JP2008185345A - Vibration measuring method and device - Google Patents

Vibration measuring method and device Download PDF

Info

Publication number
JP2008185345A
JP2008185345A JP2007016477A JP2007016477A JP2008185345A JP 2008185345 A JP2008185345 A JP 2008185345A JP 2007016477 A JP2007016477 A JP 2007016477A JP 2007016477 A JP2007016477 A JP 2007016477A JP 2008185345 A JP2008185345 A JP 2008185345A
Authority
JP
Japan
Prior art keywords
vibration
measurement object
straight line
signal generator
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007016477A
Other languages
Japanese (ja)
Inventor
Akira Fujimichi
陽 藤路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2007016477A priority Critical patent/JP2008185345A/en
Publication of JP2008185345A publication Critical patent/JP2008185345A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To measure a property of a measuring object nondestructively by three-point supporting. <P>SOLUTION: This vibration measuring method includes the first process for applying a sound wave vibration to the measuring object by an excitation signal generation device, the second process for monitoring the sound wave vibration applied by the excitation signal generation device, the third process for receiving vibration of the measuring object by a vibration sensor, and the fourth process for acquiring the signal received by the monitor and the vibration sensor and analyzing a characteristic of the measuring object. This device has characteristics wherein the excitation signal generation device and the vibration sensor are installed on the same circumference so that an angle becomes perpendicular which is formed by a straight line passing the center point O of the measuring object and a contact point A between the excitation signal generation device and the measuring object and a straight line passing the center point O and a contact point B between the vibration sensor and the measuring object, and a support point C is installed on the same circumference so that each angle formed by the straight line AO and a straight line CO and by the straight line BO and the straight line CO becomes equal, and the measuring object can be measured by the three-point supporting. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、音波振動を用いて物体の振動および硬度を非破壊で測定する方法及び装置に関するものである。   The present invention relates to a method and apparatus for nondestructively measuring vibration and hardness of an object using sound wave vibration.

従来、物体の振動特性を測定するには、レーザードップラー装置などが使われていた。加振器やレーザー振動計を使い、大型な装置である。小型で持ち運びできる振動測定装置が開発されているが、加振振動をモニターする機能を有する物は無く、測定対象物の詳細な振動特性を測定することは不可能であった。また、測定対象物を3点支持により測定する技術もあるが、測定対象物の詳細な振動特性を測定できる位置に3点が配置されていない。本発明の装置では、同一円周上の特定の角度に配置された3点で支持しているため、測定対象物の質量や大きさに関係なく、共鳴周波数だけで測定対象物の硬度を測定することができる。
なお、測定対象物によっては高速フーリエ解析を行っても、共鳴周波数を特定し難い物体があるが、本発明の装置では、加振モニターの信号と振動センサの信号から位相のデータを取得でき、位相のデータから振動モードを測定できるので、共鳴周波数を正確に特定することが出来る。
特開平9−274022 特開平10−318991 特開平10−318992 特開2002−296254 特開2005−134114
Conventionally, a laser Doppler device or the like has been used to measure the vibration characteristics of an object. It is a large device using an exciter and a laser vibrometer. Although a small and portable vibration measuring device has been developed, there is no object that has a function of monitoring the excitation vibration, and it has been impossible to measure the detailed vibration characteristics of the object to be measured. In addition, there is a technique for measuring a measurement object by supporting three points, but the three points are not arranged at positions where detailed vibration characteristics of the measurement object can be measured. In the apparatus of the present invention, since it is supported at three points arranged at a specific angle on the same circumference, the hardness of the measurement object is measured only by the resonance frequency regardless of the mass or size of the measurement object. can do.
Depending on the object to be measured, there is an object in which it is difficult to specify the resonance frequency even if fast Fourier analysis is performed, but in the apparatus of the present invention, phase data can be acquired from the signal of the vibration monitor and the signal of the vibration sensor, Since the vibration mode can be measured from the phase data, the resonance frequency can be accurately specified.
JP-A-9-274022 JP-A-10-318991 JP 10-318992 A JP2002-296254 JP 2005-134114 A

特許文献1(特開平9−274022)の装置によれば、マイクロフォンをメロンにあて、メロンの対面に打撃で振動を付与している。打撃では打撃点の違いや、打撃強度の違いにより測定誤差を生じ易い。また、特許文献1の装置はメロンの直径を超音波により測定し、直径の補正をしてメロンの熟度を判定しなければならない。
特許文献2(特開平10−3189921)と特許文献3(特開平10−3189922)の装置によれば、重量計に測定対象物を置き、その上から集音マイクを設置し、測定対象物の側面をハンマーで打撃して振動解析を行っている。測定対象物を重量計に置いた後、集音マイクを測定対象物に接触させる必要があり、ハンマーで打撃している為、打撃強度や打撃信号をモニターしていない為、ハンマーの素材の違いにより周波数解析の結果が異なってくる。また、質量による大きさの補正も必要である。
特許文献4(特開2002−296254)の装置によれば、メロンを加振信号発生装置と加速度センサで測定し、加振振動エネルギーと検出振動エネルギーから伝達関数を求め、果径および硬度を測定している。硬度を測定するには、伝達関数よりも振動解析による共鳴周波数の方が高い。特許文献4によると伝達関数と果径および硬度との相関は約0.8であり、硬度と共鳴周波数との相関が0.9以上あるのに対し精度が劣る。
特許文献5(特開2005−134114)の装置によれば、測定対象物を3点支持で支える方法が明記してあるが、3点支持の構造が、平面視で正三角形の頂点に位置する部分に設けられている。加振点と測定対象物の中心点と受信点を結んだ角度が直角もしくは180度でなければ、測定対象物の硬さを表す第2共鳴周波数の振動を検出することができないが、特許文献5の装置では120度になっているため、詳細な振動特性を測定することはできない。
According to the apparatus of Patent Document 1 (Japanese Patent Laid-Open No. 9-274022), a microphone is applied to a melon, and vibration is imparted to the face of the melon by striking. In striking, measurement errors are likely to occur due to differences in striking points and striking strength. Moreover, the apparatus of patent document 1 must measure the diameter of a melon with an ultrasonic wave, correct | amend a diameter, and must judge the maturity of a melon.
According to the devices of Patent Document 2 (Japanese Patent Laid-Open No. 10-3189921) and Patent Document 3 (Japanese Patent Laid-Open No. 10-3189922), a measurement object is placed on a weighing scale, a sound collecting microphone is installed thereon, and Vibration analysis is performed by hitting the side with a hammer. After placing the measurement object on the weighing scale, it is necessary to bring the sound collecting microphone into contact with the measurement object. Since the hammer is struck with a hammer, the hammer strength and signal are not monitored. The result of frequency analysis differs depending on Moreover, the correction | amendment of the magnitude | size by mass is also required.
According to the apparatus of Patent Document 4 (Japanese Patent Laid-Open No. 2002-296254), melon is measured with an excitation signal generator and an acceleration sensor, a transfer function is obtained from the excitation vibration energy and the detected vibration energy, and the fruit diameter and hardness are measured. is doing. For measuring hardness, the resonance frequency by vibration analysis is higher than the transfer function. According to Patent Document 4, the correlation between the transfer function, the fruit diameter, and the hardness is about 0.8, and the correlation between the hardness and the resonance frequency is 0.9 or more, but the accuracy is inferior.
According to the apparatus of Patent Document 5 (Japanese Patent Laid-Open No. 2005-134114), a method for supporting a measurement object with three-point support is specified, but the three-point support structure is located at the apex of an equilateral triangle in plan view. It is provided in the part. If the angle between the excitation point and the center point of the measurement object and the reception point is not a right angle or 180 degrees, the vibration of the second resonance frequency representing the hardness of the measurement object cannot be detected. Since it is 120 degrees in the apparatus 5, detailed vibration characteristics cannot be measured.

そこで、本発明は、加振信号発生装置により測定対象物を振動させ、振動センサで受信した測定対象物の振動信号と加振信号発生装置に設置されたモニターの振動信号を差し引くことで測定対象物のみの信号を取得し、更に、特定の角度に配置された3点で支持することにより、測定対象物の直径や質量で補正の必要なしに簡単に測定対象物の振動解析および硬度の比較が可能な技術を提案する事を目的としてなされた物である。   Therefore, the present invention vibrates the measurement object with the vibration signal generator, and subtracts the vibration signal of the measurement object received by the vibration sensor and the vibration signal of the monitor installed in the vibration signal generator. By acquiring the signal of only the object and supporting it at three points arranged at a specific angle, vibration analysis and hardness comparison of the measurement object can be easily performed without the need for correction of the diameter and mass of the measurement object. It is a thing made for the purpose of proposing the technology which can do.

本発明にかかる振動測定方法の第1の発明においては、測定対象物に音波振動を加振信号発生装置により付与する第1の工程と、前記加振信号発生装置により付与した音波振動をモニターする第2の工程と、前記測定対象物の振動を振動センサで受信する第3の工程と、前記モニターと前記振動センサで受信した信号を取得し前記測定対象物の特性を解析する第4の工程とを含んでいることを特徴としている。
第2の発明では、前記加振信号発生装置と前記振動センサは、測定対象物の中心点Oと前記加振信号発生装置と測定対象物の接触点Aを通る直線と前記中心点Oと前記振動センサと測定対象物の接触点Bを通る直線のなす角が直角の位置になるように同一円周上に設置し、前記同一円周上には支持点Cを直線AOおよび直線BOと直線COのなす角が等角になるように設置し、前記測定対象物を3点支持により測定できる事を特徴としている。
第3の発明では、前記加振信号発生装置は入力電圧に応じて振動し、同時に加振振動をモニターできる事を特徴としている。
第4の発明では、加振信号発生装置により振動させた測定対象物の振動を受信した振動センサの信号を高速フーリエ解析したデータと、モニターの信号を高速フーリエ解析したデータを差し引くことにより測定対象物の振動スペクトル分布をえるように構成されており、振動センサの信号とモニターの信号を比較することにより、位相データを得るように構成されている事を特徴としている。
第5の発明では、3つの支持点を固定することにより測定対象物の共鳴周波数の値のみで、測定対象物の硬度を比較できることを特徴としている。
In the first aspect of the vibration measuring method according to the present invention, the first step of applying the sonic vibration to the measurement object by the vibration signal generator and the sonic vibration applied by the vibration signal generator are monitored. A second step, a third step of receiving vibrations of the measurement object by a vibration sensor, and a fourth step of acquiring signals received by the monitor and the vibration sensor and analyzing characteristics of the measurement object It is characterized by including.
In the second invention, the vibration signal generation device and the vibration sensor include a center point O of the measurement object, a straight line passing through a contact point A of the vibration signal generation device and the measurement object, the center point O, and the It is installed on the same circumference so that the angle formed by the straight line passing through the contact point B of the vibration sensor and the measurement object is a right angle, and the support point C is placed on the same circumference with the straight line AO and the straight line BO. It is characterized in that it is installed so that the angle formed by CO is equiangular, and the measurement object can be measured by supporting three points.
The third aspect of the invention is characterized in that the excitation signal generator vibrates in accordance with an input voltage and can simultaneously monitor the excitation vibration.
In the fourth invention, the measurement object is obtained by subtracting the data obtained by fast Fourier analysis of the signal of the vibration sensor that has received the vibration of the measurement object vibrated by the vibration signal generator and the data obtained by performing the fast Fourier analysis of the monitor signal. It is configured to obtain a vibration spectrum distribution of an object, and is characterized in that it is configured to obtain phase data by comparing a signal of a vibration sensor and a signal of a monitor.
The fifth invention is characterized in that the hardness of the measurement object can be compared only by the value of the resonance frequency of the measurement object by fixing three support points.

本発明にかかる3点支持構造による青果物の振動測定方法、および装置よれば、測定対象物に音波振動を付与し、加振振動をモニターした信号と測定対象物の振動を受信する振動センサの信号を取得することによって、測定対象物の特性を解析することが出来る。また3点支持で測定対象物を固定するだけで、大きさや質量に関係なく、共鳴周波数だけで測定対象物の3つの支持点で切り取られる横断面の硬度を比較することが可能となる。 According to the method and apparatus for measuring the vibration of fruits and vegetables by the three-point support structure according to the present invention, a signal of a vibration sensor that applies a sound wave vibration to a measurement object, monitors the vibration of vibration, and receives a vibration of the measurement object. By acquiring, the characteristics of the measurement object can be analyzed. Moreover, it is possible to compare the hardness of the cross-sections cut at the three support points of the measurement object only by the resonance frequency, regardless of the size and mass, by simply fixing the measurement object with the three-point support.

以下に、本発明にかかわる振動測定方法に用いる振動測定装置の最良の形態を示した図面を参照しながら詳細に説明する。
図1には本発明に関わる振動測定装置の構成図を示した。この図において、1の測定対象物を2の加振信号発生装置、4の振動センサ、5の支持棒の3点支持の上に静置させる6の加振信号発生装置から、1〜20kHzのスイープサイン波、ホワイトノイズ、ピンクノイズなどの可聴域の周波数帯を使用した音波信号を出力する。7のDA変換回路を介し、加振信号発生装置2から音波振動を発生させる。加振信号発生装置2には加振信号を取得する3のモニターが内蔵されており、加振信号発生装置2で測定対象物1に付与した振動を取得し8のAD変換回路に入力する。前記音波振動により振動した測定対象物1の振動は、4の振動センサで取得しAD変換回路10に入力される。モニター3と振動センサ4で取得した信号を9の演算装置で高速フーリエ変換と周波数応答を計算し、振動スペクトルと位相データを表示させる。
Hereinafter, a detailed description will be given with reference to the drawings showing the best mode of a vibration measuring apparatus used in a vibration measuring method according to the present invention.
FIG. 1 shows a configuration diagram of a vibration measuring apparatus according to the present invention. In this figure, 1 to 20 kHz of 1 to 20 kHz is obtained from 6 excitation signal generators that place 1 measurement object on the 3 points of support of 2 excitation signal generators, 4 vibration sensors, and 5 support rods. Outputs sound wave signals using audible frequency bands such as sweep sine wave, white noise, pink noise. 7 generates a sound wave vibration from the vibration signal generator 2 via the DA converter circuit 7. The vibration signal generator 2 incorporates three monitors for acquiring the vibration signal. The vibration signal generator 2 acquires the vibration applied to the measurement object 1 and inputs the vibration to the AD converter circuit 8. The vibration of the measuring object 1 vibrated by the sound wave vibration is acquired by four vibration sensors and input to the AD conversion circuit 10. The signal acquired by the monitor 3 and the vibration sensor 4 is subjected to fast Fourier transform and frequency response calculation by the arithmetic unit 9 to display the vibration spectrum and phase data.

前記加振信号発生装置2には、自励振タイプの圧電素子を使用し、振動センサには他励振タイプの圧電素子を使用しているが、加振モニターや振動センサには振動エネルギーを電気信号変換でき、加振振動発生には電気信号を振動エネルギーに変換できるものであれば何でも良い。 The excitation signal generator 2 uses a self-excitation type piezoelectric element, and the vibration sensor uses a separate excitation type piezoelectric element. The vibration monitor and vibration sensor use vibration energy as an electrical signal. Anything can be used as long as it can convert the electric signal into vibration energy.

前記自励振タイプの圧電素子には、電気信号を振動エネルギーに変換する部位と、前記電気信号により振動した振動エネルギーを、電気信号に変換する部位とに分かれており、加振振動を正確にモニターする機能を有している。 The self-excited piezoelectric element is divided into a part that converts an electric signal into vibration energy and a part that converts vibration energy generated by the electric signal into an electric signal. It has a function to do.

加振には電気信号を振動エネルギーに変換できるスピーカーやバイブロトランスデューサーなどを使用しても良い。加振モニターや振動センサには、振動エネルギーを電気エネルギーに変換できる加速度ピックアップなどを使用しても良い。 For excitation, a speaker or a vibrator transducer that can convert an electrical signal into vibration energy may be used. An acceleration pickup or the like that can convert vibration energy into electric energy may be used for the vibration monitor and vibration sensor.

前記加振信号発生装置2と前記振動センサ4と支持点5は図2のように設置されている。加振信号発生装置2と測定対象物1との接触点Aと測定対象物1の中心Oと振動センサ4と測定対象物1との接触点Bをつないでできる角AOBが直角になる同一円周上に加振信号発生装置2と振動センサ4を設置する。更に、支持棒5と測定対象物1の接触点Cが、角AOCと角BOCが同じ角度になる位置にくるように、加振信号発生装置2と振動センサ4が設置されている同一円周上に支持棒5を設置する。   The excitation signal generator 2, the vibration sensor 4 and the support point 5 are installed as shown in FIG. The same circle in which the angle AOB formed by connecting the contact point A between the vibration signal generator 2 and the measurement object 1, the center O of the measurement object 1, and the contact point B between the vibration sensor 4 and the measurement object 1 is a right angle. The vibration signal generator 2 and the vibration sensor 4 are installed on the circumference. Furthermore, the same circumference where the vibration signal generator 2 and the vibration sensor 4 are installed so that the contact point C between the support bar 5 and the measurement object 1 is at a position where the angle AOC and the angle BOC are the same angle. The support bar 5 is installed on the top.

なお,前記角AOBは45度および135度以外の角度であれば、第2共鳴周波数は測定できるが、直角の方が測定対象物の振動レベルが強くなるため、精度良く測定できる。   If the angle AOB is an angle other than 45 degrees and 135 degrees, the second resonance frequency can be measured. However, since the vibration level of the measurement object is stronger at the right angle, the second resonance frequency can be measured with high accuracy.

従来、振動測定には、測定対象物の加振点の180度対面に配置した振動センサで振動を受信してきたが、図2に示す接触点Aと中心点Oと接触点Cをつないでできる角AOBのなす角が直角でも測定可能である。   Conventionally, for vibration measurement, vibration has been received by a vibration sensor disposed 180 degrees opposite to the excitation point of the object to be measured. However, the contact point A, the center point O, and the contact point C shown in FIG. Measurement is possible even when the angle formed by the angle AOB is a right angle.

前記演算装置9は、受信した信号をAD変換回路8を介して取り込んで測定対象物の振動の周波数スペクトル分布を解析する機能を備えている。この周波数スペクトル分布の解析にあたっては、例えば、高速フーリエ変換処理等の手法を用いることができる。また、加振モニター3と振動センサ4の信号の周波数応答を演算し、位相角を計算する機能を備えている。これにより、測定対象物の振動モードを特定することができる。   The arithmetic unit 9 has a function of taking the received signal through the AD conversion circuit 8 and analyzing the frequency spectrum distribution of the vibration of the measurement object. In analyzing the frequency spectrum distribution, for example, a technique such as fast Fourier transform processing can be used. Further, it has a function of calculating the frequency response of the signals of the vibration monitor 3 and the vibration sensor 4 and calculating the phase angle. Thereby, the vibration mode of the measurement object can be specified.

次に、振動測定装置の測定のフローチャートを図3に示す。ステップS1においては、測定開始に当たって、前記加振信号発生装置、振動センサ等の状態が正常であるか否かをチェックするとともに、各部および各変数などを初期化する。
次に、ステップS2において、測定開始スイッチの状態をチェックして、押されるとステップS3に進み、前記周波数帯で加振信号を出力し、前記加振信号発生装置を振動させる。
ステップS4においては、前記加振信号発生装置に設置した加振モニターおよび振動センサからの振動信号の入力を監視し、加振モニターと振動センサから振動信号が検出されるのを待つ。振動信号が入力されるとステップS5へ進む。
ステップ5においては、入力される振動信号をデジタル信号に変換しながら高速フーリエ変換および位相角の演算を行い、測定対象物の周波数特性を得る。
ステップS6においては、前記周波数特性と位相角のデータから第2共鳴周波数、第3共鳴周波数、第4共鳴周波数を演算して求める。
ステップS7においては、第2共鳴周波数、第3共鳴周波数、第4共鳴周波数の比率から内部の欠陥を判定し、硬度については第2共鳴周波数の値を使う。
ステップS8においては、ステップS7の判定結果をディスプレイに表示する。
Next, a measurement flowchart of the vibration measuring apparatus is shown in FIG. In step S1, at the start of measurement, it is checked whether or not the state of the vibration signal generator, vibration sensor, etc. is normal, and each part and each variable are initialized.
Next, in step S2, the state of the measurement start switch is checked. If pressed, the process proceeds to step S3, where an excitation signal is output in the frequency band, and the excitation signal generator is vibrated.
In step S4, the input of vibration signals from the vibration monitor and vibration sensor installed in the vibration signal generator is monitored, and the detection of vibration signals from the vibration monitor and vibration sensor is awaited. If a vibration signal is input, it will progress to step S5.
In step 5, fast Fourier transform and phase angle calculation are performed while converting the input vibration signal into a digital signal to obtain the frequency characteristic of the measurement object.
In step S6, the second resonance frequency, the third resonance frequency, and the fourth resonance frequency are calculated from the frequency characteristic and phase angle data.
In step S7, an internal defect is determined from the ratio of the second resonance frequency, the third resonance frequency, and the fourth resonance frequency, and the value of the second resonance frequency is used for the hardness.
In step S8, the determination result of step S7 is displayed on the display.

実施例1では、前記振動測定装置を用いて測定体対象物として弾性体であるゴムボールを前記180度と直角の位置で測定した。その結果180度で測定したデータを図4に、90度で測定したデータを図4に示した。図4および図5の両方で、測定対象物の硬度情報を含む第2共鳴ピークが得られた。位相の90度と−90度の位置にピークが出現するが、加振と受信の角度を直角で測定した場合、振動モードに起因され位相変化の周波数間隔が180度の時の倍になる。その結果、奇数番号のピークが出現し難くなるが、測定対象物の硬度には第2共鳴周波数の値を使用するので問題は無い。   In Example 1, a rubber ball, which is an elastic body, was measured as a measurement object using the vibration measuring device at a position perpendicular to the 180 degrees. As a result, data measured at 180 degrees are shown in FIG. 4, and data measured at 90 degrees are shown in FIG. In both FIG. 4 and FIG. 5, the second resonance peak including the hardness information of the measurement object was obtained. Peaks appear at the 90 ° and −90 ° positions of the phase, but when the excitation and reception angles are measured at right angles, the frequency interval of the phase change is doubled when it is 180 degrees due to the vibration mode. As a result, although odd-numbered peaks are less likely to appear, there is no problem because the second resonance frequency value is used for the hardness of the measurement object.

なお、実施例1では、前記加振信号発生装置と前記振動センサと支持棒を設置する円周上の直径は、2cmとしたが、これに限定されない。前記円周上の直径は全ての測定対象物が3点支持できるような直径に予め設定しておく。   In Example 1, although the diameter on the circumference where the excitation signal generator, the vibration sensor, and the support rod are installed is 2 cm, it is not limited to this. The diameter on the circumference is set in advance so that all measurement objects can support three points.

実施例2では、加振信号をモニターせず測定対象物を加振して振動させた測定対象物のみの振動を振動センサで測定し、振動解析を行った。加振振動発生装置で測定対象物として弾性体であるゴムボールを振動させ、加振振動はモニターせず、振動センサで検出した信号のみを高速フーリエ変換し、振動特性を調べた。結果を図6に示す。第2共鳴ピークを確認することが出来るが、加振振動をモニターしていないため、測定対象物の位相データを演算することができない。したがって、測定対象物の詳細な振動特性を測定することはできず、2番目のピークが第2共鳴ピークなのか確定することはできない。   In Example 2, the vibration analysis was performed by measuring the vibration of only the measurement object that was vibrated by vibrating the measurement object without monitoring the excitation signal. A vibration ball was vibrated as an object to be measured by the vibration generator, and the vibration characteristics were examined by performing fast Fourier transform only on the signal detected by the vibration sensor without monitoring the vibration. The results are shown in FIG. Although the second resonance peak can be confirmed, the phase data of the measurement object cannot be calculated because the vibration vibration is not monitored. Therefore, detailed vibration characteristics of the measurement object cannot be measured, and it cannot be determined whether the second peak is the second resonance peak.

実施例3では、前記振動測定装置を用いて測定対象物としての弾性体であるゴムボールを測定した。前記ゴムボールを暖めて柔らかくした場合と、冷やして硬くした場合とで第2共鳴周波数の違いを測定した。図7に示されたように、暖めて軟らかくしたゴムボールの第2共鳴周波数の方が、冷やして硬くしたゴムボールの第2共鳴周波数より低い。すなわち、第2共鳴周波数を測定するだけで測定対象物の硬度を比較することができる。
これらの第2共鳴周波数は図8に示されているように、硬度との間で高い相関関係があるので、前記振動装置を用いることによって、青果物の硬度を非破壊で検査できる。
In Example 3, a rubber ball, which is an elastic body as a measurement object, was measured using the vibration measuring device. The difference in the second resonance frequency was measured when the rubber ball was warmed and softened and when the rubber ball was cooled and hardened. As shown in FIG. 7, the second resonance frequency of the rubber ball warmed and softened is lower than the second resonance frequency of the rubber ball cooled and hardened. That is, the hardness of the measurement object can be compared only by measuring the second resonance frequency.
Since these second resonance frequencies are highly correlated with the hardness as shown in FIG. 8, the hardness of the fruits and vegetables can be inspected nondestructively by using the vibration device.

実施例4では、測定対象物として、内部が正常なスイカと内部に異常の有るスイカを前記振動測定装置で測定した。測定して得た振動スペクトルを図9に示す。正常なスイカの振動スペクトルはシャープなピークが複数出現し、第2共鳴周波数、第3共鳴周波数も明瞭に確認できる。一方、内部に異常の有るスイカでは、第3共鳴周波数以降のピークは明瞭に確認することができない。また、異常の有るスイカでは第2共鳴周波数が正常なスイカよりも低周波であることが分かり、果肉が軟らかい事が確認できる。さらに、第2共鳴ピークと第3共鳴ピークの周波数比率も正常なスイカに比べて小さくなっており、この比率を見ることで内部の異常を判定できる。 In Example 4, as a measurement object, a watermelon having a normal inside and a watermelon having an abnormality inside were measured by the vibration measuring device. The vibration spectrum obtained by the measurement is shown in FIG. In the normal watermelon vibration spectrum, a plurality of sharp peaks appear, and the second resonance frequency and the third resonance frequency can be clearly confirmed. On the other hand, in a watermelon having an abnormality inside, a peak after the third resonance frequency cannot be clearly confirmed. Moreover, it can be confirmed that the abnormal watermelon has a lower second resonance frequency than that of the normal watermelon, and the flesh is soft. Furthermore, the frequency ratio between the second resonance peak and the third resonance peak is also smaller than that of a normal watermelon, and an internal abnormality can be determined by looking at this ratio.

なお、品質を評価する為の相関関係のデータベースとしては、測定対象の青果物の種類や品種応じた評価基準をあらかじめ実験等によって求めて解析装置のコンピュータなどに登録しておき、種類や品種に応じて前記評価基準を参照して、評価するとよい。
また、前記第2共鳴周波数の信号強度と前記第4共鳴周波数の信号強度および周波数の比率を利用しても評価が可能である。
In addition, as a database of correlations for evaluating quality, an evaluation standard according to the type and variety of the fruits and vegetables to be measured is obtained in advance through experiments, etc., and registered in the computer of the analyzer, etc. The evaluation may be performed with reference to the evaluation criteria.
The evaluation can also be performed by using the signal intensity of the second resonance frequency and the signal intensity and frequency ratio of the fourth resonance frequency.

本発明は、青果物に限らず、球体や円錐形などの物体の硬度や内部の状態を非接触で検査する技術にも利用できる。
The present invention can be used not only for fruits and vegetables but also for a technique for inspecting the hardness and the internal state of an object such as a sphere or a cone without contact.

本発明にかかる測定方法に用いる装置の実施形態の構成図である。It is a block diagram of embodiment of the apparatus used for the measuring method concerning this invention. 前記方法に用いる3点支持構造を示す図である。It is a figure which shows the three-point support structure used for the said method. 測定の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a measurement. 実施例1における180度測定時の測定対象物の振動の測定結果を示すグラフである。4 is a graph showing measurement results of vibration of a measurement object at 180 degrees measurement in Example 1. 実施例1における直角測定時の測定対象物の振動測定結果を示すグラフである。6 is a graph showing the vibration measurement result of the measurement object at the time of right angle measurement in Example 1. 実施例2における振動センサのみの振動解析結果を示すグラフである。It is a graph which shows the vibration analysis result only of the vibration sensor in Example 2. FIG. 実施例3における測定対象物の硬さの違いによる振動スペクトルの違いを示した図である。It is the figure which showed the difference in the vibration spectrum by the difference in the hardness of the measuring object in Example 3. FIG. 共鳴周波数と果実の硬度との間の相関関係を示すグラフである。It is a graph which shows the correlation between a resonant frequency and the hardness of a fruit. 実施例4における正常なスイカと異常の有るスイカの振動スペクトルを比較したグラフである。It is the graph which compared the vibration spectrum of the normal watermelon in Example 4, and the watermelon with abnormality.

符号の説明Explanation of symbols

1 測定対象物
2 加振信号発生装置
3 加振モニター
4 振動センサ
5 支持棒
6 加振信号発生装置
8 AD変換回路
9 演算装置
DESCRIPTION OF SYMBOLS 1 Measurement object 2 Excitation signal generator 3 Excitation monitor 4 Vibration sensor 5 Support bar 6 Excitation signal generator 8 AD conversion circuit 9 Arithmetic unit

Claims (5)

測定対象物に音波振動を加振信号発生装置により付与する第1の工程と、前記加振信号発生装置により付与した音波振動をモニターする第2の工程と、前記測定対象物の振動を振動センサで受信する第3の工程と、前記モニターと前記振動センサで受信した信号を取得し前記測定対象物の特性を解析する第4の工程からなる振動測定方法。 A first step of applying a sonic vibration to the measurement object by the vibration signal generator, a second step of monitoring the sonic vibration applied by the vibration signal generator, and a vibration sensor for the vibration of the measurement object A vibration measurement method comprising: a third step of receiving in step 4; and a fourth step of acquiring signals received by the monitor and the vibration sensor and analyzing characteristics of the measurement object. 前記加振信号発生装置と前記振動センサは、測定対象物の中心点Oと前記加振信号発生装置と測定対象物の接触点Aを通る直線と前記中心点Oと前記振動センサと測定対象物の接触点Bを通る直線のなす角が直角の位置になるように同一円周上に設置し、前記同一円周上には直線AOおよび直線BOと直線COのなす角がともに等角になるように支持点Cを設置し、前記測定対象物を3点支持により測定できる事を特徴とした振動測定装置。 The vibration signal generator and the vibration sensor include a center point O of the measurement object, a straight line passing through a contact point A of the vibration signal generator and the measurement object, the center point O, the vibration sensor, and the measurement object. Are installed on the same circumference so that the angle formed by the straight line passing through the contact point B is at a right angle, and the angles formed by the straight line AO and the straight line BO and the straight line CO are all equiangular on the same circumference. Thus, the vibration measuring apparatus is characterized in that the supporting point C is installed and the measurement object can be measured by supporting three points. 前記加振信号発生装置は入力電圧に応じて振動し、同時に加振振動をモニターできる事を特徴としている請求項2に記載の振動測定装置。 The vibration measuring apparatus according to claim 2, wherein the vibration signal generator vibrates according to an input voltage and can simultaneously monitor the vibration vibration. 前記解析手段は、加振信号発生装置により振動させた測定対象物の振動を受信した振動センサの信号を高速フーリエ解析したデータと、モニターの信号を高速フーリエ解析したデータを差し引くことにより測定対象物の振動スペクトル分布を得るように構成されており、振動センサの信号とモニターの信号を比較することにより、位相のデータを得るように構成された、請求項2に記載の振動測定装置。 The analysis means subtracts the data obtained by fast Fourier analysis of the signal of the vibration sensor that has received the vibration of the measurement object vibrated by the vibration signal generator and the data obtained by fast Fourier analysis of the signal of the monitor. The vibration measurement device according to claim 2, wherein the vibration measurement device is configured to obtain phase data by comparing a vibration sensor signal and a monitor signal. 前記3点支持は、3つの支持点を固定することにより測定対象物の共鳴周波数の値のみで、測定対象物の硬度を比較できることを特徴した請求項2、4に記載の振動測定装置。 5. The vibration measuring device according to claim 2, wherein the three-point support is capable of comparing the hardness of the measurement object only by the value of the resonance frequency of the measurement object by fixing the three support points.
JP2007016477A 2007-01-26 2007-01-26 Vibration measuring method and device Pending JP2008185345A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016477A JP2008185345A (en) 2007-01-26 2007-01-26 Vibration measuring method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016477A JP2008185345A (en) 2007-01-26 2007-01-26 Vibration measuring method and device

Publications (1)

Publication Number Publication Date
JP2008185345A true JP2008185345A (en) 2008-08-14

Family

ID=39728506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016477A Pending JP2008185345A (en) 2007-01-26 2007-01-26 Vibration measuring method and device

Country Status (1)

Country Link
JP (1) JP2008185345A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028445A (en) * 2013-07-30 2015-02-12 国立大学法人広島大学 Hardness measuring device of fruit, hardness measuring method of fruit, and ripeness evaluation method of fruit
CN104406756A (en) * 2014-11-11 2015-03-11 沈阳黎明航空发动机(集团)有限责任公司 System and method for simulating single/dual-sound wave stimulated vibration test of working environment of engine blade
WO2019227383A1 (en) * 2018-05-30 2019-12-05 东北大学 Planar acoustic wave excited aircraft wallboard vibration apparatus under free boundary and use method thereof
CN112525331A (en) * 2020-12-08 2021-03-19 宜昌江峡船用机械有限责任公司 Excitation frequency detection device, resonance crusher and detection method
CN113588259A (en) * 2021-08-03 2021-11-02 山东中科普锐检测技术有限公司 Equipment vibration signal scale curve turning point detection method and working condition monitoring device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015028445A (en) * 2013-07-30 2015-02-12 国立大学法人広島大学 Hardness measuring device of fruit, hardness measuring method of fruit, and ripeness evaluation method of fruit
CN104406756A (en) * 2014-11-11 2015-03-11 沈阳黎明航空发动机(集团)有限责任公司 System and method for simulating single/dual-sound wave stimulated vibration test of working environment of engine blade
WO2019227383A1 (en) * 2018-05-30 2019-12-05 东北大学 Planar acoustic wave excited aircraft wallboard vibration apparatus under free boundary and use method thereof
CN112525331A (en) * 2020-12-08 2021-03-19 宜昌江峡船用机械有限责任公司 Excitation frequency detection device, resonance crusher and detection method
CN113588259A (en) * 2021-08-03 2021-11-02 山东中科普锐检测技术有限公司 Equipment vibration signal scale curve turning point detection method and working condition monitoring device

Similar Documents

Publication Publication Date Title
US6880379B2 (en) Method and device for detecting damage in materials or objects
US9228980B2 (en) Non-destructive evaluation methods for aerospace components
JP2009537835A5 (en)
CN108375433A (en) The method and apparatus that the axle power of bolt is detected based on electromagnetic acoustic technology
D'Emilia et al. Calibration of tri-axial MEMS accelerometers in the low-frequency range–Part 1: comparison among methods
JPH10253339A (en) Method and apparatus for measurement by utilizing sound wave
JP2008185345A (en) Vibration measuring method and device
KR20110014767A (en) Pipe inspection device using plural channel ultra-sonic and the inspection method thereof
JP2018100948A (en) Vibration test method and vibration test equipment
JP6281273B2 (en) Acoustic device inspection apparatus, acoustic device inspection method, and acoustic device inspection program
JPWO2015159378A1 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
KR20150097092A (en) Apparatus and method for determining cracked eggs by driving vibration
D'Emilia et al. Amplitude–phase calibration of tri-axial accelerometers in the low-frequency range by a LDV
JPS63186122A (en) Abnormality diagnosing system for structure
JP6806329B2 (en) Inspection equipment and inspection method
JP2005037390A (en) Determination method and device of natural frequency of bearing system equipped with bearing support shaft
Grondel et al. Signal processing for damage detection using two different array transducers
JP2019152538A (en) Fastening bolt fastening torque specifying device and fastening torque specifying method
JP2008283564A (en) Inspecting method for headphone unit
Mueller et al. Effects of debonding of PWAS on the wave propagation and the electro-mechanical impedance spectrum
Trolinger et al. In-situ monitoring and quality control for in-space additive manufacturing using laser acoustical resonance spectroscopy
RU2619812C1 (en) Method of non-destructive testing of hidden defects in technically complex structural element which is not accessible and device for its implementation
Rose et al. Ultrasonic guided wave modal analysis technique (UMAT) for defect detection
KR101833371B1 (en) Sensor structure, appatus for monitoring the tube wall thinning and merhod thereof
JP4025005B2 (en) Nondestructive inspection method and nondestructive inspection device