JPH11158464A - Manganese-activated germanate phosphor and its production - Google Patents

Manganese-activated germanate phosphor and its production

Info

Publication number
JPH11158464A
JPH11158464A JP34226497A JP34226497A JPH11158464A JP H11158464 A JPH11158464 A JP H11158464A JP 34226497 A JP34226497 A JP 34226497A JP 34226497 A JP34226497 A JP 34226497A JP H11158464 A JPH11158464 A JP H11158464A
Authority
JP
Japan
Prior art keywords
phosphor
manganese
producing
fired
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34226497A
Other languages
Japanese (ja)
Inventor
Toshiaki Kurachi
敏明 倉地
Teruaki Shigeta
照明 重田
Shigeru Horii
堀井  滋
Tomizo Matsuoka
富造 松岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP34226497A priority Critical patent/JPH11158464A/en
Publication of JPH11158464A publication Critical patent/JPH11158464A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To produce a manganese-activated germanate phosphor having a large primary particle diameter and high luminance and being free from agglomerations of fine particles. SOLUTION: A manganese-activated germnanate phosphor having a large primary particle diameter and being free from agglomerates of fine particles can be obtained by using magnesium oxide as a starting material and firing the material while regularly or irregularly agitating a container 1 in which the material is placed or while agitating the material by means of an external agitation means. Further, a manganese-activated germanate phosphor having a large primary particle diameter even when the amount of the manganese activator is large can be obtained by firing only the matrix of a phosphor, mixing the fired matrix with a manganese compound, and re-firing the mixture.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は蛍光ランプに用いる
深赤色蛍光体及び製造方法に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a deep red phosphor used in a fluorescent lamp and a method of manufacturing the same.

【0002】[0002]

【従来の技術】蛍光ランプに用いる赤色蛍光体は、例え
ば、平成8年度(第29回)照明学会全国大会講演論文
集第337頁に発表されている。これによれば、赤色に
対する演色性を向上させるためには、赤色発光成分がよ
り長波長側にある深赤色がよいとされており、マンガン
付活ゲルマン酸蛍光体が紹介されている。
2. Description of the Related Art A red phosphor used for a fluorescent lamp is disclosed in, for example, the 1989 National Meeting of the Illuminating Engineering Institute, 337 pages of proceedings. According to this, in order to improve the color rendering properties for red, it is considered that deep red, in which the red light-emitting component is on the longer wavelength side, is preferable, and a manganese-activated germanic acid phosphor is introduced.

【0003】マンガン付活ゲルマン酸蛍光体の組成は、
例えば、蛍光体ハンドブック(蛍光体同学会編、198
7年12月)第231頁に記載されている。これによれ
ば、この蛍光体の組成式は、 3.5MgO・0.5MgF2・GeO2:Mn4+ で表され、マンガンの付活量はゲルマニウムに対し1原
子%となっている。
The composition of a manganese-activated germanic acid phosphor is as follows:
For example, a phosphor handbook (edited by Phosphors Society of Japan, 198
(December 7), page 231. According to this, the composition formula of this phosphor is represented by 3.5MgO.0.5MgF 2 .GeO 2 : Mn 4+ , and the activation amount of manganese is 1 atomic% with respect to germanium.

【0004】また、焼成の方法は、酸化マグネシウムと
弗化マグネシウムと酸化ゲルマニウムと炭酸マンガンを
混合し、空気中1000℃で数時間焼成した後、混合粉
砕し、空気中1200℃で十数時間焼成するとされてい
る。
[0004] In addition, firing is performed by mixing magnesium oxide, magnesium fluoride, germanium oxide and manganese carbonate, firing in air at 1000 ° C for several hours, then pulverizing the mixture, and firing in air at 1200 ° C for more than 10 hours. It has been done.

【0005】しかし、蛍光体原料には、酸化マグネシウ
ムではなく、価格面で有利な炭酸マグネシウムが用いら
れてきた。
[0005] However, magnesium carbonate, which is advantageous in terms of cost, has been used as the raw material for the phosphor instead of magnesium oxide.

【0006】[0006]

【発明が解決しようとする課題】しかし、このような方
法で焼成されたマンガン付活ゲルマン酸蛍光体は、1μ
m程度の小粒子の凝集体である。従って、一次粒子が大
きく凝集の少ないものと比較すると結晶性が低く、輝度
が低い。
However, the manganese-activated germanic acid phosphor fired by such a method is 1 μm.
It is an aggregate of small particles of about m. Therefore, the crystallinity is low and the brightness is low as compared with those having large primary particles and little aggregation.

【0007】また、三波長域発行型蛍光ランプのよう
に、複数の蛍光体をガラス管に塗布した場合の管端色差
をなくすために、各蛍光体の粒径を変えて比重を合わせ
る必要がある。このため、混合する他の蛍光体の比重に
合わせて凝集体を粉砕する必要があり、過度の粉砕によ
る結晶の破砕などにより、さらに輝度が低下する。
Further, in order to eliminate a difference in color at the end of a tube when a plurality of phosphors are applied to a glass tube, as in a three-wavelength band fluorescent lamp, it is necessary to adjust the specific gravity by changing the particle size of each phosphor. is there. For this reason, it is necessary to pulverize the aggregate in accordance with the specific gravity of the other phosphor to be mixed, and the brightness is further reduced due to the crushing of the crystal due to excessive pulverization.

【0008】また、マンガン化合物がフラックスとして
働くため、マンガンの付活量によって、蛍光体の粒径が
大きく変化し、マンガンの付活量が多くなるほど小粒子
となっていた。例えば、マンガン付活量がゲルマニウム
原子に対して0.1原子%では、一次粒子の粒径が5μ
m程度であるのに対し、現在最も多く用いられている1
原子%程度の場合、一次粒子の粒径が1μm程度と小さ
くなってしまう。
In addition, since the manganese compound acts as a flux, the particle size of the phosphor changes greatly depending on the amount of manganese activation, and the phosphor becomes smaller as the amount of manganese activation increases. For example, when the manganese activation amount is 0.1 atomic% based on germanium atoms, the particle size of the primary particles is 5 μm.
m, whereas 1
In the case of about atomic%, the particle diameter of the primary particles becomes as small as about 1 μm.

【0009】また、一般の蛍光ランプ用蛍光体は、粒径
が3μm〜5μm程度が最も多く用いられており、いず
れも微小粒子の凝集体をほとんど含んでいないため、マ
ンガン付活ゲルマン酸蛍光体は、他の蛍光体と比べてス
ラリ中での分散性が悪い。
[0009] Further, most fluorescent lamp phosphors generally have a particle size of about 3 μm to 5 μm, and each of them contains almost no aggregate of fine particles. Is less dispersible in the slurry than other phosphors.

【0010】本発明は、このような従来の蛍光体の課題
を克服するためになされたもので、一次粒子が大きく高
輝度で、他の蛍光体と粒径が同程度であり微小粒子の凝
集体を含まない蛍光体と製造方法を提供することを目的
とする。
The present invention has been made in order to overcome the problems of the conventional phosphor, and the primary particles are large and have high brightness, the particle size is almost the same as other phosphors, and the aggregation of fine particles is small. An object of the present invention is to provide a phosphor containing no aggregate and a manufacturing method.

【0011】[0011]

【課題を解決するための手段】以上の目的を達成するた
め、本発明のマンガン付活ゲルマン酸蛍光体は、加熱に
より酸化マグネシウムとなるマグネシウム化合物と弗化
マグネシウムと酸化ゲルマニウムおよびマンガン化合物
を加熱焼成して得られる蛍光体で、粒径が2μm以上で
あり、微粒子の凝集体を含まないことを特徴とするマン
ガン付活ゲルマン酸蛍光体である。また、そのマグネシ
ウム化合物と弗化マグネシウムに含まれるマグネシウム
原子の総和がゲルマニウムに対して400原子%であ
り、弗化マグネシウムがゲルマニウムに対して50原子
%以上100原子%以下である。
In order to achieve the above object, a manganese-activated germanic acid phosphor of the present invention comprises a magnesium compound which becomes magnesium oxide by heating, magnesium fluoride, germanium oxide, and a manganese compound. A manganese-activated germanic acid phosphor characterized by having a particle size of 2 μm or more and containing no aggregate of fine particles. The sum of the magnesium compound and the magnesium atoms contained in the magnesium fluoride is 400 at% with respect to germanium, and the magnesium fluoride is at least 50 at% and at most 100 at% with respect to germanium.

【0012】また、原料の反応性を高め、大きな一次粒
子を作るため、蛍光体と容器とを規則的または不規則的
に動かしながら焼成することを特徴とする。
Further, in order to increase the reactivity of the raw material and produce large primary particles, the firing is performed while the phosphor and the container are moved regularly or irregularly.

【0013】また、マンガン付活量が変化しても粒径が
ほとんど変化しないようにするため、蛍光体母体を焼成
した後マンガンを付活することを特徴とする。
Further, in order that the particle size hardly changes even if the manganese activation amount changes, the manganese is activated after firing the phosphor matrix.

【0014】[0014]

【発明の実施の形態】以下に本発明の実施の形態を図面
を参照しながら説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0015】本発明のマンガン付活ゲルマン酸蛍光体の
合成方法は、加熱により酸化マグネシウムとなるマグネ
シウム化合物と弗化マグネシウムと酸化ゲルマニウムお
よびマンガン化合物を混合し空気中で焼成する。原料の
混合比率は、焼成後の蛍光体の組成が 一般式 AMgO・BMgF2・GeO2:xMn4+ 但し、0.001≦x≦0.1、2≦A+B≦5 で表される組成からなるようにする。特に、 一般式 (4−y)MgO・yMgF2・GeO2:xM
4+ 但し、0.5≦y≦1.0 で表される組成とすると、特に高輝度の蛍光体が得ら
れ、副生成物ができにくいため、望ましい。
According to the method for synthesizing a manganese-activated germanic acid phosphor of the present invention, a magnesium compound which becomes magnesium oxide by heating, magnesium fluoride, germanium oxide and a manganese compound are mixed and fired in air. The mixing ratio of the raw materials, the composition of the phosphor after firing formula AMgO · BMgF 2 · GeO 2: xMn 4+ However, the composition represented by 0.001 ≦ x ≦ 0.1,2 ≦ A + B ≦ 5 To be. In particular, the general formula (4-y) MgO · yMgF 2 · GeO 2: xM
n 4+ However, a composition represented by 0.5 ≦ y ≦ 1.0 is preferable because a phosphor with particularly high luminance is obtained and by-products are hardly formed.

【0016】第一の実施の形態は、マグネシウム化合物
として、含量の少ない塩基性炭酸マグネシウムなどでは
なく、酸化マグネシウムを用いると、粒径が大きく、微
小粒子の凝集体を含まない蛍光体を得ることができる。
In the first embodiment, when magnesium oxide is used as the magnesium compound instead of basic magnesium carbonate having a small content, a phosphor having a large particle size and containing no aggregate of fine particles can be obtained. Can be.

【0017】また、全体を均一に反応させるため、80
0〜1100℃、好ましくは900〜1000℃で10
分以上、好ましくは1時間以上の予備焼成した後、10
00〜1400℃、好ましくは1100〜1300℃で
一時間以上の本焼成を行うことが望ましい。
In order to make the whole react uniformly, 80
0 to 1100 ° C, preferably 900 to 1000 ° C for 10
After pre-firing for at least one minute, preferably at least one hour,
It is desirable to perform the main firing at 00 to 1400 ° C, preferably 1100 to 1300 ° C, for one hour or more.

【0018】第二の実施の形態は、第一の実施の形態と
同様の方法で原料を混合して炉心管に入れ、炉心管を管
長方向の軸を中心にして回転させながら焼成すると粒径
が大きく、微小粒子の凝集体を含まない蛍光体を得るこ
とができる。
In the second embodiment, the raw materials are mixed in the same manner as in the first embodiment, placed in a furnace tube, and fired while rotating the furnace tube around the longitudinal axis of the tube. And a phosphor containing no aggregates of fine particles can be obtained.

【0019】なお、マグネシウム化合物としては、塩基
性炭酸マグネシウムなどの酸化マグネシウム以外の原料
を用いてもよい。
As the magnesium compound, a raw material other than magnesium oxide such as basic magnesium carbonate may be used.

【0020】また、焼成の温度は、800〜1100
℃、好ましくは900〜1000℃で10分以上、好ま
しくは1時間以上の予備焼成した後、1000〜140
0℃、好ましくは1100〜1300℃で一時間以上の
本焼成を行うことが望ましい。
The firing temperature is 800 to 1100.
C., preferably at 900 to 1000 ° C. for at least 10 minutes, preferably at least 1 hour, and
It is desirable to perform main firing at 0 ° C., preferably 1100 to 1300 ° C., for one hour or more.

【0021】また、予備焼成および本焼成では、炉心管
を5rpm以上200rpm以下、好ましくは10rp
m以上100rpm以下の速度で回転させることが望ま
しい。 また、炉心管は、蛍光体原料との反応性がきわ
めて低い材質である必要があり、アルミナ製であること
が好ましい。
In the pre-firing and main firing, the furnace tube is set at 5 rpm or more and 200 rpm or less, preferably 10 rpm or less.
It is desirable to rotate at a speed of not less than m and not more than 100 rpm. Further, the furnace tube must be made of a material having extremely low reactivity with the phosphor material, and is preferably made of alumina.

【0022】また、炉心管の中に、蛍光体原料との反応
性がきわめて低い固体を入れてもよい。固体としては、
ビーズが好ましく、材質はアルミナまたはジルコニアで
あることが望ましい。
Further, a solid having extremely low reactivity with the phosphor raw material may be put in the furnace tube. As a solid,
Beads are preferred, and the material is preferably alumina or zirconia.

【0023】また、炉心管の中に、蛍光体原料との反応
性がきわめて低い材質の攪拌ばねを差し込み、攪拌ばね
を回転させて、原料を攪拌しながら焼成してもよい。攪
拌ばねの材質は、アルミナが望ましい。
Also, a stirring spring made of a material having extremely low reactivity with the phosphor raw material may be inserted into the furnace tube, and the raw material may be agitated by rotating the stirring spring. The material of the stirring spring is preferably alumina.

【0024】第三の実施の形態は、マンガン化合物を除
く原料を第一の実施の形態と同様の方法で原料を混合し
て焼成した後、マンガン化合物を混合して焼成すると、
粒径が大きく、微小粒子の凝集体を含まない蛍光体を得
ることができる。
In the third embodiment, the raw materials excluding the manganese compound are mixed and fired in the same manner as in the first embodiment, and then the manganese compound is mixed and fired.
A phosphor having a large particle size and containing no aggregate of fine particles can be obtained.

【0025】なお、焼成条件は、マンガン化合物を除く
原料を混合した後、800〜1100℃、好ましくは9
00〜1000℃で10分以上、好ましくは1時間以上
の予備焼成した後、1000〜1400℃、好ましくは
1100〜1300℃で一時間以上の本焼成を行うこと
が望ましい。また、マンガン化合物混合後の焼成条件
は、600〜1000℃、好ましくは800〜1000
℃で2時間以上焼成することが望ましい。
The firing conditions are as follows: after mixing the raw materials excluding the manganese compound, the temperature is set to 800 to 1100 ° C.
After preliminarily firing at 00 to 1000 ° C for 10 minutes or more, preferably for 1 hour or more, it is desirable to perform main firing at 1000 to 1400 ° C, preferably 1100 to 1300 ° C for one hour or more. The firing conditions after mixing the manganese compound are 600 to 1000 ° C, preferably 800 to 1000 ° C.
It is desirable to bake at a temperature of at least 2 hours.

【0026】[0026]

【実施例】以下に実施例を用いて本発明を詳しく説明す
る。
The present invention will be described below in detail with reference to examples.

【0027】(実施例1)マグネシウム化合物として酸
化マグネシウムを用いた、 組成式 3.5MgO・0.5MgF2・GeO2:0.
003Mn4+ で表されるマンガン付活ゲルマン酸蛍光体(以下、MF
G蛍光体と略称) 酸化マグネシウム3.5molと弗化マグネシウム0.
5molと酸化ゲルマニウム1.0molおよび炭酸マ
ンガン0.003molを秤量し、適量のアセトンを加
えて乳鉢で湿式混合した後、蓋付きのアルミナるつぼに
入れ、空気雰囲気中で400℃/時間の昇温速度で昇温
し、1000℃で2時間の予備焼成を行う。さらに乳鉢
を用いて粉砕した後、蓋付きのアルミナるつぼに入れ、
空気雰囲気中で400℃/時間の昇温速度で昇温し、1
200℃で2時間の本焼成を行う。さらに前記焼成物を
乳鉢を用いて粉砕する。
(Example 1) A composition formula of 3.5MgO.0.5MgF 2 .GeO 2 : 0.5 using magnesium oxide as a magnesium compound.
Manganese-activated germanic acid phosphor represented by 003Mn 4+ (hereinafter referred to as MF
G phosphor) 3.5 g of magnesium oxide and 0.3 g of magnesium fluoride.
5 mol, 1.0 mol of germanium oxide and 0.003 mol of manganese carbonate were weighed, an appropriate amount of acetone was added thereto, and the mixture was wet-mixed in a mortar. Then, the mixture was placed in an alumina crucible with a lid and heated at a rate of 400 ° C./hour in an air atmosphere. And perform preliminary firing at 1000 ° C. for 2 hours. After further crushing using a mortar, put in an alumina crucible with a lid,
The temperature is raised at a rate of 400 ° C./hour in an air atmosphere,
The main baking is performed at 200 ° C. for 2 hours. Further, the fired product is ground using a mortar.

【0028】このようにして得られたMFG蛍光体の電
子顕微鏡写真を図1に示す。また、マグネシウム化合物
として炭酸マグネシウムを用い、同様の方法で得られた
従来のMFG蛍光体の電子顕微鏡写真を図2に示す。炭
酸マグネシウムを用いた場合、焼成中に発生するガスが
原因で、粒径が小さくなったと考えられる。
FIG. 1 shows an electron micrograph of the MFG phosphor thus obtained. FIG. 2 shows an electron micrograph of a conventional MFG phosphor obtained by a similar method using magnesium carbonate as a magnesium compound. It is considered that when magnesium carbonate was used, the particle size was reduced due to the gas generated during firing.

【0029】図1および図2より、酸化マグネシウムを
用いることにより、一次粒子が大きく、微小粒子の凝集
体を含まないMFG蛍光体が得られるという結果を得た
ことが分かる。
FIGS. 1 and 2 show that the use of magnesium oxide resulted in an MFG phosphor having a large primary particle and containing no aggregate of fine particles.

【0030】また、輝度は、一次粒子が大きくなったた
め、図2に示す従来のMFG蛍光体と比較して7%向上
した。
Further, the brightness was improved by 7% as compared with the conventional MFG phosphor shown in FIG. 2 because the primary particles became large.

【0031】(実施例2)炉心管を、管長方向の軸を中
心として回転させながら焼成した 組成式 3.5MgO・0.5MgF2・GeO2:0.
003Mn4+ で表されるMFG蛍光体 酸化マグネシウム3.5molと弗化マグネシウム0.
5molと酸化ゲルマニウム1.0molおよび炭酸マ
ンガン0.003molを秤量し、適量のアセトンを加
えて乳鉢で湿式混合した後、アルミナ炉心管に入れ、空
気雰囲気中で400℃/時間の昇温速度で昇温し、10
00℃で2時間の予備焼成を行う。焼成に用いた電気炉
の概念図を図3に示す。炉心管1は、水平から約40度
の角度に傾け、管長方向の軸を中心として30rpmの
速度で回転させる。さらに乳鉢を用いて粉砕した後、ア
ルミナ炉心管に入れ、前記方法で炉心管1を回転させな
がら、空気雰囲気中で400℃/時間の昇温速度で昇温
し、1200℃で2時間の本焼成を行う。なお、2は断
熱材、3はヒータ線である。さらに前記焼成物を乳鉢を
用いて粉砕する。
Example 2 A furnace tube was fired while being rotated about an axis in the tube length direction. Composition formula: 3.5MgO.0.5MgF 2 .GeO 2 : 0.
MFG phosphor represented by 003Mn 4+ 3.5 mol of magnesium oxide and magnesium fluoride 0.
5 mol, 1.0 mol of germanium oxide and 0.003 mol of manganese carbonate were weighed, an appropriate amount of acetone was added thereto, and the mixture was wet-mixed in a mortar, then placed in an alumina furnace tube, and heated at a heating rate of 400 ° C./hour in an air atmosphere. Warm 10
Preliminary baking is performed at 00 ° C. for 2 hours. FIG. 3 shows a conceptual diagram of the electric furnace used for firing. The core tube 1 is inclined at an angle of about 40 degrees from the horizontal, and is rotated at a speed of 30 rpm around an axis in the tube length direction. Further, after pulverizing using a mortar, the mixture is put into an alumina furnace tube, and while the furnace tube 1 is rotated by the above-described method, the temperature is raised at a heating rate of 400 ° C./hour in an air atmosphere. Perform baking. In addition, 2 is a heat insulating material, and 3 is a heater wire. Further, the fired product is ground using a mortar.

【0032】このようにして得られたMFG蛍光体の電
子顕微鏡写真を図4に示す。図4より、炉心管を回転さ
せて原料を攪拌しながら焼成することにより、一次粒子
がさらに大きく、微小粒子の凝集体を含まないMFG蛍
光体が得られるという結果を得たことが分かる。
FIG. 4 shows an electron micrograph of the MFG phosphor thus obtained. From FIG. 4, it can be seen that by rotating the furnace tube and baking while stirring the raw material, a result was obtained in which an MFG phosphor having a larger primary particle and containing no aggregate of fine particles was obtained.

【0033】なお、炉心管の回転速度は、10rpm以
上100rpm以下が最も好ましい。10rpm以下に
なると、充分な攪拌効果が得られず、100rpm以上
になると、遠心力のため原料が炉心管の側面に張り付い
てしまい、充分な攪拌効果が得られにくいためである。
The rotational speed of the furnace tube is most preferably 10 rpm or more and 100 rpm or less. If the rotation speed is 10 rpm or less, a sufficient stirring effect cannot be obtained. If the rotation speed is 100 rpm or more, the raw material sticks to the side surface of the furnace tube due to centrifugal force, and it is difficult to obtain a sufficient stirring effect.

【0034】また、炉心管の回転方向は、一定方向で
も、一定時間毎に反転させてもよく、特に反転させるこ
とにより、撹拌効果が高まる。
The rotation direction of the furnace tube may be reversed in a fixed direction or at regular intervals. In particular, the reversal increases the stirring effect.

【0035】また、加熱により酸化マグネシウムとなる
マグネシウム化合物として炭酸マグネシウムなどを用い
ても、前記方法で焼成することにより、従来よりも一次
粒子の大きなMFG蛍光体を得ることが可能である。
Further, even when magnesium carbonate or the like is used as a magnesium compound which becomes magnesium oxide upon heating, it is possible to obtain an MFG phosphor having a primary particle larger than that of the prior art by calcination by the above method.

【0036】また、炉心管に蛍光体原料との反応性が低
い材質のビーズを入れてもよい。
Further, beads made of a material having low reactivity with the phosphor raw material may be put in the furnace tube.

【0037】また、蛍光体原料との反応性が低い材質の
攪拌ばねを炉心管に差し込み、攪拌ばねを回転させて原
料を攪拌しながら焼成しても同様の効果が得られる。こ
の際、炉心管は回転させても回転させなくてもよい。
The same effect can be obtained by inserting a stirring spring made of a material having low reactivity with the phosphor raw material into the furnace tube, rotating the stirring spring and firing the raw material while stirring the raw material. At this time, the core tube may or may not be rotated.

【0038】また、攪拌ばねによる攪拌の他に、マグネ
ティックスターラーなどを用いても同様の効果が得られ
る。
Similar effects can be obtained by using a magnetic stirrer or the like in addition to the stirring by the stirring spring.

【0039】なお、蛍光体原料との反応性が低い材質と
しては、ビーズや攪拌ばねの作りやすさから、アルミナ
セラミックが最も好ましいが、その他の材質でもよい。
As a material having low reactivity with the raw material of the phosphor, alumina ceramic is most preferable because beads and a stirring spring can be easily formed, but other materials may be used.

【0040】なお、前記方法は、MFG蛍光体に限ら
ず、一般の蛍光体でも反応性の向上の効果があり、蛍光
体母体の原料の中に焼成温度よりも融点の低い材料が含
まれ、反応が液相を介する場合には、特に効果が高い。
The above-mentioned method is not limited to the MFG phosphor, but also has an effect of improving the reactivity of a general phosphor, and a material having a melting point lower than the firing temperature is contained in the raw material of the phosphor matrix. The effect is particularly high when the reaction is through the liquid phase.

【0041】(実施例3)母体原料のみを混合して焼成
した後、マンガン化合物を混合して焼成した 組成式 3.5MgO・0.5MgF2・GeO2:xM
4+ (x=0.003,0.01) で表されるMFG蛍光体 酸化マグネシウムと弗化マグネシウムと酸化ゲルマニウ
ムを第一の実施の形態と同様の方法で混合して蓋付きの
アルミナるつぼに入れ、空気雰囲気中で400℃/時間
の昇温速度で昇温し、1000℃で2時間の予備焼成を
行う。さらに乳鉢を用いて粉砕した後、蓋付きのアルミ
ナるつぼに入れ、空気雰囲気中で400℃/時間の昇温
速度で昇温し、1200℃で2時間の本焼成を行う。さ
らに前記焼成物を乳鉢を用いて粉砕する。ここで、前記
焼成物に炭酸マンガンを0.01molを秤量して加
え、アセトンを適量加えて、乳鉢で湿式混合する。前記
混合物を蓋付きのアルミナるつぼに入れ、空気雰囲気中
で400℃/時間の昇温速度で昇温し、1000℃で5
時間の再焼成を行う。さらに前記焼成物を乳鉢を用いて
粉砕する。
(Example 3) After mixing and firing only the base material, a manganese compound was mixed and fired. Composition formula 3.5 MgO.0.5 MgF 2 .GeO 2 : xM
MFG phosphor represented by n 4+ (x = 0.003, 0.01) Magnesium oxide, magnesium fluoride, and germanium oxide are mixed in the same manner as in the first embodiment, and an alumina crucible with a lid is provided. Then, the temperature is increased at a rate of 400 ° C./hour in an air atmosphere, and preliminary firing is performed at 1000 ° C. for 2 hours. Furthermore, after pulverizing using a mortar, the mixture is put into an alumina crucible with a lid, heated at a rate of 400 ° C./hour in an air atmosphere, and subjected to main firing at 1200 ° C. for 2 hours. Further, the fired product is ground using a mortar. Here, 0.01 mol of manganese carbonate is weighed and added to the fired product, an appropriate amount of acetone is added, and wet mixing is performed in a mortar. The mixture was placed in an alumina crucible with a lid and heated at a rate of 400 ° C./hour in an air atmosphere.
Refire for a time. Further, the fired product is ground using a mortar.

【0042】このようにして得られたMFG蛍光体の電
子顕微鏡写真を図5および図6に示す。また、すべての
原料を一度に混合して、同様の温度条件で焼成して得ら
れた従来のMFG蛍光体の電子顕微鏡写真を図7および
図8に示す。母体を焼成した後マンガンを付活すること
によって、母体の粒径を維持しながら、発光中心である
マンガンが結晶中に入り込むため、マンガン付活量が変
化しても、得られる蛍光体の粒径はあまり変化しない。
FIGS. 5 and 6 show electron micrographs of the MFG phosphor thus obtained. 7 and 8 show electron micrographs of a conventional MFG phosphor obtained by mixing all the raw materials at one time and firing under the same temperature conditions. By activating the manganese after firing the matrix, manganese, which is the emission center, enters the crystal while maintaining the grain size of the matrix, so that even if the manganese activation amount changes, the phosphor particles obtained can be changed. The diameter does not change much.

【0043】図5および図6より、母体原料のみを先に
焼成した後マンガン化合物を混合して再焼成することに
より、マンガン付活量が多くなっても、一次粒径が大き
く、微小粒子の凝集体を含まないMFG蛍光体が得られ
るという結果を得たことが分かる。
From FIGS. 5 and 6, it can be seen that, even if the manganese activation amount is large, the primary particle size is large, It can be seen that the result that an MFG phosphor containing no aggregate was obtained was obtained.

【0044】[0044]

【発明の効果】以上説明したところから明らかなよう
に、本発明は、一次粒子が大きく、微小粒子の凝集体を
含まない蛍光体である。
As is apparent from the above description, the present invention is a phosphor having a large primary particle and containing no aggregate of fine particles.

【0045】また、本発明によれば、マンガン付活量が
多くなっても、一次粒子が大きな蛍光体を得ることがで
きる。
According to the present invention, a phosphor having a large primary particle can be obtained even when the manganese activation amount is increased.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第一の実施例の酸化マグネシウムを用
いた場合のマンガン付活ゲルマン酸蛍光体の、図面に代
わる電子顕微鏡写真
FIG. 1 is an electron micrograph instead of a drawing of a manganese-activated germanic acid phosphor using magnesium oxide of the first embodiment of the present invention.

【図2】本発明の第一の実施例の炭酸マグネシウムを用
いた場合のマンガン付活ゲルマン酸蛍光体の、図面に代
わる電子顕微鏡写真
FIG. 2 is an electron micrograph instead of a drawing of a manganese-activated germanic acid phosphor using magnesium carbonate of the first embodiment of the present invention.

【図3】本発明の第二の実施例の炉心管を管長方向の軸
を中心に回転させながら焼成する電気炉の概念図
FIG. 3 is a conceptual diagram of an electric furnace in which a furnace tube according to a second embodiment of the present invention is fired while rotating a core tube around an axis in a tube length direction.

【図4】本発明の第二の実施例の炉心管を管長方向の軸
を中心に回転させながら焼成したマンガン付活ゲルマン
酸蛍光体の、図面に代わる電子顕微鏡写真
FIG. 4 is an electron micrograph, instead of a drawing, of a manganese-activated germanic acid phosphor fired while rotating a core tube of a second embodiment of the present invention about an axis in the tube length direction.

【図5】本発明の第三の実施例の母体原料のみを焼成し
た後マンガン化合物を混合して再焼成したマンガン付活
ゲルマン酸蛍光体の、図面に代わる電子顕微鏡写真(x
=0.003)
FIG. 5 is an electron micrograph (x in place of a drawing) of a manganese-activated germanic acid phosphor obtained by calcining only a base material and mixing a manganese compound according to the third embodiment of the present invention and recalcining the mixture.
= 0.003)

【図6】本発明の第三の実施例の母体原料のみを焼成し
た後マンガン化合物を混合して再焼成したマンガン付活
ゲルマン酸蛍光体の、図面に代わる電子顕微鏡写真(x
=0.01)
FIG. 6 is an electron micrograph (x in place of a drawing) of a manganese-activated germanic acid phosphor obtained by calcining only the base material of the third embodiment of the present invention, mixing a manganese compound, and calcining the mixture again.
= 0.01)

【図7】本発明の第三の実施例の従来の方法で焼成した
マンガン付活ゲルマン酸蛍光体の、図面に代わる電子顕
微鏡写真(x=0.003)
FIG. 7 is an electron micrograph (x = 0.003) instead of a drawing of a manganese-activated germanic acid phosphor fired by a conventional method according to the third embodiment of the present invention.

【図8】本発明の第三の実施例の従来の方法で焼成した
マンガン付活ゲルマン酸蛍光体の、図面に代わる電子顕
微鏡写真(x=0.01)
FIG. 8 is an electron micrograph (x = 0.01) instead of a drawing of a manganese-activated germanic acid phosphor fired by a conventional method according to the third embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 炉心管 2 断熱材 3 ヒーター線 1 Furnace tube 2 Insulation material 3 Heater wire

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 富造 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Tomizo Matsuoka 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 加熱により酸化マグネシウムとなるマグ
ネシウム化合物と弗化マグネシウムと酸化ゲルマニウム
およびマンガン化合物を加熱焼成して得られる蛍光体
で、粒径が2μm以上であり、微粒子の凝集体を含まな
いことを特徴とするマンガン付活ゲルマン酸蛍光体。
1. A phosphor obtained by heating and calcining a magnesium compound, magnesium fluoride, germanium oxide, and a manganese compound which become magnesium oxide by heating, and have a particle size of 2 μm or more and do not contain aggregates of fine particles. A manganese-activated germanic acid phosphor characterized by the following.
【請求項2】 焼成後の組成が、 一般式 AMgO・BMgF2・GeO2:xMn4+ 但し、A+B=4, 0.5≦B≦1.0 であることを特徴とする請求項1記載の蛍光体。2. A composition after firing, the general formula AMgO · BMgF 2 · GeO 2: xMn 4+ However, A + B = 4, according to claim 1, characterized in that a 0.5 ≦ B ≦ 1.0 Phosphor. 【請求項3】 マグネシウム化合物として、酸化マグネ
シウム粉末を用いることを特徴とする請求項1または請
求項2記載の蛍光体。
3. The phosphor according to claim 1, wherein a magnesium oxide powder is used as the magnesium compound.
【請求項4】 混合した蛍光体原料を入れた容器を動か
しながら焼成する蛍光体の製造方法。
4. A method for producing a phosphor, wherein the container is fired while moving a container containing the mixed phosphor material.
【請求項5】 混合した蛍光体原料を入れた容器が炉心
管であり、この炉心管を管長方向の軸を中心にして回転
させながら焼成する請求項4記載の蛍光体の製造方法。
5. The method for producing a phosphor according to claim 4, wherein the vessel containing the mixed phosphor material is a furnace tube, and the furnace tube is fired while being rotated about an axis in the tube length direction.
【請求項6】 炉心管の回転速度が10rpm以上10
0rpm以下であることを特徴とする請求項5記載の蛍
光体の製造方法。
6. The furnace core tube has a rotation speed of 10 rpm or more.
The method for producing a phosphor according to claim 5, wherein the rotation speed is 0 rpm or less.
【請求項7】 蛍光体原料との反応性が低い固体を原料
と混合して容器に入れ、固体の移動により原料を攪拌し
ながら焼成する蛍光体の製造方法。
7. A method for producing a phosphor, wherein a solid having low reactivity with a phosphor raw material is mixed with the raw material, placed in a container, and fired while stirring the raw material by moving the solid.
【請求項8】 炉心管内に蛍光体原料と反応性が低い固
体材料としてアルミナまたはジルコニアのビーズを入れ
て焼成することを特徴とする請求項5または請求項7記
載の蛍光体の製造方法。
8. The method for producing a phosphor according to claim 5, wherein beads of alumina or zirconia as a solid material having low reactivity with the phosphor material are placed in the furnace tube and fired.
【請求項9】 容器内の蛍光体原料を、外部から容器内
に挿入された攪拌手段により攪拌しながら焼成すること
を特徴とする蛍光体の製造方法。
9. A method for producing a phosphor, characterized in that the phosphor material in the container is fired while being stirred by a stirring means inserted into the container from the outside.
【請求項10】 容器が炉心管で、かつ容器内に挿入さ
れた撹拌手段がアルミナ製の攪拌ばねであり、前記攪拌
ばねを回転させて、前記蛍光体原料を攪拌しながら焼成
することを特徴とする請求項9記載の蛍光体の製造方
法。
10. The container is a furnace tube, and the stirring means inserted in the container is a stirring spring made of alumina, and the stirring is performed by rotating the stirring spring to stir the phosphor material. The method for producing a phosphor according to claim 9, wherein
【請求項11】 加熱により酸化マグネシウムとなるマ
グネシウム化合物と弗化マグネシウムと酸化ゲルマニウ
ムを混合焼成した後、マンガン化合物を混合して再焼成
する蛍光体の製造方法。
11. A method for producing a phosphor, wherein a magnesium compound which becomes magnesium oxide by heating, magnesium fluoride and germanium oxide are mixed and fired, and then a manganese compound is mixed and fired again.
【請求項12】 マンガン化合物を混合して再焼成する
際の焼成温度が600℃以上1000℃以下であること
を特徴とする請求項11記載の蛍光体の製造方法。
12. The method for producing a phosphor according to claim 11, wherein a sintering temperature when the manganese compound is mixed and re-sintered is 600 ° C. or more and 1000 ° C. or less.
【請求項13】 焼成後の蛍光体の組成が、 一般式 AMgO・BMgF2・GeO2:xMn4+ 但し、0.001≦x≦0.01、 A+B=4,
0.5≦B≦1.0 であることを特徴とする請求項4〜12のいずれかに記
載の蛍光体の製造方法。
13. The composition of the phosphor after firing, the general formula AMgO · BMgF 2 · GeO 2: xMn 4+ where, 0.001 ≦ x ≦ 0.01, A + B = 4,
13. The method for producing a phosphor according to claim 4, wherein 0.5 ≦ B ≦ 1.0.
JP34226497A 1997-11-26 1997-11-26 Manganese-activated germanate phosphor and its production Pending JPH11158464A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34226497A JPH11158464A (en) 1997-11-26 1997-11-26 Manganese-activated germanate phosphor and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34226497A JPH11158464A (en) 1997-11-26 1997-11-26 Manganese-activated germanate phosphor and its production

Publications (1)

Publication Number Publication Date
JPH11158464A true JPH11158464A (en) 1999-06-15

Family

ID=18352376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34226497A Pending JPH11158464A (en) 1997-11-26 1997-11-26 Manganese-activated germanate phosphor and its production

Country Status (1)

Country Link
JP (1) JPH11158464A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050051A1 (en) * 2010-10-13 2012-04-19 日本化学工業株式会社 Method for producing manganese-activated germanate phosphor
WO2012066993A1 (en) * 2010-11-17 2012-05-24 日本化学工業株式会社 Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012050051A1 (en) * 2010-10-13 2012-04-19 日本化学工業株式会社 Method for producing manganese-activated germanate phosphor
WO2012066993A1 (en) * 2010-11-17 2012-05-24 日本化学工業株式会社 Manganese-activated germanate fluorescent substance, production method therefor, and light-emitting element

Similar Documents

Publication Publication Date Title
US5985176A (en) Method of preparing high brightness, shorter persistence zinc orthosilicate phosphor
JPS6121586B2 (en)
JP5176084B2 (en) Method for producing metal oxide phosphor
CN109082272A (en) A kind of red light fluorescent powder and preparation method thereof
JP2003500516A5 (en) Method for preparing coated phosphor particles, phosphor prepared by the method and plastic material incorporating the same
JPH11158464A (en) Manganese-activated germanate phosphor and its production
JPH10102054A (en) Fluorescent substance
JP2000034479A (en) Rare earth composite oxide phosphor
JPH1053761A (en) Green-luminescent material and its production
CN108587627A (en) Eu3+Ion-activated fluorine chlorine telluric acid bismuth and its preparation method and application
JPH02173181A (en) Production of fine particulate fluorescent substance
JPH03203984A (en) Radiofluorescent substance of niobium-activated yttrrium tantalate with improved brightness and its manufacture
JPH10251637A (en) Aluminate fluorescent substance and its production
JP4683949B2 (en) Phosphor, method for manufacturing the same, and plasma display panel using the phosphor
JPH04293990A (en) Manganese-activated zinc silicogermanate phosphor and its manufacture
JPS6250384A (en) Zinc silicate phosphor
KR100425382B1 (en) Method of low temperature synthesis of Zn2SiO4 powder having a narrow size-distribution via hydrothermal technique
CN100396755C (en) Method for manufacturing spherical blue fluorescent substance
JPH03143985A (en) Preparation of phosphor
US6716524B2 (en) Rare earth borate and making method
JP2001316663A (en) Fluorescent substance, process for its manufacture and fluorescent layer using the same
JPH09255950A (en) Preparation of light-storing luminescent pigment
JP4219518B2 (en) Europium-activated composite oxide phosphor
JP2010100763A (en) Method of producing luminous fluorescent substance and luminous fluorescent substance
JP2004067860A (en) Phosphor and method for producing the same