JP2010249637A - Method for detecting state of fluid and state detecting device - Google Patents

Method for detecting state of fluid and state detecting device Download PDF

Info

Publication number
JP2010249637A
JP2010249637A JP2009098898A JP2009098898A JP2010249637A JP 2010249637 A JP2010249637 A JP 2010249637A JP 2009098898 A JP2009098898 A JP 2009098898A JP 2009098898 A JP2009098898 A JP 2009098898A JP 2010249637 A JP2010249637 A JP 2010249637A
Authority
JP
Japan
Prior art keywords
frequency
fluid
waveform
cavitation
state detection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009098898A
Other languages
Japanese (ja)
Inventor
Yuichi Hayashi
悠一 林
Mamoru Aizawa
護 相沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2009098898A priority Critical patent/JP2010249637A/en
Publication of JP2010249637A publication Critical patent/JP2010249637A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for detecting the state of a fluid and a state detecting device for acquiring the state of a fluid even in the presence of external noise. <P>SOLUTION: When an ultrasonic wave from an ultrasonic vibrator 21 is given to cavitation arising on the downstream side of an orifice 11, nonlinear vibrations are repeated in response to the ultrasonic wave to generate sound waves of high-frequency components each having a frequency n times (n is an integer equal to or more than two) as large as the fundamental frequency of the ultrasonic wave, or of subharmonic components each having a 1/n frequency thereof. These sound waves similarly propagate through a process fluid to reach a hydrophone 31. The sound waves having reached the hydrophone 31 are converted into electric signals and captured in an oscilloscope 33 via an amplifier 32. By a personal computer 4, the waveforms of the electric signals are captured from the oscilloscope 33, and the waveforms are Fourier-transformed and decomposed into frequency spectra. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、音波を用いて流体の状態を検出する流体の状態検出方法および状態検出装置に関する。   The present invention relates to a fluid state detection method and a state detection device that detect a fluid state using sound waves.

プラントの配管内では、オリフィス下流側の局所的な負圧によって気泡(キャビテーション)が発生する場合がある。キャビテーションは配管の壊食等を促進する要因となり、その発生状況は配管の寿命等に影響する。   In the plant piping, bubbles (cavitation) may be generated due to local negative pressure downstream of the orifice. Cavitation is a factor that promotes erosion of pipes, and the state of occurrence affects the life of pipes.

従来、キャビテーションを検出する方法として、加速度センサを用いた方法が提案されている((株)原子力安全システム研究所LOUTNAL VOL.11 P129)。この方法は、配管内の圧力回復によるキャビテーションの崩壊に伴う衝撃波を電気信号に変換するもので、キャビテーション発生時には通常時の約10倍以上の電圧値が観測されるため、その電圧値に基づいてキャビテーションを検知できる。   Conventionally, a method using an acceleration sensor has been proposed as a method for detecting cavitation (Nuclear Safety System Laboratory, Ltd. LOUTNAL VOL.11 P129). This method converts the shock wave accompanying the collapse of cavitation due to pressure recovery in the pipe into an electrical signal. When cavitation occurs, a voltage value about 10 times higher than normal is observed, so based on the voltage value. Cavitation can be detected.

また、キャビテーションを検出する別の方法として、マイクロフォンを用いた方法が提案されている((株)原子力安全システム研究所LOUTNAL VOL.12 P160)。この方法は、上記の衝撃波をマイクロフォンで捉えるとともに、フーリエ変換により衝撃波の周波数スペクトルを求めるものである。キャビテーション発生時には特定の周波数近傍にキャビテーション固有のピークが現れるため、キャビテーションの検知が可能となる。   In addition, as another method for detecting cavitation, a method using a microphone has been proposed (Nuclear Safety Systems Laboratories, Ltd. LOUTNAL VOL.12 P160). In this method, the shock wave is captured by a microphone, and the frequency spectrum of the shock wave is obtained by Fourier transform. Since cavitation-specific peaks appear in the vicinity of a specific frequency when cavitation occurs, cavitation can be detected.

特開2007−170981号公報JP 2007-170981 A

(株)原子力安全システム研究所LOUTNAL VOL.11 P129Nuclear Safety Systems Laboratory LOUTNAL VOL.11 P129 (株)原子力安全システム研究所LOUTNAL VOL.12 P160Nuclear Safety Systems Laboratory LOUTNAL VOL.12 P160 ながれ 24(2005) 405−412Flow 24 (2005) 405-412

実際のプラントでは、ポンプやタービンなど多数の振動源や音響ノイズ源がある。しかし、従来の方法では外部ノイズが大きい環境下ではキャビテーションの検知が困難で、プラントの稼動中に効果的にキャビテーションを検知できないという問題がある。とくに連続運転しているプラントに対しては適用が難しい。   In an actual plant, there are many vibration sources and acoustic noise sources such as pumps and turbines. However, the conventional method has a problem that it is difficult to detect cavitation in an environment where external noise is large, and cavitation cannot be detected effectively during operation of the plant. In particular, it is difficult to apply to plants operating continuously.

本発明の目的は、外部ノイズの存在下でも流体の状態を把握できる流体の状態検出方法および状態検出装置を提供することにある。   An object of the present invention is to provide a fluid state detection method and a state detection device that can grasp the state of a fluid even in the presence of external noise.

本発明の流体の状態検出方法は、音波を用いて流体の状態を検出する流体の状態検出方法において、流体に所定周波数の音波を与えるステップと、前記流体中を伝播した後の前記音波の波形を取得するステップと、前記波形に含まれる周波数成分を分析するステップと、を備えることを特徴とする。
この流体の状態検出方法によれば、流体に所定周波数の音波を与えるとともに、流体中を伝播した後の上記音波の波形に含まれる周波数成分を分析するので、外部ノイズの存在下でも流体の状態を把握できる。
The fluid state detection method of the present invention is a fluid state detection method for detecting a fluid state using sound waves, the step of giving sound waves of a predetermined frequency to the fluid, and the waveform of the sound waves after propagating through the fluid And a step of analyzing a frequency component included in the waveform.
According to this fluid state detection method, a sound wave having a predetermined frequency is given to the fluid, and the frequency component included in the waveform of the sound wave after propagating in the fluid is analyzed, so that the fluid state can be obtained even in the presence of external noise. Can be grasped.

前記分析するステップでは、前記波形に含まれる前記所定周波数の高周波成分または分周波成分に基づいて分析を行ってもよい。   In the analyzing step, the analysis may be performed based on a high frequency component or a divided frequency component of the predetermined frequency included in the waveform.

前記分析するステップでは、前記波形に含まれる前記所定周波数の高周波成分または分周波成分と、他の周波数成分との比率に基づいて分析を行ってもよい。   In the analyzing step, the analysis may be performed based on a ratio between a high frequency component or a divided frequency component of the predetermined frequency included in the waveform and another frequency component.

前記分析するステップでは、前記音波が前記流体に与えられていない状態をリファレンスとして分析を行ってもよい。   In the analyzing step, the analysis may be performed with reference to a state where the sound wave is not applied to the fluid.

前記分析するステップにおける分析対象は前記流体内のキャビテーションであってもよい。   The analysis target in the analyzing step may be cavitation in the fluid.

本発明の流体の状態検出装置は、音波を用いて流体の状態を検出する流体の状態検出装置において、流体に所定周波数の音波を与える付与手段と、前記流体中を伝播した後の前記音波の波形を取得する取得手段と、前記波形に含まれる周波数成分を分析する分析手段と、を備えることを特徴とする。
この流体の状態検出装置によれば、流体に所定周波数の音波を与えるとともに、流体中を伝播した後の上記音波の波形に含まれる周波数成分を分析するので、外部ノイズの存在下でも流体の状態を把握できる。
The fluid state detection device according to the present invention is a fluid state detection device that detects a fluid state using sound waves. The fluid state detection device provides a sound wave having a predetermined frequency to the fluid, and the sound wave after propagating through the fluid. An acquisition means for acquiring a waveform, and an analysis means for analyzing a frequency component included in the waveform are provided.
According to this fluid state detection device, a sound wave of a predetermined frequency is given to the fluid, and the frequency component contained in the waveform of the sound wave after propagating through the fluid is analyzed, so that the state of the fluid can be detected even in the presence of external noise. Can be grasped.

前記付与手段および前記取得手段がオリフィスを保持するフランジに取り付けられていてもよい。   The applying unit and the acquiring unit may be attached to a flange that holds an orifice.

本発明の流体の状態検出方法によれば、流体に所定周波数の音波を与えるとともに、流体中を伝播した後の上記音波の波形に含まれる非線形成分を分析するので、外部ノイズの存在下でも流体の状態を把握できる。   According to the fluid state detection method of the present invention, a sound wave having a predetermined frequency is given to the fluid, and the nonlinear component included in the waveform of the sound wave after propagating in the fluid is analyzed. Therefore, the fluid is detected even in the presence of external noise. You can grasp the state of.

本発明の流体の状態検出装置によれば、流体に所定周波数の音波を与えるとともに、流体中を伝播した後の上記音波の波形に含まれる非線形成分を分析するので、外部ノイズの存在下でも流体の状態を把握できる。   According to the fluid state detection device of the present invention, a sound wave having a predetermined frequency is given to the fluid, and a nonlinear component included in the waveform of the sound wave after propagating in the fluid is analyzed. Therefore, the fluid is detected even in the presence of external noise. You can grasp the state of.

本発明による流体の状態検出方法の一例を示す図。The figure which shows an example of the fluid state detection method by this invention. キャビテーション発生時の周波数スペクトルを例示する図。The figure which illustrates the frequency spectrum at the time of cavitation generation | occurrence | production. 超音波のバースト波を発生させる例を示す図であり、(a)は超音波のバースト波の波形を、(b)はオシロスコープで得られる波形を、それぞれ示す図。It is a figure which shows the example which generates the burst wave of an ultrasonic wave, (a) is a figure which shows the waveform of an ultrasonic burst wave, (b) shows the waveform obtained with an oscilloscope, respectively. 外部ノイズとともに基本周波数成分を除去することにより、キャビテーションに起因する周波数成分を抽出する手法を示す図。The figure which shows the method of extracting the frequency component resulting from a cavitation by removing a fundamental frequency component with external noise. フーリエ変換により得られる周波数スペクトルを示す図であり、(a)はキャビテーションのない領域の周波数スペクトルを示す図、(b)はキャビテーションの存在する領域の周波数スペクトルからキャビテーションのない領域の周波数スペクトルを減算して得た周波数スペクトルを示す図。It is a figure which shows the frequency spectrum obtained by Fourier transformation, (a) is a figure which shows the frequency spectrum of the area | region without a cavitation, (b) is the frequency spectrum of the area | region where a cavitation exists, and subtracts the frequency spectrum of an area | region without a cavitation The figure which shows the frequency spectrum obtained by doing.

以下、本発明による流体の状態検出方法の実施形態について説明する。   Hereinafter, an embodiment of a fluid state detection method according to the present invention will be described.

図1は、本発明による流体の状態検出方法の一例を示す図である。   FIG. 1 is a diagram showing an example of a fluid state detection method according to the present invention.

図1に示すように、プラントの配管5の中間を接続する絞り機構用フランジ1の内部にオリフィスが設けられている。オリフィス11は、ねじ12を締結することにより固定される。   As shown in FIG. 1, an orifice is provided inside a throttle mechanism flange 1 that connects between the pipes 5 of the plant. The orifice 11 is fixed by fastening a screw 12.

絞り機構用フランジ1の外表面には超音波振動子21が溶接等により取り付けられる。また、20kHz−100kHz域の周波数特性を有するハイドロフォン31が、溶接あるいはねじ込みにより絞り機構用フランジ1に取り付けられる。   An ultrasonic vibrator 21 is attached to the outer surface of the diaphragm mechanism flange 1 by welding or the like. A hydrophone 31 having a frequency characteristic in the 20 kHz-100 kHz region is attached to the diaphragm mechanism flange 1 by welding or screwing.

図1に示すように、プロセス流体は図1において右方から左方に向かって流れており、超音波振動子21およびハイドロフォン31はオリフィス11の下流側に設けられる。   As shown in FIG. 1, the process fluid flows from right to left in FIG. 1, and the ultrasonic vibrator 21 and the hydrophone 31 are provided on the downstream side of the orifice 11.

超音波振動子21には増幅器23を介してファンクションジェネレータ22が接続されている。また、ハイドロフォン31の出力信号は増幅器32を介してオシロスコープ33に与えられる。オシロスコープ33により得られた波形はパーソナルコンピュータ4に取り込むことができる。   A function generator 22 is connected to the ultrasonic transducer 21 via an amplifier 23. The output signal of the hydrophone 31 is given to the oscilloscope 33 via the amplifier 32. The waveform obtained by the oscilloscope 33 can be taken into the personal computer 4.

次に、状態検出の手順について説明する。   Next, the state detection procedure will be described.

まず、ファンクションジェネレータ22から周波数20kHz−100kHzの範囲内における基本周波数の連続波を出力し、増幅器23を介して超音波振動子21を駆動する。これにより超音波振動子21は上記基本周波数の超音波を照射し、オリフィス11の下流側に超音波が与えられる。このときの超音波の振幅はキャビテーション閾値よりも小さな値とする。例えば、超音波の周波数が100kHzであり、プロセス流体が飽和水の場合、キャビテーション閾値である0.2W/cm−2よりも低いパワーとなる振幅とする。 First, a continuous wave having a fundamental frequency within a frequency range of 20 kHz-100 kHz is output from the function generator 22, and the ultrasonic transducer 21 is driven via the amplifier 23. As a result, the ultrasonic transducer 21 radiates ultrasonic waves having the above fundamental frequency, and ultrasonic waves are applied to the downstream side of the orifice 11. The amplitude of the ultrasonic wave at this time is set to a value smaller than the cavitation threshold value. For example, when the frequency of the ultrasonic wave is 100 kHz and the process fluid is saturated water, the amplitude becomes a power lower than the cavitation threshold value of 0.2 W / cm −2 .

この超音波はプロセス流体を伝播し、ハイドロフォン31に到達する。また、オリフィス11の下流側に発生したキャビテーションが上記超音波を受けると、超音波に応答して非線形振動を繰り返し、超音波の基本周波数のn倍(nは2以上の整数)の周波数の高周波成分、あるいは1/nの周波数の分周波成分を持った音波を発生させる。これらの音波も同様にプロセス流体を伝播し、ハイドロフォン31に到達する。   This ultrasonic wave propagates through the process fluid and reaches the hydrophone 31. Further, when the cavitation generated on the downstream side of the orifice 11 receives the ultrasonic wave, it repeats non-linear vibration in response to the ultrasonic wave, and a high frequency having a frequency n times (n is an integer of 2 or more) the basic frequency of the ultrasonic wave. A sound wave having a component or a frequency component having a frequency of 1 / n is generated. Similarly, these sound waves propagate through the process fluid and reach the hydrophone 31.

ハイドロフォン31に到達した音波は電気信号に変換され、増幅器32を介してオシロスコープ33に取り込まれる。   The sound wave that has reached the hydrophone 31 is converted into an electric signal and is taken into the oscilloscope 33 via the amplifier 32.

パーソナルコンピュータ4はオシロスコープ33から上記電気信号の波形を取り込み、波形をフーリエ変換して周波数スペクトルに分解する。   The personal computer 4 takes in the waveform of the electrical signal from the oscilloscope 33, and Fourier transforms the waveform to decompose it into a frequency spectrum.

図2は得られた周波数スペクトルを例示する図である。   FIG. 2 is a diagram illustrating the obtained frequency spectrum.

図2に示す周波数スペクトルでは、基本周波数f0の0.5倍の周波数fの分周波成分の他、基本周波数f0の2倍、3倍、4倍の周波数fの高周波成分にピークが認められる。キャビテーションに起因する周波数スペクトルは、高周波および分周波を強く含んでいるため、これらの周波数成分の強度からキャビテーションの有無および発生量を測定できる。   In the frequency spectrum shown in FIG. 2, a peak is observed in the high frequency component of the frequency f that is twice, three times, and four times the basic frequency f0 in addition to the divided frequency component of the frequency f that is 0.5 times the basic frequency f0. Since the frequency spectrum resulting from cavitation strongly includes high frequencies and split frequencies, the presence or absence of cavitation and the amount of generation can be measured from the intensity of these frequency components.

図2の例では、例えば、基本周波数の高周波および分周波のいずれにも該当しない周波数成分(測定点A)の振幅強度と、基本周波数f0の0.5倍の周波数fの分周波成分(測定点B)の振幅強度との比(測定点Bの強度/測定点Aの強度)に基づいて、キャビテーションの有無および発生量を評価できる。分周波成分に代えて、高周波成分の振幅強度に基づく評価を行ってもよい。なお、測定点Bは外部ノイズの影響を極力受けない周波数域を選択することが望ましい。   In the example of FIG. 2, for example, the amplitude intensity of the frequency component (measurement point A) that does not correspond to either the high frequency or the split frequency of the fundamental frequency and the split frequency component (measurement) of the frequency f that is 0.5 times the fundamental frequency f0. Based on the ratio of the amplitude of point B) to the amplitude intensity (intensity at measurement point B / intensity at measurement point A), the presence / absence of cavitation and the amount of generation can be evaluated. Instead of the frequency component, an evaluation based on the amplitude intensity of the high frequency component may be performed. Note that it is desirable to select a frequency range where the measurement point B is not affected by external noise as much as possible.

このように、本実施形態の状態検出方法では、所定の周波数(基本周波数)の超音波を流体に照射してキャビテーション固有の非線形振動を誘発させ、非線形振動に起因する基本周波数の高周波および分周波の強度に基づく分析を行っている。このため、計測時のSN比を大きくとることが可能となり、外部ノイズの影響を大幅に軽減できる。また、超音波の強度を最適化する(キャビテーション閾値に近づける)ことでSN比を最大化することができる。   As described above, in the state detection method of the present embodiment, ultrasonic waves having a predetermined frequency (fundamental frequency) are irradiated on the fluid to induce non-linear vibration specific to cavitation, and the high frequency and the sub-frequency of the basic frequency caused by the non-linear vibration. Analysis based on the strength of For this reason, it is possible to increase the SN ratio at the time of measurement, and the influence of external noise can be greatly reduced. Moreover, the S / N ratio can be maximized by optimizing the intensity of the ultrasonic wave (closer to the cavitation threshold).

また、本実施形態の状態検出方法では、超音波振動子21およびハイドロフォン31を絞り機構用フランジ1に固定することで、オリフィス11に対する超音波振動子21およびハイドロフォン31の位置を最適な状態に固定化できる。このため、外部ノイズの影響を受けにくく、キャビテーションの発生状況を高精度に検知できる。   Further, in the state detection method of the present embodiment, the ultrasonic transducer 21 and the hydrophone 31 are fixed to the diaphragm mechanism flange 1 so that the positions of the ultrasonic transducer 21 and the hydrophone 31 with respect to the orifice 11 are in an optimum state. Can be fixed. For this reason, it is difficult to be affected by external noise, and the cavitation occurrence state can be detected with high accuracy.

図3は連続波に代えて超音波振動子21から超音波のバースト波を発生させる実施形態を示す図であり、図3(a)はファンクションジェネレータのバースト波の波形を、図3(b)はオシロスコープで得られる波形を、それぞれ示している。   FIG. 3 is a diagram showing an embodiment in which an ultrasonic burst wave is generated from the ultrasonic transducer 21 instead of a continuous wave. FIG. 3A shows a waveform of a burst wave of a function generator, and FIG. Shows the waveforms obtained with an oscilloscope.

図3に示す実施形態では、ファンクションジェネレータ22より図3(a)に示すバースト波を発生させる。バースト波の発生周期は、オシロスコープの波形において、期間Pおよび期間Qの切り分けが可能な時間に設定される。超音波の周波数(基本周波数)は上述した例と同様である。   In the embodiment shown in FIG. 3, the function generator 22 generates a burst wave shown in FIG. The generation period of the burst wave is set to a time during which the period P and the period Q can be separated in the waveform of the oscilloscope. The frequency (fundamental frequency) of the ultrasonic wave is the same as that in the above example.

この場合、バースト波の発生期間として期間Pにおける波形(図3(b))が取り込まれる。期間Pにおける波形は上述の実施形態と同様であり、パーソナルコンピュータ4においてフーリエ変換されることで、図2と同一の周波数スペクトルが得られる。この周波数スペクトルには、超音波の基本周波数成分の他、キャビテーションの非線形振動に基づく周波数成分および外部ノイズの成分が含まれる。   In this case, the waveform in period P (FIG. 3B) is captured as the burst wave generation period. The waveform in the period P is the same as that in the above-described embodiment, and the same frequency spectrum as in FIG. 2 is obtained by performing Fourier transform in the personal computer 4. In addition to the fundamental frequency component of the ultrasonic wave, this frequency spectrum includes a frequency component based on nonlinear vibration of cavitation and an external noise component.

一方、本実施形態では、バースト波の停止期間として期間Qにおける波形(図3(b))が取り込まれる。期間Qにおける波形は外部ノイズを示すものである。この波形をパーソナルコンピュータ4においてフーリエ変換することで、外部ノイズの周波数スペクトルが得られる。   On the other hand, in the present embodiment, the waveform in period Q (FIG. 3B) is captured as the burst wave stop period. The waveform in the period Q indicates external noise. A frequency spectrum of external noise can be obtained by Fourier transforming this waveform in the personal computer 4.

期間Pおよび期間Qにおける波形を取り込むタイミングは、図1の点線で示すように、ファンクションジェネレータ22から得られるバースト波の出力タイミングを基準とし、超音波振動子21からハイドロフォン31までの超音波の伝播時間を考慮して決定される。ファンクションジェネレータ22の出力信号波形およびハイドロフォン31の出力信号波形をオシロスコープ33で実測しつつ、波形を取り込むタイミングを決定することもできる。   As shown by the dotted lines in FIG. 1, the timing for capturing the waveforms in the period P and the period Q is based on the output timing of the burst wave obtained from the function generator 22, and the ultrasonic wave from the ultrasonic transducer 21 to the hydrophone 31 is used as a reference. Determined in consideration of propagation time. It is also possible to determine the timing for capturing the waveform while actually measuring the output signal waveform of the function generator 22 and the output signal waveform of the hydrophone 31 with the oscilloscope 33.

次に、期間Pにおける波形から得られた周波数スペクトルから、期間Qにおける波形から得られた周波数スペクトルを減算することで、外部ノイズに基づく周波数成分を除去する。   Next, the frequency spectrum based on the external noise is removed by subtracting the frequency spectrum obtained from the waveform in the period Q from the frequency spectrum obtained from the waveform in the period P.

次に、外部ノイズに基づく周波数成分が除去された周波数スペクトルに基づいて、キャビテーションの有無および発生量を分析する。例えば、図2に示したのと同様、基本周波数の高周波および分周波に対応しない周波数成分(測定点A)の振幅強度と、基本周波数f0の0.5倍の周波数fの分周波成分(測定点B)の振幅強度との比(測定点Bの強度/測定点Aの強度)に基づいて、キャビテーションの有無および発生量を評価できる。   Next, the presence / absence and generation amount of cavitation are analyzed based on the frequency spectrum from which the frequency component based on external noise has been removed. For example, as shown in FIG. 2, the amplitude intensity of the frequency component (measurement point A) not corresponding to the high frequency and the divided frequency of the fundamental frequency and the divided frequency component (measurement) of the frequency f 0.5 times the fundamental frequency f0. Based on the ratio of the amplitude of point B) to the amplitude intensity (intensity at measurement point B / intensity at measurement point A), the presence / absence of cavitation and the amount of generation can be evaluated.

本実施形態では、超音波が流体に与えられていない状態(期間Q)をリファレンスとして用い、外部ノイズの影響を取り除いた周波数スペクトルに基づいてキャビテーションの有無および発生量を評価するので、外部ノイズの影響を効果的に排除でき、流体の状態をより正確に分析できる。   In this embodiment, the state (period Q) in which no ultrasonic wave is applied to the fluid is used as a reference, and the presence / absence and generation amount of cavitation are evaluated based on the frequency spectrum from which the influence of external noise has been removed. The influence can be effectively eliminated, and the fluid state can be analyzed more accurately.

図4は、外部ノイズとともに基本周波数成分を除去することにより、キャビテーションに起因する周波数成分を抽出する手法を示す図である。   FIG. 4 is a diagram illustrating a method for extracting a frequency component caused by cavitation by removing a fundamental frequency component together with external noise.

図4に示す例では、オリフィス11の上流側に超音波振動子21Aおよびハイドロフォン31Aを設けている。超音波振動子21Aおよびハイドロフォン31Aは超音波振動子21およびハイドロフォン31と同一装置である。これらは機構用フランジ1に固定されており、超音波振動子21Aおよびハイドロフォン31Aの位置関係も実質的に超音波振動子21およびハイドロフォン31のそれと変わらない。   In the example shown in FIG. 4, an ultrasonic transducer 21 </ b> A and a hydrophone 31 </ b> A are provided on the upstream side of the orifice 11. The ultrasonic transducer 21A and the hydrophone 31A are the same devices as the ultrasonic transducer 21 and the hydrophone 31. These are fixed to the mechanism flange 1, and the positional relationship between the ultrasonic transducer 21A and the hydrophone 31A is substantially the same as that of the ultrasonic transducer 21 and the hydrophone 31.

次に、状態検出の手順について説明する。   Next, the state detection procedure will be described.

まず、ファンクションジェネレータ22から周波数20kHz−100kHzの範囲内における基本周波数の連続波を出力し、超音波振動子21および超音波振動子21Aを同時に駆動する。これにより超音波振動子21および超音波振動子21Aは上記基本周波数の超音波を照射し、オリフィス11の下流側および上流側にそれぞれ超音波が与えられる。このときの超音波の振幅はキャビテーション閾値よりも小さな値とする。例えば、超音波の周波数が100kHzであり、プロセス流体が飽和水の場合、キャビテーション閾値である0.2W/cm−2よりも低いパワーとなる振幅とする。 First, a continuous wave having a fundamental frequency within a frequency range of 20 kHz-100 kHz is output from the function generator 22 to drive the ultrasonic transducer 21 and the ultrasonic transducer 21A simultaneously. As a result, the ultrasonic transducer 21 and the ultrasonic transducer 21 </ b> A radiate ultrasonic waves having the above fundamental frequency, and ultrasonic waves are applied to the downstream side and the upstream side of the orifice 11, respectively. The amplitude of the ultrasonic wave at this time is set to a value smaller than the cavitation threshold value. For example, when the frequency of the ultrasonic wave is 100 kHz and the process fluid is saturated water, the amplitude becomes a power lower than the cavitation threshold value of 0.2 W / cm −2 .

超音波振動子21からの超音波はプロセス流体を伝播し、ハイドロフォン31に到達する。また、オリフィス11の下流側に発生したキャビテーションが上記超音波を受けると、超音波に応答して非線形振動を繰り返し、超音波の基本周波数のn倍(nは2以上の整数)の周波数の高周波成分、あるいは1/nの周波数の分周波成分を持った音波を発生させる。これらの音波も同様にプロセス流体を伝播し、ハイドロフォン31に到達する。   The ultrasonic waves from the ultrasonic vibrator 21 propagate through the process fluid and reach the hydrophone 31. Further, when the cavitation generated on the downstream side of the orifice 11 receives the ultrasonic wave, it repeats non-linear vibration in response to the ultrasonic wave, and a high frequency having a frequency n times (n is an integer of 2 or more) the basic frequency of the ultrasonic wave. A sound wave having a component or a frequency component having a frequency of 1 / n is generated. Similarly, these sound waves propagate through the process fluid and reach the hydrophone 31.

一方、超音波振動子21Aからの超音波はプロセス流体を伝播し、ハイドロフォン31Aに到達する。しかし、この領域にはキャビテーションが存在しないため、キャビテーションの非線形振動に基づく高周波成分あるいは分周波成分を持った音波は発生しない。   On the other hand, the ultrasonic wave from the ultrasonic transducer 21A propagates through the process fluid and reaches the hydrophone 31A. However, since there is no cavitation in this region, a sound wave having a high frequency component or a divided frequency component based on the non-linear vibration of cavitation is not generated.

ハイドロフォン31に到達した音波およびハイドロフォン31Aに到達した音波は、それぞれ電気信号に変換され、オシロスコープ33に取り込まれる。   The sound wave that has reached the hydrophone 31 and the sound wave that has reached the hydrophone 31 </ b> A are each converted into an electrical signal and captured by the oscilloscope 33.

パーソナルコンピュータ4はオシロスコープ33から上記電気信号の波形を取り込み、それぞれの波形をフーリエ変換して周波数スペクトルに分解する。   The personal computer 4 takes in the waveform of the electric signal from the oscilloscope 33, and Fourier transforms each waveform to decompose it into a frequency spectrum.

ハイドロフォン31に到達した音波に基づく周波数スペクトルは、図2に示したものと同一である。一方、図5(a)はハイドロフォン31Aに到達した音波に基づく周波数スペクトルを示している。図5(a)に示すように、この周波数スペクトルにはキャビテーションの非線形振動に基づく高周波成分および分周波成分が認められない。   The frequency spectrum based on the sound wave reaching the hydrophone 31 is the same as that shown in FIG. On the other hand, FIG. 5A shows a frequency spectrum based on a sound wave reaching the hydrophone 31A. As shown in FIG. 5A, the frequency spectrum does not include a high frequency component and a divided frequency component based on the non-linear oscillation of cavitation.

次に、ハイドロフォン31に到達した音波に基づく周波数スペクトルから、ハイドロフォン31Aに到達した音波に基づく周波数スペクトルを減算し、周波数スペクトルの差分を算出する。   Next, the frequency spectrum based on the sound wave reaching the hydrophone 31A is subtracted from the frequency spectrum based on the sound wave reaching the hydrophone 31 to calculate the difference of the frequency spectrum.

図5(b)はこのようにして得られた周波数スペクトルを例示する図である。   FIG. 5B is a diagram illustrating the frequency spectrum obtained in this way.

図5(b)に示すように、周波数スペクトルでは、基本周波数f0の0.5倍の周波数fの分周波成分の他、基本周波数f0の2倍、3倍、4倍の周波数fの高周波成分にピークが認められる。また、周波数スペクトルの減算操作により基本周波数および外部ノイズの周波数成分が効果的にキャンセルされ、キャビテーションに基づく周波数成分のみが抽出されている。   As shown in FIG. 5B, in the frequency spectrum, in addition to the divided frequency component of the frequency f that is 0.5 times the basic frequency f0, the high frequency component of the frequency f that is twice, three times, and four times the basic frequency f0. A peak is observed. Further, the frequency components of the fundamental frequency and the external noise are effectively canceled by the frequency spectrum subtraction operation, and only the frequency components based on cavitation are extracted.

本実施形態では、差分の周波数スペクトル(図5(b))に現れる分周波成分および高周波成分のレベルに基づいてキャビテーションの発生状況を分析する。図2の場合と同様、分周波成分あるいは高周波成分の強度と、それ以外の周波数成分の強度との比(相対強度)に基づいてキャビテーションの発生状況を評価してもよい。   In the present embodiment, the occurrence state of cavitation is analyzed based on the levels of the sub-frequency component and the high-frequency component that appear in the difference frequency spectrum (FIG. 5B). Similarly to the case of FIG. 2, the occurrence of cavitation may be evaluated based on the ratio (relative intensity) between the intensity of the divided frequency component or high frequency component and the intensity of other frequency components.

このように、本実施形態の状態検出方法では、キャビテーションがない領域で取得された周波数スペクトルの減算を行うことで、基本周波数成分および外部ノイズ成分を効果的にキャンセルできるため、より一層高精度な状態検出が可能となる。   As described above, in the state detection method according to the present embodiment, the fundamental frequency component and the external noise component can be effectively canceled by subtracting the frequency spectrum acquired in the area where there is no cavitation. State detection is possible.

また、本実施形態の状態検出方法では、超音波振動子21、超音波振動子21A、ハイドロフォン31およびハイドロフォン31Aを絞り機構用フランジ1に固定することで、オリフィス11に対する超音波振動子およびハイドロフォンの位置を最適な状態に固定化できる。このため、外部ノイズの影響を受けにくく、キャビテーションの発生状況を高精度に検知できる。   Further, in the state detection method of the present embodiment, the ultrasonic vibrator 21, the ultrasonic vibrator 21 </ b> A, the hydrophone 31, and the hydrophone 31 </ b> A are fixed to the diaphragm mechanism flange 1, so that the ultrasonic vibrator for the orifice 11 and The hydrophone position can be fixed in an optimum state. For this reason, it is difficult to be affected by external noise, and the cavitation occurrence state can be detected with high accuracy.

以上説明したように、本発明の流体の状態検出方法および状態検出装置によれば、流体に所定周波数の音波を与えるとともに、流体中を伝播した後の上記音波の波形に含まれる非線形成分を分析するので、外部ノイズの存在下でも流体の状態を把握できる。   As described above, according to the fluid state detection method and state detection device of the present invention, a sound wave having a predetermined frequency is given to the fluid, and a nonlinear component included in the waveform of the sound wave after propagating through the fluid is analyzed. Therefore, the fluid state can be grasped even in the presence of external noise.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、音波を用いて流体の状態を検出する流体の状態検出方法および状態検出装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to a fluid state detection method and a state detection device that detect a fluid state using sound waves.

1 絞り機構用フランジ
4 パーソナルコンピュータ(分析手段)
21 超音波振動子(付与手段)
31 ハイドロフォン(取得手段)
11 オリフィス
1 Flange for diaphragm mechanism 4 Personal computer (analysis means)
21 Ultrasonic vibrator (applying means)
31 Hydrophone (Acquisition means)
11 Orifice

Claims (7)

音波を用いて流体の状態を検出する流体の状態検出方法において、
流体に所定周波数の音波を与えるステップと、
前記流体中を伝播した後の前記音波の波形を取得するステップと、
前記波形に含まれる周波数成分を分析するステップと、
を備えることを特徴とする流体の状態検出方法。
In a fluid state detection method for detecting a fluid state using sound waves,
Applying a sound wave of a predetermined frequency to the fluid;
Obtaining a waveform of the sound wave after propagating in the fluid;
Analyzing a frequency component contained in the waveform;
A fluid state detection method comprising:
前記分析するステップでは、前記波形に含まれる前記所定周波数の高周波成分または分周波成分に基づいて分析を行うことを特徴とする請求項1に記載の流体の状態検出方法。 2. The fluid state detection method according to claim 1, wherein in the analyzing step, the analysis is performed based on a high frequency component or a divided frequency component of the predetermined frequency included in the waveform. 前記分析するステップでは、前記波形に含まれる前記所定周波数の高周波成分または分周波成分と、他の周波数成分との比率に基づいて分析を行うことを特徴とする請求項2に記載の流体の状態検出方法。 3. The fluid state according to claim 2, wherein in the analyzing step, the analysis is performed based on a ratio between a high-frequency component or a divided-frequency component of the predetermined frequency included in the waveform and another frequency component. Detection method. 前記分析するステップでは、前記音波が前記流体に与えられていない状態をリファレンスとして分析を行うことを特徴とする請求項2に記載の流体の状態検出方法。 3. The fluid state detection method according to claim 2, wherein in the analyzing step, the analysis is performed with reference to a state where the sound wave is not applied to the fluid. 前記分析するステップにおける分析対象は前記流体内のキャビテーションであることを特徴とする請求項1〜4のいずれか1項に記載の流体の状態検出方法。 The fluid state detection method according to claim 1, wherein the analysis target in the analyzing step is cavitation in the fluid. 音波を用いて流体の状態を検出する流体の状態検出装置において、
流体に所定周波数の音波を与える付与手段と、
前記流体中を伝播した後の前記音波の波形を取得する取得手段と、
前記波形に含まれる周波数成分を分析する分析手段と、
を備えることを特徴とする流体の状態検出装置。
In a fluid state detection device that detects a fluid state using sound waves,
Applying means for applying a sound wave of a predetermined frequency to the fluid;
Obtaining means for obtaining a waveform of the sound wave after propagating in the fluid;
Analyzing means for analyzing a frequency component included in the waveform;
A fluid state detection apparatus comprising:
前記付与手段および前記取得手段がオリフィスを保持するフランジに取り付けられていることを特徴とする請求項6に記載の流体の状態検出装置。 The fluid state detection device according to claim 6, wherein the applying unit and the acquiring unit are attached to a flange that holds an orifice.
JP2009098898A 2009-04-15 2009-04-15 Method for detecting state of fluid and state detecting device Pending JP2010249637A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009098898A JP2010249637A (en) 2009-04-15 2009-04-15 Method for detecting state of fluid and state detecting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009098898A JP2010249637A (en) 2009-04-15 2009-04-15 Method for detecting state of fluid and state detecting device

Publications (1)

Publication Number Publication Date
JP2010249637A true JP2010249637A (en) 2010-11-04

Family

ID=43312143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009098898A Pending JP2010249637A (en) 2009-04-15 2009-04-15 Method for detecting state of fluid and state detecting device

Country Status (1)

Country Link
JP (1) JP2010249637A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095796A (en) * 2010-11-12 2011-06-15 中国科学院声学研究所 Device and method for detecting fluid cavitation by combining active ultrasonic with passive acoustics
JP2012122740A (en) * 2010-12-06 2012-06-28 Yokogawa Electric Corp Cavitation detector
CN106401989A (en) * 2016-10-20 2017-02-15 浙江理工大学 Centrifugal pump cavitation monitoring device
CN113533579A (en) * 2021-08-09 2021-10-22 国网安徽省电力有限公司电力科学研究院 Device and method for measuring transformer oil cavitation threshold based on ultrasonic transducer

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487902A (en) * 1977-12-24 1979-07-12 Toshiba Corp Cavitation supervisory system
JPS61205399A (en) * 1985-03-08 1986-09-11 Mitsubishi Heavy Ind Ltd Cavitation preventing equipment
JPH08160994A (en) * 1994-12-07 1996-06-21 Matsushita Electric Ind Co Ltd Noise suppression device
JPH11196493A (en) * 1997-12-30 1999-07-21 Honda Electron Co Ltd Cavitation detection method and microphone with acoustic filter
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2000258281A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Acoustic leakage monitoring apparatus
JP2001324481A (en) * 2000-05-17 2001-11-22 Isuzu Motors Ltd Apparatus for detecting air bubbles in liquid
JP2002236111A (en) * 2001-02-09 2002-08-23 Masahiro Nishikawa Bubble detecting method and device for liquid pump
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2006266871A (en) * 2005-03-24 2006-10-05 Niigata Univ Phase change state detector for liquid phase material
JP2007301286A (en) * 2006-05-15 2007-11-22 Aloka Co Ltd Bubble detector

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5487902A (en) * 1977-12-24 1979-07-12 Toshiba Corp Cavitation supervisory system
JPS61205399A (en) * 1985-03-08 1986-09-11 Mitsubishi Heavy Ind Ltd Cavitation preventing equipment
JPH08160994A (en) * 1994-12-07 1996-06-21 Matsushita Electric Ind Co Ltd Noise suppression device
JPH11196493A (en) * 1997-12-30 1999-07-21 Honda Electron Co Ltd Cavitation detection method and microphone with acoustic filter
JPH11295179A (en) * 1998-04-09 1999-10-29 Mitsubishi Electric Corp Abnormal place detecting device
JP2000258281A (en) * 1999-03-08 2000-09-22 Hitachi Ltd Acoustic leakage monitoring apparatus
JP2001324481A (en) * 2000-05-17 2001-11-22 Isuzu Motors Ltd Apparatus for detecting air bubbles in liquid
JP2002236111A (en) * 2001-02-09 2002-08-23 Masahiro Nishikawa Bubble detecting method and device for liquid pump
JP2002301072A (en) * 2001-04-04 2002-10-15 Fuji Photo Film Co Ltd Ultrasonic imaging method and apparatus
JP2006266871A (en) * 2005-03-24 2006-10-05 Niigata Univ Phase change state detector for liquid phase material
JP2007301286A (en) * 2006-05-15 2007-11-22 Aloka Co Ltd Bubble detector

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102095796A (en) * 2010-11-12 2011-06-15 中国科学院声学研究所 Device and method for detecting fluid cavitation by combining active ultrasonic with passive acoustics
JP2012122740A (en) * 2010-12-06 2012-06-28 Yokogawa Electric Corp Cavitation detector
CN106401989A (en) * 2016-10-20 2017-02-15 浙江理工大学 Centrifugal pump cavitation monitoring device
CN113533579A (en) * 2021-08-09 2021-10-22 国网安徽省电力有限公司电力科学研究院 Device and method for measuring transformer oil cavitation threshold based on ultrasonic transducer

Similar Documents

Publication Publication Date Title
CN110702785B (en) Method and device for time-frequency domain modal decomposition and defect positioning of frequency dispersion Lamb wave polynomial
WO2013048173A3 (en) Apparatus for removing partial discharge noise and method for diagnosing partial discharge
US10953440B2 (en) Sound-pressure analyzer and a method in the high-intensity acoustic field, and an ultrasonic cleaner and an ultrasonic processor
JP2012122740A (en) Cavitation detector
JP2009229184A (en) Harmonic probing method and device
WO2012056913A1 (en) Evaluation method and evaluation system for impact force of laser irradiation during laser peening and laser peening method and laser peening system
RU2014102670A (en) UNDERWATER DETECTION DEVICE
JP2011157894A (en) Method and device for predicting cavitation erosion quantity
Kajiwara et al. Damage detection in pipes based on acoustic excitations using laser-induced plasma
JP2010249637A (en) Method for detecting state of fluid and state detecting device
US9099206B2 (en) Nuclear reactor vibration monitoring device and monitoring method thereof
Lucas et al. Three-phase induction motor loading estimation based on Wavelet Transform and low-cost piezoelectric sensors
Delrue et al. Non-destructive evaluation of kissing bonds using local defect resonance (LDR) spectroscopy: a simulation study
JP2010281700A5 (en)
CN111735593B (en) Method for tracking, testing and analyzing vibration frequency of water turbine model machine
Jiang et al. Denoising method of pipeline leakage signal based on VMD and Hilbert transform
JP5807107B1 (en) Analysis data creation method, frequency filter creation method, abnormal sound occurrence position identification method, analysis data creation apparatus, frequency filter creation apparatus, and abnormal sound occurrence position identification apparatus
Bessonova et al. Investigation of spatial averaging effect of membrane hydrophones for working frequencies in the low MHz range
JP2006300640A (en) Cavitation detecting technique
Liu et al. Quantitative estimation of nonlinearity parameter of noised lamb waves using a chaotic oscillator
JP5561581B2 (en) Material thickness measurement method
Li et al. Second harmonic generation of shear horizontal guided wave propagation in plate-like structures
CN219641637U (en) Ultrasonic guided wave detection device for oil and gas pipeline
KR101048563B1 (en) Harmonic Detection System of Tone Burst Ultrasound
Yu et al. Measurement of acoustic attenuation coefficient of stored grain

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130201

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130327

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130514

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131220

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140129

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20140624