JP2002116112A - Nondestructive inspection method and nondestructive inspection device - Google Patents

Nondestructive inspection method and nondestructive inspection device

Info

Publication number
JP2002116112A
JP2002116112A JP2000305225A JP2000305225A JP2002116112A JP 2002116112 A JP2002116112 A JP 2002116112A JP 2000305225 A JP2000305225 A JP 2000305225A JP 2000305225 A JP2000305225 A JP 2000305225A JP 2002116112 A JP2002116112 A JP 2002116112A
Authority
JP
Japan
Prior art keywords
signal
sine wave
mechanical vibration
inspected
wave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000305225A
Other languages
Japanese (ja)
Other versions
JP4025005B2 (en
JP2002116112A5 (en
Inventor
Minoru Kaneko
稔 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Akebono Brake Industry Co Ltd
Original Assignee
Akebono Brake Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Akebono Brake Industry Co Ltd filed Critical Akebono Brake Industry Co Ltd
Priority to JP2000305225A priority Critical patent/JP4025005B2/en
Publication of JP2002116112A publication Critical patent/JP2002116112A/en
Publication of JP2002116112A5 publication Critical patent/JP2002116112A5/ja
Application granted granted Critical
Publication of JP4025005B2 publication Critical patent/JP4025005B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nondestructive inspection device having a simple structure and capable of accurately measuring. SOLUTION: A sine wave oscillator 1 is arranged for generating a sine wave signal having a frequency continuously changing in a prescribed frequency range, and while the sine wave signal from this sine wave oscillator 1 is transduced into mechanical vibration and is impressed on an inspection object tile 10, mechanical vibration generated by the inspection object tile 10 is detected at a point separate from the impressing point, the detected mechanical vibration is transduced into an electric signal, the transduced electric signal and the sine wave signal from the sine wave oscillator 1 are multiplied together, and a defect of the inspection object tile 10 is detected on the basis of the electric signal obtained thereby.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、建築物の壁面に使
われているタイルの剥離や建築物のコンクリートの欠陥
を非破壊で検出する非破壊検査方法及び非破壊検査装置
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-destructive inspection method and a non-destructive inspection apparatus for non-destructively detecting a peeling of a tile used on a wall surface of a building or a defect of concrete of the building.

【0002】[0002]

【従来の技術】従来、建築物の壁面などに使用されてい
るタイルが経時変化などによって剥離落下する事故を事
前に検知する方法が切望されており、それを実現するも
のとして、例えば特開平07−209262号公報や特
開2000−131290号公報で開示されているもの
がある。
2. Description of the Related Art Conventionally, there has been a long-awaited need for a method of detecting in advance an accident in which a tile used on a wall surface of a building is peeled and dropped due to a change over time or the like. Japanese Patent Application Laid-Open No. 2000-131290 and Japanese Patent Application Laid-Open No. 2000-131290.

【0003】特開平07−209262号公報では、被
検査対象物をハンマで打撃し、そのときの打撃音をディ
ジタル信号に変換してコンピュータで解析する方法が開
示されている。
Japanese Patent Application Laid-Open No. 07-209262 discloses a method of hitting an object to be inspected with a hammer, converting the hitting sound at that time into a digital signal, and analyzing the digital signal with a computer.

【0004】更に詳しくは、被検査対象物をハンマ等の
打撃手段で打撃し、そのときに得られる反射音からクレ
ストファクタを算出し、このクレストファクタが第1の
所定値以上のときには被検査対象物は健全と判断し、ク
レストファクタが第1の所定値未満のときには反射音か
ら期待周波数を算出し、この期待周波数と健全な被告検
査物における期待周波数との偏差が第2の所定値より小
さいときには被検査対象物は健全なものと判断し、前記
偏差が第2の所定値以上のときには被検査対象物は不良
であると判断する。
More specifically, an object to be inspected is hit with a hitting means such as a hammer, and a crest factor is calculated from a reflection sound obtained at that time. When the crest factor is equal to or more than a first predetermined value, the object to be inspected is The object is determined to be sound, and when the crest factor is less than the first predetermined value, the expected frequency is calculated from the reflected sound, and the deviation between the expected frequency and the expected frequency of the sound defendant inspection object is smaller than the second predetermined value. Sometimes, it is determined that the inspected object is sound, and when the deviation is equal to or greater than the second predetermined value, it is determined that the inspected object is defective.

