JP4025005B2 - Nondestructive inspection method and nondestructive inspection device - Google Patents

Nondestructive inspection method and nondestructive inspection device Download PDF

Info

Publication number
JP4025005B2
JP4025005B2 JP2000305225A JP2000305225A JP4025005B2 JP 4025005 B2 JP4025005 B2 JP 4025005B2 JP 2000305225 A JP2000305225 A JP 2000305225A JP 2000305225 A JP2000305225 A JP 2000305225A JP 4025005 B2 JP4025005 B2 JP 4025005B2
Authority
JP
Japan
Prior art keywords
signal
mechanical vibration
tile
frequency
sine wave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000305225A
Other languages
Japanese (ja)
Other versions
JP2002116112A5 (en
JP2002116112A (en
Inventor
稔 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2000305225A priority Critical patent/JP4025005B2/en
Publication of JP2002116112A publication Critical patent/JP2002116112A/en
Publication of JP2002116112A5 publication Critical patent/JP2002116112A5/ja
Application granted granted Critical
Publication of JP4025005B2 publication Critical patent/JP4025005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、建築物の壁面に使われているタイルの剥離を非破壊で検出する非破壊検査方法及び非破壊検査装置に関する。
【0002】
【従来の技術】
従来、建築物の壁面などに使用されているタイルが経時変化などによって剥離落下する事故を事前に検知する方法が切望されており、それを実現するものとして、例えば特開平07−209262号公報や特開2000−131290号公報で開示されているものがある。
【0003】
特開平07−209262号公報では、被検査対象物をハンマで打撃し、そのときの打撃音をディジタル信号に変換してコンピュータで解析する方法が開示されている。
【0004】
更に詳しくは、被検査対象物をハンマ等の打撃手段で打撃し、そのときに得られる反射音からクレストファクタを算出し、このクレストファクタが第1の所定値以上のときには被検査対象物は健全と判断し、クレストファクタが第1の所定値未満のときには反射音から期待周波数を算出し、この期待周波数と健全な被検査対象物における期待周波数との偏差が第2の所定値より小さいときには被検査対象物は健全なものと判断し、前記偏差が第2の所定値以上のときには被検査対象物は不良であると判断する。
【0005】
特開2000−131290号公報では、打撃音を複数のバンドパスフィルタを用いて周波数を分析する方法が開示されている。
【0006】
更に詳しくは、被検査対象物にハンマにて外力を加えて打音を発生させた際の外力を加振力センサで検出し、その結果と外力基準値との比率を求める一方、被検査対象物で発生した打音をマイクロフォンにて検出し、その結果をバンドパスフィルタで各周波数毎の時系列信号に分離し、更に整流してピークホールドにて各周波数帯域における瞬間的な最大値を抽出する。その最大値を先に算出した比率を基に補正し、比較器において予め設定された振動基準値と比較して所定の関係から外れたとき比較結果信号を出し、警報器は比較結果信号の数が、例えば3個以上の場合、警報する。つまり、複数の周波数帯域毎の時系列信号の最大値を抽出して比較する。
【0007】
一方、ハンマで打撃する代わりに、加振器を使用して被検査対象物を打撃するようにしたものがある。例えば、特開昭59−94062号公報で開示されたものでは、発振器にて発生させた交番電流にて加振器を駆動して、被検査対象物を打撃するようにしている。この公報で開示された装置では、加振器によって被検査対象物に連続的に変化する周波数の振動を与え、感振器によってその固有振動数における共振点を測定する。
【0008】
【発明が解決しようとする課題】
ところで、従来の非破壊検査方法にあっては、次のような問題があった。すなわち、検査者がハンマなどでタイル面を叩き、そのときの打音の違いを判定する感応検査が主であるが、この方式では検査者の個人差やスキルによって定量的な判定が難しく、また精度や再現性の面でも不完全であった。
【0009】
また、この判定を機械的電気的に処理しようという試みが幾つかあるが、いずれも装置が大型化したり、高価な測定器を必要とした。例えば特開平07−209262号公報で開示された方法では、被検査対象のタイルをハンマで打撃するのと、その打撃音をコンピュータで処理するための装置及びコンピュータが必要である。また、特開2000−131290号公報で開示された方法では、周波数を分析するため、複数のバンドパスフィルタを用意するため構造が複雑になる。また、ハンマによる打撃音をマイクロフォンで集音するため他にノイズとなる騒音源があると正確な測定ができない。
【0010】
また、特開昭59−94062号公報で開示された方法では、被検査対象物を加振させて、そのときの共振周波数のみを測定することから、数多くの基礎データを測定しておかなければ、より正確な判定が困難であり、またそのために人件費等の余分な検査コストを要する。
【0011】
本発明は係る実情に鑑みてなされたものであり、構造が簡単で精度の良い測定ができる非破壊検査方法及び非破壊検査装置を提供することを目的とする。
【0012】
【課題を解決するための手段】
本発明の非破壊検査方法は、所定の範囲で周波数が連続的に変化する正弦波信号を発生させて、この正弦波信号を機械的振動に変換してタイルの所定の点に直接接触して印加する一方、前記機械的振動を印加した前記点から離間した点で前記タイルで発生する機械的振動を直接接触して検出し、該検出した機械的振動を電気信号に変換し、さらに、前記変換した電気信号と前記正弦波信号とを乗算し、その乗算結果から所定の周波数成分をローパスフィルタで除去して得られる出力電圧の周波数特性を求めることにより、前記タイルの建築物からの離がある場合には前記周波数特性が正常の場合に比べて大きく異なることで前記タイルの剥離を検出することを特徴とする。
【0013】
この方法によれば、加振用信号として所定の範囲で周波数が連続的に変化する正弦波信号を使用することと、この正弦波信号と同様に所定の範囲で周波数が連続的に変化する受信信号とを乗算し、乗算結果から所定の周波数成分をローパスフィルタで除去して得られる出力電圧の周波数特性を、タイルの剥離がない正常の場合の周波数特性と比べることから、タイルの剥離検出簡単に行うことができる。
【0014】
本発明の非破壊検査装置は、所定の範囲で周波数が連続的に変化する正弦波信号を繰り返し発生する加振用信号発生手段と、前記加振用信号発生手段で発生された正弦波信号を機械的振動に変換し、該機械的振動をタイルの所定の点に直接接触して印加する機械的振動印加手段と、前記機械的振動を印加した前記点から離間した点で前記タイルで発生する機械的振動を直接接触して検出し、該検出した値に応じた電気信号を出力する機械的振動検出手段と、前記加振用信号発生手段で発生された前記正弦波信号と前記機械的振動検出手段で検出された前記電気信号とを乗算してその結果を出力する信号乗算手段と、前記信号乗算手段の出力信号から所定の周波数成分を除去するローパスフィルタと、を具備することを特徴とするローパスフィルタと、を具備することを特徴とする。
【0015】
この構成によれば、加振用信号として所定の範囲で周波数が連続的に変化する正弦波信号を使用することと、この正弦波信号と同様に所定の範囲で周波数が連続的に変化する受信信号とを乗算し、その乗算結果の出力信号を、ローパスフィルタに通過させて得られる出力電圧の周波数特性を、タイルの剥離がない正常の場合の周波数特性と比べることから、タイルの剥離検出が簡単になり、装置の簡略化が可能となるとともに、精度の高い測定が可能となる。
【0016】
【発明の実施の形態】
以下、本発明の好適な実施の形態について、図面を参照して詳細に説明する。
図1は、本発明の一実施の形態に係る非破壊検査装置の構成を示すブロック図である。この図において、本実施の形態に係る非破壊検査装置は、正弦波発振器1と、第1、第2の増幅器2、3と、掛け算器4と、加振用圧電スピーカ5と、受信用圧電スピーカ6と、ローパスフィルタ7とを備えて構成される。
【0017】
正弦波発振器1は、周波数が所定の周波数範囲(例えば1kHzから20kHz)で連続的に変化する正弦波信号を繰り返し発生する。第1の増幅器2は、正弦波発振器1からの正弦波信号を、加振用圧電スピーカ6を駆動できるレベルまで増幅し、加振用信号Vrとして出力する。第2の増幅器3は、受信用圧電スピーカ5からの正弦波信号を掛け算器4で使用できるレベルまで増幅し、受信信号Viとして出力する。掛け算器4は、第1の増幅器2からの加振用信号Vrと第2の増幅器3からの受信信号Viとを掛け算して出力する。
【0018】
加振用圧電スピーカ5は、第1の増幅器2からの加振用信号Vrを機械的振動に変換して被検査タイル10に印加する。受信用圧電スピーカ6は、圧電素子を用いたものであり、機械的信号を電気信号に変換して出力する。加振用圧電スピーカ5と受信用圧電スピーカ5は被検査タイル10上で離間配置される。ローパスフィルタ7は、掛け算器4からの出力信号から以下で説明するcos(2ωt+α+β)分を除去する。
【0019】
このような構成において、正弦波発振器1にて発生した正弦波信号は、第1の増幅器2にて増幅されて加振用信号Vrとして加振用圧電スピーカ5へ出力されて、被検査タイル10に機械的振動が印加される。また、加振用信号Vrは掛け算器4へも出力される。被検査タイル10に機械的振動が印加されると、その振動が受信用圧電スピーカ6にて受信されて、そのときの振動の大きさに応じたレベルの信号が第2の増幅器3へ出力される。そして、第2の増幅器3で増幅されて受信信号Viが得られ、この受信信号Viと第1の増幅器2からの加振用信号Vrとが掛け算器4にて乗算される。そして、掛け算器4の出力がローパスフィルタ7に送出され、ローパスフィルタ7にてcos(2ωt+α+β)成分が除去されて出力電圧Voが得られる。
【0020】
この出力電圧Voは、加振用信号Vrの周波数変化に対する受信信号Viの振幅と位相を反映した信号になる。故に、この出力電圧Voは被検査タイル10の簡易な周波数特性を表していることになる。正常なタイルと剥離したタイルとでは周波数特性が大きく異なるので、簡単に剥離タイルを見分けることができる。
【0021】
上記作動原理を、数式を用いて表すと以下のようになる。
Vr=sin(ωt+α)
Vi=sin(ωt+β)
但し、ωtは周波数、αとβは位相のずれとする。
Vr×Vi=sin(ωt+α)×sin(ωt+β)
=1/2[cos(β−α)−cos(2ωt+α+β)]…(1)
【0022】
上式(1)のcos(β−α)の部分は、位相差に合わせて変化する直流成分であり、ここに受信信号Viの振幅成分も含まれる。また、cos(2ωt+α+β)の部分は、元の加振用信号Vrと受信信号Viの2倍の周波数の信号である。必要とする周波数特性の情報は、受信信号Viの振幅(大きさ)であるので、式(1)のcos(β−α)のみでよい。したがって、ローパスフィルタ7を通過させてcos(2ωt+α+β)の成分を除去すればよい。このようにして出力電圧Voには周波数特性が電圧の形で現れる。
【0023】
ここで、図2は正常なタイルと剥離部分のあるタイルの出力電圧Voの波形を示す図である。この場合、(a)が正常なタイルにおける出力電圧波形であり、(b)が剥離部分のあるタイルにおける出力電圧波形である。正常なタイルは全面が建築物と接触しているため、加振したエネルギーが吸収されて受信側へはあまり戻ってこないが、剥離した部分のあるタイルは一部分しか建築物と接触していないため、剥離部分は加振したエネルギーが吸収されず、タイル自身の振動の周波数特性を観測することができる。したがって、出力電圧Voに現れる周波数特性の違いを観測することでタイルの剥離を判定することが可能となる。
【0024】
このように、本実施の形態の非破壊検査装置によれば、被検査タイル10の加振に、周波数が連続的に変化する正弦波の加振用信号Vrを使用したので、簡単な処理で且つ高精度で正常タイルと剥離タイルを識別することができる。また、加振用信号Vrと受信信号Viとを乗算して乗算結果をローパスフィルタ7に送出することで加振用信号Vrと無関係なノイズ成分を受信信号Viから取り除くことができ、簡単な信号処理で高精度な測定ができる。さらに、処理が簡単であることから、装置の簡略化が可能になる。特に、使用する増幅器や掛け算器などは現在市販されている安価な半導体で容易に実現可能であるので、安価に製造できる。また、数多くの基礎データを測定しておく必要もないので、人件費等の節約も可能である。
【0025】
なお、上記実施の形態では、単一の周波数範囲の正弦波を用いたが、周波数範囲を切り替える周波数範囲切替器(図示略)を設けて、複数の周波数範囲の正弦波を択一的に選択できるようにしてもよい。この場合、正弦波発振器1は、周波数範囲切替器にて切り替えられた範囲の周波数帯で正弦波信号を繰り返し発生させる機能を有することになる。このように、複数の周波数範囲の正弦波を択一的に選択できるようにすることで、被検査タイル10の構造や材質等の物理的な特性に応じて測定に最適な周波数範囲を選択することができ、これによって、より精度の高い測定が可能となる。
【0026】
【発明の効果】
以上説明したように、本発明によれば、タイルの加振に所定の範囲で周波数が連続的に変化する正弦波信号を使用し、この正弦波信号と同様に所定の範囲で周波数が連続的に変化する受信信号とを乗算し、乗算結果をローパスフィルタに送出して乗算結果の出力信号から所定の周波数成分を除去し、これにより得られる出力電圧の周波数特性をタイルの剥離がない正常な場合の周波数特性と比べて剥離の有無を判定するので、タイルの剥離検査に適した構造が簡単で精度の良い測定ができる非破壊検査方法及び装置を提供できる。
【図面の簡単な説明】
【図1】 本発明の実施の形態に係る非破壊検査装置の構成を示すブロック図である。
【図2】 図1の非破壊検査装置での測定結果の一例を示す図で、(a)は正常なタイルにおける出力電圧波形図、(b)は剥離部分のあるタイルにおける出力電圧波形図である。
【符号の説明】
1 正弦波発振器
2,3 増幅器
4 アナログ掛け算器
5 加振用圧電スピーカ
6 受振用圧電スピーカ
7 ローパスフィルタ
10 被検査タイル
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a nondestructive inspection method and nondestructive inspection apparatus for detecting nondestructively exfoliation tiles being used for walls of buildings.
[0002]
[Prior art]
Conventionally, a method for detecting in advance an accident in which a tile used for a wall of a building is peeled and dropped due to a change with time or the like has been desired, and for example, Japanese Patent Application Laid-Open No. 07-209262 or There are some which are indicated by JP, 2000-131290, A.
[0003]
Japanese Patent Application Laid-Open No. 07-209262 discloses a method in which an object to be inspected is hit with a hammer, and the hitting sound at that time is converted into a digital signal and analyzed by a computer.
[0004]
More specifically, the object to be inspected is hit with a hammer or other hitting means, the crest factor is calculated from the reflected sound obtained at that time, and the object to be inspected is healthy when the crest factor is equal to or greater than a first predetermined value. When the crest factor is less than the first predetermined value, the expected frequency is calculated from the reflected sound. When the deviation between the expected frequency and the expected frequency of the sound object to be inspected is smaller than the second predetermined value, the target frequency is calculated. The inspection object is determined to be healthy, and when the deviation is greater than or equal to a second predetermined value, it is determined that the inspection object is defective.
[0005]
Japanese Patent Application Laid-Open No. 2000-131290 discloses a method of analyzing the frequency of impact sound using a plurality of bandpass filters.
[0006]
More specifically, the external force when an external force is applied to the object to be inspected with a hammer to generate a hitting sound is detected by an excitation force sensor, and the ratio between the result and the external force reference value is obtained while the object to be inspected is detected. The sound generated by an object is detected by a microphone, and the result is separated into time-series signals for each frequency by a bandpass filter, and further rectified to extract the instantaneous maximum value in each frequency band by peak hold. To do. The maximum value is corrected based on the ratio calculated earlier, and compared with the vibration reference value set in advance in the comparator, when the result is out of the predetermined relationship, a comparison result signal is issued, and the alarm device counts the number of comparison result signals. However, for example, when there are three or more, an alarm is given. That is, the maximum value of time series signals for each of a plurality of frequency bands is extracted and compared.
[0007]
On the other hand, there is one in which an object to be inspected is hit using a vibrator instead of hitting with a hammer. For example, in the one disclosed in Japanese Patent Application Laid-Open No. 59-94062, an object to be inspected is hit by driving an exciter with an alternating current generated by an oscillator. In the apparatus disclosed in this publication, a vibration having a continuously changing frequency is applied to an object to be inspected by a vibration exciter, and a resonance point at the natural frequency is measured by a vibration sensor.
[0008]
[Problems to be solved by the invention]
By the way, the conventional nondestructive inspection method has the following problems. That is, the inspector is beating tile surface at etc. Han Ma, its judges sensitive test the difference between hitting sound when is the primary, it is difficult to quantitatively determine the individual difference or skills of the examiner in this manner Also, the accuracy and reproducibility were incomplete.
[0009]
In addition, there are some attempts to mechanically and electrically process this determination, but all of them require a large-sized apparatus or an expensive measuring instrument. For example, the method disclosed in Japanese Patent Application Laid-Open No. 07-209262 requires a device and a computer for hitting a tile to be inspected with a hammer and for processing the hitting sound with a computer. Further, in the method disclosed in Japanese Patent Laid-Open No. 2000-131290, the structure is complicated because a plurality of bandpass filters are prepared in order to analyze the frequency. In addition, since the hammering sound is collected by a microphone, accurate measurement cannot be performed if there are other noise sources.
[0010]
In the method disclosed in Japanese Patent Application Laid-Open No. 59-94062, the object to be inspected is vibrated and only the resonance frequency at that time is measured. More accurate determination is difficult, and extra inspection costs such as labor costs are required.
[0011]
The present invention has been made in view of such circumstances, and an object thereof is to provide a nondestructive inspection method and a nondestructive inspection apparatus that can perform a measurement with a simple structure and high accuracy.
[0012]
[Means for Solving the Problems]
Non-destructive inspection method of the present invention, to generate a sine wave signal whose frequency varies continuously within a predetermined range, direct contact with the predetermined point tile converts the sinusoidal signal to mechanical vibration while applying Te, detected by contacting the mechanical vibration generated by the tile at a point spaced from the point of applying the mechanical vibrations directly converts the mechanical vibrations the detected into an electric signal, further By multiplying the converted electrical signal by the sine wave signal and obtaining a frequency characteristic of an output voltage obtained by removing a predetermined frequency component with a low-pass filter from the multiplication result , the building from the tile is obtained. when there is exfoliation, wherein the frequency characteristic detecting the exfoliation of the tiles differ greatly as compared with the case of normal.
[0013]
According to this method, a sine wave signal whose frequency continuously changes in a predetermined range is used as the excitation signal, and reception in which the frequency continuously changes in a predetermined range is the same as this sine wave signal. The frequency characteristics of the output voltage obtained by multiplying the signal and removing the specified frequency component from the multiplication result by the low-pass filter is compared with the frequency characteristics in the normal case where there is no tile peeling . It can be done easily .
[0014]
The nondestructive inspection apparatus of the present invention includes an excitation signal generating means for repeatedly generating a sine wave signal whose frequency continuously changes within a predetermined range, and a sine wave signal generated by the excitation signal generating means. converted into mechanical vibration, mechanical vibration applying means for applying direct contact the mechanical vibrations at a predetermined point of tile, with the tile at a point spaced from the point of applying the mechanical vibrations Mechanical vibration detection means for detecting the generated mechanical vibration by direct contact and outputting an electrical signal corresponding to the detected value; the sine wave signal generated by the excitation signal generating means; and the machine Signal multiplying means for multiplying the electrical signal detected by the mechanical vibration detecting means and outputting the result, and a low-pass filter for removing a predetermined frequency component from the output signal of the signal multiplying means. lowpass, characterized Characterized by comprising data and, a.
[0015]
According to this configuration, a sine wave signal whose frequency continuously changes in a predetermined range is used as the excitation signal, and reception in which the frequency continuously changes in the predetermined range similarly to this sine wave signal. Since the frequency characteristics of the output voltage obtained by multiplying the signal and passing the output signal of the multiplication result through the low-pass filter are compared with the frequency characteristics in the normal case where there is no tile peeling, tile peeling detection is possible. This simplifies and simplifies the apparatus, and enables highly accurate measurement.
[0016]
DETAILED DESCRIPTION OF THE INVENTION
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing a configuration of a nondestructive inspection apparatus according to an embodiment of the present invention. In this figure, the nondestructive inspection apparatus according to the present embodiment includes a sine wave oscillator 1, first and second amplifiers 2 and 3, a multiplier 4, an excitation piezoelectric speaker 5, and a reception piezoelectric element. A speaker 6 and a low-pass filter 7 are provided.
[0017]
The sine wave oscillator 1 repeatedly generates a sine wave signal whose frequency continuously changes in a predetermined frequency range (for example, 1 kHz to 20 kHz). The first amplifier 2 amplifies the sine wave signal from the sine wave oscillator 1 to a level at which the excitation piezoelectric speaker 6 can be driven, and outputs it as an excitation signal Vr. The second amplifier 3 amplifies the sine wave signal from the reception piezoelectric speaker 5 to a level that can be used by the multiplier 4 and outputs the amplified signal as a reception signal Vi. The multiplier 4 multiplies the excitation signal Vr from the first amplifier 2 and the reception signal Vi from the second amplifier 3 and outputs the result.
[0018]
The excitation piezoelectric speaker 5 converts the excitation signal Vr from the first amplifier 2 into mechanical vibration and applies it to the tile 10 to be inspected. The receiving piezoelectric speaker 6 uses a piezoelectric element, converts a mechanical signal into an electric signal, and outputs it. The vibrating piezoelectric speaker 5 and the receiving piezoelectric speaker 5 are spaced apart from each other on the tile 10 to be inspected. The low-pass filter 7 removes an amount of cos (2ωt + α + β) described below from the output signal from the multiplier 4.
[0019]
In such a configuration, the sine wave signal generated by the sine wave oscillator 1 is amplified by the first amplifier 2 and output to the excitation piezoelectric speaker 5 as the excitation signal Vr. Mechanical vibration is applied to the substrate. The excitation signal Vr is also output to the multiplier 4. When mechanical vibration is applied to the tile 10 to be inspected, the vibration is received by the receiving piezoelectric speaker 6, and a signal having a level corresponding to the magnitude of the vibration at that time is output to the second amplifier 3. The The received signal Vi is amplified by the second amplifier 3, and the received signal Vi is multiplied by the excitation signal Vr from the first amplifier 2 by the multiplier 4. Then, the output of the multiplier 4 is sent to the low-pass filter 7, and the cos (2ωt + α + β) component is removed by the low-pass filter 7 to obtain the output voltage Vo.
[0020]
The output voltage Vo is a signal reflecting the amplitude and phase of the reception signal Vi with respect to the frequency change of the excitation signal Vr. Therefore, this output voltage Vo represents a simple frequency characteristic of the tile 10 to be inspected. Since the frequency characteristics of the normal tile and the peeled tile are greatly different, it is possible to easily distinguish the peeled tile.
[0021]
The above operation principle is expressed as follows using mathematical formulas.
Vr = sin (ωt + α)
Vi = sin (ωt + β)
Where ωt is the frequency and α and β are the phase shifts.
Vr × Vi = sin (ωt + α) × sin (ωt + β)
= 1/2 [cos (β−α) −cos (2ωt + α + β)] (1)
[0022]
The cos (β−α) portion of the above equation (1) is a direct current component that changes in accordance with the phase difference, and includes the amplitude component of the reception signal Vi. The portion of cos (2ωt + α + β) is a signal having a frequency twice that of the original excitation signal Vr and the reception signal Vi. Since the required frequency characteristic information is the amplitude (magnitude) of the received signal Vi, only cos (β−α) in the equation (1) is sufficient. Therefore, the component of cos (2ωt + α + β) may be removed by passing through the low-pass filter 7. In this way, frequency characteristics appear in the form of voltage in the output voltage Vo.
[0023]
Here, FIG. 2 is a diagram showing a waveform of the output voltage Vo of a normal tile and a tile having a peeling portion. In this case, (a) is an output voltage waveform in a normal tile, and (b) is an output voltage waveform in a tile having a peeled portion. A normal tile is entirely in contact with the building, so the excited energy is absorbed and does not return to the receiver side very much, but only a part of the tile with the peeled part is in contact with the building. The peeled portion does not absorb the excited energy, and the frequency characteristics of the vibration of the tile itself can be observed. Therefore, it is possible to determine the separation of tiles by observing the difference in frequency characteristics appearing in the output voltage Vo.
[0024]
As described above, according to the nondestructive inspection apparatus of the present embodiment, the sinusoidal excitation signal Vr whose frequency continuously changes is used for the excitation of the tile 10 to be inspected. In addition, the normal tile and the peeled tile can be distinguished with high accuracy. Further, by multiplying the excitation signal Vr and the reception signal Vi and sending the multiplication result to the low-pass filter 7, a noise component unrelated to the excitation signal Vr can be removed from the reception signal Vi, and a simple signal High-precision measurement can be performed by processing. Furthermore, since the process is simple, the apparatus can be simplified. In particular, amplifiers and multipliers to be used can be easily realized with inexpensive semiconductors currently on the market, and can be manufactured at low cost. In addition, since it is not necessary to measure a large amount of basic data, labor costs can be saved.
[0025]
In the above embodiment, a sine wave having a single frequency range is used. However, a frequency range switch (not shown) for switching the frequency range is provided to selectively select a sine wave having a plurality of frequency ranges. You may be able to do it. In this case, the sine wave oscillator 1 has a function of repeatedly generating a sine wave signal in the frequency band in the range switched by the frequency range switch. As described above, by selecting a sine wave having a plurality of frequency ranges, the optimum frequency range for measurement is selected according to the physical characteristics such as the structure and material of the tile 10 to be inspected. This allows for more accurate measurements.
[0026]
【The invention's effect】
As described above, according to the present invention, by using the sinusoidal signal frequency in a predetermined range in excitation changes continuously in tiles, continuous frequency sine wave signal as well as a predetermined range Multiply by the received signal that changes periodically, send the multiplication result to the low-pass filter, remove the predetermined frequency component from the output signal of the multiplication result, and the frequency characteristic of the output voltage obtained by this is normal without tile peeling since determining the presence or absence of peeling in comparison with the frequency characteristics of the case, possible to provide a non-destructive inspection method and device structure suitable for peeling Hanareken査tiles can simple accurate measurements.
[Brief description of the drawings]
FIG. 1 is a block diagram showing a configuration of a nondestructive inspection apparatus according to an embodiment of the present invention.
2A and 2B are diagrams illustrating an example of measurement results obtained by the nondestructive inspection apparatus in FIG. 1, wherein FIG. 2A is an output voltage waveform diagram in a normal tile, and FIG. 2B is an output voltage waveform diagram in a tile having a peeled portion. is there.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Sinusoidal oscillator 2,3 Amplifier 4 Analog multiplier 5 Piezoelectric speaker for vibration 6 Piezoelectric speaker for vibration 7 Low-pass filter 10 Inspected tile

Claims (2)

所定の範囲で周波数が連続的に変化する正弦波信号を発生させて、この正弦波信号を機械的振動に変換してタイルの所定の点に直接接触して印加する一方、前記機械的振動を印加した前記点から離間した点で前記タイルで発生する機械的振動を直接接触して検出し、該検出した機械的振動を電気信号に変換し、さらに、前記変換した電気信号と前記正弦波信号とを乗算し、その乗算結果から所定の周波数成分をローパスフィルタで除去して得られる出力電圧の周波数特性を求めることにより、前記タイルの建築物からの離がある場合には前記周波数特性が正常の場合に比べて大きく異なることで前記タイルの剥離を検出することを特徴とする非破壊検査方法。By generating a sine wave signal whose frequency varies continuously within a predetermined range, while applied in direct contact with the predetermined point of tile converts the sinusoidal signal to mechanical vibration, the mechanical vibration mechanical vibration generated by the tile detected in direct contact at a point spaced from the point of applying the, converts the mechanical vibrations the detected into electrical signals, Furthermore, the electrical signals mentioned above converting said sinusoidal multiplying the wave signal, by determining the frequency characteristics of the output voltage obtained by removing a predetermined frequency component from the multiplication result by a low pass filter, the frequency when there is peeled away from the building of the tile non-destructive inspection method characterized by characteristic detecting the exfoliation of the tiles differ greatly as compared with the case of normal. 所定の範囲で周波数が連続的に変化する正弦波信号を繰り返し発生する加振用信号発生手段と、前記加振用信号発生手段で発生された正弦波信号を機械的振動に変換し、該機械的振動をタイルの所定の点に直接接触して印加する機械的振動印加手段と、前記機械的振動を印加した前記点から離間した点で前記タイルで発生する機械的振動を直接接触して検出し、該検出した値に応じた電気信号を出力する機械的振動検出手段と、前記加振用信号発生手段で発生された前記正弦波信号と前記機械的振動検出手段で検出された前記電気信号とを乗算してその結果を出力する信号乗算手段と、前記信号乗算手段の出力信号から所定の周波数成分を除去するローパスフィルタと、を具備することを特徴とする非破壊検査装置。 Excitation signal generating means for repeatedly generating a sine wave signal whose frequency continuously changes within a predetermined range, and converting the sine wave signal generated by the excitation signal generation means into mechanical vibration, vibration and mechanical vibration applying means for applying in direct contact with the predetermined point of tiles and the mechanical vibration generated by the tile directly contact at a point spaced from the point of applying the mechanical vibrations Mechanical vibration detection means for detecting and outputting an electric signal corresponding to the detected value, the sine wave signal generated by the excitation signal generation means and the mechanical vibration detection means detected by the mechanical vibration detection means as a result a signal multiplier means for outputting, non-destructive testing equipment, characterized by comprising a low-pass filter, the removal of the predetermined frequency component from the output signal of said signal multiplying means multiplies the electric signal.
JP2000305225A 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device Expired - Fee Related JP4025005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305225A JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305225A JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Publications (3)

Publication Number Publication Date
JP2002116112A JP2002116112A (en) 2002-04-19
JP2002116112A5 JP2002116112A5 (en) 2007-06-14
JP4025005B2 true JP4025005B2 (en) 2007-12-19

Family

ID=18786125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305225A Expired - Fee Related JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Country Status (1)

Country Link
JP (1) JP4025005B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3673777B2 (en) * 2001-08-21 2005-07-20 キヤノン株式会社 Signal output device, sheet material type discrimination device, and image forming device
JP6284272B2 (en) * 2014-09-04 2018-02-28 鈴木 基行 Nondestructive inspection equipment
CN111811963B (en) * 2020-06-29 2023-05-12 佛山欧神诺陶瓷有限公司 Ceramic tile dark crack defect detection method and system

Also Published As

Publication number Publication date
JP2002116112A (en) 2002-04-19

Similar Documents

Publication Publication Date Title
EP0655623B1 (en) Relative resonant frequency shifts to detect cracks
Lee et al. Environmental effects on Lamb wave responses from piezoceramic sensors
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
US5408880A (en) Ultrasonic differential measurement
JP4699108B2 (en) Concrete placement inspection equipment
KR20110014767A (en) Pipe inspection device using plural channel ultra-sonic and the inspection method thereof
US20050109110A1 (en) Structural health monitoring
JPH08334431A (en) Nondestructive inspection device
JP4025005B2 (en) Nondestructive inspection method and nondestructive inspection device
JP5163857B2 (en) Concrete structure quality inspection method and concrete structure quality inspection apparatus
JP2008185345A (en) Vibration measuring method and device
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
JP4056224B2 (en) Nondestructive inspection method and nondestructive inspection device
JP3877591B2 (en) Packing detection method and apparatus
JP2001519035A (en) Inspection device for boundary area by ultrasonic wave
JP2594333B2 (en) Vibration test equipment
JP2571463B2 (en) A method of correcting measured values for the sensitivity of an ultrasonic measuring device using an arc array probe
JP3894887B2 (en) Target sound detection method and apparatus
JP2002250721A (en) Device for inspecting architectural structure
WO2003087780A1 (en) Improved non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers
Kırlangıç et al. Characterization of piezoelectric accelerometers beyond the nominal frequency range
JP3209111B2 (en) Method and apparatus for measuring ripeness of fruits and vegetables
JP2002250719A (en) Equipment for inspecting architectural structure
JP2003130856A (en) Building construction inspection device
KR101282026B1 (en) Surface acoustic wave sensor and sensing method using surface acoustic wave

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4025005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161012

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees