JP2021175963A - Wind direction/wind speed meter - Google Patents

Wind direction/wind speed meter Download PDF

Info

Publication number
JP2021175963A
JP2021175963A JP2020081564A JP2020081564A JP2021175963A JP 2021175963 A JP2021175963 A JP 2021175963A JP 2020081564 A JP2020081564 A JP 2020081564A JP 2020081564 A JP2020081564 A JP 2020081564A JP 2021175963 A JP2021175963 A JP 2021175963A
Authority
JP
Japan
Prior art keywords
wind
cross
wind speed
correlation function
microphones
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020081564A
Other languages
Japanese (ja)
Inventor
繁 牧野
Shigeru Makino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGRI HITECH LLC
AGRI-HITECH LLC
MEEKOO SEIKI KK
Original Assignee
AGRI HITECH LLC
AGRI-HITECH LLC
MEEKOO SEIKI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AGRI HITECH LLC, AGRI-HITECH LLC, MEEKOO SEIKI KK filed Critical AGRI HITECH LLC
Priority to JP2020081564A priority Critical patent/JP2021175963A/en
Publication of JP2021175963A publication Critical patent/JP2021175963A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a wind direction/wind speed meter that is hardly affected by disturbance and can improve measurement accuracy.SOLUTION: White noise is output from a speaker 110, enters a scattering plate 210, and is scattered here in a spherical direction. The scattered white noise is incident to each microphone 120E, 120W, 120S, 120N to be converted into an electric signal. In a cross-correlation function calculation unit 300, operation for obtaining a cross-correlation function is performed with respect to an output electric signal of the microphones 120E and 120W. Wind causes deviation between a time of incidence of white noise to the microphone 120E and that to the microphone 120W. Thereby, wind speed in an east-west direction is obtained. Similarly, wind speed in a north-south direction is also determined. Then, vector calculation is performed by a vector calculation unit 302 from the wind speed, and a wind direction and wind speed are obtained and displayed on a display unit 304.SELECTED DRAWING: Figure 1

Description

本発明は、風向ないし風速を計測する風向・風速計の改良に関する。 The present invention relates to an improvement of a wind direction / anemometer for measuring a wind direction or a wind speed.

従来の風向・風速計としては、例えば、下記特許文献1記載の超音波式風向風速計がある。これは、精度の向上を目的としたもので、1つの送信用超音波素子と、4つの受信用超音波素子とを、超音波出射口と超音波入射口が対抗し、かつ、入射口が同一面であって、直交する2軸方向となるように配置するとともに、散乱板を設ける。そして、送信用超音波素子から散乱板を経て4つの受信用超音波素子までの4つの超音波伝搬時間を検出し、これに基づいて風速,風向を算出するようになっている。 As a conventional anemometer, for example, there is an ultrasonic type anemometer described in Patent Document 1 below. The purpose of this is to improve the accuracy. One transmission ultrasonic element and four reception ultrasonic elements are opposed to each other by the ultrasonic outlet and the ultrasonic inlet, and the incident port is Arrange them so that they are on the same surface and are orthogonal to each other in two axial directions, and provide a scattering plate. Then, four ultrasonic wave propagation times from the transmitting ultrasonic element to the four receiving ultrasonic elements via the scattering plate are detected, and the wind speed and the wind direction are calculated based on this.

特開平8-220127号公報Japanese Unexamined Patent Publication No. 8-220127

ところで、上述した背景技術では、超音波の伝搬時間を検出する方法として、
a,超音波送信・受信波形の位相差を検出する,
b,超音波をバースト発振し、バースト発振から受信までの時間を検出する,
方法が指摘(明細書段落0021)されているが、いずれの方法であっても、外乱ノイズの影響を受ける恐れがあり、測定精度が低下することとなる。
By the way, in the background technique described above, as a method of detecting the propagation time of ultrasonic waves,
a, Detect the phase difference of ultrasonic transmission / reception waveforms,
b, Burst oscillation of ultrasonic waves and detection of the time from burst oscillation to reception,
Although the method has been pointed out (paragraph 0021 of the specification), any method may be affected by disturbance noise, resulting in a decrease in measurement accuracy.

本発明は、係る点に着目したもので、外乱の影響を受けにくく、測定精度の向上を図ることができる風向・風速計を提供することを、その目的とする。 The present invention focuses on this point, and an object of the present invention is to provide a wind direction / anemometer that is not easily affected by disturbance and can improve measurement accuracy.

本発明は、白色雑音を出力するスピーカ,該スピーカから出力された白色雑音を散乱する散乱板,該散乱板によって散乱された白色雑音を受信して電気信号に変換する複数のマイクロホン,該複数のマイクロホンから出力された電気信号から相互相関関数を演算する相互相関関数演算手段,該演算手段によって得られた相互相関関数から、前記スピーカと散乱板との間を通過する風の風向もしくは風速の少なくとも一方を演算するベクトル演算手段,を備えたことを特徴とする。 The present invention includes a speaker that outputs white noise, a scattering plate that scatters the white noise output from the speaker, a plurality of microphones that receive the white noise scattered by the scattering plate and convert it into an electric signal, and the plurality of microphones. A cross-correlation function calculation means that calculates a cross-correlation function from an electric signal output from a microphone, and at least the wind direction or velocity of the wind passing between the speaker and the scattering plate from the cross-correlation function obtained by the calculation means. It is characterized by being equipped with a vector calculation means for calculating one of them.

主要な形態の一つによれば、前記マイクロホンを、東西南北の方向であって、前記スピーカから等距離の位置にそれぞれ配置したことを特徴とする。他の形態によれば、前記散乱板を、半球面の形状としたことを特徴とする。本発明の前記及び他の目的,特徴,利点は、以下の詳細な説明及び添付図面から明瞭になろう。 According to one of the main forms, the microphones are arranged in the north, south, east, and west directions at equal distances from the speaker. According to another form, the scattering plate is characterized by having a hemispherical shape. The above and other objects, features and advantages of the present invention will be clarified from the following detailed description and accompanying drawings.

本発明によれば、スピーカから送信された白色雑音を複数のマイクロホンで受信し、マイクロホンの受信信号間で相互相関関数を求め、これらの値からベクトル演算を行って風向・風速を求めることとしたので、外部雑音の影響を受けにくく、測定精度の向上を図ることができる。 According to the present invention, white noise transmitted from a speaker is received by a plurality of microphones, a cross-correlation function is obtained between the received signals of the microphones, and a vector calculation is performed from these values to obtain a wind direction and a wind speed. Therefore, it is not easily affected by external noise, and the measurement accuracy can be improved.

本発明の一実施例におけるスピーカ及びマイクロホンの配置を示す図である。It is a figure which shows the arrangement of a speaker and a microphone in one Example of this invention. 前記実施例における演算回路の構成を示すブロック図である。It is a block diagram which shows the structure of the arithmetic circuit in the said Example. 前記実施例における風向・風速計測の一例を示す図である。(A)は風向・風速の様子の一例を示し、(B)は東西方向の風速と相互相関関数の最大値を与える遅延時間の関係を示し、(C)は南北方向の風速と相互相関関数の最大値を与える遅延時間(lag時間)の関係を示す。It is a figure which shows an example of wind direction and wind speed measurement in the said Example. (A) shows an example of the state of wind direction and speed, (B) shows the relationship between the wind speed in the east-west direction and the delay time that gives the maximum value of the cross-correlation function, and (C) shows the relationship between the wind speed in the north-south direction and the cross-correlation function. The relationship of the delay time (lag time) that gives the maximum value of is shown. (A),(B)は前記実施例における白色雑音の一例を示すグラフであり、縦軸は信号強度を示す。(C),(D)は相互相関関数の一例を示すグラフであり、縦軸は相互相関関数の値を示す。(A)〜(D)の横軸は遅延時間(lag時間)を示す。(A) and (B) are graphs showing an example of white noise in the above embodiment, and the vertical axis shows the signal strength. (C) and (D) are graphs showing an example of the cross-correlation function, and the vertical axis shows the value of the cross-correlation function. The horizontal axis of (A) to (D) indicates the delay time (lag time). (A),(B)は前記実施例における外部雑音を加味した白色雑音の一例を示すグラフであり、縦軸は信号強度を示す。(C)はそれらの相互相関関数の一例を示すグラフであり、縦軸は相互相関関数の値を示す。(A)〜(C)の横軸は遅延時間(lag時間)を示す。(A) and (B) are graphs showing an example of white noise with external noise added in the above embodiment, and the vertical axis shows the signal strength. (C) is a graph showing an example of these cross-correlation functions, and the vertical axis shows the value of the cross-correlation function. The horizontal axis of (A) to (C) indicates the delay time (lag time).

以下、本発明を実施するための最良の形態を、実施例に基づいて詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail based on examples.

図1には、本実施例にかかる風向・風速計の超音波素子部分が示されている。同図(A)は平面から見た様子を示しており、これを矢印F1方向から様子が同図(B)に示されている FIG. 1 shows an ultrasonic element portion of the wind direction / anemometer according to this embodiment. The figure (A) shows the state seen from a plane, and the state is shown in the figure (B) from the direction of the arrow F1.

これらの図において、装置の天井100と床200は、適宜の間隔をもって水平方向となるように配置されている。風は、矢印F1で一例を示すように、天井100と床200との間を通り抜けるようになっている。 In these figures, the ceiling 100 and the floor 200 of the device are arranged so as to be horizontal at appropriate intervals. The wind passes between the ceiling 100 and the floor 200, as shown by the arrow F1.

天井100には、その中心にスピーカ(発振用超音波素子)110が設けられており、その周囲には、水平面上の東西南北の位置であって、スピーカ110の中心から等距離となる位置に、マイクロホン(受信用超音波素子)120E,120W,120S,120Nがそれぞれ設けられている。一方、床200には、前記スピーカ110に対向する位置に、半球面状の散乱板210が設けられている。上述したスピーカ110から床面200に向かって出力された超音波は、散乱板210で反射され、マイクロホン120E,120W,120S,120Nに入射するようになっている。 A speaker (ultrasonic element for oscillation) 110 is provided in the center of the ceiling 100, and around the speaker (ultrasonic element for oscillation) 110 is located at the north, south, east, and west positions on the horizontal plane and equidistant from the center of the speaker 110. , Microphones (reception ultrasonic elements) 120E, 120W, 120S, 120N, respectively. On the other hand, the floor 200 is provided with a hemispherical scattering plate 210 at a position facing the speaker 110. The ultrasonic waves output from the speaker 110 toward the floor surface 200 are reflected by the scattering plate 210 and are incident on the microphones 120E, 120W, 120S, and 120N.

図2には、風向・風速の演算回路の構成が示されている。同図において、上述したマイクロホン120E,120W,120S,120Nは、受信した超音波信号を電気信号に変換して出力する。出力された電気信号は、相互相関関数演算部300に入力されるようになっている。相互相関関数演算部300では、入力信号から相互相関関数を演算する。演算された相互相関関数の値は、ベクトル演算部302に入力されるようになっており、ここで、入力信号から風向・風速が演算され、演算結果が表示部304に対して出力されるようになっている。 FIG. 2 shows the configuration of the wind direction / speed calculation circuit. In the figure, the microphones 120E, 120W, 120S, and 120N described above convert the received ultrasonic signal into an electric signal and output it. The output electric signal is input to the cross-correlation function calculation unit 300. The cross-correlation function calculation unit 300 calculates the cross-correlation function from the input signal. The calculated value of the cross-correlation function is input to the vector calculation unit 302, where the wind direction and speed are calculated from the input signal and the calculation result is output to the display unit 304. It has become.

これらのうち、相互相関関数演算部300は、マイクロホン120E,120W,120S,120Nのうち、対向するマイクロホンから出力された電気信号から相互相関関数を演算する機能を備えている。この演算結果は、東西方向及び南北方向の風速に対応する。具体的には、マイクロン120E,120Wの電気信号から東西方向の風速が演算され、マイクロホン120S,120Nの電気信号から南北方向の風速が演算されることになる。演算された東西方向及び南北方向の風速は、ベクトル演算部302に入力される。ベクトル演算部302では、東西方向の風速と、南北方向の風速に基づいてベクトル演算が行われ、風向・風速が求められ、表示部304に対して出力される。表示部304は、入力された演算結果に基づいて、風速及び風向を表示する。 Of these, the cross-correlation function calculation unit 300 has a function of calculating the cross-correlation function from the electric signal output from the opposite microphone among the microphones 120E, 120W, 120S, and 120N. This calculation result corresponds to the wind speed in the east-west direction and the north-south direction. Specifically, the wind speed in the east-west direction is calculated from the electric signals of the microphones 120E and 120W, and the wind speed in the north-south direction is calculated from the electric signals of the microphones 120S and 120N. The calculated east-west direction and north-south direction wind speeds are input to the vector calculation unit 302. The vector calculation unit 302 performs vector calculation based on the wind speed in the east-west direction and the wind speed in the north-south direction, obtains the wind direction and speed, and outputs the wind direction and speed to the display unit 304. The display unit 304 displays the wind speed and the wind direction based on the input calculation result.

次に、本実施例の作用について説明する。上述したように、スピーカ110からは、白色雑音が出力される。なお、理想的な白色雑音は、すべての周波数成分の振幅が等しいが、本実施例では、必ずしも理想的なものではない。しかし、風向・風速の測定上何ら支障は生じない。スピーカ110から出力された白色雑音は、散乱板210に入射し、ここで反射されて球面方向に拡散する。反射された白色雑音は、マイクロホン120E,120W,120S,120Nにそれぞれ入射し、電気信号に変換される。 Next, the operation of this embodiment will be described. As described above, white noise is output from the speaker 110. The ideal white noise has the same amplitude of all frequency components, but is not always ideal in this embodiment. However, there is no problem in measuring the wind direction and speed. The white noise output from the speaker 110 enters the scattering plate 210, is reflected here, and diffuses in the spherical direction. The reflected white noise enters the microphones 120E, 120W, 120S, and 120N, respectively, and is converted into an electric signal.

相互相関関数演算部300では、マイクロホン120E,120Wの出力電気信号に対して相互相関関数を求める演算が行われる。ここで、風が全く吹いていないと仮定すると、マイクロホン120Eと120Wには、同じ白色雑音が同一位相で入射する。従って、相互相関関数の演算結果は、風速「0」を示すことになる。なお、この場合、相互相関関数の演算結果は、白色雑音の自己相関関数と一致する。仮に、白色雑音が理想的であるとすると、自己相関関数はいわゆるデルタ関数となる。本実施例では、理想的な白色雑音ではないし、外乱雑音が加わるので、理想的なデルタ関数とはならないが、概ね波形は近似する。図4(D)には、相互相関関数の一例が示されている。マイクロホン120S,120Nの出力電気信号に対しても同様である。 The cross-correlation function calculation unit 300 performs an operation to obtain a cross-correlation function for the output electric signals of the microphones 120E and 120W. Here, assuming that no wind is blowing, the same white noise is incident on the microphones 120E and 120W in the same phase. Therefore, the calculation result of the cross-correlation function shows the wind speed "0". In this case, the calculation result of the cross-correlation function matches the autocorrelation function of white noise. If white noise is ideal, the autocorrelation function is the so-called delta function. In this embodiment, the white noise is not ideal and disturbance noise is added, so that the delta function is not ideal, but the waveforms are approximately approximate. FIG. 4 (D) shows an example of the cross-correlation function. The same applies to the output electric signals of the microphones 120S and 120N.

次に、例えば図3(A)に示すように、南西方向から風が吹いているものとする。この場合、風の影響を受けて、マイクロホン120Eに対する白色絶音の入射時刻と、マイクロホン120Wに対する白色絶音の入射時刻との間にずれが生ずるようになる。図示の例では、マイクロホン120Eにおける入射時刻が、マイクロホン120Wにおける入射時刻よりも早くなる。図4には信号波形の一例が示されており、マイクロホン120E,120Wに入射する白色雑音の波形が、同図(A),(B)にそれぞれ示されている。それらの相互相関関数を演算すると、同図(C)に示すようになる。これを、同図(D)の無風状態の場合と比較すると、ピークの間にΔTの時間差があるが、これが風が原因で生じたものであることから、このΔTの時間差から東西方向の風速を求めることができる。南北方向についても、同様である。 Next, for example, as shown in FIG. 3 (A), it is assumed that the wind is blowing from the southwest direction. In this case, due to the influence of the wind, there will be a discrepancy between the incident time of the white noise on the microphone 120E and the incident time of the white noise on the microphone 120W. In the illustrated example, the incident time on the microphone 120E is earlier than the incident time on the microphone 120W. An example of the signal waveform is shown in FIG. 4, and the waveforms of the white noise incident on the microphones 120E and 120W are shown in FIGS. (A) and (B), respectively. When these cross-correlation functions are calculated, they are shown in Fig. (C). Comparing this with the case of no wind in Fig. (D), there is a time difference of ΔT between the peaks, but since this is caused by the wind, the wind speed in the east-west direction from this time difference of ΔT. Can be sought. The same applies to the north-south direction.

図5には、図4(A),(B)の信号波形に外乱ノイズが加わった場合が示されている。マイクロホン120E,120W,120S,120Nは、スピーカ110からの白色雑音の他に、装置が設置された環境に存在する各種の外乱雑音も拾うことになる。これらの外乱雑音は、白色雑音に混ざってしまい、図4(A),(B)に示した波形は、図5(A),(B)に示すようになる。しかし、この場合であっても、相互相関関数を求めれば、外乱雑音の影響が低減され、相互相関関数は、図5(C)に示すようになり、上述した図4(C)と比較してピークの位置にずれは生じない。従って、風速は、良好に演算することができる。 FIG. 5 shows a case where disturbance noise is added to the signal waveforms of FIGS. 4A and 4B. In addition to the white noise from the speaker 110, the microphones 120E, 120W, 120S, and 120N also pick up various disturbance noises existing in the environment in which the device is installed. These disturbance noises are mixed with the white noise, and the waveforms shown in FIGS. 4A and 4B are as shown in FIGS. 5A and 5B. However, even in this case, if the cross-correlation function is obtained, the influence of disturbance noise is reduced, and the cross-correlation function is as shown in FIG. 5 (C), which is compared with FIG. 4 (C) described above. There is no deviation in the peak position. Therefore, the wind speed can be calculated well.

図3(B)には、東西方向における相互相関関数の値と風速の関係が示されており、同図(C)には、南北方向における相互相関関数の値と風速の関係が示されている。相互相関関数から得られた東西方向の速度と南北方向の速度の各値は、ベクトル演算部302に入力され、ベクトル演算が行われる。すなわち、東西方向の速度を示すベクトルと、南北方向の速度を示すベクトルとの合成が行われ、風速に相当する長さであって、風向き方向を向いたベクトルが得られる(図3(A)参照)。 Fig. 3 (B) shows the relationship between the value of the cross-correlation function in the east-west direction and the wind speed, and Fig. 3 (C) shows the relationship between the value of the cross-correlation function in the north-south direction and the wind speed. There is. Each value of the velocity in the east-west direction and the velocity in the north-south direction obtained from the cross-correlation function is input to the vector calculation unit 302, and the vector calculation is performed. That is, the vector indicating the velocity in the east-west direction and the vector indicating the velocity in the north-south direction are combined to obtain a vector having a length corresponding to the wind speed and facing the wind direction (Fig. 3 (A)). reference).

図3(A)に示す例では、東西方向の風速が同図(B)に示すVEWで、南北方向の風速が同図(C)に示すVSNである。これらが、同図(A)に示すベクトルFEW,FSNの長さにそれぞれ対応する。そして、これらベクトルFEW,FSNを合成すると、ベクトルFKとなり、このベクトルFKの大きさが風速を示し、方向が風向を示す。 In the example shown in FIG. 3 (A), the wind speed in the east-west direction is the VEW shown in the figure (B), and the wind speed in the north-south direction is the VSN shown in the figure (C). These correspond to the lengths of the vectors FEW and FSN shown in FIG. Then, when these vectors FEW and FSN are combined, it becomes a vector FK, the magnitude of this vector FK indicates the wind speed, and the direction indicates the wind direction.

なお、相互相関関数,自己相互相関関数については、例えば、日野幹雄著「スペクトル解析」(朝倉書店,1977年10月1日初版)に詳述されている。 The cross-correlation function and auto-cross-correlation function are described in detail in, for example, Mikio Hino's "Spectrum Analysis" (Asakura Shoten, October 1, 1977, first edition).

以上のように、本実施例によれば、スピーカから送信された白色雑音の超音波を、東西南北のマイクロホンで送受信し、東西及び南北のマイクロホンの受信信号間で相互相関関数を求め、この値からベクトル演算を行って風向・風速を求めることとしたので、外部雑音の影響を受けにくく、測定精度の向上を図ることができる。 As described above, according to the present embodiment, the white noise ultrasonic waves transmitted from the speaker are transmitted and received by the north, south, east, and west microphones, and the cross-correlation function is obtained between the received signals of the east, west, and north and south microphones, and this value is obtained. Since the wind direction and speed are obtained by performing vector calculation from the above, it is not easily affected by external noise and the measurement accuracy can be improved.

<他の実施例> なお、本発明は、上述した実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加えることができる。例えば、以下のものも含まれる。
(1)前記実施例では、半球面状の散乱板210としたが、スピーカ110から出力された超音波をマイクロホン120E,120W,120S,120Nに向けて反射できれば、半球面以外の形状、例えば四角錘形状としてもよい。
(2)前記実施例では、マイクロホン120E,120W,120S,120Nを、東西南北の方位となる位置に配置したが、必ずしも方位と一致せず、角度がずれていてもよいが、演算結果を補正する必要がある。
(3)前記実施例は、天井100側にスピーカ110を設置し、床200側にマイクロホン120E,120W,120S,120Nを設置したが、逆であってもよい。
(4)前記実施例では、超音波の白色雑音を使用したが、超音波でなくてもよい。
(5)前記実施例では、東西南北の4つのマイクロホンを使用したが、少なくとも2つあれば、それらのマイクロホンの設置方向の風速を求めることができる。3つのマイクロホンを設けてベクトル演算を行うことで、風向を求めることができる。
(6)前記実施例では、風向及び風速を求めたが、いずれか一方のみを求めるようにしてもよい。
<Other Examples> The present invention is not limited to the above-mentioned examples, and various modifications can be made without departing from the gist of the present invention. For example, the following are also included.
(1) In the above embodiment, the hemispherical scattering plate 210 is used, but if the ultrasonic waves output from the speaker 110 can be reflected toward the microphones 120E, 120W, 120S, 120N, a shape other than the hemispherical shape, for example, a square. It may be in the shape of a weight.
(2) In the above embodiment, the microphones 120E, 120W, 120S, and 120N are arranged at positions that are in the north, south, east, and west directions. There is a need to.
(3) In the above embodiment, the speaker 110 is installed on the ceiling 100 side and the microphones 120E, 120W, 120S, 120N are installed on the floor 200 side, but the reverse may be performed.
(4) In the above embodiment, the white noise of ultrasonic waves is used, but it does not have to be ultrasonic waves.
(5) In the above embodiment, four microphones in the north, south, east, and west are used, but if there are at least two microphones, the wind speed in the installation direction of those microphones can be obtained. The wind direction can be obtained by providing three microphones and performing vector operations.
(6) In the above embodiment, the wind direction and the wind speed are obtained, but only one of them may be obtained.

本発明によれば、スピーカから送信された白色雑音を、複数のマイクロホンで受信し、マイクロホンの受信信号間で相互相関関数を求め、これらの値からベクトル演算を行って風向・風速を求めることとしたので、外部雑音の影響を受けにくく、測定精度の向上を図ることができるので、風向・風速の計測に好適である。 According to the present invention, white noise transmitted from a speaker is received by a plurality of microphones, a cross-correlation function is obtained between the received signals of the microphones, and a vector calculation is performed from these values to obtain a wind direction and a wind speed. Therefore, it is not easily affected by external noise and the measurement accuracy can be improved, which is suitable for measuring the wind direction and speed.

100:天井
110:スピーカ
120E,120W,120S,120N:マイクロホン
200:床
210:散乱板
300:相互相関関数演算部
302:ベクトル演算部
304:表示部
100: Ceiling 110: Speaker 120E, 120W, 120S, 120N: Microphone 200: Floor 210: Scattering plate 300: Cross-correlation function calculation unit 302: Vector calculation unit 304: Display unit

Claims (3)

白色雑音を出力するスピーカ,
該スピーカから出力された白色雑音を散乱する散乱板,
該散乱板によって散乱された白色雑音を受信して電気信号に変換する複数のマイクロホン,
該複数のマイクロホンから出力された電気信号から相互相関関数を演算する相互相関関数演算手段,
該演算手段によって得られた相互相関関数から、前記スピーカと散乱板との間を通過する風の風向もしくは風速の少なくとも一方を演算するベクトル演算手段,
を備えたことを特徴とする風向・風速計。
Speaker that outputs white noise,
A scattering plate that scatters white noise output from the speaker,
A plurality of microphones that receive white noise scattered by the scattering plate and convert it into an electric signal.
Cross-correlation function calculation means for calculating a cross-correlation function from electrical signals output from the plurality of microphones,
A vector calculation means for calculating at least one of the wind direction and the wind speed of the wind passing between the speaker and the scattering plate from the cross-correlation function obtained by the calculation means.
Anemometer that features a wind direction and anemometer.
前記マイクロホンを、東西南北の方向であって、前記スピーカから等距離の位置にそれぞれ配置したことを特徴とする請求項1記載の風向・風速計。 The anemometer according to claim 1, wherein the microphones are arranged in the north, south, east, and west directions at equal distances from the speaker. 前記散乱板を、半球面の形状としたことを特徴とする請求項1又は2記載の風向・風速計。 The anemometer according to claim 1 or 2, wherein the scattering plate has a hemispherical shape.
JP2020081564A 2020-05-01 2020-05-01 Wind direction/wind speed meter Pending JP2021175963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020081564A JP2021175963A (en) 2020-05-01 2020-05-01 Wind direction/wind speed meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020081564A JP2021175963A (en) 2020-05-01 2020-05-01 Wind direction/wind speed meter

Publications (1)

Publication Number Publication Date
JP2021175963A true JP2021175963A (en) 2021-11-04

Family

ID=78300434

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020081564A Pending JP2021175963A (en) 2020-05-01 2020-05-01 Wind direction/wind speed meter

Country Status (1)

Country Link
JP (1) JP2021175963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088972A (en) * 2021-11-21 2022-02-25 吉林大学 Ultrasonic wind speed and direction measuring system and method based on phase double-frequency method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114088972A (en) * 2021-11-21 2022-02-25 吉林大学 Ultrasonic wind speed and direction measuring system and method based on phase double-frequency method
CN114088972B (en) * 2021-11-21 2024-04-05 吉林大学 Ultrasonic wind speed and direction measurement system and method based on phase double-frequency method

Similar Documents

Publication Publication Date Title
EP3112831B1 (en) Environmental parameter sensor
US6601447B1 (en) Acoustic anemometer for simultaneous measurement of three fluid flow vector components
JP2021175963A (en) Wind direction/wind speed meter
CN105675122B (en) A kind of noise source position method for quickly identifying
Jacobsen et al. Measurement of sound intensity: pu probes versus pp probes
US11835544B2 (en) Wind speed measuring device and wind speed measuring method
JP2012047578A (en) Frequency measurement device, frequency measurement method, speed measurement device, and speed measurement method
Jacobsen An overview of the sources of error in sound power determination using the intensity technique
RU85001U1 (en) DOPPLER ACOUSTIC LOCATOR FOR MONITORING THE WIND FIELD AND TURBULENCE IN THE ATMOSPHERIC BOUNDARY LAYER
CN210075580U (en) Acoustic vector sensor sensitivity measuring device and system
CN104965103A (en) Wind speed measurement method based on parametric array
JP2009031137A (en) Ultrasonic wind measurement system
JP3894887B2 (en) Target sound detection method and apparatus
JP2787144B2 (en) Underwater position measuring device
de Bree et al. Broad banded acoustic vector sensors for outdoor monitoring propeller driven aircraft
CN116754790A (en) Vortex water area flow velocity measuring device and method
JP2009174968A (en) Obstacle detection apparatus
JP3732890B2 (en) Phased array type Doppler anemometer
JP5368272B2 (en) Acoustic signal processing device
KR100343538B1 (en) Apparatus and method for measuring the wave propagation speed in a fluid-filled elastic hose
WO2019069803A1 (en) Ultrasonic wave transmitter, propagation time measurement device, gas concentration measurement device, propagation time measurement program, and propagation time measurement method
JP3250070B2 (en) Ultrasonic anemometer
JPH0476454A (en) Inspection method for liquid piping
RU44391U1 (en) ACOUSTIC ANEMOMETER
JPH11271445A (en) Apparatus and method for detection of distance up to cruising object