【0005】特開2000−131290号公報では、
打撃音を複数のバンドパスフィルタを用いて周波数を分
析する方法が開示されている。
In Japanese Patent Application Laid-Open No. 2000-131290,
A method of analyzing the frequency of an impact sound using a plurality of bandpass filters is disclosed.

【0006】更に詳しくは、被検査対象物にハンマにて
外力を加えて打音を発生させた際の外力を加振力センサ
で検出し、その結果と外力基準値との比率を求める一
方、被検査対象物で発生した打音をマイクロフォンにて
検出し、その結果をバンドパスフィルタで各周波数毎の
時系列信号に分離し、更に整流してピークホールドにて
各周波数帯域における瞬間的な最大値を抽出する。その
最大値を先に算出した比率を基に補正し、比較器におい
て予め設定された振動基準値と比較して所定の関係から
外れたとき比較結果信号を出し、警報器は比較結果信号
の数が、例えば3個以上の場合、警報する。つまり、複
数の周波数帯域毎の時系列信号の最大値を抽出して比較
する。
More specifically, an external force when an external force is applied to the object to be inspected by a hammer to generate a tapping sound is detected by an excitation force sensor, and a ratio between the result and an external force reference value is obtained. The tapping sound generated from the object to be inspected is detected by a microphone, the result is separated into a time-series signal for each frequency by a band-pass filter, further rectified, and a peak hold is applied to the instantaneous maximum in each frequency band. Extract the value. The maximum value is corrected based on the ratio calculated earlier, and the comparator compares the vibration value with a preset vibration reference value to output a comparison result signal when the value deviates from a predetermined relationship. However, if there are three or more, an alarm is issued. That is, the maximum value of the time-series signal for each of a plurality of frequency bands is extracted and compared.

【0007】一方、ハンマで打撃する代わりに、加振器
を使用して被検査対象物を打撃するようにしたものがあ
る。例えば、特開昭59−94062号公報で開示され
たものでは、発振器にて発生させた交番電流にて加振器
を駆動して、被検査対象物を打撃するようにしている。
この公報で開示された装置では、加振器によって被検査
対象物に連続的に変化する周波数の振動を与え、感振器
によってその固有振動数における共振点を測定する。
On the other hand, there is an apparatus in which an object to be inspected is hit using a vibrator instead of hitting with a hammer. For example, in Japanese Unexamined Patent Application Publication No. 59-94062, a vibrator is driven by an alternating current generated by an oscillator to strike an object to be inspected.
In the device disclosed in this publication, a vibration having a continuously changing frequency is applied to an object to be inspected by a vibrator, and a resonance point at the natural frequency is measured by a vibrator.

【0008】[0008]

【発明が解決しようとする課題】ところで、従来の非破
壊検査方法にあっては、次のような問題があった。すな
わち、検査者がハンマーなどでタイル面を叩き、そのと
きの打音の違いを判定する感応検査が主であるが、この
方式では検査者の個人差やスキルによって定量的な判定
が難しく、また精度や再現性の面でも不完全であった。
The conventional nondestructive inspection method has the following problems. In other words, the main test is a sensitivity test, in which the inspector strikes the tile surface with a hammer or the like and determines the difference in the sound at that time.However, in this method, quantitative judgment is difficult due to individual differences and skills of the inspector, and The accuracy and reproducibility were incomplete.

【0009】また、この判定を機械的電気的に処理しよ
うという試みが幾つかあるが、いずれも装置が大型化し
たり、高価な測定器を必要とした。例えば特開平07−
209262号公報で開示された方法では、被検査対象
のタイルをハンマで打撃するのと、その打撃音をコンピ
ュータで処理するための装置及びコンピュータが必要で
ある。また、特開2000−131290号公報で開示
された方法では、周波数を分析するため、複数のバンド
パスフィルタを用意するため構造が複雑になる。また、
ハンマによる打撃音をマイクロフォンで集音するため他
にノイズとなる騒音源があると正確な測定ができない。
There have been some attempts to mechanically and electrically process this determination, but all of them have required a large-sized apparatus or an expensive measuring instrument. For example, JP-A-07-
The method disclosed in Japanese Patent Publication No. 209262 requires an apparatus and a computer for hitting a tile to be inspected with a hammer and processing the hitting sound with a computer. In the method disclosed in Japanese Patent Application Laid-Open No. 2000-131290, the structure is complicated because a plurality of band-pass filters are prepared for analyzing the frequency. Also,
Since the hammering sound is collected by a microphone, accurate measurement cannot be performed if there is another noise source that causes noise.

【0010】また、特開昭59−94062号公報で開
示された方法では、被検査対象物を加振させて、そのと
きの共振周波数のみを測定することから、数多くの基礎
データを測定しておかなければ、より正確な判定が困難
であり、またそのために人件費等の余分な検査コストを
要する。
In the method disclosed in Japanese Patent Application Laid-Open No. 59-94062, an object to be inspected is vibrated and only the resonance frequency at that time is measured. Otherwise, it is difficult to make a more accurate determination, and extra inspection costs such as labor costs are required.

【0011】本発明は係る実情に鑑みてなされたもので
あり、構造が簡単で精度の良い測定ができる非破壊検査
方法及び非破壊検査装置を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a nondestructive inspection method and a nondestructive inspection apparatus which have a simple structure and can perform accurate measurement.

【0012】[0012]

【課題を解決するための手段】本発明の非破壊検査方法
は、所定の範囲で周波数が経時的に変化する正弦波信号
を発生させて、この正弦波信号を機械的振動に変換して
被検査対象物に与える一方、前記機械的振動の印加点か
ら離間した点で前記被検査対象物で発生する機械的振動
を検出し、検出した機械的振動を電気信号に変換し更に
変換した電気信号と前記正弦波信号とを乗算し、これに
より得られる電気信号に基づいて前記被検査対象物の欠
陥を検出することを特徴とする。
According to the non-destructive inspection method of the present invention, a sine wave signal whose frequency changes with time in a predetermined range is generated, and this sine wave signal is converted into mechanical vibration to be applied to the object. The mechanical vibration generated in the inspection object is detected at a point separated from the application point of the mechanical vibration while being applied to the inspection object, and the detected mechanical vibration is converted into an electric signal, and further converted into an electric signal. And the sine wave signal, and detecting a defect of the inspection object based on an electric signal obtained thereby.

【0013】この方法によれば、正弦波信号を使用する
ことと、加振用信号と受信信号とを乗算することから、
欠陥検出処理が簡単になり、また精度の高い測定が可能
となる。
According to this method, since the sine wave signal is used and the excitation signal and the reception signal are multiplied,
Defect detection processing is simplified, and highly accurate measurement is possible.

【0014】本発明の非破壊検査装置は、所定の範囲で
周波数が経時的に変化する正弦波信号を繰り返し発生す
る加振用信号発生手段と、前記加振用信号生成で発生さ
れた正弦波信号を機械的振動に変換して被検査対象物に
印加する機械的振動印加手段と、前記機械的振動の印加
点から離間した点で前記被検査対象物で発生する機械的
振動を検出し、検出した値に応じた電気信号を出力する
機械的振動検出手段と、前記加振用信号発生手段で発生
された正弦波信号と前記機械的振動検出手段にて検出さ
れた検出信号とを乗算してその結果を出力する信号乗算
手段と、を具備することを特徴とする。
The nondestructive inspection apparatus according to the present invention comprises: a vibration signal generating means for repeatedly generating a sine wave signal whose frequency changes with time in a predetermined range; and a sine wave generated by the vibration signal generation. Mechanical vibration applying means for converting a signal into mechanical vibration and applying the same to the object to be inspected, and detecting mechanical vibration generated in the object to be inspected at a point separated from the point of application of the mechanical vibration, Mechanical vibration detecting means for outputting an electric signal corresponding to the detected value; multiplying a sine wave signal generated by the excitation signal generating means by a detection signal detected by the mechanical vibration detecting means; Signal multiplying means for outputting the result.

【0015】この構成によれば、正弦波信号を使用する
ことから、欠陥検出処理が簡単になり、装置の簡略化が
可能となるとともに、精度の高い測定が可能となる。
According to this configuration, since a sine wave signal is used, the defect detection processing is simplified, the apparatus can be simplified, and highly accurate measurement can be performed.

【0016】本発明の非破壊検査装置は、上記非破壊検
査装置において、周波数範囲を切り替える周波数範囲切
替手段を具備し、前記加振用信号発生手段は、前記周波
数範囲切替手段にて切り替えられた範囲の周波数帯で正
弦波信号を繰り返し発生させることを特徴とする。
The nondestructive inspection apparatus of the present invention is the above nondestructive inspection apparatus, further comprising frequency range switching means for switching a frequency range, wherein the excitation signal generating means is switched by the frequency range switching means. A sine wave signal is repeatedly generated in a frequency band of the range.

【0017】この構成によれば、正弦波信号を変化させ
る周波数範囲を任意に変更できるので、被検査対象物の
構造や材質等の物理的な特性に応じて測定に最適な周波
数範囲を選択することができ、これによってより精度の
高い測定が可能となる。
According to this configuration, the frequency range in which the sine wave signal is changed can be arbitrarily changed, so that the optimum frequency range for the measurement is selected in accordance with the physical characteristics such as the structure and the material of the inspection object. This allows for more accurate measurements.

【0018】[0018]

【発明の実施の形態】以下、本発明の好適な実施の形態
について、図面を参照して詳細に説明する。図1は、本
発明の一実施の形態に係る非破壊検査装置の構成を示す
ブロック図である。この図において、本実施の形態に係
る非破壊検査装置は、正弦波発振器1と、第1、第2の
増幅器2、3と、掛け算器4と、加振用圧電スピーカ5
と、受信用圧電スピーカ6と、ローパスフィルタ7とを
備えて構成される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a block diagram showing a configuration of a nondestructive inspection device according to one embodiment of the present invention. In this figure, the nondestructive inspection device according to the present embodiment includes a sine wave oscillator 1, first and second amplifiers 2, 3, a multiplier 4, and a piezoelectric speaker 5 for excitation.
, A receiving piezoelectric speaker 6 and a low-pass filter 7.

【0019】正弦波発振器1は、周波数が所定の周波数
範囲(例えば1kHzから20kHz)で連続的に変化
する正弦波信号を繰り返し発生する。第1の増幅器2
は、正弦波発振器1からの正弦波信号を、加振用圧電ス
ピーカ6を駆動できるレベルまで増幅し、加振用信号V
rとして出力する。第2の増幅器3は、受信用圧電スピ
ーカ5からの正弦波信号を掛け算器4で使用できるレベ
ルまで増幅し、受信信号Viとして出力する。掛け算器
4は、第1の増幅器2からの加振用信号Vrと第2の増
幅器3からの受信信号Viとを掛け算して出力する。
The sine wave oscillator 1 repeatedly generates a sine wave signal whose frequency continuously changes in a predetermined frequency range (for example, 1 kHz to 20 kHz). First amplifier 2
Amplifies the sine-wave signal from the sine-wave oscillator 1 to a level at which the vibration piezoelectric speaker 6 can be driven.
Output as r. The second amplifier 3 amplifies the sine wave signal from the receiving piezoelectric speaker 5 to a level usable by the multiplier 4, and outputs the amplified signal as a received signal Vi. The multiplier 4 multiplies the excitation signal Vr from the first amplifier 2 by the received signal Vi from the second amplifier 3 and outputs the result.

【0020】加振用圧電スピーカ5は、第1の増幅器2
からの加振用信号Vrを機械的振動に変換して被検査タ
イル(被検査対象物)10に印加する。受信用圧電スピ
ーカ6は、圧電素子を用いたものであり、機械的信号を
電気信号に変換して出力する。加振用圧電スピーカ5と
受信用圧電スピーカ5は被検査タイル10上で離間配置
される。ローパスフィルタ7は、掛け算器4からの出力
信号から以下で説明するcos(2ωt+α+β)分を
除去する。
The vibrating piezoelectric speaker 5 includes a first amplifier 2
Is converted into mechanical vibration and applied to the tile to be inspected (object to be inspected) 10. The receiving piezoelectric speaker 6 uses a piezoelectric element, and converts a mechanical signal into an electric signal and outputs it. The excitation piezoelectric speaker 5 and the reception piezoelectric speaker 5 are spaced apart from each other on the inspection target tile 10. The low-pass filter 7 removes cos (2ωt + α + β) from the output signal from the multiplier 4 as described below.

【0021】このような構成において、正弦波発振器1
にて発生した正弦波信号は、第1の増幅器2にて増幅さ
れて加振用信号Vrとして加振用圧電スピーカ5へ出力
されて、被検査タイル10に機械的振動が印加される。
また、加振用信号Vrは掛け算器4へも出力される。被
検査タイル10に機械的振動が印加されると、その振動
が受信用圧電スピーカ6にて受信されて、そのときの振
動の大きさに応じたレベルの信号が第2の増幅器3へ出
力される。そして、第2の増幅器3で増幅されて受信信
号Viが得られ、この受信信号Viと第1の増幅器2か
らの加振用信号Vrとが掛け算器4にて乗算される。そ
して、掛け算器4の出力がローパスフィルタ7に送出さ
れ、ローパスフィルタ7にてcos(2ωt+α+β)
成分が除去されて出力電圧Voが得られる。
In such a configuration, the sine wave oscillator 1
Is amplified by the first amplifier 2 and output as the excitation signal Vr to the excitation piezoelectric speaker 5, and mechanical vibration is applied to the tile 10 to be inspected.
The excitation signal Vr is also output to the multiplier 4. When a mechanical vibration is applied to the inspection tile 10, the vibration is received by the receiving piezoelectric speaker 6, and a signal having a level corresponding to the magnitude of the vibration at that time is output to the second amplifier 3. You. Then, the signal is amplified by the second amplifier 3 to obtain the received signal Vi. The received signal Vi is multiplied by the excitation signal Vr from the first amplifier 2 by the multiplier 4. Then, the output of the multiplier 4 is sent to the low-pass filter 7, and the low-pass filter 7 outputs cos (2ωt + α + β).
The component is removed to obtain the output voltage Vo.

【0022】この出力電圧Voは、加振用信号Vrの周
波数変化に対する受信信号Viの振幅と位相を反映した
信号になる。故に、この出力電圧Voは被検査タイル1
0の簡易な周波数特性を表していることになる。正常な
タイルと剥離したタイルとでは周波数特性が大きく異な
るので、簡単に剥離タイルを見分けることができる。
This output voltage Vo is a signal reflecting the amplitude and phase of the received signal Vi with respect to the frequency change of the excitation signal Vr. Therefore, this output voltage Vo is equal to the tile 1 to be inspected.
This indicates a simple frequency characteristic of 0. Since the frequency characteristics of the normal tile and the peeled tile are greatly different, the peeled tile can be easily distinguished.

【0023】上記作動原理を、数式を用いて表すと以下
のようになる。 Vr=sin(ωt+α) Vi=sin(ωt+β) 但し、ωtは周波数、αとβは位相のずれとする。 Vr×Vi=sin(ωt+α)×sin(ωt+β) =1/2[cos(β−α)−cos(2ωt+α+β)]…(1)
The above operation principle can be expressed as follows using mathematical expressions. Vr = sin (ωt + α) Vi = sin (ωt + β) where ωt is a frequency and α and β are phase shifts. Vr × Vi = sin (ωt + α) × sin (ωt + β) = 1 / [cos (β−α) −cos (2ωt + α + β)] (1)

【0024】上式(1)のcos(β−α)の部分は、
位相差に合わせて変化する直流成分であり、ここに受信
信号Viの振幅成分も含まれる。また、cos(2ωt
+α+β)の部分は、元の加振用信号Vrと受信信号V
iの2倍の周波数の信号である。必要とする周波数特性
の情報は、受信信号Viの振幅(大きさ)であるので、
式(1)のcos(β−α)のみでよい。したがって、
ローパスフィルタ7を通過させてcos(2ωt+α+
β)の成分を除去すればよい。このようにして出力電圧
Voには周波数特性が電圧の形で現れる。
The cos (β-α) part in the above equation (1) is
This is a DC component that changes according to the phase difference, and includes the amplitude component of the received signal Vi. Also, cos (2ωt
+ Α + β) represents the original vibration signal Vr and the received signal Vr.
This is a signal having a frequency twice as high as i. Since the information on the required frequency characteristics is the amplitude (magnitude) of the received signal Vi,
Only cos (β-α) in the equation (1) is sufficient. Therefore,
After passing through the low-pass filter 7, cos (2ωt + α +
The component of β) may be removed. In this way, the frequency characteristics appear in the output voltage Vo in the form of a voltage.

【0025】ここで、図2は正常なタイルと剥離部分の
あるタイルの出力電圧Voの波形を示す図である。この
場合、(a)が正常なタイルにおける出力電圧波形であ
り、(b)が剥離部分のあるタイルにおける出力電圧波
形である。正常なタイルは全面が建築物と接触している
ため、加振したエネルギーが吸収されて受信側へはあま
り戻ってこないが、剥離した部分のあるタイルは一部分
しか建築物と接触していないため、剥離部分は加振した
エネルギーが吸収されず、タイル自身の振動の周波数特
性を観測することができる。したがって、出力電圧Vo
に現れる周波数特性の違いを観測することでタイルの剥
離を判定することが可能となる。
FIG. 2 is a diagram showing waveforms of the output voltage Vo of a normal tile and a tile having a peeled portion. In this case, (a) is an output voltage waveform in a normal tile, and (b) is an output voltage waveform in a tile having a peeled portion. Normal tiles are in contact with the entire surface of the building, so the excited energy is absorbed and does not return much to the receiving side.However, the tiles that have peeled off are only partially in contact with the building. The exfoliated portion does not absorb the excited energy, and the frequency characteristics of the vibration of the tile itself can be observed. Therefore, the output voltage Vo
By observing the difference in the frequency characteristics appearing in the above, it is possible to determine the separation of the tile.

【0026】このように、本実施の形態の非破壊検査装
置によれば、被検査タイル10の加振に、周波数が連続
的に変化する正弦波の加振用信号Vrを使用したので、
簡単な処理で且つ高精度で正常タイルと剥離タイルを識
別することができる。また、加振用信号Vrと受信信号
Viとを乗算することで加振用信号Vrと無関係なノイ
ズ成分を受信信号Viから取り除くことができ、簡単な
信号処理で高精度な測定ができる。さらに、処理が簡単
であることから、装置の簡略化が可能になる。特に、使
用する増幅器や掛け算器などは現在市販されている安価
な半導体で容易に実現可能であるので、安価に製造でき
る。また、数多くの基礎データを測定しておく必要もな
いので、人件費等の節約も可能である。
As described above, according to the nondestructive inspection apparatus of the present embodiment, the excitation signal Vr of a sine wave whose frequency continuously changes is used for excitation of the tile 10 to be inspected.
Normal tiles and peeled tiles can be distinguished with simple processing and high accuracy. Also, by multiplying the excitation signal Vr and the reception signal Vi, noise components unrelated to the excitation signal Vr can be removed from the reception signal Vi, and highly accurate measurement can be performed by simple signal processing. Further, since the processing is simple, the apparatus can be simplified. In particular, since the amplifiers, multipliers, and the like to be used can be easily realized with inexpensive semiconductors currently on the market, they can be manufactured at low cost. In addition, since it is not necessary to measure a large number of basic data, it is possible to reduce labor costs and the like.

【0027】なお、上記実施の形態では、単一の周波数
範囲の正弦波を用いたが、周波数範囲を切り替える周波
数範囲切替器(図示略)を設けて、複数の周波数範囲の
正弦波を択一的に選択できるようにしてもよい。この場
合、正弦波発振器1は、周波数範囲切替器にて切り替え
られた範囲の周波数帯で正弦波信号を繰り返し発生させ
る機能を有することになる。このように、複数の周波数
範囲の正弦波を択一的に選択できるようにすることで、
被検査タイル10の構造や材質等の物理的な特性に応じ
て測定に最適な周波数範囲を選択することができ、これ
によって、より精度の高い測定が可能となる。
In the above embodiment, a sine wave in a single frequency range is used. However, a frequency range switch (not shown) for switching the frequency range is provided to select a sine wave in a plurality of frequency ranges. You may make it selectable. In this case, the sine wave oscillator 1 has a function of repeatedly generating a sine wave signal in the frequency band of the range switched by the frequency range switch. In this way, by enabling sine waves in a plurality of frequency ranges to be selected alternatively,
An optimum frequency range for measurement can be selected according to physical characteristics such as the structure and material of the tile 10 to be inspected, thereby enabling more accurate measurement.

【0028】また、上記実施の形態では、剥離タイルの
検出について述べたが、コンクリートの欠陥についても
検出することができることは勿論である。。
Further, in the above embodiment, the detection of the peeling tile has been described. However, it is needless to say that the defect of the concrete can be detected. .

【0029】[0029]

【発明の効果】以上説明したように、本発明によれば、
被検査対象物の加振に正弦波の加振用信号を使用したの
で、構造が簡単で精度の良い測定ができる非破壊検査装
置を提供できる。
As described above, according to the present invention,
Since a sine wave excitation signal is used to excite the object to be inspected, it is possible to provide a nondestructive inspection apparatus that has a simple structure and can perform accurate measurement.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る非破壊検査装置の構
成を示すブロック図である。
FIG. 1 is a block diagram showing a configuration of a nondestructive inspection device according to an embodiment of the present invention.

【図2】図1の非破壊検査装置での測定結果の一例を示
す図で、(a)は正常なタイルにおける出力電圧波形
図、(b)は剥離部分のあるタイルにおける出力電圧波
形図である。
FIGS. 2A and 2B are diagrams showing an example of a measurement result by the nondestructive inspection device of FIG. 1; FIG. 2A is an output voltage waveform diagram of a normal tile; FIG. is there.

【符号の説明】[Explanation of symbols]

1 正弦波発振器 2、3 増幅器 4 アナログ掛け算器 5 加振用圧電スピーカ 6 受信用圧電スピーカ 7 ローパスフィルタ 10 被検査タイル Reference Signs List 1 sine wave oscillator 2, 3 amplifier 4 analog multiplier 5 piezoelectric speaker for excitation 6 piezoelectric speaker for reception 7 low-pass filter 10 tile to be inspected

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 所定の範囲で周波数が経時的に変化する
正弦波信号を発生させて、この正弦波信号を機械的振動
に変換して被検査対象物に与える一方、前記機械的振動
の印加点から離間した点で前記被検査対象物で発生する
機械的振動を検出し、検出した機械的振動を電気信号に
変換し更に変換した電気信号と前記正弦波信号とを乗算
し、これにより得られる電気信号に基づいて前記被検査
対象物の欠陥を検出することを特徴とする非破壊検査方
法。
1. A sine wave signal whose frequency changes with time in a predetermined range is generated, and the sine wave signal is converted into mechanical vibration and applied to an object to be inspected, while applying the mechanical vibration. A mechanical vibration generated in the object to be inspected at a point away from the point is detected, the detected mechanical vibration is converted into an electric signal, and the converted electric signal is multiplied by the sine wave signal. A non-destructive inspection method, wherein a defect of the inspection object is detected based on an electrical signal obtained.
【請求項2】 所定の範囲で周波数が経時的に変化する
正弦波信号を繰り返し発生する加振用信号発生手段と、 前記加振用信号生成で発生された正弦波信号を機械的振
動に変換して被検査対象物に印加する機械的振動印加手
段と、 前記機械的振動の印加点から離間した点で前記被検査対
象物で発生する機械的振動を検出し、検出した値に応じ
た電気信号を出力する機械的振動検出手段と、 前記加振用信号発生手段で発生された正弦波信号と前記
機械的振動検出手段にて検出された検出信号とを乗算し
てその結果を出力する信号乗算手段と、 を具備することを特徴とする非破壊検査装置。
2. A vibration signal generating means for repeatedly generating a sine wave signal whose frequency changes with time in a predetermined range, and converting the sine wave signal generated by the vibration signal generation into mechanical vibration. Mechanical vibration applying means for applying to the object to be inspected, and detecting mechanical vibration generated in the object to be inspected at a point separated from the point of application of the mechanical vibration, and generating electricity corresponding to the detected value. A mechanical vibration detecting means for outputting a signal, a signal for multiplying a sine wave signal generated by the excitation signal generating means and a detection signal detected by the mechanical vibration detecting means, and outputting a result thereof A non-destructive inspection device, comprising: multiplication means.
【請求項3】 周波数範囲を切り替える周波数範囲切替
手段を具備し、前記加振用信号発生手段は、前記周波数
範囲切替手段にて切り替えられた範囲の周波数帯で正弦
波信号を繰り返し発生させることを特徴とする請求項2
載の非破壊検査装置。
3. A frequency range switching means for switching a frequency range, wherein the excitation signal generating means repeatedly generates a sine wave signal in a frequency band of the range switched by the frequency range switching means. Claim 2
Non-destructive inspection equipment.
JP2000305225A 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device Expired - Fee Related JP4025005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000305225A JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000305225A JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Publications (3)

Publication Number Publication Date
JP2002116112A true JP2002116112A (en) 2002-04-19
JP2002116112A5 JP2002116112A5 (en) 2007-06-14
JP4025005B2 JP4025005B2 (en) 2007-12-19

Family

ID=18786125

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000305225A Expired - Fee Related JP4025005B2 (en) 2000-10-04 2000-10-04 Nondestructive inspection method and nondestructive inspection device

Country Status (1)

Country Link
JP (1) JP4025005B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026485A (en) * 2001-08-21 2004-01-29 Canon Inc Signal output device, sheet material type distinguishing device, image forming device, and sheet material type distinguishing method
JP2016053548A (en) * 2014-09-04 2016-04-14 鈴木 基行 Non-destructive inspection system
CN111811963A (en) * 2020-06-29 2020-10-23 佛山欧神诺陶瓷有限公司 Method and system for detecting hidden crack defect of ceramic tile

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004026485A (en) * 2001-08-21 2004-01-29 Canon Inc Signal output device, sheet material type distinguishing device, image forming device, and sheet material type distinguishing method
JP2016053548A (en) * 2014-09-04 2016-04-14 鈴木 基行 Non-destructive inspection system
CN111811963A (en) * 2020-06-29 2020-10-23 佛山欧神诺陶瓷有限公司 Method and system for detecting hidden crack defect of ceramic tile

Also Published As

Publication number Publication date
JP4025005B2 (en) 2007-12-19

Similar Documents

Publication Publication Date Title
EP0655623B1 (en) Relative resonant frequency shifts to detect cracks
US4307616A (en) Signal processing technique for ultrasonic inspection
US20060000281A1 (en) Method and apparatus for assessing or predicting characteristics of wood or other wooden materials
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
US5408880A (en) Ultrasonic differential measurement
JP4699108B2 (en) Concrete placement inspection equipment
CN110231400A (en) Fine definition non-linear detection method towards automobile weld seam tiny flaw
CN108802203B (en) rod-shaped member internal defect positioning method based on multi-mode technology
US20050109110A1 (en) Structural health monitoring
JPH08334431A (en) Nondestructive inspection device
JP2002116112A (en) Nondestructive inspection method and nondestructive inspection device
JP3922459B2 (en) Separation and cavity detection method and apparatus by percussion method
JP2008185345A (en) Vibration measuring method and device
JP4056224B2 (en) Nondestructive inspection method and nondestructive inspection device
JP3036387B2 (en) Ultrasonic flaw detection method and device
US6584848B1 (en) Non-destructive evaluation method employing dielectric electrostatic ultrasonic transducers
JP2001519035A (en) Inspection device for boundary area by ultrasonic wave
JP2571463B2 (en) A method of correcting measured values for the sensitivity of an ultrasonic measuring device using an arc array probe
JP2002250721A (en) Device for inspecting architectural structure
JP3894887B2 (en) Target sound detection method and apparatus
JP2002250719A (en) Equipment for inspecting architectural structure
JP2003130856A (en) Building construction inspection device
JP2734282B2 (en) Percussion equipment for building finishing materials
RU2274857C1 (en) Method of detecting cracks in solid body
KR101282026B1 (en) Surface acoustic wave sensor and sensing method using surface acoustic wave

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060324

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070406

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070406

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070509

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070705

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070801

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071004

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4025005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20161012

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees