JP2004212121A - Object sound detection method and device therefor - Google Patents

Object sound detection method and device therefor Download PDF

Info

Publication number
JP2004212121A
JP2004212121A JP2002379891A JP2002379891A JP2004212121A JP 2004212121 A JP2004212121 A JP 2004212121A JP 2002379891 A JP2002379891 A JP 2002379891A JP 2002379891 A JP2002379891 A JP 2002379891A JP 2004212121 A JP2004212121 A JP 2004212121A
Authority
JP
Japan
Prior art keywords
sound
acoustic radiation
radiation surface
specific acoustic
sound pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002379891A
Other languages
Japanese (ja)
Other versions
JP3894887B2 (en
Inventor
Yoshihiro Hirao
善裕 平尾
Kentaro Nakamura
中村  健太郎
Sadayuki Ueha
貞行 上羽
Noriji Yoshikawa
教治 吉川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rion Co Ltd
Kobayashi Institute of Physical Research
Rikogaku Shinkokai
Original Assignee
Rion Co Ltd
Kobayashi Institute of Physical Research
Rikogaku Shinkokai
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rion Co Ltd, Kobayashi Institute of Physical Research, Rikogaku Shinkokai filed Critical Rion Co Ltd
Priority to JP2002379891A priority Critical patent/JP3894887B2/en
Publication of JP2004212121A publication Critical patent/JP2004212121A/en
Application granted granted Critical
Publication of JP3894887B2 publication Critical patent/JP3894887B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a detection method and a device therefor for a sound radiated from a specific acoustic radiation face of a measuring object in the state where the measuring object is ordinary used or operated. <P>SOLUTION: This object sound detection device for detecting the sound in an audio frequency zone radiated from the specific acoustic radiation face 10 of a vibrating object 9 is equipped with an ultrasonic radiation part 1 for radiating an ultrasonic wave toward the specific acoustic radiation face 10, a microphone 2 for detecting simultaneously the sound pressure of a reflected wave of the ultrasonic wave from the specific acoustic radiation face 10 and the sound pressure in an audio frequency zone near the specific acoustic radiation face 10, a high-pass filter 3 and a low-pass filter 4 for separating the sound pressure of the reflected wave of the ultrasonic wave detected by the microphone 2 from the sound pressure in the audio frequency zone, a frequency demodulator 5 for converting a frequency change by a Doppler shift of the reflected wave of the ultrasonic wave into a vibration speed of the specific acoustic radiation face 10, and a cross spectrum operation part 8 for operating a cross spectrum between the vibration speed and the sound pressure in the audio frequency zone. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、振動する物体の特定の音響放射面から放射される音だけを検出する対象音検出方法及びその装置に関する。
【0002】
【従来の技術】
従来、振動する物体の特定の音響放射面から放射される音を検出するために、2マイクロホン法による音響インテンシティ計測が用いられている。これは、ある距離だけ隔てて設置された2つのマイクロホンによって計測された音圧から空気粒子速度ベクトルと音圧を近似し、その積から空間を通過する音響エネルギーを表すベクトル量を算出する方法であり、そのベクトルの大きさおよび向きにより音を放射している放射面を特定することで振動する物体の特定の音響放射面から放射される音を検出する方法である。
【0003】
【発明が解決しようとする課題】
しかし、2マイクロホン法による音響インテンシティ計測によって振動する物体の特定の音響放射面から放射される音を検出する場合、下記のような問題がある。
(1)空間を通過するすべての音響エネルギーを計測するため、対象とする特定の放射面以外の放射面から放射される音の音響エネルギーを除去することができない。従って、特定の放射面からの放射音の音響エネルギーが、それ以外の放射面からの放射音の音響エネルギーと同等あるいは小さい場合、特定の放射面からの放射音を検出できない。
(2)空間を通過するすべての音響エネルギーを計測するため、対象とする物体以外の物体からの放射音の音響エネルギーを除去することができない。従って、計測対象の物体からの放射音の音響エネルギーが、それ以外の物体からの放射音の音響エネルギーと同等あるいは小さい場合、計測対象の物体からの放射音を検出できない。
(3)空間を通過するすべての音響エネルギーを計測するため、対象とする特定の放射面からの放射音が他の物体で反射して伝搬する反射音の音響エネルギーを除去することができない。従って、正確な放射音の音響エネルギーを算出できず、放射面の特定に誤差が生じるため振動する物体の特定の音響放射面から放射される音を検出することができない。
(4)放射面からある距離はなれた2次元計測平面上の多数の点において、音響インテンシティを算出する必要があり、その上、1点の音響インテンシティを算出する算出するためにマイクロホン、マイクロホンアンプおよび分析器などが2系列必要となる。従って、計測点数が増えるほど計測器に対するコストが増加する。
【0004】
これらの問題を解決するためには、高い防音性能を有する無響室内に計測対象物体のみを設置し、音響インテンシティを計測する必要がある。従って、計測対象物が通常の使用状態または稼動状態での計測は不可能であり、複数の機器が組み合わされて使用または稼動している場合には、その一部の機器を対象とした計測は不可能である。また、計測器に対するコストを軽減するには、多数点での計測を少数のマイクロホンおよび分析器などで数回に分けて計測するなどの多大な作業と時間を必要とする。
【0005】
本発明は、従来の技術が有するこのような問題点に鑑みてなされたものであり、その目的とするところは、計測系の簡素化によりコストを軽減し、計測対象物が通常使用または稼動している状態において計測対象物の特定の音響放射面から放射される音の検出方法及びその装置を提供しようとするものである。
【0006】
【課題を解決するための手段】
上記課題を解決すべく請求項1に係る発明は、振動する物体の特定の音響放射面から放射される可聴周波数域の音を検出する対象音検出方法であって、前記特定の音響放射面に向けて超音波を放射し、前記特定の音響放射面からの前記超音波の反射波の音圧と前記特定の音響放射面近傍の可聴周波数域の音圧を同時に検出し、次いで前記超音波の反射波のドップラシフトによる周波数変化を前記音響放射面の振動速度に変換し、前記振動速度と前記可聴周波数域の音圧とのクロススペクトルを演算し、前記特定の音響放射面からの放射音が他の物体で反射して伝搬する反射音と、前記特定の音響放射面以外の音響放射面及び前記振動物体以外の物体からの放射音を除去して前記特定の音響放射面から放射される可聴周波数域の音だけを検出するようにした。
【0007】
請求項2に係る発明は、振動する物体の特定の音響放射面から放射される可聴周波数域の音を検出する対象音検出装置であって、前記特定の音響放射面に向けて超音波を放射する超音波放射手段と、前記特定の音響放射面からの前記超音波の反射波の音圧と前記特定の音響放射面近傍の可聴周波数域の音圧を同時に検出する音検出手段と、この音検出手段が検出した前記超音波の反射波の音圧と前記可聴周波数域の音圧を分離する分離手段と、前記超音波の反射波のドップラシフトによる周波数変化を前記特定の音響放射面の振動速度に変換する変換手段と、前記振動速度と前記可聴周波数域の音圧とのクロススペクトルを演算する演算手段を備える。
【0008】
【発明の実施の形態】
以下に本発明の実施の形態を添付図面に基づいて説明する。ここで、図1は本発明に係る対象音検出方法及びその装置の第1の実施の形態の構成図、図2は本発明に係る対象音検出方法及びその装置の第2の実施の形態の構成図、図3は本発明に係る対象音検出方法及びその装置の第3の実施の形態の構成図である。
【0009】
本発明に係る対象音検出方法及びその装置の第1の実施の形態は、図1に示すように、超音波放射部1、マイクロホン2、ハイパスフィルタ3、ローパスフィルタ4、周波数復調器5、A/D変換器6,7およびクロススペクトル演算部8からなる。
【0010】
超音波放射部1は、信号発生器1aと超音波スピーカ1bからなり、超音波スピーカ1bは振動物体9の音響放射面10の近傍に非接触で設置されている。信号発生器1aは、超音波周波数域の一定周波数で一定振幅の正弦波の電気信号を出力する。超音波スピーカ1bは、信号発生器1aが出力した正弦波の電気信号を電気音響変換し、音響放射面10に向けて超音波を放射する。
【0011】
マイクロホン2は、音響放射面10の特定の1点から反射した超音波の音圧と音響放射面10の近傍の可聴周波数域の音圧を同時に計測できる性能を有しており、それらを音響電気変換してアナログ電気信号を出力する。
【0012】
ハイパスフィルタ3は、マイクロホン2が出力したアナログ電気信号のうち、音響放射面10の特定の1点から反射した超音波の音圧に比例したアナログ電気信号だけを分離して抽出し、出力する。
【0013】
ローパスフィルタ4は、マイクロホン2が出力したアナログ電気信号のうち、音響放射面10の近傍の可聴周波数域の音圧に比例したアナログ電気信号だけを分離して抽出し、出力する。
【0014】
周波数復調器5は、ハイパスフィルタ3が出力したアナログ電気信号の周波数の変化を電圧の変化に変換し、アナログ電気信号を出力する。
A/D変換器6,7は、周波数復調器5が出力したアナログ電気信号およびローパスフィルタ4が出力したアナログ電気信号を、ある一定時間間隔のデジタル信号に変換する。
【0015】
クロススペクトル演算部8は、超音波の音圧に関するA/D変換器6が出力したデジタル信号と、可聴周波数域の音圧に関するA/D変換器7が出力したデジタル信号とのクロススペクトルを算出する。
【0016】
以上のように構成した本発明に係る対象音検出方法及びその装置の第1の実施の形態の動作について説明する。
超音波スピーカ1bは、信号発生器1aが発生した超音波周波数域の一定周波数で一定振幅の正弦波電気信号を電気音響変換し、音響放射面10に向けて超音波を放射する。この時、音響放射面10の特定の1点から反射した超音波の周波数は、ドップラー効果により音響放射面10の特定の1点の振動速度に比例して変化する。
【0017】
マイクロホン2は、音響放射面10の特定の1点から反射した超音波の音圧と音響放射面10の近傍の可聴周波数域の音圧を同時に計測し、ともに音響電気変換してアナログ電気信号を出力する。
次いで、ハイパスフィルタ3は、マイクロホン2が出力したアナログ電気信号のうち、音響放射面10の特定の1点から反射した超音波の音圧に比例したアナログ電気信号を分離して抽出し、出力する。
【0018】
そして、周波数復調器5は、ハイパスフィルタ3が出力したアナログ電気信号の周波数の変化を電圧の変化に変換し、アナログ電気信号を出力する。この時、周波数復調器5からのアナログ電気信号は、音響放射面10の特定の1点での振動速度に比例している。更に、周波数復調器5が出力したアナログ電気信号は、A/D変換器6によって、ある一定時間間隔のデジタル信号に変換される。
【0019】
また、同時にローパスフィルタ4は、マイクロホン2が出力したアナログ電気信号のうち、音響放射面10の近傍の可聴周波数域の音圧に比例したアナログ電気信号を分離して抽出する。そして、ローパスフィルタ4が出力したアナログ電気信号は、A/D変換器7によって、ある一定時間間隔のデジタル信号に変換される。
【0020】
次いで、クロススペクトル演算部8において、振動物体9のうちの計測対象である音響放射面10の1点の振動速度に比例したデジタル信号と、その近傍の可聴周波数域の音圧に比例したデジタル信号のクロススペクトルが演算される。これにより、可聴周波数域の音圧に比例した電圧値に含まれるスペクトル成分うち、振動速度に比例した電圧値には含まれていないスペクトル成分が除去される。
【0021】
また、計測対象の音響放射面10の近傍で計測しているため、計測対象の音響放射面10からの可聴周波数域の放射音が他の物体に反射して伝搬する反射音と、計測対象の音響放射面10の振動速度との間には、大きな時間差が生じるため、クロススペクトル演算時に、反射音は除去される。
【0022】
従って、計測対象の音響放射面10からの可聴周波数域の放射音が他の物体に反射して伝搬する反射音と、計測対象の音響放射面10以外の放射面および振動物体9以外の物体からの可聴周波数域の放射音を除去し、計測対象の音響放射面10が振動することにより放射されている可聴周波数域の音だけを検出することができる。
【0023】
また、一つのマイクロホン2で振動物体9のうちの計測対象である音響放射面10の1点の振動速度と、その近傍の可聴周波数域の音圧を検出することができる。
【0024】
次に、本発明に係る対象音検出方法及びその装置の第2の実施の形態は、図2に示すように、超音波放射部1、マイクロホン2、A/D変換器11、ハイパスフィルタ演算部12、ローパスフィルタ演算部13、周波数復調演算部14、およびクロススペクトル演算部8からなる。
【0025】
A/D変換器11は、マイクロホン2が出力したアナログ電気信号を、ある一定時間間隔のデジタル信号に変換する。ハイパスフィルタ演算部12は、A/D変換器11が出力したデジタル信号から音響放射面10の特定の1点から反射した超音波の音圧に比例したデジタル信号を分離して抽出する。
【0026】
また、ローパスフィルタ演算部13は、A/D変換器11が出力したデジタル信号から音響放射面10の近傍の可聴周波数域の音圧に比例したデジタル信号を分離して抽出する。周波数復調演算部14は、ハイパスフィルタ演算部11によって処理された超音波の音圧に比例したデジタル信号を周波数の変化に比例したデジタル信号に変換する。なお、図1に示す符号と同一符号の構成要素の説明は省略する。
【0027】
以上のように構成した本発明に係る対象音検出方法及びその装置の第2の実施の形態によれば、ハイパスフィルタ演算部12、ローパスフィルタ演算部13および周波数復調演算部14をデジタル信号処理技術によって実現することによってクロススペクトル演算部8を含めて1台の計算機で処理を行うことができ、計測器に対するコストの軽減が実現される。
【0028】
次に、本発明に係る対象音検出方法及びその装置の第3の実施の形態は、図3に示すように、超音波スピーカ1bの周囲に複数のマイクロホン2を配置したものである。このような構成により、1つの超音波スピーカ1bと、計測点と同数のマイクロホン2によって計測対象となる複数の音響放射面10での同時計測が可能になる。
【0029】
なお、マイクロホン2を超音波スピーカ1bの周囲に複数配置した以外は、図1に示す第1の実施の形態と同様な構成であるので、図1に示す符号と同一符号の構成要素の図示、構成要素の説明および第3の実施の形態の動作説明は省略する。
【0030】
【発明の効果】
以上説明したように本発明によれば、従来技術が必要とする高い防音性能を有する無響室などを用いることなく、計測対象物が通常使用または稼動している状態において計測対象物の特定の音響放射面から放射される音を検出することができる。また、一つのマイクロホンで振動物体のうちの計測対象である音響放射面の1点の振動速度と、その近傍の可聴周波数域の音圧を検出することができるため、計測系の簡素化によりコストを軽減できる。
【図面の簡単な説明】
【図1】本発明に係る対象音検出方法及びその装置の第1の実施の形態の構成図
【図2】本発明に係る対象音検出方法及びその装置の第2の実施の形態の構成図
【図3】本発明に係る対象音検出方法及びその装置の第3の実施の形態の構成図
【符号の説明】
1…超音波放射部、1a…信号発生器、1b…超音波スピーカ、2…マイクロホン、3…ハイパスフィルタ、4…ローパスフィルタ、5…周波数復調器、6,7,11…A/D変換器、8…クロススペクトル演算部、9…振動物体、10…音響放射面、12…ハイパスフィルタ演算部、13…ローパスフィルタ演算部、14…周波数復調演算部。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a target sound detection method and apparatus for detecting only sound radiated from a specific acoustic radiation surface of a vibrating object.
[0002]
[Prior art]
Conventionally, sound intensity measurement by a two-microphone method is used to detect sound radiated from a specific acoustic radiation surface of a vibrating object. This is a method of approximating the air particle velocity vector and sound pressure from the sound pressure measured by two microphones installed at a certain distance, and calculating the vector quantity representing the acoustic energy passing through the space from the product. There is a method for detecting sound radiated from a specific acoustic radiation surface of an oscillating object by specifying a radiation surface radiating sound based on the magnitude and direction of the vector.
[0003]
[Problems to be solved by the invention]
However, when detecting sound radiated from a specific acoustic radiation surface of a vibrating object by acoustic intensity measurement by the two-microphone method, there are the following problems.
(1) Since all the acoustic energy passing through the space is measured, the acoustic energy of the sound radiated from the radiation surface other than the target specific radiation surface cannot be removed. Therefore, when the acoustic energy of the radiated sound from the specific radiation surface is equal to or smaller than the acoustic energy of the radiated sound from the other radiation surfaces, the radiated sound from the specific radiation surface cannot be detected.
(2) Since all the acoustic energy passing through the space is measured, the acoustic energy of the sound radiated from an object other than the target object cannot be removed. Therefore, when the acoustic energy of the radiated sound from the measurement target object is equal to or smaller than the acoustic energy of the radiated sound from the other objects, the radiated sound from the measurement target object cannot be detected.
(3) Since all the acoustic energy passing through the space is measured, it is impossible to remove the acoustic energy of the reflected sound that is propagated by reflecting the sound emitted from the target specific radiation surface by another object. Therefore, accurate acoustic energy of the radiated sound cannot be calculated, and an error occurs in specifying the radiating surface, so that the sound radiated from the specific acoustic radiating surface of the vibrating object cannot be detected.
(4) It is necessary to calculate the sound intensity at a number of points on the two-dimensional measurement plane at a certain distance from the radiation surface. In addition, in order to calculate the sound intensity of one point, a microphone and a microphone Two series of amplifiers and analyzers are required. Therefore, the cost for the measuring instrument increases as the number of measurement points increases.
[0004]
In order to solve these problems, it is necessary to install only the object to be measured in an anechoic room having high soundproof performance and measure the sound intensity. Therefore, the measurement object cannot be measured in the normal use state or operation state, and when multiple devices are used or operated in combination, the measurement for some of the devices is not possible. Impossible. Further, in order to reduce the cost for the measuring instrument, a great deal of work and time are required, such as measuring a large number of points in several times with a small number of microphones and analyzers.
[0005]
The present invention has been made in view of the above-described problems of the prior art, and the object of the present invention is to reduce the cost by simplifying the measurement system, so that the measurement object is normally used or operated. An object of the present invention is to provide a method and apparatus for detecting sound emitted from a specific acoustic radiation surface of a measurement object in a state where the object is measured.
[0006]
[Means for Solving the Problems]
In order to solve the above-mentioned problem, the invention according to claim 1 is a target sound detection method for detecting sound in an audible frequency range radiated from a specific acoustic radiation surface of a vibrating object, Radiating an ultrasonic wave toward the specific acoustic radiation surface, and simultaneously detecting a sound pressure of the reflected wave of the ultrasonic wave from the specific acoustic radiation surface and a sound pressure in an audible frequency range in the vicinity of the specific acoustic radiation surface, The frequency change due to the Doppler shift of the reflected wave is converted into the vibration velocity of the acoustic radiation surface, the cross spectrum between the vibration velocity and the sound pressure in the audible frequency range is calculated, and the sound radiated from the specific acoustic radiation surface is The audible sound radiated from the specific acoustic radiation surface by removing the reflected sound that is reflected and propagated by another object, the acoustic radiation surface other than the specific acoustic radiation surface, and the radiated sound from the object other than the vibrating object Detect only sound in the frequency range It was so.
[0007]
The invention according to claim 2 is a target sound detection device that detects sound in an audible frequency range radiated from a specific acoustic radiation surface of a vibrating object, and radiates an ultrasonic wave toward the specific acoustic radiation surface. And a sound detection means for simultaneously detecting the sound pressure of the reflected wave of the ultrasonic wave from the specific acoustic radiation surface and the sound pressure in the audible frequency range near the specific acoustic radiation surface, Separating means for separating the sound pressure of the reflected wave of the ultrasonic wave detected by the detecting means and the sound pressure in the audible frequency range, and the frequency change caused by Doppler shift of the reflected wave of the ultrasonic wave is caused to vibrate on the specific acoustic radiation surface. Conversion means for converting into speed and calculation means for calculating a cross spectrum between the vibration speed and the sound pressure in the audible frequency range are provided.
[0008]
DETAILED DESCRIPTION OF THE INVENTION
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a block diagram of the first embodiment of the target sound detection method and apparatus according to the present invention, and FIG. 2 is the second embodiment of the target sound detection method and apparatus according to the present invention. FIG. 3 is a block diagram of a third embodiment of the target sound detection method and apparatus according to the present invention.
[0009]
As shown in FIG. 1, the first embodiment of the target sound detection method and apparatus according to the present invention includes an ultrasonic radiation unit 1, a microphone 2, a high-pass filter 3, a low-pass filter 4, a frequency demodulator 5, A. / D converters 6 and 7 and a cross spectrum calculation unit 8.
[0010]
The ultrasonic radiation unit 1 includes a signal generator 1 a and an ultrasonic speaker 1 b, and the ultrasonic speaker 1 b is installed in the vicinity of the acoustic radiation surface 10 of the vibrating object 9 without contact. The signal generator 1a outputs a sine wave electric signal having a constant frequency and a constant amplitude in the ultrasonic frequency range. The ultrasonic speaker 1 b performs electroacoustic conversion on the sine wave electric signal output from the signal generator 1 a and radiates ultrasonic waves toward the acoustic radiation surface 10.
[0011]
The microphone 2 has the capability of simultaneously measuring the sound pressure of an ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 and the sound pressure in the audible frequency range near the acoustic radiation surface 10. Convert and output analog electrical signal.
[0012]
The high-pass filter 3 extracts and outputs only the analog electrical signal proportional to the sound pressure of the ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 from the analog electrical signal output from the microphone 2.
[0013]
The low-pass filter 4 separates and extracts and outputs only the analog electrical signal proportional to the sound pressure in the audible frequency range near the acoustic radiation surface 10 from the analog electrical signal output by the microphone 2.
[0014]
The frequency demodulator 5 converts the frequency change of the analog electrical signal output from the high-pass filter 3 into a voltage change, and outputs the analog electrical signal.
The A / D converters 6 and 7 convert the analog electrical signal output from the frequency demodulator 5 and the analog electrical signal output from the low-pass filter 4 into digital signals at certain time intervals.
[0015]
The cross spectrum calculation unit 8 calculates a cross spectrum between the digital signal output from the A / D converter 6 related to the sound pressure of the ultrasonic wave and the digital signal output from the A / D converter 7 related to the sound pressure in the audible frequency range. To do.
[0016]
The operation of the first embodiment of the target sound detection method and apparatus according to the present invention configured as described above will be described.
The ultrasonic speaker 1 b performs electroacoustic conversion on a sinusoidal electric signal having a constant amplitude and a constant frequency in the ultrasonic frequency range generated by the signal generator 1 a and radiates ultrasonic waves toward the acoustic radiation surface 10. At this time, the frequency of the ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 changes in proportion to the vibration speed of the specific point on the acoustic radiation surface 10 due to the Doppler effect.
[0017]
The microphone 2 simultaneously measures the sound pressure of the ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 and the sound pressure in the audible frequency range in the vicinity of the acoustic radiation surface 10, and acoustoelectrically converts them to convert an analog electrical signal. Output.
Next, the high-pass filter 3 separates and extracts an analog electrical signal proportional to the sound pressure of the ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 out of the analog electrical signal output from the microphone 2 and outputs it. .
[0018]
The frequency demodulator 5 converts the frequency change of the analog electrical signal output from the high-pass filter 3 into a voltage change, and outputs the analog electrical signal. At this time, the analog electrical signal from the frequency demodulator 5 is proportional to the vibration speed at a specific point on the acoustic radiation surface 10. Further, the analog electrical signal output from the frequency demodulator 5 is converted into a digital signal at a certain time interval by the A / D converter 6.
[0019]
At the same time, the low-pass filter 4 separates and extracts an analog electrical signal proportional to the sound pressure in the audible frequency range near the acoustic radiation surface 10 from the analog electrical signal output from the microphone 2. The analog electrical signal output from the low-pass filter 4 is converted into a digital signal at a certain time interval by the A / D converter 7.
[0020]
Next, in the cross spectrum calculation unit 8, a digital signal proportional to the vibration velocity at one point of the acoustic radiation surface 10 to be measured in the vibrating object 9 and a digital signal proportional to the sound pressure in the audible frequency region in the vicinity thereof. Is calculated. As a result, among the spectral components included in the voltage value proportional to the sound pressure in the audible frequency range, the spectral components not included in the voltage value proportional to the vibration speed are removed.
[0021]
Further, since the measurement is performed in the vicinity of the acoustic radiation surface 10 to be measured, the reflected sound that is radiated from the audible frequency range from the acoustic radiation surface 10 to be measured is reflected by other objects and propagated, and the measurement target Since there is a large time difference between the vibration velocity of the acoustic radiation surface 10, the reflected sound is removed during the cross spectrum calculation.
[0022]
Therefore, from the reflected sound in which the radiated sound in the audible frequency range from the acoustic radiation surface 10 to be measured is reflected and propagated to other objects, the radiation surface other than the acoustic radiation surface 10 to be measured, and the objects other than the vibrating object 9 It is possible to detect only the sound in the audible frequency range radiated by the vibration of the acoustic radiation surface 10 to be measured.
[0023]
In addition, it is possible to detect the vibration velocity at one point of the acoustic radiation surface 10 to be measured and the sound pressure in the vicinity of the audible frequency range with the single microphone 2.
[0024]
Next, as shown in FIG. 2, the second embodiment of the target sound detection method and apparatus according to the present invention includes an ultrasonic radiation unit 1, a microphone 2, an A / D converter 11, and a high-pass filter calculation unit. 12, a low-pass filter calculation unit 13, a frequency demodulation calculation unit 14, and a cross spectrum calculation unit 8.
[0025]
The A / D converter 11 converts the analog electrical signal output from the microphone 2 into a digital signal at a certain time interval. The high-pass filter calculation unit 12 separates and extracts a digital signal proportional to the sound pressure of the ultrasonic wave reflected from a specific point on the acoustic radiation surface 10 from the digital signal output from the A / D converter 11.
[0026]
In addition, the low-pass filter calculation unit 13 separates and extracts a digital signal proportional to the sound pressure in the audible frequency range near the acoustic radiation surface 10 from the digital signal output from the A / D converter 11. The frequency demodulation calculation unit 14 converts the digital signal proportional to the sound pressure of the ultrasonic wave processed by the high pass filter calculation unit 11 into a digital signal proportional to the change in frequency. In addition, description of the component of the same code | symbol as the code | symbol shown in FIG. 1 is abbreviate | omitted.
[0027]
According to the second embodiment of the target sound detection method and apparatus according to the present invention configured as described above, the high-pass filter calculation unit 12, the low-pass filter calculation unit 13, and the frequency demodulation calculation unit 14 are digital signal processing techniques. By realizing the above, it is possible to perform processing by one computer including the cross spectrum calculation unit 8, and the cost for the measuring instrument can be reduced.
[0028]
Next, in the third embodiment of the target sound detection method and apparatus according to the present invention, a plurality of microphones 2 are arranged around an ultrasonic speaker 1b as shown in FIG. With such a configuration, simultaneous measurement can be performed on a plurality of acoustic radiation surfaces 10 to be measured by one ultrasonic speaker 1b and the same number of microphones 2 as the number of measurement points.
[0029]
Since the configuration is the same as that of the first embodiment shown in FIG. 1 except that a plurality of microphones 2 are arranged around the ultrasonic speaker 1b, the components having the same reference numerals as those shown in FIG. Explanation of the constituent elements and explanation of the operation of the third embodiment are omitted.
[0030]
【The invention's effect】
As described above, according to the present invention, it is possible to specify a measurement object in a state in which the measurement object is normally used or operated without using an anechoic chamber having high sound insulation performance required by the prior art. Sound radiated from the acoustic radiation surface can be detected. In addition, it is possible to detect the vibration velocity at one point on the acoustic radiation surface to be measured among the vibrating objects and the sound pressure in the audible frequency range in the vicinity with a single microphone. Can be reduced.
[Brief description of the drawings]
FIG. 1 is a block diagram of a first embodiment of a target sound detection method and apparatus according to the present invention. FIG. 2 is a block diagram of a second embodiment of the target sound detection method and apparatus according to the present invention. FIG. 3 is a block diagram of a third embodiment of the target sound detection method and apparatus according to the present invention.
DESCRIPTION OF SYMBOLS 1 ... Ultrasonic radiation | emission part, 1a ... Signal generator, 1b ... Ultrasonic speaker, 2 ... Microphone, 3 ... High pass filter, 4 ... Low pass filter, 5 ... Frequency demodulator, 6, 7, 11 ... A / D converter , 8 ... cross spectrum calculation unit, 9 ... vibrating object, 10 ... acoustic radiation surface, 12 ... high pass filter calculation unit, 13 ... low pass filter calculation unit, 14 ... frequency demodulation calculation unit.

Claims (2)

振動する物体の特定の音響放射面から放射される可聴周波数域の音を検出する対象音検出方法であって、前記特定の音響放射面に向けて超音波を放射し、前記特定の音響放射面からの前記超音波の反射波の音圧と前記特定の音響放射面近傍の可聴周波数域の音圧を同時に検出し、次いで前記超音波の反射波のドップラシフトによる周波数変化を前記音響放射面の振動速度に変換し、前記振動速度と前記可聴周波数域の音圧とのクロススペクトルを演算し、前記特定の音響放射面からの放射音が他の物体で反射して伝搬する反射音と、前記特定の音響放射面以外の音響放射面及び前記振動物体以外の物体からの放射音を除去して前記特定の音響放射面から放射される可聴周波数域の音だけを検出することを特徴とする対象音検出方法。A target sound detection method for detecting sound in an audible frequency range radiated from a specific acoustic radiation surface of a vibrating object, wherein an ultrasonic wave is radiated toward the specific acoustic radiation surface, and the specific acoustic radiation surface And simultaneously detecting the sound pressure of the reflected wave of the ultrasonic wave and the sound pressure in the audible frequency range in the vicinity of the specific sound emitting surface, and then changing the frequency due to the Doppler shift of the reflected wave of the ultrasonic wave on the sound emitting surface. Converting to a vibration speed, calculating a cross spectrum between the vibration speed and the sound pressure in the audible frequency range, the reflected sound from the specific acoustic radiation surface reflected by other objects and propagated, and An object characterized by detecting only sound in an audible frequency range radiated from the specific acoustic radiation surface by removing sound radiated from an acoustic radiation surface other than the specific acoustic radiation surface and an object other than the vibrating object. Sound detection method. 振動する物体の特定の音響放射面から放射される可聴周波数域の音を検出する対象音検出装置であって、前記特定の音響放射面に向けて超音波を放射する超音波放射手段と、前記特定の音響放射面からの前記超音波の反射波の音圧と前記特定の音響放射面近傍の可聴周波数域の音圧を同時に検出する音検出手段と、この音検出手段が検出した前記超音波の反射波の音圧と前記可聴周波数域の音圧を分離する分離手段と、前記超音波の反射波のドップラシフトによる周波数変化を前記特定の音響放射面の振動速度に変換する変換手段と、前記振動速度と前記可聴周波数域の音圧とのクロススペクトルを演算する演算手段を備えることを特徴とする対象音検出装置。A target sound detection device for detecting sound in an audible frequency range radiated from a specific acoustic radiation surface of a vibrating object, the ultrasonic radiation means for radiating ultrasonic waves toward the specific acoustic radiation surface, and Sound detection means for simultaneously detecting the sound pressure of the reflected wave of the ultrasonic wave from the specific acoustic radiation surface and the sound pressure in the audible frequency range near the specific acoustic radiation surface, and the ultrasonic wave detected by the sound detection means Separating means for separating the sound pressure of the reflected wave and the sound pressure in the audible frequency range, and a converting means for converting a frequency change due to Doppler shift of the reflected wave of the ultrasonic wave into a vibration velocity of the specific acoustic radiation surface; A target sound detection apparatus comprising a calculation means for calculating a cross spectrum between the vibration speed and a sound pressure in the audible frequency range.
JP2002379891A 2002-12-27 2002-12-27 Target sound detection method and apparatus Expired - Fee Related JP3894887B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002379891A JP3894887B2 (en) 2002-12-27 2002-12-27 Target sound detection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002379891A JP3894887B2 (en) 2002-12-27 2002-12-27 Target sound detection method and apparatus

Publications (2)

Publication Number Publication Date
JP2004212121A true JP2004212121A (en) 2004-07-29
JP3894887B2 JP3894887B2 (en) 2007-03-22

Family

ID=32816266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002379891A Expired - Fee Related JP3894887B2 (en) 2002-12-27 2002-12-27 Target sound detection method and apparatus

Country Status (1)

Country Link
JP (1) JP3894887B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691078B1 (en) * 2015-12-24 2016-12-29 포항공과대학교 산학협력단 A microphone with specific audible area using ultrasound
CN112254798A (en) * 2020-10-12 2021-01-22 中国人民解放军国防科技大学 Method, system and medium for forecasting ocean vector sound field

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104374464B (en) 2014-11-17 2017-10-10 北京智谷睿拓技术服务有限公司 Vibration information acquisition methods and vibration information acquisition device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691078B1 (en) * 2015-12-24 2016-12-29 포항공과대학교 산학협력단 A microphone with specific audible area using ultrasound
US9843867B2 (en) 2015-12-24 2017-12-12 Postech Academy-Industry Foundation Microphone with specific audible area using ultrasound wave
CN112254798A (en) * 2020-10-12 2021-01-22 中国人民解放军国防科技大学 Method, system and medium for forecasting ocean vector sound field
CN112254798B (en) * 2020-10-12 2022-07-12 中国人民解放军国防科技大学 Method, system and medium for forecasting ocean vector sound field

Also Published As

Publication number Publication date
JP3894887B2 (en) 2007-03-22

Similar Documents

Publication Publication Date Title
JP5098176B2 (en) Sound source direction determination method and apparatus
Wajid et al. Design and analysis of air acoustic vector-sensor configurations for two-dimensional geometry
JP3894887B2 (en) Target sound detection method and apparatus
JP5728378B2 (en) Noise reduction device
JP2007096384A (en) Noise elimination apparatus and noise elimination program
JP4960838B2 (en) Distance measuring device, distance measuring method, distance measuring program, and recording medium
JP2012047578A (en) Frequency measurement device, frequency measurement method, speed measurement device, and speed measurement method
JP2003222553A (en) Sound detecting method and device using the same
JP3874749B2 (en) Target sound detection method and apparatus
JPH0579899A (en) Acoustic intensity measuring apparatus
JP2010249637A (en) Method for detecting state of fluid and state detecting device
JP2022049170A (en) Measurement device and method for measurement
JP2021175963A (en) Wind direction/wind speed meter
Szwoch et al. Detection of the incoming sound direction employing MEMS microphones and the DSP
JP4025005B2 (en) Nondestructive inspection method and nondestructive inspection device
US11959883B2 (en) Diagnostic apparatus and diagnostic method
JPH11153660A (en) Sound source searching device
US20230266277A1 (en) Sound inspection apparatus and sound inspection method
RU2116632C1 (en) Method of directed measurement of acoustic signals of sound source ( versions )
JP4921954B2 (en) Noise reduction device
JP3411431B2 (en) Speed measuring device
JPH11344408A (en) Sound source probing device
JP2023119392A (en) Inspection device and inspection method
JP3357499B2 (en) Whirlpool velocimeter and whirlpool flowmeter
JP2000221255A (en) Apparatus and method for passive sonar

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061212

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3894887

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101222

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111222

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121222

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131222

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees