WO2012050051A1 - Method for producing manganese-activated germanate phosphor - Google Patents

Method for producing manganese-activated germanate phosphor Download PDF

Info

Publication number
WO2012050051A1
WO2012050051A1 PCT/JP2011/073175 JP2011073175W WO2012050051A1 WO 2012050051 A1 WO2012050051 A1 WO 2012050051A1 JP 2011073175 W JP2011073175 W JP 2011073175W WO 2012050051 A1 WO2012050051 A1 WO 2012050051A1
Authority
WO
WIPO (PCT)
Prior art keywords
manganese
compound
activated germanate
germanate phosphor
phosphor
Prior art date
Application number
PCT/JP2011/073175
Other languages
French (fr)
Japanese (ja)
Inventor
淳良 柳原
Original Assignee
日本化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化学工業株式会社 filed Critical 日本化学工業株式会社
Publication of WO2012050051A1 publication Critical patent/WO2012050051A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals

Definitions

  • the present invention relates to a method for producing a manganese-activated germanate phosphor useful as a red phosphor.
  • Light emitting diodes have the advantages of being light, do not use mercury, and have a long life.
  • a white light emitting diode in which Y 3 Al 5 O 12 : Ce is coated on a blue light emitting element is known.
  • the light emitting diode is not white but becomes white mixed with green and blue. Therefore, it has been proposed to adjust the color tone by mixing Y 3 Al 5 O 12 : Ce with a red phosphor that absorbs blue light and emits red fluorescence.
  • red phosphors that absorb blue light and emit red fluorescence, but there are few reports on inorganic materials.
  • inorganic materials such as oxide phosphors, oxysulfide phosphors, sulfide phosphors and nitride phosphors have been proposed, and manganese-activated germanate phosphors have also been proposed.
  • a general method for producing a manganese-activated germanate phosphor is obtained by mixing magnesium oxide, magnesium fluoride, germanium oxide and manganese carbonate with a ball mill or the like and firing the resulting mixture at 1000 to 1200 ° C. It is known.
  • Patent Document 1 proposes a method in which magnesium fluoride, magnesium oxide, germanium oxide, and manganese fluoride are mixed in a dry ball mill and fired.
  • Patent Document 2 magnesium oxide is used as a magnesium compound, and a container containing magnesium oxide, magnesium fluoride, gallium oxide and a manganese compound is moved regularly or irregularly, or by an external stirring means.
  • a method of obtaining a manganese-activated germanic acid phosphor having large primary particles and not containing fine particle aggregates by firing the raw materials while stirring Conventionally, the manganese-activated germanic acid phosphor is often obtained by a method of mixing each raw material in a dry or wet manner and firing the resulting uniform mixture, and the phosphor thus obtained has a problem in emission intensity. Yes, the quantum yield was low.
  • the present invention provides a method for industrially advantageously producing a manganese-activated germanic acid phosphor whose performance is further improved over the conventional manganese-activated germanic acid phosphor.
  • the present invention relates to the following general formula (1)
  • M1 represents one or more elements selected from the group of Zn, Cu, Cd, Ca, Hg, Sr, Ba
  • M2 represents one or more elements selected from the group of Si, Sn, Pb, or 2 or more elements are represented
  • a is 0 ⁇ a ⁇ 4
  • b is 0.5 ⁇ b ⁇ 4
  • c is 0.8 ⁇ c ⁇ 1.2
  • n is 0.001 ⁇ n ⁇ 0.05
  • x represents 0 ⁇ x ⁇ 0.2
  • y represents 0 ⁇ y ⁇ 0.28.
  • a mixed slurry is prepared by mixing one or more of an additive element-containing compound containing an additive element selected from a magnesium compound, a germanium compound, a manganese compound, and the M1 element and the M2 element that are added as necessary, with a dispersion medium. This raw material
  • a manganese-activated germanate phosphor having high red light emission intensity can be obtained by an industrially advantageous method.
  • FIGS. 1A and 1B are SEM images of the reaction precursor obtained in Example 1.
  • FIG. 1A is a magnification of 1000 times
  • FIG. 1B is a magnification of 3000 times.
  • 2 (a) and 2 (b) are SEM images of the manganese-activated germanate phosphor particles obtained in Example 1, FIG. 2 (a) is 1000 times and FIG. 2 (b) is 3000 times. Is double.
  • 3 (a) and 3 (b) are SEM images of the manganese-activated germanate phosphor particles obtained in Comparative Example 1, FIG. 3 (a) is 1000 times, and FIG. 3 (b) is 3000 times. Is double.
  • the manganese-activated germanate phosphor obtained by this production method is basically excited by blue light and emits red light. Specifically, excitation is performed with excitation light of at least 270 to 550 nm, preferably 380 to 490 nm. Further, it has an emission band in a region of 580 to 750 nm, preferably 600 to 700 nm (that is, has a red spectrum).
  • the manganese-activated germanate phosphor obtained by this production method is represented by the following general formula (1).
  • M1 represents one or more elements selected from the group of Zn, Cu, Cd, Ca, Hg, Sr, Ba, and M2 is selected from the group of Si, Sn, Pb. 1 type or 2 or more types of elements are shown.
  • the M1 element is an element that is partially substituted with a magnesium atom if necessary, and is contained in a manganese-activated germanate phosphor to further improve the emission height.
  • the M2 element is also partially substituted with a germanium atom if necessary. It is an element that is incorporated in the manganese-activated germanate phosphor and further improves the light emission height.
  • a is 0 ⁇ a ⁇ 4, preferably 1 ⁇ a ⁇ 3.4
  • b is 0.5 ⁇ b ⁇ 4, preferably 0.6 ⁇ b ⁇ 3
  • c is 0. .8 ⁇ c ⁇ 1.2, preferably 0.9 ⁇ c ⁇ 1.1
  • n is 0.001 ⁇ n ⁇ 0.05, preferably 0.005 ⁇ n ⁇ 0.03,
  • x is 0 ⁇ x ⁇ 0.2, preferably 0 ⁇ x ⁇ 0.15
  • y is 0 ⁇ y ⁇ 0.28, preferably 0 ⁇ y ⁇ 0.25.
  • the method for producing a manganese-activated germanate phosphor having the above composition according to the present invention comprises magnesium fluoride, a magnesium compound other than magnesium fluoride, a germanium compound, a manganese compound, and the M1 element and the M2 element added as necessary.
  • a mixed slurry is prepared by mixing one or more additive element-containing compounds (hereinafter sometimes simply referred to as “additive element-containing compounds”) containing the selected additive element with a dispersion medium. It includes a step of wet-mixing with a media mill and subjecting the resulting uniform mixed slurry to a spray drying method to form a reaction precursor and firing the reaction precursor. That is, this manufacturing method roughly includes (a) a uniform mixed slurry preparation step, (b) a spray drying step, and (c) a firing step.
  • magnesium fluoride a magnesium compound other than magnesium fluoride (hereinafter simply referred to as “magnesium compound”), a germanium compound, a manganese compound, and an additive element-containing compound added as necessary are uniformly mixed in a dispersion medium to prepare a uniform mixed slurry in which the raw materials are uniformly mixed.
  • the preferable physical property of magnesium fluoride is that the average particle diameter is 10 ⁇ m or less, particularly 0.1 to 1 ⁇ m, from the viewpoint of easy uniform mixing.
  • magnesium compound in addition to magnesium oxide, those that can be converted into magnesium oxide in the firing step described later (c) and those that are hardly soluble or insoluble in the dispersion medium described later are used.
  • a magnesium compound for example, magnesium oxide, carbonate, oxalate, sulfate, hydroxide and the like can be used. These compounds can use 1 type (s) or 2 or more types.
  • magnesium hydroxide is preferably used in that impurities do not remain after firing and the reactivity between raw materials is high.
  • a preferable physical property of the magnesium compound is that the average particle diameter is 5 ⁇ m or less, particularly 0.2 to 2 ⁇ m, from the viewpoint of easy uniform mixing.
  • germanium compound those which are hardly soluble or insoluble in the dispersion medium described later are used.
  • the germanium compound include germanium oxide, sulfate, nitrate, hydroxide, and organic acid salt. These compounds can use 1 type (s) or 2 or more types. Among these, germanium oxide is preferably used because it is low in volatility and hardly hydrolyzed.
  • the preferred physical property of the germanium compound is that the average particle diameter is 50 ⁇ m or less, particularly 1 to 30 ⁇ m, from the viewpoint of easy uniform mixing.
  • manganese compound for example, manganese oxide, hydroxide, carbonate, nitrate, sulfate, organic acid salt and the like can be used. These compounds can use 1 type (s) or 2 or more types. Among these, manganese carbonate is preferable in that impurities do not remain after firing and it is easily dissolved in the base crystal.
  • the manganese compound may be water-soluble or water-insoluble. When the manganese compound is water-insoluble, its average particle size is preferably 10 ⁇ m or less, particularly 1 to 9 ⁇ m, from the viewpoint of easy uniform mixing.
  • additive element-containing compound those which are hardly soluble or insoluble in the dispersion medium described later are used.
  • the additive element-containing compound include oxides, hydroxides, halides, carbonates, nitrates, and organic acid salts containing additive elements. These compounds can use 1 type (s) or 2 or more types.
  • a preferable physical property of the additive element-containing compound is that the average particle diameter is 10 ⁇ m or less, particularly 1 to 9 ⁇ m, from the viewpoint of easy uniform mixing.
  • the production history of the above-described magnesium fluoride, magnesium compound, germanium compound, manganese compound, and additive element-containing compound added as necessary is not limited, but it is as much as possible to produce a high-purity manganese-activated germanate phosphor. It is preferable that the content of impurities is small.
  • the mixing ratio of the magnesium fluoride, magnesium compound, germanium compound, manganese compound, and additive element-containing compound added as necessary is determined according to the composition of the desired manganese-activated germanate phosphor. What is necessary is just to select suitably the mixture ratio of these. Specifically, when an additive element-containing compound is not added, the mixing ratio of magnesium fluoride, magnesium compound, germanium compound and manganese compound is such that the amount of magnesium fluoride added is in the germanium atom and manganese compound in the germanium compound.
  • the molar ratio of the number of magnesium fluoride molecules to the total number of manganese atoms (MgF 2 / (Ge + Mn)) is 0.5 to 4, preferably 0.6 to 3.
  • the addition amount of the magnesium compound is larger than 0 by a molar ratio (Mg / (Ge + Mn)) of the number of magnesium atoms in the magnesium compound to the total number of germanium atoms in the germanium compound and manganese atoms in the manganese compound.
  • Mg / (Ge + Mn) a molar ratio of the number of magnesium atoms in the magnesium compound to the total number of germanium atoms in the germanium compound and manganese atoms in the manganese compound.
  • Mn / (Ge + Mn) manganese compound
  • the molar ratio of the number of M1 atoms in the M1 element-containing compound to the total number of magnesium atoms in the magnesium compound and the M1 atom in the M1 element-containing compound is greater than 0 and less than or equal to 0.2, preferably greater than 0 and less than or equal to 0.15
  • the germanium atom in the germanium compound and the M2 element-containing compound is preferably greater than 0 and less than or equal to 0.28, preferably greater than 0 and less than or equal to 0.25.
  • Magnesium fluoride, a magnesium compound, a germanium compound, a manganese compound, and an additive element-containing compound added as necessary are mixed with a dispersion medium to form a mixed solution.
  • a dispersion medium it is preferable to use water or an aqueous solution in which a water-soluble organic solvent is mixed with water.
  • the solid content concentration in the mixed solution is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, from the viewpoint of efficient mixing using a media mill.
  • this manufacturing method As a mixing method for preparing a uniformly mixed slurry, in this manufacturing method, processing using a media mill, which is a device that can simultaneously perform pulverization and mixing, is performed. By adopting this method, a uniform mixed slurry in which the raw materials are uniformly mixed can be obtained more easily.
  • a bead mill As the media mill, a bead mill, a ball mill, a paint shaker, an attritor, a sand mill, or the like can be used. It is particularly preferable to use a bead mill. In that case, the operating conditions and the type and size of the beads may be appropriately selected according to the size and processing amount of the apparatus and the type of raw material to be used.
  • a dispersant may be added to the mixed slurry. What is necessary is just to select a suitable dispersing agent to use according to the kind of dispersion medium.
  • the dispersion medium is water, for example, various surfactants, polycarboxylic acid ammonium salts, and the like can be used as the dispersant.
  • the concentration of the dispersant in the mixed slurry is preferably 0.01 to 10% by weight, particularly 0.1 to 5% by weight from the viewpoint of obtaining a sufficient dispersion effect.
  • the mixing treatment using the media mill is carried out until the average particle size of the solid content is 5 ⁇ m or less, preferably 1 ⁇ m or less, particularly preferably 0.1 to 0.5 ⁇ m, to obtain a single target composition. Therefore, it is preferable from the viewpoint of obtaining a product with high luminous efficiency.
  • This average particle diameter can be measured by a light scattering particle size distribution measuring apparatus.
  • the homogeneously mixed slurry thus obtained is subjected to the spray drying step (b) to obtain a reaction precursor.
  • methods other than the spray drying method are known as the drying method of the mixed liquid, this drying method is adopted based on the knowledge that it is advantageous to select the spray drying method in this production method. .
  • a reaction precursor having a true sphere or a shape close thereto can be obtained by using a spray drying method, spherical manganese-activated germanate phosphor particles can be easily obtained.
  • a reaction precursor can be obtained in a state where solid material particles are densely packed, so that a single target composition can be obtained in the firing step (c).
  • a reaction precursor is obtained by atomizing the mixed solution by a predetermined means and drying fine droplets generated thereby.
  • a method using a rotating disk and a method using a pressure nozzle for atomization of the mixed liquid There are, for example, a method using a rotating disk and a method using a pressure nozzle for atomization of the mixed liquid. Any method can be used in this step.
  • the drying temperature when drying the mixed solution is preferably 100 to 250 ° C., particularly preferably 150 to 250 ° C. from the viewpoint of stably obtaining a sufficiently dried powder.
  • the relationship between the size of the droplets of the atomized mixed liquid and the size of the raw material particles contained therein affects stable drying and the properties of the resulting reaction precursor. . Specifically, if the size of the solid material particles is too small with respect to the size of the droplets, the droplets become unstable, making it difficult to dry successfully. From this point of view, the size of the atomized droplets is 5 to 150 ⁇ m, particularly 10 to 120 ⁇ m, provided that the size of the raw material particles in the mixed solution is in the above-mentioned range. preferable. It is desirable to determine the supply amount of the mixed liquid to the spray dryer in consideration of this viewpoint.
  • the spray drying method is carried out so that the average particle size of the reaction precursor is 1 to 50 ⁇ m, preferably 1 to 30 ⁇ m, particularly preferably 10 to 30 ⁇ m. This is preferable from the viewpoint of controlling the particle size.
  • This average particle diameter is measured using, for example, a light scattering particle size distribution measuring apparatus.
  • the spherical reaction precursor thus obtained is subjected to the firing step (c) to obtain a manganese-activated germanate phosphor.
  • the reaction precursor obtained by subjecting it to a spray drying step is preferably calcined at 1000 ° C. or higher.
  • the upper limit temperature of the firing temperature is 1250 ° C. because dissolution starts and the particle shape cannot be maintained.
  • firing is performed at 1050 to 1200 ° C., a single target composition can be obtained while maintaining the particle shape, the particle surface can be smoothed, and a product with high luminous efficiency can be obtained. It is particularly preferable from the viewpoint of being produced.
  • the firing time is not critical in this production method.
  • a satisfactory manganese-activated germanate phosphor can be obtained by firing for 3 hours or more, particularly 5 to 36 hours.
  • the firing atmosphere is not critical in the present production method, and may be any of an oxidizing gas atmosphere such as air and an inert gas atmosphere.
  • the fired body obtained in this way may be subjected to a plurality of firing steps as necessary. After firing, the resulting manganese-activated germanate phosphor may be crushed or crushed as necessary, and further classified.
  • a manganese-activated germanate phosphor is obtained as a single composition.
  • the preferred physical property of the manganese-activated germanate phosphor is an average particle size determined by a light scattering particle size distribution analyzer of 5 to 35 ⁇ m.
  • the thickness is preferably 10 to 30 ⁇ m.
  • the average particle diameter is measured by a laser diffraction / scattering particle size distribution analyzer (LA-920) manufactured by Horiba.
  • the BET specific surface area is 0.1 to 1 m 2 / g, preferably 0.2 to 0.7 m 2 / g. When the BET specific surface area is in the above range, absorption of excitation light becomes sufficient, and scattering of excitation light can also be prevented, so that the emission intensity can be sufficiently increased.
  • the manganese-activated germanate phosphor obtained by the present production method has a spherical particle shape.
  • the particle shape is a shape that can be regarded as a sphere, it is not necessarily a true sphere.
  • the degree of sphericity can be expressed by sphericity.
  • Manganese-activated germanate phosphors have a sphericity of about 1.0 to 1.8, particularly about 1.0 to 1.7. Just do it.
  • the spherical manganese-activated germane salt phosphor has a higher quantum yield and higher emission intensity than other shaped particles.
  • the sphericity is defined by the area of the perfect circle formed by the maximum diameter of the projected figure / the actual area of the projected figure when the particles are projected two-dimensionally. Therefore, the closer the sphericity value is to 1, the closer the particle is to a true sphere.
  • grain surface of the manganese activation germanate fluorescent substance obtained by this manufacturing method is smooth.
  • the degree of smoothness of the surface of the particles of the manganese-activated germanate phosphor can be expressed by, for example, the degree of unevenness. It only needs to have a smoothness of about 0 to 1.5.
  • the degree of unevenness is defined as the area of a perfect circle calculated from the perimeter of the projected figure / the actual area of the projected figure when the particles are projected two-dimensionally. Therefore, the closer the roughness value is to 1, the smoother the surface of the particles.
  • the sphericity and unevenness can be measured using, for example, an image analyzer.
  • An example of such an apparatus is LUZEX AP manufactured by Nicole. The measurement is performed on 300 particles arbitrarily extracted. The magnification of the particles is 400 to 300,000 times depending on the size.
  • the manganese-activated germanate phosphor of the present invention can be further surface treated with a metal oxide for the purpose of improving moisture resistance.
  • a metal oxide examples include Be, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, and Nb. , Mo, Cd, In, Sn, Sb, Te, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Nb, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er
  • One or more metal oxides selected from Tm, Yb, Lu, Th, Pa, U, and Pu are used.
  • a known method can be used as a method for coating the surface of the manganese-activated germanate phosphor particles with these metal oxides.
  • a metal alkoxide containing the metal element is used.
  • the metal alkoxide is added to a slurry or suspension containing the manganese-activated germanate phosphor particles, and a hydrolysis reaction of the metal alkoxide is performed in the presence of an acid catalyst or an alkali catalyst, if necessary.
  • Examples thereof include a method of uniformly treating the surface of the germanate phosphor particles with the metal oxide.
  • the manganese-activated germanate phosphor thus obtained can be suitably used as a red phosphor, and the red phosphor is, for example, a display device such as an electrolytic emission display, a plasma display, or an electroluminescence. It can be used for various light emitting device applications such as. Moreover, since it has an excitation spectrum close to around 450 nm, it can be applied to a blue LED excitation phosphor. It is particularly suitable for use in electroluminescent display devices.
  • a method using in combination with a blue excited green phosphor a method using a blue LDE element and a blue excited green phosphor in combination, or a method using a blue LDE element and a blue excited yellow light emitting phosphor in combination, etc. It can also be applied to white LEDs.
  • the average particle size of the reaction precursor was 22.8 ⁇ m.
  • An electron micrograph (SEM image) of the reaction precursor is shown in FIGS.
  • the manganese-activated germanate phosphor was composed of Mg 14 Ge 5 O 24 and MgO, and the manganese activation of a single composition It was confirmed to be a germanate phosphor.
  • the SEM image of this manganese activation germanate fluorescent substance is shown to Fig.2 (a) and (b).
  • a manganese-activated germanate phosphor of 005Mn 4+ was obtained.
  • X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  • a manganese-activated germanate phosphor of 03Mn 4+ was obtained.
  • X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  • a manganese-activated germanate phosphor of .01Mn 4+ was obtained.
  • X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  • a manganese-activated germanate phosphor of 01Mn 4+ was obtained.
  • X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  • Example 7 The manganese-activated germanate phosphor of 3MgO ⁇ MgF 2 ⁇ 0.99GeO 2 : 0.01Mn 4+ in the same manner as in Example 1 except that the firing temperature is 1075 ° C. in the firing step (c) of Example 1.
  • the firing temperature is 1075 ° C. in the firing step (c) of Example 1.
  • X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  • the manganese-activated germanate phosphor of the first example (the product of the present invention) was agglomerated of primary particles compared to the manganese-activated germanate phosphor of the first comparative example. It can be seen that a spherical shape is formed. The germanate phosphor of Comparative Example 1 has an irregular shape. Further, as apparent from the results shown in Table 3, the manganese-activated germanate phosphor of the first example (product of the present invention) emits light in the red region as compared with the manganese-activated germanate phosphor of the first comparative example. It can be seen that the strength is high.

Abstract

Provided is a method for producing a manganese-activated germanate phosphor that has a high emission intensity and is represented by general formula (1), a(Mg1-xM1x)O∙bMgF2∙c{(Ge1-yM2y)O2}:nMn4+ (1) the method for producing a manganese-activated germanate phosphor being characterized in that a mixed slurry is prepared by mixing a dispersant with magnesium fluoride, a magnesium compound other than magnesium fluoride, a germanium compound, a manganese compound, and one or more compounds containing additional elements selected from the above-mentioned M1 elements and M2 elements added as necessary, this starting mixed slurry is wet mixed using a media mill, the resulting uniformly mixed slurry is spray dried to obtain a reaction precursor, and this reaction precursor is fired.

Description

マンガン賦活ゲルマン酸塩蛍光体の製造方法Method for producing manganese-activated germanate phosphor
 本発明は、赤色蛍光体として有用なマンガン賦活ゲルマン酸塩蛍光体の製造方法に関するものである。 The present invention relates to a method for producing a manganese-activated germanate phosphor useful as a red phosphor.
 近年、青色ダイオードが実用化され、このダイオードを発光源とする白色発光ダイオードの研究が多く知られている。発光ダイオードは軽量で、水銀を使用せず、長寿命であるという利点を有する。 In recent years, blue diodes have been put into practical use, and many studies on white light emitting diodes using these diodes as light sources are well known. Light emitting diodes have the advantages of being light, do not use mercury, and have a long life.
 例えば、Y3Al512:Ceを青色発光素子に塗布した白色発光ダイオードが知られている。しかし、この発光ダイオードは、厳密には白色ではなく、緑青色の混ざった白色になる。このため、Y3Al512:Ceと、青色光を吸収し赤色の蛍光を発する赤色蛍光体とを混ぜて、色調を調整することが提案されている。青色光を吸収し赤色の蛍光を発する赤色蛍光体に関する報告は、有機系材料に関しては多くあるが、無機系材料に関するものは少ない。 For example, a white light emitting diode in which Y 3 Al 5 O 12 : Ce is coated on a blue light emitting element is known. However, strictly speaking, the light emitting diode is not white but becomes white mixed with green and blue. Therefore, it has been proposed to adjust the color tone by mixing Y 3 Al 5 O 12 : Ce with a red phosphor that absorbs blue light and emits red fluorescence. There are many reports on red phosphors that absorb blue light and emit red fluorescence, but there are few reports on inorganic materials.
 一方、一般的な赤色蛍光体として、酸化物蛍光体、酸硫化物蛍光体、硫化物蛍光体、窒化物蛍光体等の無機系材料が提案され、マンガン賦活ゲルマン酸塩蛍光体も提案されている。
 マンガン賦活ゲルマン酸塩蛍光体の一般的な製造方法としては、酸化マグネシウム、フッ化マグネシウム、酸化ゲルマニウム及び炭酸マンガンをボールミル等で混合し、得られる混合物を1000~1200℃で焼成することにより得られることが知られている。
 また、例えば、下記特許文献1には、フッ化マグネシウム、酸化マグネシウム、酸化ゲルマニウム及びフッ化マンガンを乾式ボールミルで混合し、焼成する方法が提案されている。
 また、下記特許文献2には、マグネシウム化合物として酸化マグネシウムを用い、酸化マグネシウム、フッ化マグネシウム、酸化ガリウム及びマンガン化合物とを入れた容器を規則的または不規則的に動かすか、または外部攪拌手段により原料を攪拌しながら焼成することにより、一次粒子が大きく、微小粒子の凝集体を含まないマンガン付活ゲルマン酸蛍光体を得る方法が提案されている。
 従来、マンガン賦活ゲルマン酸蛍光体は、多くの場合、各原料を乾式又は湿式で混合し、得られる均一混合物を焼成する方法により得られ、このようにして得られる蛍光体は発光強度に問題があり、量子収率も低かった。
On the other hand, as general red phosphors, inorganic materials such as oxide phosphors, oxysulfide phosphors, sulfide phosphors and nitride phosphors have been proposed, and manganese-activated germanate phosphors have also been proposed. Yes.
A general method for producing a manganese-activated germanate phosphor is obtained by mixing magnesium oxide, magnesium fluoride, germanium oxide and manganese carbonate with a ball mill or the like and firing the resulting mixture at 1000 to 1200 ° C. It is known.
For example, Patent Document 1 below proposes a method in which magnesium fluoride, magnesium oxide, germanium oxide, and manganese fluoride are mixed in a dry ball mill and fired.
Further, in Patent Document 2 below, magnesium oxide is used as a magnesium compound, and a container containing magnesium oxide, magnesium fluoride, gallium oxide and a manganese compound is moved regularly or irregularly, or by an external stirring means. There has been proposed a method of obtaining a manganese-activated germanic acid phosphor having large primary particles and not containing fine particle aggregates by firing the raw materials while stirring.
Conventionally, the manganese-activated germanic acid phosphor is often obtained by a method of mixing each raw material in a dry or wet manner and firing the resulting uniform mixture, and the phosphor thus obtained has a problem in emission intensity. Yes, the quantum yield was low.
特開昭58-158387号公報JP 58-158387 A 特開平11-158464号公報JP-A-11-158464
発明が解決しようする課題Problems to be solved by the invention
 従って、本発明は、従来のマンガン賦活ゲルマン酸蛍光体よりも性能が一層向上したマンガン賦活ゲルマン酸蛍光体を工業的に有利に製造する方法を提供するものである。 Therefore, the present invention provides a method for industrially advantageously producing a manganese-activated germanic acid phosphor whose performance is further improved over the conventional manganese-activated germanic acid phosphor.
 本発明は、下記一般式(1)
Figure JPOXMLDOC01-appb-C000002
 (式中、M1はZn、Cu、Cd、Ca、Hg、Sr、Baの群から選ばれる1種又は2種以上の元素を示し、M2はSi、Sn、Pbの群から選ばれる1種又は2種以上の元素を示す。aは0<a≦4、bは0.5≦b≦4、cは0.8≦c≦1.2、nは0.001≦n≦0.05、xは0≦x≦0.2、yは0≦y≦0.28を示す。)で表されるマンガン賦活ゲルマン酸塩蛍光体の製造方法であって、フッ化マグネシウム、フッ化マグネシウム以外のマグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加される前記M1元素及び前記M2元素から選ばれる添加元素を含有する添加元素含有化合物の1種又は2種以上を分散媒と混合した混合スラリーを調製し、この原料混合スラリーをメディアミルによって湿式混合し、得られる均一混合スラリーをスプレードライ法に付して反応前駆体となし、この反応前駆体を焼成することを特徴とするマンガン賦活ゲルマン酸塩蛍光体を提供するものである。
The present invention relates to the following general formula (1)
Figure JPOXMLDOC01-appb-C000002
(In the formula, M1 represents one or more elements selected from the group of Zn, Cu, Cd, Ca, Hg, Sr, Ba, and M2 represents one or more elements selected from the group of Si, Sn, Pb, or 2 or more elements are represented, a is 0 <a ≦ 4, b is 0.5 ≦ b ≦ 4, c is 0.8 ≦ c ≦ 1.2, n is 0.001 ≦ n ≦ 0.05, x represents 0 ≦ x ≦ 0.2 and y represents 0 ≦ y ≦ 0.28.) A method for producing a manganese-activated germanate phosphor represented by: A mixed slurry is prepared by mixing one or more of an additive element-containing compound containing an additive element selected from a magnesium compound, a germanium compound, a manganese compound, and the M1 element and the M2 element that are added as necessary, with a dispersion medium. This raw material mixed slurry is wet mixed by a media mill. And reaction precursor and without a uniform mixed slurry is subjected to spray drying to obtain, there is provided a manganese activated germanate salt phosphor and firing the reaction precursor.
 本発明によれば、赤色光の発光強度が高いマンガン賦活ゲルマン酸塩蛍光体を工業的に有利な方法で得ることができる。 According to the present invention, a manganese-activated germanate phosphor having high red light emission intensity can be obtained by an industrially advantageous method.
図1(a)及び(b)は、実施例1で得られた反応前駆体のSEM像であり、図1(a)は倍率1000倍、図1(b)は倍率3000倍である。FIGS. 1A and 1B are SEM images of the reaction precursor obtained in Example 1. FIG. 1A is a magnification of 1000 times, and FIG. 1B is a magnification of 3000 times. 図2(a)及び(b)は、実施例1で得られたマンガン賦活ゲルマン酸塩蛍光体粒子のSEM像であり、図2(a)は倍率1000倍、図2(b)は倍率3000倍である。2 (a) and 2 (b) are SEM images of the manganese-activated germanate phosphor particles obtained in Example 1, FIG. 2 (a) is 1000 times and FIG. 2 (b) is 3000 times. Is double. 図3(a)及び(b)は、比較例1で得られたマンガン賦活ゲルマン酸塩蛍光体粒子のSEM像であり、図3(a)は倍率1000倍、図3(b)は倍率3000倍である。3 (a) and 3 (b) are SEM images of the manganese-activated germanate phosphor particles obtained in Comparative Example 1, FIG. 3 (a) is 1000 times, and FIG. 3 (b) is 3000 times. Is double.
 以下、本発明をその好ましい実施形態に基づき説明する。
 本製造方法で得られるマンガン賦活ゲルマン酸塩蛍光体は、基本的には青色光で励起して赤色光を発するものである。具体的には、少なくとも270~550nm、好ましくは380~490nmの励起光によって励起する。また、580~750nm、好ましくは600~700nmの領域に発光帯を有する(即ち赤色スペクトルを有する)。
 本製造方法で得られるマンガン賦活ゲルマン酸塩蛍光体は、下記一般式(1)で表される。
Figure JPOXMLDOC01-appb-C000003
 一般式(1)式中のM1はZn、Cu、Cd、Ca、Hg、Sr、Baの群から選ばれる1種又は2種以上の元素を示し、M2はSi、Sn、Pbの群から選ばれる1種又は2種以上の元素を示す。前記M1元素は必要によりマグネシウム原子と一部置換させてマンガン賦活ゲルマン酸塩蛍光体中に含有させ、発光高度をさらに向上させる元素であり、前記M2元素もまた、必要によりゲルマニウム原子と一部置換させてマンガン賦活ゲルマン酸塩蛍光体中に含有させ、発光高度をさらに向上させる元素である。
 一般式(1)の式中のaは0<a≦4、好ましくは1≦a≦3.4、bは0.5≦b≦4、好ましくは0.6≦b≦3、cは0.8≦c≦1.2、好ましくは0.9≦c≦1.1、nは0.001≦n≦0.05、好ましくは0.005≦n≦0.03、xは0≦x≦0.2、好ましくは0≦x≦0.15、yは0≦y≦0.28、好ましくは0≦y≦0.25である。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The manganese-activated germanate phosphor obtained by this production method is basically excited by blue light and emits red light. Specifically, excitation is performed with excitation light of at least 270 to 550 nm, preferably 380 to 490 nm. Further, it has an emission band in a region of 580 to 750 nm, preferably 600 to 700 nm (that is, has a red spectrum).
The manganese-activated germanate phosphor obtained by this production method is represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000003
In the general formula (1), M1 represents one or more elements selected from the group of Zn, Cu, Cd, Ca, Hg, Sr, Ba, and M2 is selected from the group of Si, Sn, Pb. 1 type or 2 or more types of elements are shown. The M1 element is an element that is partially substituted with a magnesium atom if necessary, and is contained in a manganese-activated germanate phosphor to further improve the emission height. The M2 element is also partially substituted with a germanium atom if necessary. It is an element that is incorporated in the manganese-activated germanate phosphor and further improves the light emission height.
In the formula (1), a is 0 <a ≦ 4, preferably 1 ≦ a ≦ 3.4, b is 0.5 ≦ b ≦ 4, preferably 0.6 ≦ b ≦ 3, and c is 0. .8 ≦ c ≦ 1.2, preferably 0.9 ≦ c ≦ 1.1, n is 0.001 ≦ n ≦ 0.05, preferably 0.005 ≦ n ≦ 0.03, x is 0 ≦ x ≦ 0.2, preferably 0 ≦ x ≦ 0.15, y is 0 ≦ y ≦ 0.28, preferably 0 ≦ y ≦ 0.25.
 本発明の前記組成を有するマンガン賦活ゲルマン酸塩蛍光体の製造方法は、フッ化マグネシウム、フッ化マグネシウム以外のマグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加される前記M1元素及び前記M2元素から選ばれる添加元素を含有する添加元素含有化合物(以下、単に「添加元素含有化合物」ということもある)の1種又は2種以上を分散媒と混合した混合スラリーを調製し、この原料混合スラリーをメディアミルによって湿式混合し、得られる均一混合スラリーをスプレードライ法に付して反応前駆体となし、この反応前駆体を焼成する工程を含む。即ち、本製造方法は、大別して(イ)均一混合スラリー調製工程、(ロ)スプレードライ工程、(ハ)焼成工程を含んでいる。 The method for producing a manganese-activated germanate phosphor having the above composition according to the present invention comprises magnesium fluoride, a magnesium compound other than magnesium fluoride, a germanium compound, a manganese compound, and the M1 element and the M2 element added as necessary. A mixed slurry is prepared by mixing one or more additive element-containing compounds (hereinafter sometimes simply referred to as “additive element-containing compounds”) containing the selected additive element with a dispersion medium. It includes a step of wet-mixing with a media mill and subjecting the resulting uniform mixed slurry to a spray drying method to form a reaction precursor and firing the reaction precursor. That is, this manufacturing method roughly includes (a) a uniform mixed slurry preparation step, (b) a spray drying step, and (c) a firing step.
 (イ)の均一混合スラリー調製工程においては、フッ化マグネシウム、フッ化マグネシウム以外のマグネシウム化合物(以下、単に「マグネシウム化合物」と呼ぶ)、ゲルマニウム化合物、マンガン化合物及び必要により添加される添加元素含有化合物を分散媒に均一に混合して各原料が均一に混合された均一混合スラリーを調製する。 In the step (b) of preparing the homogeneously mixed slurry, magnesium fluoride, a magnesium compound other than magnesium fluoride (hereinafter simply referred to as “magnesium compound”), a germanium compound, a manganese compound, and an additive element-containing compound added as necessary Are uniformly mixed in a dispersion medium to prepare a uniform mixed slurry in which the raw materials are uniformly mixed.
 フッ化マグネシウムの好ましい物性は、平均粒径が10μm以下、特に0.1~1μmであることが、均一混合が容易に可能になる観点で好ましい。 The preferable physical property of magnesium fluoride is that the average particle diameter is 10 μm or less, particularly 0.1 to 1 μm, from the viewpoint of easy uniform mixing.
 マグネシウム化合物としては、酸化マグネシウムの他、後述する(ハ)焼成工程で酸化マグネシウムに転換可能なもので、且つ後述する分散媒に対して難溶性或いは不溶性のものが用いられる。このようなマグネシウム化合物としては、例えば、マグネシウムの酸化物、炭酸塩、蓚酸塩、硫酸塩、水酸化物等を用いることができる。これらの化合物は、1種又は2種以上を使用することができる。これらの中で、水酸化マグネシウムが焼成後に不純物が残留しない点及び原料同士の反応性が高い点で好ましく用いられる。マグネシウム化合物の好ましい物性は、平均粒径が5μm以下、特に0.2~2μmであることが、均一混合が容易に可能になる観点で好ましい。 As the magnesium compound, in addition to magnesium oxide, those that can be converted into magnesium oxide in the firing step described later (c) and those that are hardly soluble or insoluble in the dispersion medium described later are used. As such a magnesium compound, for example, magnesium oxide, carbonate, oxalate, sulfate, hydroxide and the like can be used. These compounds can use 1 type (s) or 2 or more types. Among these, magnesium hydroxide is preferably used in that impurities do not remain after firing and the reactivity between raw materials is high. A preferable physical property of the magnesium compound is that the average particle diameter is 5 μm or less, particularly 0.2 to 2 μm, from the viewpoint of easy uniform mixing.
 ゲルマニウム化合物としては、後述する分散媒に対して難溶性或いは不溶性のものが用いられる。該ゲルマニウム化合物としては、例えば、ゲルマニウムの酸化物、硫酸塩、硝酸塩、水酸化物、有機酸塩等を用いることができる。これらの化合物は、1種又は2種以上を使用することができる。これらの中でも酸化ゲルマニウムが揮発性が低く、加水分解されにくい点で好ましく用いられる。ゲルマニウム化合物の好ましい物性は、平均粒径が50μm以下、特に1~30μmであることが、均一混合が容易に可能になる観点で好ましい。 As the germanium compound, those which are hardly soluble or insoluble in the dispersion medium described later are used. Examples of the germanium compound include germanium oxide, sulfate, nitrate, hydroxide, and organic acid salt. These compounds can use 1 type (s) or 2 or more types. Among these, germanium oxide is preferably used because it is low in volatility and hardly hydrolyzed. The preferred physical property of the germanium compound is that the average particle diameter is 50 μm or less, particularly 1 to 30 μm, from the viewpoint of easy uniform mixing.
 マンガン化合物としては、例えば、マンガンの酸化物、水酸化物、炭酸塩、硝酸塩、硫酸塩、有機酸塩等を用いることができる。これらの化合物は、1種又は2種以上を使用することができる。これらの中でも炭酸マンガンが、焼成後に不純物が残留しない点及び母体結晶中に固溶しやすい点で好ましい。マンガン化合物は水溶性のものでも、水不溶性のものでもよい。マンガン化合物が水不溶性のものである場合、その平均粒径は10μm以下、特に1~9μmであることが、均一混合が容易に可能となる観点で好ましい。 As the manganese compound, for example, manganese oxide, hydroxide, carbonate, nitrate, sulfate, organic acid salt and the like can be used. These compounds can use 1 type (s) or 2 or more types. Among these, manganese carbonate is preferable in that impurities do not remain after firing and it is easily dissolved in the base crystal. The manganese compound may be water-soluble or water-insoluble. When the manganese compound is water-insoluble, its average particle size is preferably 10 μm or less, particularly 1 to 9 μm, from the viewpoint of easy uniform mixing.
 添加元素含有化合物としては、後述する分散媒に対して難溶性或いは不溶性のものが用いられる。該添加元素含有化合物としては、例えば、添加元素を含む酸化物、水酸化物、ハロゲン化物、炭酸塩、硝酸塩、有機酸塩等が挙げられる。これらの化合物は、1種又は2種以上を使用することができる。添加元素含有化合物の好ましい物性は、平均粒径が10μm以下、特に1~9μmであることが、均一混合が容易に可能になる観点で好ましい。 As the additive element-containing compound, those which are hardly soluble or insoluble in the dispersion medium described later are used. Examples of the additive element-containing compound include oxides, hydroxides, halides, carbonates, nitrates, and organic acid salts containing additive elements. These compounds can use 1 type (s) or 2 or more types. A preferable physical property of the additive element-containing compound is that the average particle diameter is 10 μm or less, particularly 1 to 9 μm, from the viewpoint of easy uniform mixing.
 前記したフッ化マグネシウム、マグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加する添加元素含有化合物の製造履歴は問わないが、高純度のマンガン賦活ゲルマン酸塩蛍光体を製造するために、可及的に不純物含有量が少ないものであることが好ましい。 The production history of the above-described magnesium fluoride, magnesium compound, germanium compound, manganese compound, and additive element-containing compound added as necessary is not limited, but it is as much as possible to produce a high-purity manganese-activated germanate phosphor. It is preferable that the content of impurities is small.
 本製造方法において、フッ化マグネシウム、マグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加される添加元素含有化合物の混合割合は、前記した所望のマンガン賦活ゲルマン酸塩蛍光体の組成に合わせて各原料の配合割合を適宜選択すればよい。
 具体的には、添加元素含有化合物を添加しない場合は、フッ化マグネシウム、マグネシウム化合物、ゲルマニウム化合物及びマンガン化合物の混合割合は、フッ化マグネシウムの添加量が、ゲルマニウム化合物中のゲルマニウム原子とマンガン化合物中のマンガン原子の合計の原子数に対するフッ化マグネシウム分子数のモル比(MgF/(Ge+Mn))で0.5~4、好ましくは0.6~3である。また、マグネシウム化合物の添加量が、ゲルマニウム化合物中のゲルマニウム原子とマンガン化合物中のマンガン原子の合計の原子数に対するマグネシウム化合物中のマグネシウム原子数のモル比(Mg/(Ge+Mn))で0より大きく4以下、好ましくは1~3.4である。マンガン化合物の添加量は、ゲルマニウム化合物中のゲルマニウム原子とマンガン化合物中のマンガン原子の合計の原子数に対するマンガン化合物中のマンガン原子数のモル比(Mn/(Ge+Mn))で0.001~0.05、好ましくは0.005~0.03である。
 また、M1元素を含有するM1元素含有化合物を添加する場合、マグネシウム化合物中のマグネシウム原子とM1元素含有化合物中のM1原子の合計の原子数に対するM1元素含有化合物中のM1原子数のモル比(M1/Mg+M1)で0より大きく0.2以下、好ましくは0より大きく0.15以下、M2元素を含有するM2元素含有化合物を添加する場合は、ゲルマニウム化合物中のゲルマニウム原子とM2元素含有化合物中のM2原子の合計の原子数に対するM2元素含有化合物中のM2原子数のモル比(M2/Ge+M2)で0より大きく0.28以下、好ましくは0より大きく0.25以下とすることが好ましい。
In this production method, the mixing ratio of the magnesium fluoride, magnesium compound, germanium compound, manganese compound, and additive element-containing compound added as necessary is determined according to the composition of the desired manganese-activated germanate phosphor. What is necessary is just to select suitably the mixture ratio of these.
Specifically, when an additive element-containing compound is not added, the mixing ratio of magnesium fluoride, magnesium compound, germanium compound and manganese compound is such that the amount of magnesium fluoride added is in the germanium atom and manganese compound in the germanium compound. The molar ratio of the number of magnesium fluoride molecules to the total number of manganese atoms (MgF 2 / (Ge + Mn)) is 0.5 to 4, preferably 0.6 to 3. Further, the addition amount of the magnesium compound is larger than 0 by a molar ratio (Mg / (Ge + Mn)) of the number of magnesium atoms in the magnesium compound to the total number of germanium atoms in the germanium compound and manganese atoms in the manganese compound. Hereinafter, it is preferably 1 to 3.4. The added amount of the manganese compound is 0.001 to 0.00 in terms of a molar ratio of the number of manganese atoms in the manganese compound to the total number of germanium atoms in the germanium compound and manganese atoms in the manganese compound (Mn / (Ge + Mn)). 05, preferably 0.005 to 0.03.
When adding an M1 element-containing compound containing an M1 element, the molar ratio of the number of M1 atoms in the M1 element-containing compound to the total number of magnesium atoms in the magnesium compound and the M1 atom in the M1 element-containing compound ( M1 / Mg + M1) is greater than 0 and less than or equal to 0.2, preferably greater than 0 and less than or equal to 0.15, and when an M2 element-containing compound containing M2 element is added, the germanium atom in the germanium compound and the M2 element-containing compound The molar ratio of the number of M2 atoms in the M2 element-containing compound to the total number of M2 atoms (M2 / Ge + M2) is preferably greater than 0 and less than or equal to 0.28, preferably greater than 0 and less than or equal to 0.25.
 フッ化マグネシウム、マグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加される添加元素含有化合物は、分散媒と混合して、混合液となる。分散媒としては、水や、水に水溶性有機溶媒が配合されてなる水溶液を用いることが好ましい。混合液における固形分濃度は5~40重量%、好ましくは10~30重量%であることが、メディアミルを用いた混合を効率的に行い得る観点から好ましい。 Magnesium fluoride, a magnesium compound, a germanium compound, a manganese compound, and an additive element-containing compound added as necessary are mixed with a dispersion medium to form a mixed solution. As the dispersion medium, it is preferable to use water or an aqueous solution in which a water-soluble organic solvent is mixed with water. The solid content concentration in the mixed solution is preferably 5 to 40% by weight, more preferably 10 to 30% by weight, from the viewpoint of efficient mixing using a media mill.
 均一混合スラリーを調製するための混合方法として、本製造方法では、粉砕と混合を同時に行える機器であるメディアミルを用いた処理を行う。この方法を採用することで、各原料が均一に混合された均一混合スラリーを一層容易に得ることができる。 As a mixing method for preparing a uniformly mixed slurry, in this manufacturing method, processing using a media mill, which is a device that can simultaneously perform pulverization and mixing, is performed. By adopting this method, a uniform mixed slurry in which the raw materials are uniformly mixed can be obtained more easily.
 メディアミルとしては、ビーズミル、ボールミル、ペイントシェーカー、アトライタ、サンドミル等を用いることができる。特にビーズミルを用いることが好ましい。その場合、運転条件やビーズの種類及び大きさは、装置のサイズや処理量、使用する原料の種類に応じて適切に選択すればよい。 As the media mill, a bead mill, a ball mill, a paint shaker, an attritor, a sand mill, or the like can be used. It is particularly preferable to use a bead mill. In that case, the operating conditions and the type and size of the beads may be appropriately selected according to the size and processing amount of the apparatus and the type of raw material to be used.
 メディアミルを用いた処理を一層効率的に行う観点から、混合スラリー中に、分散剤を加えてもよい。使用する分散剤は、分散媒の種類に応じて適切なものを選択すればよい。分散媒が例えば水である場合には、分散剤として各種の界面活性剤、ポリカルボン酸アンモニウム塩等を用いることができる。混合スラリー中における分散剤の濃度は0.01~10重量%、特に0.1~5重量%とすることが、十分な分散効果が得られる観点で好ましい。 From the viewpoint of more efficiently performing the treatment using the media mill, a dispersant may be added to the mixed slurry. What is necessary is just to select a suitable dispersing agent to use according to the kind of dispersion medium. When the dispersion medium is water, for example, various surfactants, polycarboxylic acid ammonium salts, and the like can be used as the dispersant. The concentration of the dispersant in the mixed slurry is preferably 0.01 to 10% by weight, particularly 0.1 to 5% by weight from the viewpoint of obtaining a sufficient dispersion effect.
 メディアミルを用いた混合処理は、固形分の平均粒径が5μm以下、好ましくは1μm以下、特に好ましくは0.1~0.5μmとなるまで行うことが、単一の目的組成物が得られ、しいては高い発光効率のものを得られるという観点から好ましい。この平均粒径は光散乱式粒径分布測定装置によって測定することができる。 The mixing treatment using the media mill is carried out until the average particle size of the solid content is 5 μm or less, preferably 1 μm or less, particularly preferably 0.1 to 0.5 μm, to obtain a single target composition. Therefore, it is preferable from the viewpoint of obtaining a product with high luminous efficiency. This average particle diameter can be measured by a light scattering particle size distribution measuring apparatus.
 このようにして得られた均一混合スラリーを、(ロ)のスプレードライ工程に付して反応前駆体を得る。混合液の乾燥方法にはスプレードライ法以外の方法も知られているが、本製造方法においてはスプレードライ法を選択することが有利であるとの知見に基づき、この乾燥方法を採用している。詳細には、スプレードライ法を用いると、真球又はそれに近い形状の反応前駆体を得ることができるので、球状のマンガン賦活ゲルマン酸塩蛍光体粒子を容易に得ることができる。また、スプレードライ法を用いると、固形分の原料粒子が密に詰まった状態で反応前駆体を得ることができるので、(ハ)の焼成工程において、単一の目的組成物が得られる。 The homogeneously mixed slurry thus obtained is subjected to the spray drying step (b) to obtain a reaction precursor. Although methods other than the spray drying method are known as the drying method of the mixed liquid, this drying method is adopted based on the knowledge that it is advantageous to select the spray drying method in this production method. . Specifically, since a reaction precursor having a true sphere or a shape close thereto can be obtained by using a spray drying method, spherical manganese-activated germanate phosphor particles can be easily obtained. Further, when the spray drying method is used, a reaction precursor can be obtained in a state where solid material particles are densely packed, so that a single target composition can be obtained in the firing step (c).
 スプレードライ法においては、所定手段によって混合液を霧化し、それによって生じた微細な液滴を乾燥させることで反応前駆体を得る。混合液の霧化には、例えば回転円盤を用いる方法と、圧力ノズルを用いる方法がある。本工程においてはいずれの方法を用いることもできる。 In the spray drying method, a reaction precursor is obtained by atomizing the mixed solution by a predetermined means and drying fine droplets generated thereby. There are, for example, a method using a rotating disk and a method using a pressure nozzle for atomization of the mixed liquid. Any method can be used in this step.
スプレードライ法において、混合液を乾燥する際の乾燥温度は、好ましくは100~250℃、特に好ましくは150~250℃とすることが十分に乾燥された粉体を安定して得る観点から好ましい。 In the spray drying method, the drying temperature when drying the mixed solution is preferably 100 to 250 ° C., particularly preferably 150 to 250 ° C. from the viewpoint of stably obtaining a sufficiently dried powder.
 スプレードライ法においては、霧化された混合液の液滴の大きさと、それに含まれる固形分の原料粒子の大きさとの関係が、安定した乾燥や、得られる反応前駆体の性状に影響を与える。詳細には、液滴の大きさに対して固形分の原料粒子の大きさが小さすぎると、液滴が不安定になり、乾燥を首尾よく行いづらくなる。この観点から、混合液中の固形分の原料粒子の大きさが前述の範囲であることを条件として、霧化された液滴の大きさは、5~150μm、特に10~120μmであることが好ましい。スプレードライヤーへの混合液の供給量は、この観点を考慮して決定することが望ましい。 In the spray drying method, the relationship between the size of the droplets of the atomized mixed liquid and the size of the raw material particles contained therein affects stable drying and the properties of the resulting reaction precursor. . Specifically, if the size of the solid material particles is too small with respect to the size of the droplets, the droplets become unstable, making it difficult to dry successfully. From this point of view, the size of the atomized droplets is 5 to 150 μm, particularly 10 to 120 μm, provided that the size of the raw material particles in the mixed solution is in the above-mentioned range. preferable. It is desirable to determine the supply amount of the mixed liquid to the spray dryer in consideration of this viewpoint.
 スプレードライ法は、反応前駆体の平均粒径が1~50μm、好ましくは1~30μm、特に好ましくは10~30μmとなるように行われることが、目的とするマンガン賦活ゲルマン酸塩蛍光体粒子の粒径の制御の点から好ましい。この平均粒径は、例えば光散乱式粒径分布測定装置を用いて測定される。 The spray drying method is carried out so that the average particle size of the reaction precursor is 1 to 50 μm, preferably 1 to 30 μm, particularly preferably 10 to 30 μm. This is preferable from the viewpoint of controlling the particle size. This average particle diameter is measured using, for example, a light scattering particle size distribution measuring apparatus.
 このようにして得られた球状の反応前駆体を(ハ)の焼成工程に付して、マンガン賦活ゲルマン酸塩蛍光体を得る。本製造方法では、スプレードライ工程に付して得られる反応前駆体を好ましくは1000℃以上で焼成することが好ましい。なお、焼成温度の上限温度は、溶解が始まり粒子形状が維持できなくなるという理由から1250℃である。また、焼成は1050~1200℃で行うと、粒子形状を保持したまま、単一の目的組成物が得られ、より粒子表面も滑らかにすることができ、しいては高い発光効率のものが得られるという観点から特に好ましい。 The spherical reaction precursor thus obtained is subjected to the firing step (c) to obtain a manganese-activated germanate phosphor. In this production method, the reaction precursor obtained by subjecting it to a spray drying step is preferably calcined at 1000 ° C. or higher. The upper limit temperature of the firing temperature is 1250 ° C. because dissolution starts and the particle shape cannot be maintained. In addition, when firing is performed at 1050 to 1200 ° C., a single target composition can be obtained while maintaining the particle shape, the particle surface can be smoothed, and a product with high luminous efficiency can be obtained. It is particularly preferable from the viewpoint of being produced.
 焼成時間は本製造方法において臨界的ではない。一般に3時間以上、特に5~36時間焼成すれば、満足すべきマンガン賦活ゲルマン酸塩蛍光体を得ることができる。
 焼成の雰囲気も本製造方法において臨界的ではなく、例えば大気等の酸化性ガス雰囲気中及び不活性ガス雰囲気中の何れであってもよい。
The firing time is not critical in this production method. In general, a satisfactory manganese-activated germanate phosphor can be obtained by firing for 3 hours or more, particularly 5 to 36 hours.
The firing atmosphere is not critical in the present production method, and may be any of an oxidizing gas atmosphere such as air and an inert gas atmosphere.
 このようにして得られる焼成体は、必要に応じて複数回の焼成工程に付してもよい。
 焼成後は得られるマンガン賦活ゲルマン酸塩蛍光体に対して、必要に応じて解砕処理、又は粉砕処理し、更に分級を行ってもよい。
The fired body obtained in this way may be subjected to a plurality of firing steps as necessary.
After firing, the resulting manganese-activated germanate phosphor may be crushed or crushed as necessary, and further classified.
 かくして、単一組成物としてマンガン賦活ゲルマン酸塩蛍光体が得られ、該マンガン賦活ゲルマン酸塩蛍光体の好ましい物性としては、光散乱式粒径分布測定装置による求められる平均粒径が5~35μm、好ましくは10~30μmである。平均粒径が前記範囲であることにより、励起光を一層効率よく吸収できる。平均粒径は、堀場製作所製のレーザー回折/散乱式粒度分布測定装置(LA-920)によって測定される。BET比表面積は0.1~1m/g、好ましくは0.2~0.7m/gである。BET比表面積が前記範囲であることにより励起光の吸収が十分なものとなり、また励起光の散乱も防止することができるので、発光強度を十分に高めることが可能となる。 Thus, a manganese-activated germanate phosphor is obtained as a single composition. The preferred physical property of the manganese-activated germanate phosphor is an average particle size determined by a light scattering particle size distribution analyzer of 5 to 35 μm. The thickness is preferably 10 to 30 μm. When the average particle diameter is in the above range, excitation light can be absorbed more efficiently. The average particle diameter is measured by a laser diffraction / scattering particle size distribution analyzer (LA-920) manufactured by Horiba. The BET specific surface area is 0.1 to 1 m 2 / g, preferably 0.2 to 0.7 m 2 / g. When the BET specific surface area is in the above range, absorption of excitation light becomes sufficient, and scattering of excitation light can also be prevented, so that the emission intensity can be sufficiently increased.
 また、本製造方法で得られるマンガン賦活ゲルマン酸塩蛍光体は、粒子形状が球状のものが得られる。なお、粒子形状が球状とは球状とみなせる形状である限り、必ずしも真球であることを要しない。一般に球形の程度は球形度で表すことができるところ、マンガン賦活ゲルマン酸塩蛍光体は、その球形度が1.0~1.8程度、特に1.0~1.7程度の球形をしていればよい。球状であるマンガン賦活ゲルマン塩蛍光体は、他の形状の粒子に比べて、量子収率が高く、発光強度も高くなる。球形度は、粒子を二次元に投影したときに、投影図形の最大径がなす真円面積/投影図形の実面積で定義される。したがって、球形度の値が1に近いほど、粒子は真球に近くなる。
 また、本製造方法で得られるマンガン賦活ゲルマン酸塩蛍光体の粒子表面は、平滑であることが好ましい。マンガン賦活ゲルマン酸塩蛍光体の粒子の表面の平滑さの程度は、例えば凹凸度で表すことができるところ、本発明の粒子は、その凹凸度が1.0~1.8程度、特に1.0~1.5程度の平滑さを有していればよい。凹凸度は、粒子を二次元に投影したときに、投影図形の周囲長から算出される真円面積/投影図形の実面積で定義される。したがって、凹凸度の値が1に近いほど、粒子の表面は平滑になる。
In addition, the manganese-activated germanate phosphor obtained by the present production method has a spherical particle shape. In addition, as long as the particle shape is a shape that can be regarded as a sphere, it is not necessarily a true sphere. In general, the degree of sphericity can be expressed by sphericity. Manganese-activated germanate phosphors have a sphericity of about 1.0 to 1.8, particularly about 1.0 to 1.7. Just do it. The spherical manganese-activated germane salt phosphor has a higher quantum yield and higher emission intensity than other shaped particles. The sphericity is defined by the area of the perfect circle formed by the maximum diameter of the projected figure / the actual area of the projected figure when the particles are projected two-dimensionally. Therefore, the closer the sphericity value is to 1, the closer the particle is to a true sphere.
Moreover, it is preferable that the particle | grain surface of the manganese activation germanate fluorescent substance obtained by this manufacturing method is smooth. The degree of smoothness of the surface of the particles of the manganese-activated germanate phosphor can be expressed by, for example, the degree of unevenness. It only needs to have a smoothness of about 0 to 1.5. The degree of unevenness is defined as the area of a perfect circle calculated from the perimeter of the projected figure / the actual area of the projected figure when the particles are projected two-dimensionally. Therefore, the closer the roughness value is to 1, the smoother the surface of the particles.
 前記の真球度及び凹凸度は、例えば画像解析装置を用いて測定することができる。そのような装置の例としては、ニコレ社製のLUZEX AP等が挙げられる。測定は、任意に抽出した300個の粒子を対象に行う。粒子の拡大倍率は、その大きさに応じて400~300000倍とする。 The sphericity and unevenness can be measured using, for example, an image analyzer. An example of such an apparatus is LUZEX AP manufactured by Nicole. The measurement is performed on 300 particles arbitrarily extracted. The magnification of the particles is 400 to 300,000 times depending on the size.
 本発明のマンガン賦活ゲルマン酸塩蛍光体は、耐湿性を改善する目的で、更にその粒子表面を金属酸化物で表面処理することができる。
 前記金属酸化物としては、例えば、Be、Mg、Al、Si、Ca、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zn、Ga、Ge、Sr、Y、Zr、Nb、Mo、Cd、In、Sn、Sb、Te、Ba、La、Hf、Ta、W、Tl、Pb、Bi、Ce、Pr、Nb、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Lu、Th、Pa、U、Puから選ばれる1種又は2種以上の金属酸化物が用いられる。
 マンガン賦活ゲルマン酸塩蛍光体粒子の粒子表面をこれらの金属酸化物で被覆処理する方法としては、公知の方法を用いることができ、その一例を示せば、前記金属元素を含む金属アルコキシドを用いて、該マンガン賦活ゲルマン酸塩蛍光体粒子を含有するスラリー又は懸濁液へ前記金属アルコキシドを添加し、該金属アルコキシドの加水分解反応を、必要により酸触媒又はアルカリ触媒の存在下に行い、マンガン賦活ゲルマン酸塩蛍光体粒子の粒子表面を前記金属酸化物で均一に表面処理する方法等が挙げられる。
The manganese-activated germanate phosphor of the present invention can be further surface treated with a metal oxide for the purpose of improving moisture resistance.
Examples of the metal oxide include Be, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Sr, Y, Zr, and Nb. , Mo, Cd, In, Sn, Sb, Te, Ba, La, Hf, Ta, W, Tl, Pb, Bi, Ce, Pr, Nb, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er One or more metal oxides selected from Tm, Yb, Lu, Th, Pa, U, and Pu are used.
As a method for coating the surface of the manganese-activated germanate phosphor particles with these metal oxides, a known method can be used. For example, a metal alkoxide containing the metal element is used. Then, the metal alkoxide is added to a slurry or suspension containing the manganese-activated germanate phosphor particles, and a hydrolysis reaction of the metal alkoxide is performed in the presence of an acid catalyst or an alkali catalyst, if necessary. Examples thereof include a method of uniformly treating the surface of the germanate phosphor particles with the metal oxide.
 このようにして得られたマンガン賦活ゲルマン酸塩蛍光体は赤色蛍光体として好適に用いることができ、該赤色蛍光体は、例えば、電解放射型ディスプレイ、プラズマディスプレイ、エレクトロルミッセンス等のディスプレイデバイス等の各種発光素子の用途に使用できる。また、450nm前後に近い励起スペクトルを有することから青色LED励起用蛍光体の用途に適用できる。特にエレクトロルミネッセンスのディスプレイデバイスの用途に好適である。また、青色励起緑色蛍光体と併用する方法、青色LDE素子と、青色励起緑色蛍光体を併用して用いる方法、あるいは青色LDE素子と、青色励起黄色発光蛍光体を併用して用いる方法等により、白色LEDに適用することもできる。 The manganese-activated germanate phosphor thus obtained can be suitably used as a red phosphor, and the red phosphor is, for example, a display device such as an electrolytic emission display, a plasma display, or an electroluminescence. It can be used for various light emitting device applications such as. Moreover, since it has an excitation spectrum close to around 450 nm, it can be applied to a blue LED excitation phosphor. It is particularly suitable for use in electroluminescent display devices. Also, by a method using in combination with a blue excited green phosphor, a method using a blue LDE element and a blue excited green phosphor in combination, or a method using a blue LDE element and a blue excited yellow light emitting phosphor in combination, etc. It can also be applied to white LEDs.
 以下、本発明を実施例により説明する。しかしながら、本発明の範囲はこれらの実施例に限定されるものではない。特に断らない限り、「%」は「重量%」を意味する。
  〔実施例1〕
(イ)均一スラリー調製工程; 水酸化マグネシウム(平均粒径0.57μm)、フッ化マグネシウム(平均粒径19.0μm)、酸化ゲルマニウム(平均粒径17.7μm)及び炭酸マンガン(平均粒径5.2μm)を、Mg:Ge:F:Mnのモル比を4:0.99:2.0:0.01、つまりMn/(Ge+Mn)=0.01、MgF/(Ge+Mn)=1.0、Mg/(Ge+Mn)=4.0となるように秤量しボールミルに仕込んだ。ボールミルに水と分散剤(花王(株)製、ポイズ2100)を加え、固形分濃度が15%の混合液を調製した。分散剤の濃度は2%であった。
 ビーズミルに直径0.5mmのジルコニアボールを仕込み、2時間、湿式法による混合粉砕を行った。混合粉砕後のスラリーの固形分の平均粒径を光散乱法により測定すると0.3μmであった。
(ロ)スプレードライ工程(乾燥工程); 次いで、入口の温度を200℃に設定したスプレードライヤーに、45ml/分の供給速度で混合液を供給し、反応前駆体を得た。反応前駆体の平均粒径は22.8μmであった。反応前駆体の電子顕微鏡写真(SEM像)を図1(a)及び(b)に示す。
(ハ)焼成工程; この反応前駆体を電気炉に仕込み、大気下に1150℃にて6時間静置状態で焼成した。
 このようにして、目的とする3MgO・MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、該マンガン賦活ゲルマン酸塩蛍光体はMg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。このマンガン賦活ゲルマン酸塩蛍光体のSEM像を図2(a)及び(b)に示す。
Hereinafter, the present invention will be described with reference to examples. However, the scope of the present invention is not limited to these examples. Unless otherwise specified, “%” means “% by weight”.
[Example 1]
(I) Uniform slurry preparation step; magnesium hydroxide (average particle size 0.57 μm), magnesium fluoride (average particle size 19.0 μm), germanium oxide (average particle size 17.7 μm) and manganese carbonate (average particle size 5) 2 μm), the molar ratio of Mg: Ge: F: Mn is 4: 0.99: 2.0: 0.01, that is, Mn / (Ge + Mn) = 0.01, MgF 2 / (Ge + Mn) = 1. It was weighed so that 0, Mg / (Ge + Mn) = 4.0, and charged in a ball mill. Water and a dispersant (manufactured by Kao Corporation, Poise 2100) were added to the ball mill to prepare a mixed solution having a solid content concentration of 15%. The concentration of the dispersant was 2%.
A bead mill was charged with zirconia balls having a diameter of 0.5 mm and mixed and ground by a wet method for 2 hours. When the average particle size of the solid content of the slurry after mixing and pulverization was measured by a light scattering method, it was 0.3 μm.
(B) Spray drying step (drying step); Then, the mixed solution was supplied at a supply rate of 45 ml / min to a spray dryer whose inlet temperature was set to 200 ° C. to obtain a reaction precursor. The average particle size of the reaction precursor was 22.8 μm. An electron micrograph (SEM image) of the reaction precursor is shown in FIGS.
(C) Firing step: This reaction precursor was charged into an electric furnace and baked in a stationary state at 1150 ° C. for 6 hours in the atmosphere.
In this way, 3MgO · MgF 2 · 0.99GeO 2 aims: to obtain a manganese-activated germanate salt is 0.01Mn 4+. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, the manganese-activated germanate phosphor was composed of Mg 14 Ge 5 O 24 and MgO, and the manganese activation of a single composition It was confirmed to be a germanate phosphor. The SEM image of this manganese activation germanate fluorescent substance is shown to Fig.2 (a) and (b).
  〔実施例2〕
 実施例1の(イ)均一混合スラリー調製工程において、仕込みモル比をMn/(Ge+Mn)=0.005とする以外は実施例1と同様にして3MgO・MgF・0.995GeO:0.005Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
[Example 2]
3MgO · MgF 2 · 0.995GeO 2 : 0.00 in the same manner as in Example 1 except that in the preparation step (a) of the uniform mixed slurry of Example 1, the charged molar ratio was Mn / (Ge + Mn) = 0.005. A manganese-activated germanate phosphor of 005Mn 4+ was obtained. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔実施例3〕
 実施例1の(イ)均一混合スラリー調製工程において、仕込みモル比をMn/(Ge+Mn)=0.03とする以外は実施例1と同様にして3MgO・MgF・0.97GeO:0.03Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
Example 3
3MgO · MgF 2 · 0.97GeO 2 : 0.00 in the same manner as in Example 1 except that, in the step (b) of preparing the uniform mixed slurry of Example 1, the charged molar ratio was Mn / (Ge + Mn) = 0.03. A manganese-activated germanate phosphor of 03Mn 4+ was obtained. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔実施例4〕
 実施例1の(イ)均一混合スラリー調製工程において、仕込みモル比をMgF/(Ge+Mn)=0.6とする以外は実施例1と同様にして3.4MgO・0.6MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
Example 4
In the step (a) of preparing the homogeneously mixed slurry of Example 1, 3.4 MgO · 0.6MgF 2 .0 .0 was performed in the same manner as in Example 1 except that the charged molar ratio was MgF 2 /(Ge+Mn)=0.6. A manganese-activated germanate phosphor of 99GeO 2 : 0.01Mn 4+ was obtained. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔実施例5〕
 実施例1の(イ)均一混合スラリー調製工程において、仕込みモル比をMgF/(Ge+Mn)=3.0とする以外は実施例1と同様にしてMgO・3MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
Example 5
MgO · 3MgF 2 · 0.99GeO 2 : 0 in the same manner as in Example 1 except that in the (a) uniform mixed slurry preparation step of Example 1, the charged molar ratio was MgF 2 /(Ge+Mn)=3.0. A manganese-activated germanate phosphor of .01Mn 4+ was obtained. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔実施例6〕
 実施例1の(イ)均一混合スラリー調製工程において、仕込みモル比をMg/(Ge+Mn)=3.0とする以外は実施例1と同様にして2MgO・MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
Example 6
2MgO · MgF 2 · 0.99GeO 2 : 0.00 in the same manner as in Example 1 except that in the preparation step (a) of the homogeneously mixed slurry of Example 1, the charged molar ratio was Mg / (Ge + Mn) = 3.0. A manganese-activated germanate phosphor of 01Mn 4+ was obtained. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔実施例7〕
 実施例1の(ハ)焼成工程において、焼成温度を1075℃とする以外は実施例1と同様にして3MgO・MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。
Example 7
The manganese-activated germanate phosphor of 3MgO · MgF 2 · 0.99GeO 2 : 0.01Mn 4+ in the same manner as in Example 1 except that the firing temperature is 1075 ° C. in the firing step (c) of Example 1. Got. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed.
  〔比較例1〕
 実施例1の(ロ)スプレードライ工程(乾燥工程)において、スプレードライヤーを用いて球状粒子を得る代わりに、湿式粉砕スラリーをそのまま静置乾燥する以外は実施例1と同様にして3MgO・MgF・0.99GeO:0.01Mn4+であるマンガン賦活ゲルマン酸塩蛍光体を得た。得られたマンガン賦活ゲルマン酸塩蛍光体についてX線回折測定を行ったところ、Mg14Ge24およびMgOからなるものであり、単一組成物のマンガン賦活ゲルマン酸塩蛍光体であることを確認した。このマンガン賦活ゲルマン酸塩蛍光体のSEM像を図3(a)及び(b)に示す。
[Comparative Example 1]
In the (b) spray drying step (drying step) of Example 1, 3MgO · MgF 2 was performed in the same manner as in Example 1 except that the wet pulverized slurry was left to stand and dried instead of obtaining spherical particles using a spray dryer. · 0.99GeO 2: to obtain a manganese-activated germane salt phosphor is 0.01Mn 4+. When X-ray diffraction measurement was performed on the obtained manganese-activated germanate phosphor, it was composed of Mg 14 Ge 5 O 24 and MgO, and was a single-composition manganese-activated germanate phosphor. confirmed. SEM images of this manganese-activated germanate phosphor are shown in FIGS. 3 (a) and 3 (b).
[規則26に基づく補充 24.10.2011] 
Figure WO-DOC-TABLE-1
[Supplement under rule 26 24.10.2011]
Figure WO-DOC-TABLE-1
 〔物性評価〕
 実施例及び比較例で得られたマンガン賦活ゲルマン酸塩蛍光体の平均粒径、真球度、凹凸度及びBET比表面積を、先に述べた方法で測定した。また、3000倍のSEM観察において、マンガン賦活ゲルマン酸塩蛍光体粒子の粒子表面を観察した。それらの結果を表2に示す。
〔Evaluation of the physical properties〕
The average particle diameter, sphericity, unevenness, and BET specific surface area of the manganese-activated germanate phosphors obtained in the examples and comparative examples were measured by the methods described above. In addition, the surface of the manganese-activated germanate phosphor particles was observed in 3000 times SEM observation. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 〔評価〕
 実施例及び比較例で得られたマンガン賦活ゲルマン酸塩蛍光体について、以下の方法で励起波長450nmでの内部量子効率及び相対発光強度を測定した。それらの結果を以下の表3に示す。
[Evaluation]
About the manganese activation germanate fluorescent substance obtained by the Example and the comparative example, the internal quantum efficiency and the relative light emission intensity in excitation wavelength 450nm were measured with the following method. The results are shown in Table 3 below.
 〔内部量子効率〕
 日立ハイテク社製の蛍光分光光度計(F-7000)と付属の積分球を用いて励起光450nmとし、420から700nmの範囲を走査し変換効率を求めた。なお全散乱光を測定するための試料には、酸化アルミニウム粉末を用いた。酸化アルミニウムによって得られた435から475nmのスペクトル強度積分値を励起光量とし、蛍光体試料によって得られた435から475nmのスペクトル強度積分値を吸収後励起光量とし、蛍光体試料により得られた600から700nmのスペクトル強度積分値を蛍光量として求めた。そして、以下の式から内部量子効率を求めた。
  内部量子効率(%)=100×蛍光量÷(励起光量-吸収後励起光量)
[Internal quantum efficiency]
Using a fluorescence spectrophotometer (F-7000) manufactured by Hitachi High-Tech, Inc. and an attached integrating sphere, the excitation light was 450 nm, and the conversion efficiency was obtained by scanning the range from 420 to 700 nm. An aluminum oxide powder was used as a sample for measuring the total scattered light. The spectral intensity integrated value of 435 to 475 nm obtained by aluminum oxide is used as the excitation light amount, and the spectral intensity integrated value of 435 to 475 nm obtained by the phosphor sample is used as the excitation light amount after absorption, and from 600 obtained by the phosphor sample. The integral value of spectral intensity at 700 nm was determined as the amount of fluorescence. And the internal quantum efficiency was calculated | required from the following formula | equation.
Internal quantum efficiency (%) = 100 x fluorescence amount / (excitation light amount-excitation light amount after absorption)
 〔相対発光強度〕
 日立ハイテク社製の蛍光分光光度計(F-7000)を用いて励起光450nmとし、470から800nmの範囲を走査し蛍光スペクトルを得た。得られた強度値から最大発光強度を100とし相対発光強度を求めた。
[Relative emission intensity]
Using a fluorescence spectrophotometer (F-7000) manufactured by Hitachi High-Tech Co., Ltd., excitation light was set to 450 nm, and a range from 470 to 800 nm was scanned to obtain a fluorescence spectrum. The relative light emission intensity was determined from the obtained intensity value with the maximum light emission intensity being 100.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 図2及び図3との対比から明らかなように、実施例1のマンガン賦活ゲルマン酸塩蛍光体(本発明品)は、比較例1のマンガン賦活ゲルマン酸塩蛍光体に比べ、一次粒子の凝集により球状を形成していることが判る。比較例1のゲルマン酸塩蛍光体は、不定形の形状となっている。
 また、表3に示す結果から明らかなように、実施例1のマンガン賦活ゲルマン酸塩蛍光体(本発明品)は、比較例1のマンガン賦活ゲルマン酸塩蛍光体に比べ、赤色域での発光強度が高いものであることが判る。
As is clear from the comparison with FIGS. 2 and 3, the manganese-activated germanate phosphor of the first example (the product of the present invention) was agglomerated of primary particles compared to the manganese-activated germanate phosphor of the first comparative example. It can be seen that a spherical shape is formed. The germanate phosphor of Comparative Example 1 has an irregular shape.
Further, as apparent from the results shown in Table 3, the manganese-activated germanate phosphor of the first example (product of the present invention) emits light in the red region as compared with the manganese-activated germanate phosphor of the first comparative example. It can be seen that the strength is high.

Claims (4)

  1.  下記一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、M1はZn、Cu、Cd、Ca、Hg、Sr、Baの群から選ばれる1種又は2種以上の元素を示し、M2はSi、Sn、Pbの群から選ばれる1種又は2種以上の元素を示す。aは0<a≦4、bは0.5≦b≦4、cは0.8≦c≦1.2、nは0.001≦n≦0.05、xは0≦x≦0.2、yは0≦y≦0.28を示す。)で表されるマンガン賦活ゲルマン酸塩蛍光体の製造方法であって、
     フッ化マグネシウム、フッ化マグネシウム以外のマグネシウム化合物、ゲルマニウム化合物、マンガン化合物及び必要により添加される前記M1元素及び前記M2元素から選ばれる添加元素を含有する添加元素含有化合物の1種又は2種以上を分散媒と混合した混合スラリーを調製し、この原料混合スラリーをメディアミルによって湿式混合し、得られる均一混合スラリーをスプレードライ法に付して反応前駆体となし、この反応前駆体を焼成することを特徴とするマンガン賦活ゲルマン酸塩蛍光体の製造方法。
    The following general formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, M1 represents one or more elements selected from the group of Zn, Cu, Cd, Ca, Hg, Sr, Ba, and M2 represents one or more elements selected from the group of Si, Sn, Pb, or 2 or more elements are represented, a is 0 <a ≦ 4, b is 0.5 ≦ b ≦ 4, c is 0.8 ≦ c ≦ 1.2, n is 0.001 ≦ n ≦ 0.05, x represents 0 ≦ x ≦ 0.2 and y represents 0 ≦ y ≦ 0.28.) The method for producing a manganese-activated germanate phosphor represented by:
    Magnesium fluoride, magnesium compound other than magnesium fluoride, germanium compound, manganese compound, and one or more of additive element-containing compounds containing an additive element selected from the M1 element and the M2 element added as necessary Prepare a mixed slurry mixed with the dispersion medium, wet mix this raw material mixed slurry with a media mill, subject the resulting uniform mixed slurry to a spray drying method to make a reaction precursor, and calcine this reaction precursor A method for producing a manganese-activated germanate phosphor characterized by comprising:
  2.  反応前駆体の平均粒径が1~50μmとなるようにスプレードライ法を行うことを特徴とする請求項1記載のマンガン賦活ゲルマン酸塩蛍光体の製造方法。 2. The method for producing a manganese-activated germanate phosphor according to claim 1, wherein spray drying is performed so that the average particle size of the reaction precursor is 1 to 50 μm.
  3.  均一混合スラリーの固形分の平均粒径が5μm以下であることを特徴とする請求項1又は2記載のマンガン賦活ゲルマン酸塩蛍光体の製造方法。 The method for producing a manganese-activated germanate phosphor according to claim 1 or 2, wherein the average particle size of the solid content of the uniformly mixed slurry is 5 µm or less.
  4.  焼成温度が1000℃以上であることを特徴とする請求項1乃至3記載のマンガン賦活ゲルマン酸塩蛍光体の製造方法。 The method for producing a manganese-activated germanate phosphor according to any one of claims 1 to 3, wherein the firing temperature is 1000 ° C or higher.
PCT/JP2011/073175 2010-10-13 2011-10-07 Method for producing manganese-activated germanate phosphor WO2012050051A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-230990 2010-10-13
JP2010230990 2010-10-13

Publications (1)

Publication Number Publication Date
WO2012050051A1 true WO2012050051A1 (en) 2012-04-19

Family

ID=45938280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/073175 WO2012050051A1 (en) 2010-10-13 2011-10-07 Method for producing manganese-activated germanate phosphor

Country Status (2)

Country Link
TW (1) TW201229210A (en)
WO (1) WO2012050051A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006501A (en) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk Deep red phosphor
CN104326465A (en) * 2014-09-22 2015-02-04 安徽科技学院 Preparation method of phosphate functional material with vice celsian structure crystal structure
WO2015192312A1 (en) * 2014-06-17 2015-12-23 Osram Gmbh Phosphor, light-emitting device containing a phosphor and method for producing a phosphor
JP2016145316A (en) * 2015-01-28 2016-08-12 日亜化学工業株式会社 Red phosphor
JP2017165822A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface-treated composite powder, resin composition, cured body, and optical semiconductor light-emitting device
JP2017165821A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface-treated composite powder, resin composition, cured body, and optical semiconductor light-emitting device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158387A (en) * 1978-06-05 1979-12-14 Toshiba Corp Production of magnesium fluorogermanate phosphor
JPH04372689A (en) * 1991-06-20 1992-12-25 Mitsubishi Electric Corp Manufacture of phosphor powder
JPH11158464A (en) * 1997-11-26 1999-06-15 Matsushita Electric Ind Co Ltd Manganese-activated germanate phosphor and its production
JP2001513828A (en) * 1997-02-24 2001-09-04 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Oxygen-containing fluorescent powder, method for producing the fluorescent powder, and apparatus using the fluorescent powder
JP2004115598A (en) * 2002-09-25 2004-04-15 Nichia Chem Ind Ltd Manganese-activated magnesium fluoride germanate fluorescent substance and method for producing the same
JP2006348139A (en) * 2005-06-15 2006-12-28 Fujikura Ltd Method for producing alpha-sialon phosphor powder
JP2007314726A (en) * 2006-05-29 2007-12-06 Sharp Corp Process for production of fluorescent substance, fluorescent substance and light emitting device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54158387A (en) * 1978-06-05 1979-12-14 Toshiba Corp Production of magnesium fluorogermanate phosphor
JPH04372689A (en) * 1991-06-20 1992-12-25 Mitsubishi Electric Corp Manufacture of phosphor powder
JP2001513828A (en) * 1997-02-24 2001-09-04 スーペリア マイクロパウダーズ リミテッド ライアビリティ カンパニー Oxygen-containing fluorescent powder, method for producing the fluorescent powder, and apparatus using the fluorescent powder
JPH11158464A (en) * 1997-11-26 1999-06-15 Matsushita Electric Ind Co Ltd Manganese-activated germanate phosphor and its production
JP2004115598A (en) * 2002-09-25 2004-04-15 Nichia Chem Ind Ltd Manganese-activated magnesium fluoride germanate fluorescent substance and method for producing the same
JP2006348139A (en) * 2005-06-15 2006-12-28 Fujikura Ltd Method for producing alpha-sialon phosphor powder
JP2007314726A (en) * 2006-05-29 2007-12-06 Sharp Corp Process for production of fluorescent substance, fluorescent substance and light emitting device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011006501A (en) * 2009-06-23 2011-01-13 Tokyo Kagaku Kenkyusho:Kk Deep red phosphor
WO2015192312A1 (en) * 2014-06-17 2015-12-23 Osram Gmbh Phosphor, light-emitting device containing a phosphor and method for producing a phosphor
KR20170018938A (en) * 2014-06-17 2017-02-20 오스람 옵토 세미컨덕터스 게엠베하 Phosphor, light-emitting device containing a phosphor and method for producing a phosphor
JP2017519871A (en) * 2014-06-17 2017-07-20 オスラム オプト セミコンダクターズ ゲゼルシャフト ミット ベシュレンクテル ハフツングOsram Opto Semiconductors GmbH Phosphor, light-emitting device including the phosphor, and method for producing the phosphor
KR102270057B1 (en) 2014-06-17 2021-06-25 오스람 옵토 세미컨덕터스 게엠베하 Phosphor, light-emitting device containing a phosphor and method for producing a phosphor
CN104326465A (en) * 2014-09-22 2015-02-04 安徽科技学院 Preparation method of phosphate functional material with vice celsian structure crystal structure
JP2016145316A (en) * 2015-01-28 2016-08-12 日亜化学工業株式会社 Red phosphor
JP2017165822A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface-treated composite powder, resin composition, cured body, and optical semiconductor light-emitting device
JP2017165821A (en) * 2016-03-14 2017-09-21 住友大阪セメント株式会社 Composite powder, surface-treated composite powder, resin composition, cured body, and optical semiconductor light-emitting device

Also Published As

Publication number Publication date
TW201229210A (en) 2012-07-16

Similar Documents

Publication Publication Date Title
JP2011246662A (en) Aluminate phosphor, method for producing the same, and light-emitting element
US9062251B2 (en) Phosphor particles, light-emitting diode, and illuminating device and liquid crystal panel backlight device using them
WO2012050051A1 (en) Method for producing manganese-activated germanate phosphor
JP4971630B2 (en) Phosphor, method for manufacturing the same, and light emitting device
JP5578739B2 (en) Alkaline earth metal silicate phosphor and method for producing the same
WO2010119799A1 (en) Red phosphor, method for producing same, and light-emitting element
JP2010265448A (en) Red phosphor and method for producing the same
JP2014506266A (en) Composition comprising core-shell aluminate, phosphor obtained from this composition, and method of production
JP6239456B2 (en) Phosphor and method for producing the same
JP2017088800A (en) Fluophor and manufacturing method therefor
TWI448535B (en) Eu method for the production of metalloid phosphite phosphors
JP2005105177A (en) Fluorescent particles, process for producing the same and light emitting device using fluorescent particles
JP2013159718A (en) Manganese-activated germanate phosphor, method for preparing the same, and light-emitting element
JP7037082B2 (en) Rare earth aluminate phosphor manufacturing method, rare earth aluminate phosphor and light emitting device
WO2012066993A1 (en) Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element
TW201319220A (en) Method for synthesizing oxynitride phosphors
KR100447936B1 (en) Green emitting phosphor by VUV excitiation and its preparation method
KR100992949B1 (en) Synthesizing process of phosphor
JP3559449B2 (en) Orthorhombic hydroxide phosphor and its manufacturing method
JP2008063574A (en) Europium-activated yttrium oxide and process for producing the same
KR20090044800A (en) Phosphate nano phosphors and method for preparing nano phosphors
TW201716544A (en) Fluorescent body, production method therefor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11832486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11832486

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP