状
希土類酸化物をそのまま利用することはできるが、この
方法に限るものではない。また、この酸化物を分級する
ことによりさらに粒度分布のシャープな希土類酸化物粒
子を得ることができる。
For example, JP-A-8-59233 discloses that in the reaction of rare earth ions with oxalate ions, from the start of the reaction to filtration and washing with water, the temperature is kept at -5 ° C or more and 20 ° C or less and an organic base is used. Precipitate the rare earth oxalate in the co-presence of, and wash by filtration and place in a steam-saturated air stream at -5 ° C to 20 ° C, or vacuum at -20 ° C to 20 ° C A method is disclosed in which attached water is removed by drying or freeze-vacuum drying, followed by baking. In the present invention, the spherical rare earth oxide obtained by these methods can be used as it is, but is not limited to this method. Further, by classifying this oxide, rare earth oxide particles having a sharper particle size distribution can be obtained.

【0015】このような方法で得られる希土類酸化物を
アルミナあるいは高温で加熱すると容易にアルミナにな
るアルミニウム化合物と化学量論比で混合する。このよ
うなアルミニウム化合物として、水酸化アルミニウム、
硝酸アルミニウム等がある。この原料混合時に、必要に
応じてアルカリ金属及び/又はアルカリ土類金属のハロ
ゲン化物をフラックスとして配合し湿式又は乾式で十分
に混合し、1350〜1650°Cの高温で、電気炉、
坩堝、或いは焼成量等の条件にもよるが、2〜10時間
焼成することで、本発明の蛍光体を得ることができる。
The rare earth oxide obtained by such a method is mixed in stoichiometric ratio with alumina or an aluminum compound which easily becomes alumina when heated at a high temperature. As such an aluminum compound, aluminum hydroxide,
Aluminum nitrate and the like. At the time of mixing the raw materials, if necessary, a halide of an alkali metal and / or an alkaline earth metal is blended as a flux and mixed well in a wet or dry manner, and at a high temperature of 1350 to 1650 ° C., an electric furnace,
The phosphor of the present invention can be obtained by baking for 2 to 10 hours, depending on the conditions such as the crucible or the amount of baking.

【0016】<希土類酸化物粒子の形状>酸化物粒子の
形状が球状であることにより、焼成時のAl2O3(アル
ミナ)との反応が均一となり、希土類アルミネート蛍光
体の異常成長が起こり難く、高温度であるに関わらず均
質な製品を焼成することができる。また、球状であるた
めにアルミナあるいは高温で加熱すると容易にアルミナ
になるアルミニウム化合物Al2O3との混合が均一に行
われ、その結果、焼成品の組成のばらつきが小さくな
る。球状であることは、粒子を顕微鏡でみると分かる
が、形状を客観的な指標で評価するには、希土類酸化物
粒子の顕微鏡写真の代表的な複数個の粒子の長径D
lと、短径Dsを測定して、Dl/Dsの値を計算し、Dl
/Ds≦1.5の関係を満たす範囲であることが球状の
範囲であり、焼成反応に良好に作用する。
<Shape of Rare-Earth Oxide Particle> Since the shape of the oxide particle is spherical, the reaction with Al 2 O 3 (alumina) at the time of firing becomes uniform, so that the rare-earth aluminate phosphor is unlikely to grow abnormally. A homogeneous product can be fired regardless of the temperature. In addition, because of its spherical shape, the mixing with alumina or the aluminum compound Al2O3 which easily becomes alumina when heated at a high temperature is uniformly performed, and as a result, the composition variation of the fired product is reduced. It can be seen that the particles are spherical by observing the particles with a microscope. To evaluate the shape with an objective index, the major diameters of a plurality of typical particles in a micrograph of a rare earth oxide particle are shown.
and l, by measuring the short diameter D s, and calculate the value of D l / D s, D l
The range that satisfies the relationship of / D s ≦ 1.5 is the range of the spherical shape, and works well for the firing reaction.

【0017】図1にDl/Dsと、輝度−電流特性(相対
γ特性)の関係をプロットする。ここで、相対γ特性と
は次のように定義する。測定サンプル蛍光面をデマンタ
ブル装置に装着し、0.05μA/cm2の電流密度の
電子線で蛍光面を走査したときの基準蛍光体に対する相
対発光輝度L0.05を測定し、50μA/cm2の電流密
度の電子線で蛍光面を走査したときの基準蛍光体に対す
る相対発光輝度L50を測定した場合、γ=L50/L0.05
×100%を相対γ特性として定義する。図1より、D
l/Dsの値が1に近づくに従い、すなわち真球に近づく
ほどγ特性が向上していることが分かる。Dl/Dsの値
は1.5以下で相対γ特性は1%を越えて効果が確認で
きるようになる。
FIG. 1 plots the relationship between D l / D s and the luminance-current characteristic (relative γ characteristic). Here, the relative γ characteristic is defined as follows. The measurement sample fluorescent screen mounted on Demantaburu device, a phosphor screen to determine the relative emission luminance L0.05 respect to the reference phosphor when scanned by an electron beam current density of 0.05 A / cm 2, of 50 .mu.A / cm 2 when measuring the relative emission brightness L 50 with respect to the reference phosphor when scanning the phosphor screen with the electron beam current density, γ = L 50 / L 0.05
× 100% is defined as a relative γ characteristic. From FIG. 1, D
It can be seen that the γ characteristic is improved as the value of l / D s approaches 1, that is, as it approaches a true sphere. When the value of D l / D s is 1.5 or less, the relative γ characteristic exceeds 1%, and the effect can be confirmed.

【0018】<希土類酸化物粒子の大きさ>希土類酸化
物の粒子径は、蛍光体の目標粒径に依存する。蛍光体を
大きくする場合は希土類酸化物の粒径を大きくすること
で可能となる。希土類酸化物の粒径は下式の範囲が適当
である。
<Size of Rare Earth Oxide Particles> The particle size of the rare earth oxide depends on the target particle size of the phosphor. The size of the phosphor can be increased by increasing the particle size of the rare earth oxide. The particle size of the rare earth oxide is suitably in the range of the following formula.

【0019】1.0≦Da≦6.0 1.0≦Dm≦12.0 ここでDaは空気透過法であるFisher Sub−S
ieve Sizerを用いて測定される平均径であ
り、Daは酸化物の比表面積から測定され、顕微鏡写真
でみる大小関係に近い粒子径に相当し、基本粒径という
ことができる。これに対しDmは電気抵抗法の粒度分布
測定装置であるELZONE80xyを用いて測定され
る中央粒径である。これは測定原理から分散状態にある
か凝集状態にあるかの知見を含んだ粒径ということがで
きる。
1.0 ≦ D a ≦ 6.0 1.0 ≦ D m ≦ 12.0 where Da is Fisher Sub-S which is an air permeation method.
It is an average diameter measured using an item sizer, and Da is measured from the specific surface area of the oxide, corresponds to a particle diameter close to a size relationship seen in a micrograph, and can be said to be a basic particle diameter. On the other hand, Dm is a median particle size measured using ELZONE80xy which is a particle size distribution measuring device of an electric resistance method. This can be said to be a particle size that includes a knowledge of whether it is in a dispersed state or an aggregated state from the measurement principle.

【0020】<希土類酸化物粒子の分散性>通常、Dm
はDaより大きくなり、このことは凝集傾向にあること
を示している。それで、Dm/Daの値は1に近いほど高
い分散状態にあることを意味する。希土類酸化物は、ア
ルミナあるいは高温で加熱すると容易にアルミナになる
アルミニウム化合物と理想的に混合される為には分散性
が高い方が望ましい。凝集すれば、原料の均一な混合は
行われない。Dm/Daの値はγ特性にも影響を与える
が、特に温度特性を改善するのに効果がある。
[0020] <dispersibility of the rare earth oxide particles> Usually, D m
Is larger than D a, this indicates that the aggregation tendency. Therefore, the closer the value of D m / D a is to 1, the higher the dispersion state is. It is desirable that the rare earth oxide has high dispersibility in order to be ideally mixed with alumina or an aluminum compound which easily becomes alumina when heated at a high temperature. If agglomerated, the raw materials will not be uniformly mixed. Although the value of D m / D a affects the γ characteristics, it is particularly effective in improving the temperature characteristics.

【0021】図2にDm/Daと、温度特性の関係をプロ
ットする。ここで、温度特性は常温での発光輝度に対す
る、110°Cの温度下の相対発光輝度であり、測定セ
ルを加熱しながら輝度を測定する。図2はこれを各Dm
/Daの値に対し測定した。図2より、Dm/Daの値が
1に近づくに従い、すなわち分散性が良いほど温度特性
が向上していることが分かる。Dm/Daの値は温度特性
が88%以上となる範囲、すなわち、1.0≦Dm/Da
≦2.0の範囲であることが好ましい。
FIG. 2 plots the relationship between D m / D a and temperature characteristics. Here, the temperature characteristic is a relative light emission luminance at a temperature of 110 ° C. with respect to the light emission luminance at room temperature, and the luminance is measured while heating the measurement cell. FIG. 2 shows this for each D m
/ Were measured for the value of D a. From FIG. 2, it can be seen that as the value of D m / D a approaches 1, that is, the better the dispersibility, the better the temperature characteristics. The value of D m / D a is in a range where the temperature characteristic is 88% or more, that is, 1.0 ≦ D m / D a
It is preferable that the range is ≦ 2.0.

【0022】<希土類酸化物の粒度分布>希土類酸化物
の粒子の重要な要件の一つに粒度分布がシャープである
ことがある。すなわち、希土類酸化物の粒子の粒がそろ
っていることが重要である。そのことで原料の均一な混
合が成され、焼成される希土類アルミネートの発光性能
を向上することができる。粒度分布がシャープであるこ
とを示す指標としてσlogを用いて表現することができ
る。ここで、σlogは次式で定義された値である。
<Particle Size Distribution of Rare Earth Oxide> One of the important requirements of rare earth oxide particles is that the particle size distribution is sharp. That is, it is important that the particles of the rare earth oxides are uniform. As a result, the raw materials are uniformly mixed, and the luminous performance of the fired rare earth aluminate can be improved. It can be expressed using σ log as an index indicating that the particle size distribution is sharp. Here, σ log is a value defined by the following equation.

【0023】 σlog=[Σ{Pi(logDi−logDG2}]1/2 但し、logDG=ΣPilogDi、ここで、Diは階級
値、Piは相対頻度、logはeを底とする自然対数で
ある。
[0023] σ log = [Σ {P i (logD i -logD G) 2}] 1/2 where, logD G = ΣP i logD i , where, D i is class value, P i is the relative frequency, log Is the natural logarithm with e as the base.

【0024】実際のσlogの値は、希土類酸化物を水懸
濁液として、電気抵抗式の粒度分布測定装置であるEL
ZONE80xyを用いて希土類酸化物の重量基準分布
を測定して、コンピューターにより上記式を計算して求
める。
The actual value of σ log is obtained by using an electric resistance type particle size distribution measuring device EL as a water suspension of a rare earth oxide.
The weight-based distribution of the rare earth oxide is measured using ZONE80xy, and the above formula is calculated and obtained by a computer.

【0025】この値の物理的な意味は、測定粒径の対数
値の標準偏差値であり、この値が小さいほど粒度分布は
シャープである。本発明において、希土類酸化物粒子の
σlo gの値は上述した発光性能の全てにおいて向上する
ことができるが、特に温度特性の向上に効果がある。
The physical meaning of this value is the standard deviation of the logarithmic value of the measured particle size, and the smaller this value is, the sharper the particle size distribution is. In the present invention, the value of sigma lo g of the rare earth oxide particles can be improved in all the light-emitting performance as described above, it is effective in particularly improved temperature characteristics.

【0026】図3にσlogと、温度特性の関係をプロッ
トする。Dm/Daの値が1に近づくに従い、すなわち粒
度分布がシャープなほど分散性が良いほど温度特性が向
上している。σlogの値は温度特性が90%以上の値を
示す範囲、すなわち、0≦σl og≦0.3の範囲である
ことが好ましい。
FIG. 3 plots the relationship between σ log and temperature characteristics. Gets closer to the value of D m / D a is 1, i.e. the particle size distribution is improved temperature characteristics as good dispersibility as sharp. The value of σ log is preferably in a range where the temperature characteristic shows a value of 90% or more, that is, in a range of 0 ≦ σ l og ≦ 0.3.

【0027】本発明において、希土類アルミネート蛍光
体は、1350〜1650°Cの高温度で焼成する。そ
れで、特に蛍光体原料混合物が高度に均一に混合された
ものでなければ異常反応が起こりやすくなる。この異常
反応を防ぐには、希土類酸化物はより均一に混合され易
いことが好ましい。その結果、発光性能の優れた希土類
アルミネート蛍光体を得ることができる。
In the present invention, the rare earth aluminate phosphor is fired at a high temperature of 1350 to 1650 ° C. Therefore, an abnormal reaction is likely to occur unless the phosphor raw material mixture is highly uniformly mixed. In order to prevent this abnormal reaction, it is preferable that the rare-earth oxide is easily mixed more uniformly. As a result, a rare earth aluminate phosphor excellent in light emission performance can be obtained.

【0028】寿命特性はデマンタブル装置に測定試料を
装着し、30kvの電圧、8.6μA/cm2の電流密
度の電子線で250時間走査した場合の輝度維持率
(%)で定義する。
The life characteristics are defined as a luminance maintenance ratio (%) when a measurement sample is mounted on a demountable device and scanned with an electron beam having a voltage of 30 kV and a current density of 8.6 μA / cm 2 for 250 hours.

【0029】本発明は、(Y1-xx3(Al1-y
y512で表され、RはTb及びCeからなる群から
選ばれた少なくとも一種であり、1×10-3≦x≦2×
10-1、0≦y≦1であるガーネット構造のアルミネー
ト蛍光体の内、Tb付活のもののみについて説明した
が、付活剤がCeである蛍光体の発光性能を向上するこ
とも同様にできる。
The present invention relates to (Y 1-x R x ) 3 (Al 1-y G
a y ) 5 O 12 , wherein R is at least one selected from the group consisting of Tb and Ce, and 1 × 10 −3 ≦ x ≦ 2 ×
Among the aluminate phosphors having a garnet structure in which 10 -1 and 0 ≦ y ≦ 1, only those activated with Tb have been described. However, the same applies to the case where the phosphor having Ce as an activator improves the light emission performance. Can be.

【0030】[0030]

【実施例】【Example】

[実施例1](Y0.93Tb0.0723の組成で、次の粒
子特性を持つ希土類酸化物を100gに対し、 Dl/Ds=1.1 Da=3.4 Dm=5.7 Dm/Da=1.68 σlog=0.244 Al2O3・・・・・・・・・・・・86g Ga2O3・・・・・・・・・・・106g BaF2・・・・・・・・・・・・ 18g を十分に乾式混合して、坩堝に詰め、酸化雰囲気で15
00°Cで2時間焼成した。得られた蛍光体を通常行う
分散、水洗、乾燥し、篩を通して、(Y0.93Tb 0.07
3(Al0.6Ga0.4512蛍光体を得た。電流特性、温
度特性、寿命特性を測定し結果を表1にまとめた。
 [Example 1] (Y0.93Tb0.07)TwoOThreeThe composition of the next grain
D for 100 g of rare earth oxide havingl/ Ds= 1.1 Da= 3.4 Dm= 5.7 Dm/ Da= 1.68 σlog= 0.244 Al2O3 86 g Ga2O3 106 g BaF2 18 g was thoroughly dry mixed. And put it in a crucible and put it in an oxidizing atmosphere for 15
It was baked at 00 ° C for 2 hours. Perform the resulting phosphor normally
Dispersion, washing, drying, sieving, (Y0.93Tb 0.07)
Three(Al0.6Ga0.4)FiveO12A phosphor was obtained. Current characteristics, temperature
Degree characteristics and life characteristics were measured, and the results are summarized in Table 1.

【0031】[実施例2](Y0.93Tb0.0723の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.1 Da=2.3 Dm=4.2 Dm/Da=1.83 σlog=0.271 とすること以外、実施例1と同様にして希土類アルミネ
ート蛍光体を得た。電流特性、温度特性、寿命特性を測
定し結果を表1にまとめる。
Example 2 A rare earth oxide having the following particle characteristics and having the composition of (Y 0.93 Tb 0.07 ) 2 O 3 was obtained as follows: D 1 / D s = 1.1 Da = 2.3 D m = A rare earth aluminate phosphor was obtained in the same manner as in Example 1, except that 4.2 D m / D a = 1.83 σ log = 0.271. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0032】[実施例3](Y0.93Tb0.0723の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.1 Da=5.4 Dm=8.4 Dm/Da=1.75 σlog=0.250 とすること以外、実施例1と同様にして(Y0.93Tb
0.073(Al0.6Ga0.4512蛍光体を得た。蛍光体
を得た。電流特性、温度特性、寿命特性を測定し結果を
表1にまとめる。
Example 3 A rare earth oxide having the following particle characteristics and having the composition of (Y 0.93 Tb 0.07 ) 2 O 3 was obtained as follows: D 1 / D s = 1.1 Da = 5.4 D m = 8.4 D m / D a = 1.75 σ log = 0.250 except that it was the same as in Example 1 (Y 0.93 Tb
0.07 ) 3 (Al 0.6 Ga 0.4 ) 5 O 12 phosphor was obtained. A phosphor was obtained. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0033】[実施例4](Y0.93Tb0.0723の組
成で、次の粒子特性を持つ希土類酸化物を100gに対
し、 Dl/Ds=1.1 Da=3.4 Dm=5.7 Dm/Da=1.68 σlog=0.244 Al2O3・・・・・・・・・・・・86g Ga2O3・・・・・・・・・・・106g YF2・・・・・・・・・・・・ 0.3g AlF2・・・・・・・・・・・ 0.3g を十分に乾式混合して、坩堝に詰め、還元雰囲気で15
00°Cで2時間焼成した。得られた蛍光体を通常行う
分散、水洗、乾燥し、篩いを通して、(Y0.93
0.073(Al0.6Ga0.4512蛍光体を得た。電流
特性、温度特性、寿命特性を測定し結果を表1にまとめ
た。
[0033] [Example 4] (Y 0.93 Tb 0.07) in the composition of the 2 O 3, relative to 100g of rare earth oxides with the following particle characteristics, D l / D s = 1.1 D a = 3.4 D m = 5.7 D m / D a = 1.68 σ log = 0.244 Al 2 O 3 ··· 86 g Ga 2 O 3 ··· 106 g YF 2 · 0.3 g AlF2 0.3 g was thoroughly dry-mixed and packed in a crucible.
It was baked at 00 ° C for 2 hours. The obtained phosphor is dispersed, washed with water, dried, and sieved in a usual manner to give (Y 0.93 T
b 0.07) 3 (to obtain a Al 0.6 Ga 0.4) 5 O 12 phosphor. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0034】[比較例1](Y0.93Tb0.0723の組
成で、次の粒子特性を持つ希土類酸化物を、 Dl/Ds=1.8 Da=3.4 Dm=11.1 Dm/Da=3.26 σlog=0.386 とすること以外、実施例1と同様にして(Y0.93Tb
0.073(Al0.6Ga0.4512蛍光体を得た。蛍光体
を得た。電流特性、温度特性、寿命特性を測定し結果を
表1にまとめる。
[Comparative Example 1] A rare earth oxide having a composition of (Y 0.93 Tb 0.07 ) 2 O 3 and having the following particle characteristics was obtained as follows: D 1 / D s = 1.8 Da = 3.4 D m = 11.1 In the same manner as in Example 1 except that D m / D a = 3.26 σ log = 0.386 (Y 0.93 Tb)
0.07 ) 3 (Al 0.6 Ga 0.4 ) 5 O 12 phosphor was obtained. A phosphor was obtained. The current characteristics, temperature characteristics, and life characteristics were measured, and the results are summarized in Table 1.

【0035】[0035]

【表1】 [Table 1]

【0036】[0036]

【発明の効果】本発明の蛍光体の製造方法に従えば、蛍
光体の結晶の結晶性を向上することで、高電流を流して
も輝度飽和の少ないγ特性の良好な、高温でも輝度低下
の起こりにくい、温度特性が良好で高付加の条件で励起
発光されても長寿命である希土類アルミネート蛍光体が
得られる。
According to the method for producing a phosphor of the present invention, the crystallinity of the phosphor is improved so that the γ characteristics are small even when a high current is applied and the luminance is reduced even at a high temperature. It is possible to obtain a rare-earth aluminate phosphor which has a good temperature characteristic and a long life even when excited and emitted under high addition conditions.

【0037】この蛍光体を投写管の内面の蛍光膜、ある
いはそれ以外の高電流密度で使用される用途の蛍光膜に
用いられた場合、高性能な陰極線管を提供することがで
きる。
When this phosphor is used for a phosphor film on the inner surface of a projection tube or other phosphor films used at a high current density, a high-performance cathode ray tube can be provided.

【0038】特に、希土類酸化物としてYとTbの共沈
酸化物である場合、投写管用に適した希土類アルミネー
ト蛍光体を得ることができる。
In particular, when the rare earth oxide is a coprecipitated oxide of Y and Tb, a rare earth aluminate phosphor suitable for a projection tube can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】Dl/Dsの値と相対γ特性の関係を示す特性
図。
FIG. 1 is a characteristic diagram showing a relationship between a value of D l / D s and a relative γ characteristic.

【図2】Dm/Daの値と温度特性の関係を示す特性図。FIG. 2 is a characteristic diagram showing a relationship between a value of D m / D a and a temperature characteristic.

【図3】σlogの値と温度特性の関係を示す特性図。FIG. 3 is a characteristic diagram showing a relationship between a value of σ log and a temperature characteristic.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 希土類酸化物と、アルミナあるいは高温
で加熱すると容易にアルミナになるアルミニウム化合物
を少なくとも含む混合原料を、焼成する希土類アルミネ
ート蛍光体の製造方法において、前記希土類酸化物は、
次の条件を満たし、粒子形状が球状で粒のそろった粒度
分布をもち、前記混合原料を1350〜1650°Cの
範囲で焼成することを特徴とする希土類アルミネート蛍
光体の製造方法。 Dl/Ds≦1.5 1.0≦Da≦6.0 1.0≦Dm≦12.0 1.0≦Dm/Da≦2.0 0≦σlog≦0.30 ここで、Dlは粒子の長径(μm)、Dsは短径(μ
m)、Daは平均粒径(μm)、Dmは中央粒径(μ
m)、σlogは粒度分布の広がりを示す指標である。
1. A method for producing a rare earth aluminate phosphor, comprising sintering a rare earth oxide and a mixed raw material containing at least alumina or an aluminum compound which easily becomes alumina when heated at a high temperature, wherein the rare earth oxide comprises:
A method for producing a rare earth aluminate phosphor, characterized in that the following conditions are satisfied, the particle shape is spherical, the particle size distribution is uniform, and the mixed raw material is fired at 1350 to 1650 ° C. D 1 / D s ≦ 1.5 1.0 ≦ D a ≦ 6.0 1.0 ≦ D m ≦ 12.0 1.0 ≦ D m / D a ≦ 2.0 0 ≦ σ log ≦ 0.30 here, Dl the major axis of the particle (μm), D s is the short diameter (mu
m), D a is the average particle diameter (μm), D m is the median particle size (mu
m) and σ log are indices indicating the spread of the particle size distribution.
【請求項2】 前記希土類酸化物は、イットリウム
(Y)と、テルビウム(Tb)、またはセリウム(C
e)から選ばれる少なくとも1種の共沈酸化物であるこ
とを特徴とする請求項1に記載の希土類アルミネート蛍
光体の製造方法。
2. The rare earth oxide includes yttrium (Y), terbium (Tb), or cerium (C).
The method for producing a rare earth aluminate phosphor according to claim 1, wherein the oxide is at least one coprecipitated oxide selected from e).
【請求項3】 前記希土類アルミネート蛍光体の組成式
は、(Y1-xx3(Al1-yGay512で表されるこ
とを特徴とする請求項1に記載の希土類アルミネート蛍
光体の製造方法。(但し、RはTb及びCeからなる群
から選ばれた少なくとも一種であり、1×10-3≦x≦
2×10-1、0≦y≦1である)
3. The composition of the rare earth aluminate phosphor is represented by (Y 1 -x R x ) 3 (Al 1 -y G ay ) 5 O 12. Production method of rare earth aluminate phosphors. (Where R is at least one selected from the group consisting of Tb and Ce, and 1 × 10 −3 ≦ x ≦
2 × 10 −1 , 0 ≦ y ≦ 1)
JP23892896A 1996-09-10 1996-09-10 Method for producing rare earth aluminate phosphor Expired - Fee Related JP3785689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23892896A JP3785689B2 (en) 1996-09-10 1996-09-10 Method for producing rare earth aluminate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23892896A JP3785689B2 (en) 1996-09-10 1996-09-10 Method for producing rare earth aluminate phosphor

Publications (2)

Publication Number Publication Date
JPH1088127A true JPH1088127A (en) 1998-04-07
JP3785689B2 JP3785689B2 (en) 2006-06-14

Family

ID=17037366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23892896A Expired - Fee Related JP3785689B2 (en) 1996-09-10 1996-09-10 Method for producing rare earth aluminate phosphor

Country Status (1)

Country Link
JP (1) JP3785689B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024528A1 (en) * 1997-11-12 1999-05-20 Matsushita Electric Industrial Co., Ltd. Phosphor, fluorescent substance produced from the same and processes for the production of both
US6290875B1 (en) 1999-02-12 2001-09-18 Matsushita Electric Industrial Co., Ltd. Trivalent rare earth ion-containing aluminate phosphor, a method for producing the same and a light emitting device using the same
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus
JP2006041096A (en) * 2004-07-26 2006-02-09 Nichia Chem Ind Ltd Light emission device and phosphor
US7161287B2 (en) 2003-11-12 2007-01-09 Nichia Corporation Green emitting yttrium silicate phosphor and cathode-ray tube using the same
JP2010272544A (en) * 1998-08-27 2010-12-02 Cabot Corp Safety management product containing photoluminescence fluorophosphor particle
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same
JP2021054910A (en) * 2019-09-27 2021-04-08 日亜化学工業株式会社 Manufacturing method of rare earth aluminate phosphor, rare earth aluminate phosphor and light-emitting device

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999024528A1 (en) * 1997-11-12 1999-05-20 Matsushita Electric Industrial Co., Ltd. Phosphor, fluorescent substance produced from the same and processes for the production of both
JP2010272544A (en) * 1998-08-27 2010-12-02 Cabot Corp Safety management product containing photoluminescence fluorophosphor particle
JP2015018812A (en) * 1998-08-27 2015-01-29 キャボット コーポレイションCabot Corporation Safety management product containing photoluminescence phosphor particle
US6290875B1 (en) 1999-02-12 2001-09-18 Matsushita Electric Industrial Co., Ltd. Trivalent rare earth ion-containing aluminate phosphor, a method for producing the same and a light emitting device using the same
US6455213B1 (en) * 2000-01-04 2002-09-24 Lg Electronics, Inc. Method for manufacturing phosphor layer for image display apparatus
US7161287B2 (en) 2003-11-12 2007-01-09 Nichia Corporation Green emitting yttrium silicate phosphor and cathode-ray tube using the same
JP2006041096A (en) * 2004-07-26 2006-02-09 Nichia Chem Ind Ltd Light emission device and phosphor
JP4645089B2 (en) * 2004-07-26 2011-03-09 日亜化学工業株式会社 Light emitting device and phosphor
JP2012017454A (en) * 2010-06-09 2012-01-26 Shin-Etsu Chemical Co Ltd Phosphor particle, light-emitting diode, and lighting system and liquid crystal panel backlight device using the same
JP2021054910A (en) * 2019-09-27 2021-04-08 日亜化学工業株式会社 Manufacturing method of rare earth aluminate phosphor, rare earth aluminate phosphor and light-emitting device

Also Published As

Publication number Publication date
JP3785689B2 (en) 2006-06-14

Similar Documents

Publication Publication Date Title
KR100342044B1 (en) Green Emitting Phosphor Composition and Cathod-Ray Tube manufactured using the same
US5600202A (en) Green-emitting phosphor and cathode-ray tube employing it
JP3785689B2 (en) Method for producing rare earth aluminate phosphor
JPS61174291A (en) Phosphor emitting blue light
JP3399231B2 (en) Method for producing yttrium silicate phosphor
JP3399245B2 (en) Manufacturing method of rare earth oxide phosphor
US5115306A (en) Projection crt with a green emitting terbium activated lanthanum oxychloride phosphor exhibiting nearly constant light-output of elevated temperatures
JP2002080847A (en) Rare earth silicate phosphor and luminescent screen using the same
JP2003055657A (en) Phosphor for low-speed electron beam
JP2607316B2 (en) Mixed type green light emitting phosphor and cathode ray tube using this green light emitting phosphor
JP3263991B2 (en) Blue light emitting phosphor
JP3440301B2 (en) Phosphor
JPS6119688A (en) Blue-emitting phosphor and blue-emitting cathode ray tube containing the same for use in color projection type picture tube
JPH06248263A (en) Green emitting phosphor mixture and cathode ray tube made by using it
KR100315226B1 (en) A blue phosphor with high brightness for low-voltage applications
JP3906075B2 (en) Monochrome phosphor for FED
JPH0715096B2 (en) Afterglow fluorescent
JP2004051931A (en) Rare earth silicate phosphor
KR100329559B1 (en) Green Emitting Phosphor, Green Emitting Phosphor Composition containing the same and Cathod-Ray Tube manufactured using the same
JPS6047583A (en) Color projection type video device
JPH10140149A (en) Short-afterglow phosphor
JPS5840381A (en) Bluish green fluophor
JPH10140150A (en) Phosphor and production of phosphor
JP2868657B2 (en) Phosphor
JPS60170686A (en) Blue emitting braun tube for color display unit of projection type

Legal Events

Date Code Title Description
A977 Report on retrieval

Effective date: 20050805

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Effective date: 20050811

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20050929

Free format text: JAPANESE INTERMEDIATE CODE: A523

A131 Notification of reasons for refusal

Effective date: 20051129

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20060228

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Effective date: 20060313

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090331

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20090331

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20100331

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100331

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees