JP2002194347A - Fluorescent substance, method for producing the same and luminous device - Google Patents
Fluorescent substance, method for producing the same and luminous deviceInfo
- Publication number
- JP2002194347A JP2002194347A JP2000391027A JP2000391027A JP2002194347A JP 2002194347 A JP2002194347 A JP 2002194347A JP 2000391027 A JP2000391027 A JP 2000391027A JP 2000391027 A JP2000391027 A JP 2000391027A JP 2002194347 A JP2002194347 A JP 2002194347A
- Authority
- JP
- Japan
- Prior art keywords
- phosphor
- particles
- fluorescent substance
- raw material
- sphericity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Luminescent Compositions (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は蛍光体およびその製
造方法に係り、特に発光特性を向上させることが可能な
ように真球度を高めた蛍光体およびその蛍光体を安価
に、かつ容易に量産することが可能な製造方法に関す
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a phosphor and a method for producing the same, and more particularly, to a phosphor having a higher sphericity so as to improve emission characteristics, and a phosphor at a low cost and easily. The present invention relates to a manufacturing method that can be mass-produced.
【0002】[0002]
【従来の技術】所定組成を有する蛍光体粉末を含有する
蛍光膜を表示画面等の発光面(透光性気密容器)の内面
に一体に形成した発光デバイスが、CRT(陰極線
管),FED(電界放射ディスプレイ),PDP(プラ
ズマディスプレイパネル),Hgランプ,Xeランプ等
として広く使用されている。2. Description of the Related Art A light emitting device in which a fluorescent film containing a phosphor powder having a predetermined composition is integrally formed on the inner surface of a light emitting surface (translucent airtight container) such as a display screen is known as a CRT (cathode ray tube), FED ( Widely used as field emission display), PDP (plasma display panel), Hg lamp, Xe lamp and the like.
【0003】上記発光デバイスに使用されている従来の
蛍光体粉末は、蛍光体を構成する成分化合物と活性剤
(反応促進剤)とを、所定比率で配合した原料混合体を
1200〜1300℃程度の温度で焼成し、固相反応を
経て製造されている。ところが、焼成したままの蛍光体
粒子は焼結操作により団塊状に形成されているため、焼
成後の蛍光体粒子を所定の粒径を有するように粉砕して
実際の使用に適した蛍光体粉末とされている。[0003] The conventional phosphor powders used in the light emitting device, component compounds and the active agent constituting the phosphor (reaction promoter) and the about 1200 to 1300 ° C. The raw material mixture formulated with a predetermined ratio It is manufactured by baking at a temperature of and a solid phase reaction. However, since the phosphor particles remain baking is formed into nodular by sintering operation, suitable for practical use phosphor particles after firing was pulverized to have a predetermined particle size phosphor powder It has been.
【0004】しかしながら、上記のように合成調製した
蛍光体粉末は、蛍光体の結晶構造を反映した粒子形状と
なってしまう場合が多く、反応促進剤などの添加剤によ
ってその粒子形状を僅かに制御できるだけに留まってい
る。そのため、従来の合成方法による蛍光体粉末は、一
般に不定形状を有する粉末の割合が多く、発光特性が均
一になりにくく、また、粉砕工程で粒子表面に損傷を受
けているため、発光効率が低下し易い問題点があった。However, the phosphor powder synthesized and prepared as described above often has a particle shape reflecting the crystal structure of the phosphor, and the particle shape is slightly controlled by additives such as a reaction accelerator. Stay as much as possible. For this reason, the phosphor powder obtained by the conventional synthesis method generally has a large proportion of powder having an irregular shape, making it difficult for the light emission characteristics to become uniform, and also causing the particle surface to be damaged during the pulverization process, thereby lowering the light emission efficiency. there was easy problem to have.
【0005】上記不定形状を有する蛍光体粉末による発
光特性の低下を防止するために、例えば特開2000−
96048号公報および特開2000−109825号
公報に開示されているように、蛍光体の原料混合体を熱
分解反応炉を通して微細化し、球状度を改善した蛍光体
粉末を得る方法も試行されている。具体的には、テルビ
ウム付活アルミン酸イットリウム蛍光体の構成成分を含
有する水溶液を液滴状にして熱分解反応炉内に導入し、
600〜1750℃の高温度範囲で加熱した後に、さら
に1050〜1750℃の温度範囲で再加熱することを
特徴とするものである。[0005] In order to prevent the emission characteristics from being degraded by the phosphor powder having the irregular shape, for example, Japanese Patent Application Laid-Open No. 2000-2000.
As disclosed in Japanese Patent No. 96048 and Japanese Patent Application Laid-Open No. 2000-109825, a method of obtaining a phosphor powder having an improved sphericity by pulverizing a raw material mixture of a phosphor through a pyrolysis reactor has been tried. . Specifically, an aqueous solution containing the components of the terbium-activated yttrium aluminate phosphor is introduced into the thermal decomposition reactor in the form of droplets,
After heating in a high temperature range of 600 to 1750 ° C, reheating is further performed in a temperature range of 1050 to 1750 ° C.
【0006】[0006]
【発明が解決しようとする課題】しかしながら、上記の
ように熱分解反応炉を用いた従来の合成方法において
は、原料混合体の熱分解時に600℃以上の高温度に加
熱する必要があり、高い熱エネルギーを消費する製造プ
ロセスであるためエネルギー効率が低く、蛍光体粉末の
製造コストが大幅に上昇してしまう致命的な問題点があ
った。また、熱分解反応を均一に進行させるためには熱
分解反応炉の運転制御を高精度に実施する必要があり、
製造装置の運転管理および取扱いが極めて煩雑になる問
題点があった。However, in the conventional synthesis method using a thermal decomposition reactor as described above, it is necessary to heat the raw material mixture to a high temperature of 600 ° C. or more during the thermal decomposition. low energy efficiency because it is a manufacturing process that consumes thermal energy, there is a fatal problem that the manufacturing cost of the phosphor powder rises significantly. In addition, in order for the pyrolysis reaction to proceed uniformly, it is necessary to control the operation of the pyrolysis reactor with high accuracy,
There has been a problem that the operation management and handling of the manufacturing apparatus become extremely complicated.
【0007】本発明は上記問題点を解決するためになさ
れたものであり、特に発光特性を向上させることが可能
なように真球度を高めた蛍光体およびその蛍光体を安価
に、かつ容易に量産することが可能な製造方法を提供す
ることを目的とする。[0007] The present invention has been made to solve the above problems, in particular an inexpensive phosphor and the phosphor enhanced sphericity as capable of improving light emission properties, and easily It is an object of the present invention to provide a manufacturing method which can be mass-produced.
【0008】[0008]
【課題を解決するための手段】上記目的を達成するた
め、本願発明者らは蛍光体粉末の真球度を高めることが
可能な蛍光体の製造方法を種々検討した。その結果、特
に蛍光体成分を含有する溶液を噴霧乾燥処理してほぼ球
状の原料粒子とし、この原料粒子の形状を維持できる温
度で焼成したときに、真球度が特に優れた蛍光体粉末
が、安価に、かつ容易に得られるという知見を得た。本
発明は上記知見に基づいて完成されたものである。Means for Solving the Problems In order to achieve the above object, the present inventors have studied various methods for producing a phosphor capable of increasing the sphericity of the phosphor powder. As a result, particularly when the solution containing the phosphor component is spray-dried into substantially spherical raw material particles and fired at a temperature capable of maintaining the shape of the raw material particles, a phosphor powder having particularly excellent sphericity is obtained. , Inexpensively and easily obtained. The present invention has been completed based on the above findings.
【0009】すなわち、本発明に係る蛍光体は、蛍光体
成分を含有する溶液を噴霧乾燥した後に焼成した多数の
粒子から成り、各粒子の投影像の周囲長をLとし、投影
像の実面積をAとしたときに4πA/L2で表わされる
真球度の平均値が0.95以上であることを特徴とす
る。That is, the phosphor according to the present invention is composed of a large number of particles obtained by spray-drying a solution containing the phosphor component and then sintering. The peripheral length of the projected image of each particle is L, and the actual area of the projected image is L. Where A is the average value of the sphericity expressed by 4πA / L 2 is 0.95 or more.
【0010】上記蛍光体において、前記蛍光体がマンガ
ン付活珪酸亜鉛蛍光体であることが好ましい。In the above phosphor, it is preferable that the phosphor is a manganese-activated zinc silicate phosphor.
【0011】また、本発明に係る蛍光体の製造方法は、
蛍光体成分を含有する溶液を噴霧分散して液滴を調製
し、得られた液滴を熱風と接触せしめて乾燥し球状の原
料粒子とし、さらに原料粒子を温度900〜1200℃
で焼成することを特徴とする。Further, the method for producing a phosphor according to the present invention comprises:
A solution containing the phosphor component is spray-dispersed to prepare droplets, and the resulting droplets are contacted with hot air and dried to form spherical raw material particles. The raw material particles are further heated to a temperature of 900 to 1200 ° C.
In and firing.
【0012】さらに上記製造方法において、前記熱風の
温度が200℃以下であることが好ましく、また前記蛍
光体がマンガン付活珪酸亜鉛蛍光体であることが好まし
い。Further, in the above manufacturing method, the temperature of the hot air is preferably 200 ° C. or less, and the phosphor is preferably a manganese-activated zinc silicate phosphor.
【0013】また、本発明に係る発光デバイスは上記蛍
光体を含有する発光層を透光性気密容器内面に一体に形
成したことを特徴とする。Further, the light emitting device according to the present invention is characterized in that the light emitting layer containing the above-mentioned phosphor is formed integrally with the inner surface of the light-transmitting airtight container.
【0014】本発明が対象とする蛍光体の組成は特に限
定されるものではないが、蛍光体がマンガン付活珪酸亜
鉛蛍光体である場合には、特に真球度が高く、蛍光体膜
として構成したときに優れた発光特性を有する蛍光体粉
末が得られる。Although the composition of the phosphor targeted by the present invention is not particularly limited, when the phosphor is a manganese-activated zinc silicate phosphor, the sphericity is particularly high, and the phosphor film is When configured, a phosphor powder having excellent emission characteristics can be obtained.
【0015】上記マンガン付活珪酸亜鉛蛍光体を製造す
る場合には、下記のような珪酸化合物,亜鉛化合物,活
性剤(付活剤)を使用する。すなわち、珪酸化合物とし
ては、オルト珪酸メチルやオルト珪酸エチルなどのシリ
コンアルコキシドもしくはコロイダルシリカが使用でき
る。また亜鉛化合物としては硝酸亜鉛,酢酸亜鉛,塩化
亜鉛,硫酸亜鉛などの可溶性塩の他に亜鉛のアルコキシ
ドやエステルを使用することができる。さらに活性剤と
してはマンガン化合物等を使用することができる。この
マンガン化合物としては、硝酸マンガン,酢酸マンガ
ン,塩化マンガン,硫酸マンガンなどの可溶性塩の他
に、マンガンのアルコキシドやエステルのいずれでも使
用することが可能である。When the manganese-activated zinc silicate phosphor is manufactured, the following silicate compound, zinc compound and activator (activator) are used. That is, as the silicate compound, silicon alkoxide such as methyl orthosilicate or ethyl orthosilicate or colloidal silica can be used. As the zinc compound, alkoxides and esters of zinc can be used in addition to soluble salts such as zinc nitrate, zinc acetate, zinc chloride, and zinc sulfate. Further, a manganese compound or the like can be used as the activator. As the manganese compound, in addition to soluble salts such as manganese nitrate, manganese acetate, manganese chloride, and manganese sulfate, any of manganese alkoxides and esters can be used.
【0016】本発明に係る真球形状を有する蛍光体は、
以下のような手順で製造される。まず溶媒中に珪酸化合
物,亜鉛化合物,活性剤などの蛍光体を構成する成分原
料を溶解または分散させて原料溶液として調製する。溶
媒としては、水,メタノール,エタノールなどのアルコ
ール類,n−ヘキサン等の飽和炭化水素などが好適に使
用できる。The phosphor having a true spherical shape according to the present invention is:
It is prepared by the following procedures. First silicate compound in a solvent, zinc compounds, prepared as phosphor ingredient material constituting dissolving or dispersing the by raw material solution, such as active agents. As the solvent, water, alcohols such as methanol and ethanol, and saturated hydrocarbons such as n-hexane can be suitably used.
【0017】各成分原料の溶解量または分散量は、過大
になると後述する噴霧処理が困難となるため、1mol
の蛍光体を製造するために必要な化学量論的組成に応じ
た各成分原料を2〜6リットルの溶媒に溶解または分散
させた濃度が好適である。If the amount of dissolution or dispersion of each component material is too large, it becomes difficult to perform the spraying treatment described below.
It is preferable that each component material is dissolved or dispersed in 2 to 6 liters of a solvent according to the stoichiometric composition required for producing the phosphor of the present invention.
【0018】具体的にマンガン付活珪酸亜鉛蛍光体を調
製する場合には、水溶性の亜鉛,珪素,マンガン化合
物,例えばZn,Mnの塩化物もしくは水中で容易にこ
れら元素のイオンとなり得る化合物を純水に溶解し、こ
の水溶液中に組成式Zn2SiO4:Mn(Mn量は、
Zn2SiO4母体に対して0.03〜0.12mol
%)となるように、化学量論比で秤量した珪酸エチルを
添加し、さらに少量の硝酸を添加する。次に珪酸エチル
が完全に溶解するまで十分に撹拌して所定量のZn,M
n,Siを含有する水溶液を調製する。[0018] If the concrete is prepared manganese activated zinc silicate phosphor, a water-soluble zinc, silicon, manganese compounds, for example Zn, readily compounds that may be of element ions in chloride or water Mn It is dissolved in pure water and the composition formula Zn 2 SiO 4 : Mn (Mn content is
0.03 to 0.12 mol based on Zn 2 SiO 4 matrix
%), Ethyl silicate weighed in stoichiometric ratio is added, and a small amount of nitric acid is further added. Next, a sufficient amount of Zn, M was added by sufficiently stirring until the ethyl silicate was completely dissolved.
An aqueous solution containing n and Si is prepared.
【0019】次に上記のように調製した原料溶液を噴霧
・分散して球状の液滴を調製する。噴霧・分散装置(微
粒子化装置)としては、超音波振動を利用した噴霧装
置,回転円板によるアトマイズ装置などの汎用の微粒子
化装置の他に、加圧したアトマイズ用気体を利用して液
体を微細に分散する加圧二流体ノズルを用いることも効
果的である。Next, the raw material solution prepared as described above is sprayed and dispersed to prepare spherical droplets. Spraying / dispersing devices (particulateizers) include atomizers using ultrasonic vibration, atomizing devices using a rotating disk, and other general-purpose atomizers, as well as the use of pressurized atomizing gas to generate liquid. It is also effective to use a finely dispersed pressurized two-fluid nozzle.
【0020】上記加圧二流体ノズルに供給するアトマイ
ズ用気体の圧力および液体供給量を制御することによ
り、液滴の粒径を0.5〜50μmの範囲で調節するこ
とが可能である。この液滴の粒径は、最終的に形成する
蛍光体粉末の粒径の大小によって異なるが2〜8μm程
度に調節することが好ましい。By controlling the pressure of the atomizing gas supplied to the pressurized two-fluid nozzle and the liquid supply amount, it is possible to adjust the particle size of the droplets in the range of 0.5 to 50 μm. The particle size of the droplet varies depending on the size of the phosphor powder finally formed, but is preferably adjusted to about 2 to 8 μm.
【0021】次に生成した球状の液滴を、所定温度に加
熱した熱風が充填または流通している乾燥室に送給す
る。熱効率を高めるために、液滴を生成する微粒子化装
置は乾燥室に直結して配置することが好ましい。乾燥室
に送給された液滴は熱風と接触することにより乾燥さ
れ、球状の原料粒子となる。Next, the generated spherical droplets are sent to a drying chamber filled or circulated with hot air heated to a predetermined temperature. In order to increase the thermal efficiency, it is preferable that the atomizing device for generating droplets is directly connected to the drying chamber. The droplets sent to the drying chamber are dried by contacting with hot air to become spherical raw material particles.
【0022】ここで上記液滴を乾燥する熱風の温度は2
00℃以下とすることが好ましい。上記熱風温度が20
0℃を超えると、原料粒子の表面に亀裂や欠陥が発生し
易くなり、また粒子の表面粗さも荒れ易く、蛍光体特性
を低下させ易い上に、熱エネルギーコストが大幅に上昇
してしまう。上記熱風温度を200℃以下とすることに
よって、表面粗さが小さく、欠陥が少ない原料粒子が得
られ、蛍光体製造時のエネルギー効率が大幅に改善され
る。Here, the temperature of the hot air for drying the droplets is 2
The temperature is preferably set to 00 ° C. or lower. The hot air temperature is 20
If the temperature exceeds 0 ° C., cracks and defects are likely to be generated on the surface of the raw material particles, the surface roughness of the particles is likely to be rough, the phosphor characteristics are easily deteriorated, and the heat energy cost is greatly increased. By setting the hot air temperature to 200 ° C. or lower, raw material particles having a small surface roughness and few defects can be obtained, and the energy efficiency at the time of producing the phosphor is greatly improved.
【0023】次に得られた球状の原料粒子を大気中また
は非酸化性雰囲気中において温度900〜1200℃の
範囲で焼成することによって、本発明に係る蛍光体粉末
が効率的に製造される。上記焼成温度が900度未満と
低過ぎる場合には、結晶性が低い上に、Mnが結晶内に
付活されないために発光特性が低下する。一方、焼成温
度が1200℃を超えるように過大になると、原料粒子
の真球形状を維持したままで焼成することが困難にな
り、蛍光体の真球度が低下してしまう上に、熱エネルギ
ーコストが高くなり、蛍光体の製造コストの上昇を招き
易い。Next, the phosphor powder according to the present invention is efficiently produced by firing the obtained spherical raw material particles in the air or in a non-oxidizing atmosphere at a temperature in the range of 900 to 1200 ° C. If the firing temperature is too low, less than 900 ° C., the crystallinity is low and Mn is not activated in the crystal, so that the light emission characteristics are reduced. On the other hand, if the firing temperature is excessively into to exceed 1200 ° C., on the firing while maintaining a true spherical shape of the raw material particles becomes difficult, sphericity of the phosphor is reduced, thermal energy The cost increases, and the production cost of the phosphor tends to increase.
【0024】本発明に係る蛍光体は、上記製造方法で説
明したように、蛍光体成分を含有する溶液を噴霧乾燥し
た後に焼成した多数の粒子から成り、各粒子の投影像の
周囲長をLとし、投影像の実面積をAとしたときに4π
A/L2で表わされる真球度Rの平均値が0.95以上
であることを特徴とする。As described in the above manufacturing method, the phosphor according to the present invention is composed of a large number of particles which are obtained by spray-drying a solution containing the phosphor component and then firing, and the peripheral length of the projected image of each particle is L. And 4π when the actual area of the projected image is A
Mean values of sphericity R represented by A / L 2 is equal to or is less than 0.95.
【0025】各種ディスプレイやランプなどの発光デバ
イスに用いられる蛍光膜は、蛍光体の粒子形状やサイズ
により、蛍光体の充填密度が大きく影響を受ける。そし
て蛍光体の粒子形状が真球状であれば、具体的には上記
真球度Rの平均値が0.95以上であれば、蛍光膜にお
ける蛍光体の充填密度を高めることが可能であり、発光
輝度を大幅に改善できる。The packing density of a phosphor is greatly affected by the particle shape and size of the phosphor in a phosphor film used for a light emitting device such as various displays and lamps. If the particle shape of the phosphor is truly spherical, specifically, if the average value of the sphericity R is 0.95 or more, it is possible to increase the packing density of the phosphor in the phosphor film, Light emission luminance can be greatly improved.
【0026】そこで本発明に係る蛍光体を構成する各蛍
光体粒子の真球度Rの平均値は0.95以上と規定され
る。ここで上記真球度Rは各蛍光体粒子の平面への投影
像の面積をAとする一方、投影像の周囲長さをLとした
ときに4πA/L2で与えられる値として定義される。Therefore, the average value of the sphericity R of each phosphor particle constituting the phosphor according to the present invention is specified to be 0.95 or more. Here, the sphericity R is defined as a value given by 4πA / L 2 where A is the area of the projected image of each phosphor particle on the plane and L is the peripheral length of the projected image. .
【0027】上記真球度R(=4πA/L2)は蛍光体
粒子の真球度を表わす係数であり、この係数値が1に近
いほど、粒子形状が真球に近いことになり、粒子形状が
完全に球である場合には1となる値である。The sphericity R (= 4πA / L 2 ) is a coefficient representing the sphericity of the phosphor particles. The closer this coefficient value is to 1, the closer the particle shape is to a true sphere. When the shape is completely spherical, the value is 1.
【0028】上記各蛍光体粒子の真球度Rの平均値が
0.95未満の場合は、蛍光膜に高い充填密度で蛍光体
を充填することが困難となり、この蛍光膜を有する発光
デバイスの輝度向上が不十分となる。そのため、真球度
Rの平均値は0.95以上に規定されるが、0.97以
上がより好ましく、さらには0.98以上が望ましい。If the average value of the sphericity R of each of the phosphor particles is less than 0.95, it becomes difficult to fill the phosphor with a high packing density in the phosphor film. The improvement in brightness is insufficient. Therefore, the average value of the sphericity R is specified to be 0.95 or more, more preferably 0.97 or more, and further preferably 0.98 or more.
【0029】上記蛍光体粒子の真球度Rの平均粒径は、
無作為に選別した約100個の磁性粒子を平板上に載置
した状態で走査型電子顕微鏡(SEM)によって投影像
を撮影し、得られた粒子投影像画像を画像処理すること
により迅速に測定することができる。上記画像処理を実
施するための画像処理装置としては、例えばピアス社製
画像処理装置(型番:PIAS−III)が好適に使用
できる。The average particle size of the sphericity R of the phosphor particles is as follows:
Approximately 100 randomly selected magnetic particles are placed on a flat plate, and a projection image is taken with a scanning electron microscope (SEM), and the obtained particle projection image is image-processed for quick measurement. can do. As an image processing apparatus for performing the above-described image processing, for example, an image processing apparatus manufactured by Pierce (model number: PIAS-III) can be suitably used.
【0030】上記構成に係る蛍光体によれば蛍光体粒子
の真球度を所定の範囲に高く規定しているため、蛍光膜
に高い充填密度で蛍光体を充填することが可能になり、
発光デバイスの輝度を大幅に改善することができる。According to the phosphor having the above-described structure, the sphericity of the phosphor particles is defined to be high within a predetermined range, so that the phosphor can be filled in the phosphor film at a high filling density.
The brightness of the light emitting device can be greatly improved.
【0031】また本発明に係る蛍光体の製造方法によれ
ば、蛍光体原料溶液を噴霧し、低温度の熱風により乾燥
し、さらに得られた粒子の形状を維持できる温度で焼成
しているため、欠陥が少なく真球度に優れた蛍光体を容
易かつ効率的に製造することができる。特に乾燥時の熱
風温度を200℃以下にすることにより、熱エネルギー
消費量が低減されるとともに製造装置の運転管理も容易
になり、蛍光体を安価に、かつ効率的に製造することが
できる。According to the method for producing a phosphor according to the present invention, the phosphor raw material solution is sprayed, dried with low-temperature hot air, and fired at a temperature that can maintain the shape of the obtained particles. In addition, a phosphor having few defects and excellent sphericity can be easily and efficiently manufactured. Especially by the hot air temperature during drying in 200 ° C. or less, the operation control of the manufacturing apparatus with heat energy consumption is reduced even easier, cheaper phosphor, and can be efficiently manufactured.
【0032】[0032]
【発明の実施の形態】次に本発明の実施形態について以
下に示す実施例および比較例を参照して具体的に説明す
る。DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, embodiments of the present invention will be specifically described with reference to the following Examples and Comparative Examples.
【0033】実施例1 2molのZnSO4と0.07molのMnCl2と
を秤量し2リットルの純水中に溶解し、少量の硝酸を添
加して均一に混合した。得られた混合液に1molのS
i(OC2H5)4を添加し、完全に溶解するまで十分
に撹拌して原料溶液を調製した。次に、加圧二流体ノズ
ルを有し、温度200℃の熱風を流通させた乾燥室に直
結した微粒子装置に上記原料溶液を供給し、原料溶液を
液滴状に噴霧すると同時に液滴を熱風に接触せしめ乾燥
して原料微粒子を調製した。さらに乾燥した原料微粒子
を大気中で温度1000℃で3時間焼成することによ
り、実施例1に係るマンガン付活珪酸亜鉛蛍光体を製造
した。 Example 1 2 mol of ZnSO 4 and 0.07 mol of MnCl 2 were weighed and dissolved in 2 liters of pure water, and a small amount of nitric acid was added and mixed uniformly. 1 mol of S was added to the obtained mixture.
i (OC 2 H 5 ) 4 was added, and the mixture was sufficiently stirred until completely dissolved to prepare a raw material solution. Then, a pressurized two-fluid nozzle, the raw material solution was fed to the particle system which is directly connected to the drying chamber is circulated hot air temperature 200 ° C., hot air droplets simultaneously spraying the raw material solution into droplets , And dried to prepare raw material fine particles. Further, the dried raw material fine particles were calcined in the atmosphere at a temperature of 1000 ° C. for 3 hours to produce the manganese-activated zinc silicate phosphor according to Example 1.
【0034】実施例2〜3 蛍光体の原料微粒子の焼成温度をそれぞれ1050℃,
1100℃に変更した点以外は実施例1と同一条件で原
料溶液調製,噴霧乾燥,焼成処理を実施することによ
り、実施例2〜3に係るマンガン付活珪酸亜鉛蛍光体を
製造した。 Examples 2 and 3 The firing temperature of the raw material particles of the phosphor was 1050 ° C., respectively.
Except that the temperature was changed to 1100 ° C., the raw material solution was prepared, spray-dried, and fired under the same conditions as in Example 1 to produce manganese-activated zinc silicate phosphors according to Examples 2 to 3.
【0035】実施例4 2molのZnSO4と0.05molのMnCl2と
を秤量し2リットルの純水中に溶解し、少量の硝酸を添
加して均一に混合した。得られた混合液に1molのS
i(OC2H5)4を添加し、完全に溶解するまで十分
に撹拌して原料溶液を調製した。次に、加圧二流体ノズ
ルを有し、温度200℃の熱風を流通させた乾燥室に直
結した微粒子装置に上記原料溶液を供給し、原料溶液を
液滴状に噴霧すると同時に液滴を熱風に接触せしめ乾燥
して原料微粒子を調製した。さらに乾燥した原料微粒子
を大気中で温度1000℃で3時間焼成することによ
り、実施例4に係るマンガン付活珪酸亜鉛蛍光体を製造
した。 Example 4 2 mol of ZnSO 4 and 0.05 mol of MnCl 2 were weighed and dissolved in 2 liter of pure water, and a small amount of nitric acid was added and mixed uniformly. 1 mol of S was added to the obtained mixture.
i (OC 2 H 5 ) 4 was added, and the mixture was sufficiently stirred until completely dissolved to prepare a raw material solution. Next, the raw material solution is supplied to a fine particle device which has a pressurized two-fluid nozzle and is directly connected to a drying chamber through which hot air at a temperature of 200 ° C. is circulated, and the raw material solution is sprayed into droplets, and at the same time, the droplets are heated with hot air. , And dried to prepare raw material fine particles. The manganese-activated zinc silicate phosphor according to Example 4 was manufactured by firing the dried raw material fine particles at a temperature of 1000 ° C. for 3 hours in the air.
【0036】比較例1 蛍光体の化学組成が(Zn0.96Mn0.04)2S
iO4となるように硫酸亜鉛(ZnSO4),塩化マン
ガン(MnCl2)およびSi(OC2H5) 4を秤量
し、十分に混合した。この原料混合体をアルミナ製るつ
ぼに投入し、窒素ガス雰囲気中で温度1000℃で3時
間焼成した。得られた焼成物を粉砕し、純水で十分に洗
浄した後に、濾過・乾燥して比較例1に係る蛍光体を製
造した。[0036]Comparative Example 1 If the chemical composition of the phosphor is (Zn0.96Mn0.04)2S
iO4Zinc sulfate (ZnSO4), Man chloride
Cancer (MnCl2) And Si (OC2H5) 4Weighed
And mixed well. This raw material mixture is made of alumina crucible
3 hours at 1000 ℃ in nitrogen gas atmosphere
It was during firing. The obtained fired product is pulverized and washed thoroughly with pure water.
After cleaning, the mixture was filtered and dried to produce a phosphor according to Comparative Example 1.
Built.
【0037】比較例2 蛍光体の化学組成が(Y0.96Tb0.04)2Si
O4となるように硝酸イットリウム、テトラエチルオル
ソシリケートおよび硝酸テルビウムをそれぞれ水に溶解
し、少量の硝酸を添加して均質な蛍光体原料溶液を作成
した。この液を1.7MHzの振動子を有する超音波噴
霧器に入れて液滴を形成し、空気をキャリアガスとして
使用して1200℃の温度に保持した管状炉内にこの液
滴を導入して5秒間熱分解反応を行い比較例2に係る蛍
光体を得た。The chemical composition of Comparative Example 2 phosphor (Y 0.96 Tb 0.04) 2 Si
Yttrium nitrate, tetraethyl orthosilicate and terbium nitrate were each dissolved in water so as to become O 4, and a small amount of nitric acid was added to prepare a homogeneous phosphor raw material solution. This liquid was put into an ultrasonic atomizer having a 1.7 MHz vibrator to form droplets, and the droplets were introduced into a tubular furnace maintained at a temperature of 1200 ° C. using air as a carrier gas to form a droplet. A thermal decomposition reaction was performed for 2 seconds to obtain a phosphor according to Comparative Example 2.
【0038】比較例3 メタノール100mlに硝酸亜鉛六水和物29.6g、
硝酸マンガン六水和物0.144g、95重量%オルト
珪酸エチル10.96gを溶解し、56℃で100時間
還流加熱した後、メタノールで500℃の温度に設定し
た電気炉中に噴霧した。得られた非晶質粉体を水に分散
させ、圧力容器中250℃で5時間水熱反応を行った。
反応後、生成物を濾過、水洗し、平均粒子径が3μmの
球状を呈する比較例3に係る珪酸亜鉛蛍光体を得た。 Comparative Example 3 29.6 g of zinc nitrate hexahydrate in 100 ml of methanol,
After dissolving 0.144 g of manganese nitrate hexahydrate and 10.96 g of 95% by weight ethyl orthosilicate, the mixture was refluxed and heated at 56 ° C. for 100 hours, and then sprayed into an electric furnace set to a temperature of 500 ° C. with methanol. The obtained amorphous powder was dispersed in water, and a hydrothermal reaction was performed at 250 ° C. for 5 hours in a pressure vessel.
After the reaction, the product was filtered and washed with water to obtain a zinc silicate phosphor according to Comparative Example 3 having a spherical shape with an average particle diameter of 3 μm.
【0039】次に上記のように調製した各実施例および
比較例に係る蛍光体粉末から無作為に100個の磁性粒
子を選別し、平板ガラス上に載置した状態で走査型電子
顕微鏡(SEM)によって投影像を撮影し、得られた各
投影画像について、画像処理装置(ピアス社製、型番:
PIAS−III)を使用して画像解析を実施すること
により、蛍光体粉末粒子の真球度(R)の平均値および
平均粒子径を測定した。測定結果は、表1に示す。Next, 100 magnetic particles were randomly selected from the phosphor powder according to each of the examples and comparative examples prepared as described above, and were placed on a flat glass plate under a scanning electron microscope (SEM). ), A projection image is taken, and each projection image obtained is processed by an image processing device (Pierce, model number:
The average value of the sphericity (R) and the average particle diameter of the phosphor powder particles were measured by performing image analysis using PIAS-III). Table 1 shows the measurement results.
【0040】次に上記のように調製した各蛍光体の発光
特性を評価するため、各蛍光体について波長254nm
の紫外線照射下での発光スペクトル,残光時間および色
度値(x,y)を測定した。そして発光スペクトルにお
ける主発光ピークの発光強度を測定した。また、残光時
間は、紫外線を遮断した後の発光輝度が遮断直前の発光
輝度の1/10までに低下するまでの時間とした測定し
た。測定結果を下記表1に示す。Next, in order to evaluate the emission characteristics of each phosphor prepared as described above, the wavelength of each phosphor was 254 nm.
The emission spectrum, afterglow time, and chromaticity value (x, y) of the sample under ultraviolet irradiation were measured. Then, the emission intensity of the main emission peak in the emission spectrum was measured. In addition, the afterglow time was measured as a time until the emission luminance after blocking the ultraviolet rays was reduced to 1/10 of the emission luminance immediately before the blocking. The measurement results are shown in Table 1 below.
【0041】[0041]
【表1】 [Table 1]
【0042】上記表1に示す結果から明らかなように、
原料溶液を噴霧乾燥した後に、その形状を維持できる温
度範囲で焼成して製造された各実施例に係る蛍光体にお
いては、真球度(R)の平均値が極めて高くなり、優れ
た発光強度および残光特性を発揮し、色度特性も良好で
あることが確認できた。As is clear from the results shown in Table 1 above,
In the phosphor according to each of the examples manufactured by spray-drying the raw material solution and then firing in a temperature range that can maintain the shape, the average value of the sphericity (R) is extremely high, and the luminous intensity is excellent. and exhibits afterglow characteristics, it was confirmed that the chromaticity characteristics is good.
【0043】また各実施例に係る蛍光体粒子を電子顕微
鏡にて観察したところ、表面は極めて平滑であり、表面
粗さはRmax基準で0.1〜0.3μmの範囲であ
り、幅が0.1μm以上の亀裂や凹部は存在していない
ことが判明した。また各蛍光体粒子の相対密度は96〜
99%の範囲であった。When the phosphor particles according to each example were observed with an electron microscope, the surface was extremely smooth, the surface roughness was in the range of 0.1 to 0.3 μm based on Rmax, and the width was 0%. or more of crack or recess .1μm it has been found that does not exist. The relative density of each phosphor particle is 96 to
It was in the range of 99%.
【0044】一方、るつぼにおいて焼成した後に粉砕し
て調製した比較例1に係る蛍光体では、不定形状の粒子
が多数含まれており真球度の平均値が低く発光特性も低
下する上に、粉砕時に作用する衝撃力によって亀裂の発
生が多くなり、蛍光体寿命が低下し易いことも再確認で
きた。On the other hand, the phosphor according to Comparative Example 1 prepared by firing and then pulverizing in a crucible contains a large number of irregularly shaped particles, has a low average value of sphericity, deteriorates light emission characteristics, and cracking is increased by the impact force acting during grinding, phosphor life was also reconfirmed that tends to decrease.
【0045】また、熱分解法によって形成された比較例
2に係る蛍光体では、ある程度の真球度の改善結果は得
られているが、発光特性は十分ではない。また噴霧処理
後に水熱反応を実施して製造された比較例3に係る蛍光
体においても、粒子の真球度の改善効果は、ある程度は
得られているが十分ではなく、蛍光体粒子の表面粗さが
高まる傾向にあることが判明した。Further, in the phosphor according to Comparative Example 2 formed by the pyrolysis method, although a certain degree of improvement in sphericity is obtained, the light emission characteristics are not sufficient. Further, in the phosphor according to Comparative Example 3 manufactured by performing a hydrothermal reaction after the spraying treatment, the effect of improving the sphericity of the particles is obtained to some extent but is not sufficient, and the surface of the phosphor particles is not sufficient. It has been found that the roughness tends to increase.
【0046】[0046]
【発明の効果】以上説明の通り、本発明に係る蛍光体に
よれば蛍光体粒子の真球度を所定の範囲に高く規定して
いるため、蛍光膜に高い充填密度で蛍光体を充填するこ
とが可能になり、発光デバイスの輝度を大幅に改善する
ことができる。As described above, according to the phosphor of the present invention, since the sphericity of the phosphor particles is specified to be high within a predetermined range, the phosphor is filled with the phosphor film at a high packing density. And the brightness of the light emitting device can be greatly improved.
【0047】また本発明に係る蛍光体の製造方法によれ
ば、蛍光体原料溶液を噴霧し、低温度の熱風により乾燥
し、さらに得られた粒子の形状を維持できる温度で焼成
しているため、欠陥が少なく真球度に優れた蛍光体を容
易かつ効率的に製造することができる。特に乾燥時の熱
風温度を200℃以下にすることにより、熱エネルギー
消費量が低減されるとともに製造装置の運転管理も容易
になり、蛍光体を安価に、かつ効率的に製造することが
できる。According to the method for producing a phosphor according to the present invention, the phosphor raw material solution is sprayed, dried with low-temperature hot air, and fired at a temperature at which the shape of the obtained particles can be maintained. In addition, a phosphor having few defects and excellent sphericity can be easily and efficiently manufactured. Especially by the hot air temperature during drying in 200 ° C. or less, the operation control of the manufacturing apparatus with heat energy consumption is reduced even easier, cheaper phosphor, and can be efficiently manufactured.
Claims (6)
た後に焼成した多数の粒子から成り、各粒子の投影像の
周囲長をLとし、投影像の実面積をAとしたときに4π
A/L2で表わされる真球度の平均値が0.95以上で
あることを特徴とする蛍光体。1. A method comprising spraying and drying a solution containing a phosphor component, and then baking a plurality of particles. When the peripheral length of a projected image of each particle is L and the actual area of the projected image is A, 4π
Phosphor average of sphericity represented by A / L 2 is equal to or is less than 0.95.
体であることを特徴とする請求項1記載の蛍光体。2. The phosphor according to claim 1, wherein said phosphor is a manganese-activated zinc silicate phosphor.
て液滴を調製し、得られた液滴を熱風と接触せしめて乾
燥し球状の原料粒子とし、さらに原料粒子を温度900
〜1200℃で焼成することを特徴とする蛍光体の製造
方法。3. A solution containing a phosphor component is spray-dispersed to prepare droplets, and the obtained droplets are contacted with hot air and dried to form spherical raw material particles.
The method for producing a phosphor, characterized by firing at to 1200 ° C..
とを特徴とする請求項3記載の蛍光体の製造方法。4. The method according to claim 3, wherein the temperature of the hot air is 200 ° C. or less.
体であることを特徴とする請求項3記載の蛍光体の製造
方法。5. The method according to claim 3, wherein the phosphor is a manganese-activated zinc silicate phosphor.
る発光層を透光性気密容器内面に一体に形成したことを
特徴とする発光デバイス。6. A light-emitting device, wherein a light-emitting layer containing the phosphor according to claim 1 or 2 is integrally formed on an inner surface of a light-transmitting airtight container.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000391027A JP2002194347A (en) | 2000-12-22 | 2000-12-22 | Fluorescent substance, method for producing the same and luminous device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000391027A JP2002194347A (en) | 2000-12-22 | 2000-12-22 | Fluorescent substance, method for producing the same and luminous device |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2002194347A true JP2002194347A (en) | 2002-07-10 |
Family
ID=18857268
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2000391027A Pending JP2002194347A (en) | 2000-12-22 | 2000-12-22 | Fluorescent substance, method for producing the same and luminous device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2002194347A (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004081142A1 (en) * | 2003-03-11 | 2004-09-23 | Konica Minolta Holdings, Inc. | Phosphor, method for producing phosphor, phosphor paste and plasma display panel |
WO2007129713A1 (en) * | 2006-05-10 | 2007-11-15 | Denki Kagaku Kogyo Kabushiki Kaisha | Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same |
JP2007332324A (en) * | 2006-06-19 | 2007-12-27 | Denki Kagaku Kogyo Kk | Sialon phosphor, method for producing the same, and light-emitting element by using the same |
JP2009173905A (en) * | 2007-12-28 | 2009-08-06 | Mitsubishi Chemicals Corp | Phosphor, method of manufacturing phosphor, phosphor-containing composition, and light emitting device |
WO2013137434A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
WO2013137436A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
WO2013137435A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
US11391728B2 (en) | 2015-01-21 | 2022-07-19 | Konica Minolta, Inc. | Phosphor-integrated nanoparticles used in fluorescence observation |
-
2000
- 2000-12-22 JP JP2000391027A patent/JP2002194347A/en active Pending
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2004081142A1 (en) * | 2003-03-11 | 2004-09-23 | Konica Minolta Holdings, Inc. | Phosphor, method for producing phosphor, phosphor paste and plasma display panel |
US8685279B2 (en) | 2006-05-10 | 2014-04-01 | Denki Kagaku Kogyo Kabushiki Kaisha | Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same |
WO2007129713A1 (en) * | 2006-05-10 | 2007-11-15 | Denki Kagaku Kogyo Kabushiki Kaisha | Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same |
CN102676163A (en) * | 2006-05-10 | 2012-09-19 | 电气化学工业株式会社 | Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same |
KR101221691B1 (en) * | 2006-05-10 | 2013-01-11 | 덴끼 가가꾸 고교 가부시키가이샤 | Sialon phosphor, process for producing the same, and illuminator and luminescent element employing the same |
JP2007332324A (en) * | 2006-06-19 | 2007-12-27 | Denki Kagaku Kogyo Kk | Sialon phosphor, method for producing the same, and light-emitting element by using the same |
JP2009173905A (en) * | 2007-12-28 | 2009-08-06 | Mitsubishi Chemicals Corp | Phosphor, method of manufacturing phosphor, phosphor-containing composition, and light emitting device |
KR20140054305A (en) * | 2012-03-16 | 2014-05-08 | 가부시끼가이샤 도시바 | Phosphor, phosphor production method, and light-emitting device |
WO2013137435A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
WO2013137436A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
WO2013137434A1 (en) * | 2012-03-16 | 2013-09-19 | 株式会社東芝 | Phosphor, phosphor production method, and light-emitting device |
EP2743330A1 (en) * | 2012-03-16 | 2014-06-18 | Kabushiki Kaisha Toshiba | Phosphor, phosphor production method, and light-emitting device |
CN104204134A (en) * | 2012-03-16 | 2014-12-10 | 株式会社东芝 | Phosphor, phosphor production method, and light-emitting device |
EP2743330A4 (en) * | 2012-03-16 | 2015-04-01 | Toshiba Kk | Phosphor, phosphor production method, and light-emitting device |
JPWO2013137434A1 (en) * | 2012-03-16 | 2015-08-03 | 株式会社東芝 | Phosphor, phosphor manufacturing method and light emitting device |
KR101593857B1 (en) * | 2012-03-16 | 2016-02-12 | 가부시끼가이샤 도시바 | Phosphor, phosphor production method, and light-emitting device |
CN104204134B (en) * | 2012-03-16 | 2016-03-02 | 株式会社东芝 | The manufacture method of fluor, fluor and light-emitting device |
US9487696B2 (en) | 2012-03-16 | 2016-11-08 | Kabushiki Kaisha Toshiba | Phosphor of SiAlON crystal, method for producing phosphor and light emitting device |
US9512359B2 (en) | 2012-03-16 | 2016-12-06 | Kabushiki Kaisha Toshiba | Phosphor, method for producing phosphor and light emitting device |
US11391728B2 (en) | 2015-01-21 | 2022-07-19 | Konica Minolta, Inc. | Phosphor-integrated nanoparticles used in fluorescence observation |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW550239B (en) | Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor | |
JP3875027B2 (en) | Method for producing spherical zinc orthosilicate-based green light-emitting phosphor | |
CN106660814A (en) | Magnesium silicate suspension, method for producing same, and use thereof as phosphor | |
TW460413B (en) | Method of preparing high brightness, small particle red emitting phosphor | |
WO2012050051A1 (en) | Method for producing manganese-activated germanate phosphor | |
JP2002194347A (en) | Fluorescent substance, method for producing the same and luminous device | |
JP2001288465A (en) | Production method for green-luminescent alkaline earth aluminate phosphor for vuv excitation light emission apparatus | |
JP2000087033A (en) | Production of phosphor | |
JP2000336353A (en) | Production of fluorescent aluminate | |
JPH03207787A (en) | Rare earth metal silicate salt fluorescent substance and preparation thereof | |
JP2003213254A (en) | Method for producing silicate phosphor | |
JP2000109825A (en) | Preparation of terbium-activated yttrium aluminate fluorescent substance | |
JP2003292949A (en) | High-luminance luminescent material and method of producing the same | |
JP4373670B2 (en) | Method for manufacturing vacuum ultraviolet-excited luminescent material and method for manufacturing plasma display panel | |
KR100496046B1 (en) | Silicate phosphor and a preparation method thereof | |
JP4023222B2 (en) | Method for producing silicate phosphor | |
JP5145625B2 (en) | Method for producing spherical phosphor | |
JP2000096048A (en) | Production of terbium-activated yttrium silicate fluorescent substance | |
KR100469214B1 (en) | Spherical green phosphor particles with short decay time and method for preparing same | |
KR100447936B1 (en) | Green emitting phosphor by VUV excitiation and its preparation method | |
KR100424861B1 (en) | Preparing process for spherical red phosphor based on borates using hydrolysis | |
KR100419863B1 (en) | Preparing method for spherical red phosphor based on borates | |
JP2002155276A (en) | Method for producing rare earth phosphate fluophor | |
JP2003183645A (en) | Inorganic fluorescent substance and method of production for the same | |
JPH06287551A (en) | Phosphor and its production |