JPH11344408A - Sound source probing device - Google Patents

Sound source probing device

Info

Publication number
JPH11344408A
JPH11344408A JP15251998A JP15251998A JPH11344408A JP H11344408 A JPH11344408 A JP H11344408A JP 15251998 A JP15251998 A JP 15251998A JP 15251998 A JP15251998 A JP 15251998A JP H11344408 A JPH11344408 A JP H11344408A
Authority
JP
Japan
Prior art keywords
sound source
signals
frequency
sound
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15251998A
Other languages
Japanese (ja)
Inventor
Izumi Yamada
泉 山田
Satoshi Okada
岡田  聡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP15251998A priority Critical patent/JPH11344408A/en
Publication of JPH11344408A publication Critical patent/JPH11344408A/en
Pending legal-status Critical Current

Links

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

PROBLEM TO BE SOLVED: To enable a sound source surveying device to maintain its sound source-locating function even when the frequency characteristics of used acoustic sensors are not flat by measuring in advance the phase lag of a microphone at every frequency and making phase correction at every frequency at the time of calculating the intensity of a sound source in a monitoring area. SOLUTION: A high-speed ADC 31 converts analog detecting signals into digital signals. An FFT processor 32 is a fast Fourier transformation device and has such a function that shifts detected acoustic signals S1-S8 to a frequency domain by Fourier transforming the signals S1-S8. A cross spectrum processor 33 calculates the cross spectra of all combinations of two different signals. The cross spectra can be found as the products of the Fourier-transformed signals and the complex conjugates of the Fourier-transformed signals. A sound source intensity distribution preparing section 34 with phase correcting function for acoustic sensor takes the sum of all calculated cross spectra by shifting the phases of the spectra in accordance with a virtual sound source point, but simultaneously makes phase correction in accordance with the frequency characteristics of microphones.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は監視領域周辺に設置
した複数の音響センサの検出信号を用いて、監視領域内
の音源強度分布を算出して、強い音源の存在する位置を
明らかにする機能を有する音源探査装置に関するもので
あり、特にプラント内の漏洩発生位置の確認等に好適な
装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention calculates a sound source intensity distribution in a monitoring area using detection signals of a plurality of acoustic sensors installed around the monitoring area, and clarifies a position where a strong sound source exists. More particularly, the present invention relates to a device suitable for confirming a leak occurrence position in a plant or the like.

【0002】[0002]

【従来の技術】発電プラント内の閉空間に置かれた機器
や配管からの漏洩音の位置標定を行う従来技術として、
音響センサアレィを用いる方式がある(音響法を用いた
2次元漏洩探索システムの開発:日本原子力学会,「1
997秋の大会」,F29)。複数の音響マイクロホン
を用い、マイクロホンの出力信号にそれぞれ違った時間
遅れを与えて、重ねあわせることで特定の角度からの音
に感度の高い音響センサを実現している。複数のマイク
ロホンを用いることで、閉空間で問題となる反響音成分
を打ち消しあい、実音源からの音を捉える工夫がなされ
ている。
2. Description of the Related Art As a conventional technique for locating leaked sound from equipment and pipes placed in a closed space in a power plant,
There is a method using an acoustic sensor array (Development of a two-dimensional leak detection system using an acoustic method: Atomic Energy Society of Japan, "1
997 Autumn Convention ", F29). By using a plurality of acoustic microphones and giving different time delays to the output signals of the microphones and superimposing them, an acoustic sensor having high sensitivity to sound from a specific angle is realized. By using a plurality of microphones, a reverberation component that causes a problem in a closed space is canceled to capture sound from an actual sound source.

【0003】ところで、一般的に細いマイクロホンほど
周波数帯域が高周波まで伸びるが、感度は細いほど下が
る傾向にある。このため、高周波まで周波数帯域が伸
び、かつ感度の高いマイクロホンの入手は困難である。
マイクロホンは、ある周波数から感度が全く0となるわ
けではなく、周波数に応じた感度を有する。このため、
監視領域の音響条件によっては、マイクロホンの周波数
特性が平坦でなく、感度が変化する周波数帯域を使わざ
るを得ない場合がある。このような周波数領域では、単
に音響センサアレィを用いる従来方式では、位置標定精
度が十分得られない可能性がある。この点に関し、従来
技術は十分考慮されていなかった。
[0003] In general, the frequency band of a thin microphone extends to a high frequency, but the sensitivity tends to decrease as the microphone becomes thinner. For this reason, it is difficult to obtain a microphone whose frequency band extends to a high frequency and has high sensitivity.
The sensitivity of a microphone does not become completely zero from a certain frequency, but has a sensitivity according to the frequency. For this reason,
Depending on the acoustic conditions of the monitoring area, the frequency characteristics of the microphone may not be flat and a frequency band in which the sensitivity changes may have to be used. In such a frequency domain, there is a possibility that the conventional method using only the acoustic sensor array may not provide sufficient positioning accuracy. In this regard, the prior art has not been sufficiently considered.

【0004】[0004]

【発明が解決しようとする課題】従って、本発明の目的
は、使用する音響センサの周波数特性が平坦でない場合
においても、音源位置標定性能を維持できる音源探査の
ための装置を提供することにある。
SUMMARY OF THE INVENTION Accordingly, an object of the present invention is to provide an apparatus for sound source search capable of maintaining sound source position locating performance even when the frequency characteristics of an acoustic sensor used are not flat. .

【0005】[0005]

【課題を解決するための手段】上記目的を達成するため
に、本発明の音源探査装置においては、あらかじめマイ
クロホンの周波数毎の位相遅れを測定しておき、監視領
域内の音源強度を算出する際に、周波数毎に位相補正す
る手段を用いる。
In order to achieve the above object, a sound source detecting apparatus according to the present invention measures a phase delay for each frequency of a microphone in advance and calculates a sound source intensity in a monitoring area. For this, means for correcting the phase for each frequency is used.

【0006】即ち、マイクロホンの感度が周波数で変化
する領域では、感度変化に応じて位相特性も変化してい
る。このため、感度が周波数で変化する場合、入力音響
波に対する出力信号の位相変化により、見かけ上、音速
が変化することになる。周波数毎に位相遅れに違いが生
じるため、音速が全周波数で一定とする位置標定法で
は、位置標定誤差も周波数毎に違ってくる。よって、周
波数毎に位相補正する手段は、周波数によらず音速を一
定にするように作用する。
That is, in a region where the sensitivity of the microphone changes with the frequency, the phase characteristic also changes according to the change in sensitivity. For this reason, when the sensitivity changes with the frequency, the sound speed apparently changes due to the phase change of the output signal with respect to the input acoustic wave. Since a difference occurs in the phase delay for each frequency, in the position location method in which the sound velocity is constant at all frequencies, the position location error also differs for each frequency. Therefore, the means for correcting the phase for each frequency acts to make the sound speed constant regardless of the frequency.

【0007】[0007]

【発明の実施の形態】以下、本発明の1実施例について
説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS One embodiment of the present invention will be described below.

【0008】図1は、本発明の音源探査装置の構成を示
す。プラント内の閉空間の音源探査に適用した例であ
る。8個の音響センサ11〜18を備え、その出力信号
を増幅部20で増幅する。音源走査部30では、監視領
域周辺に配置した音響センサ11〜18の検出信号か
ら、監視領域の音源強度分布を算出する。音源位置標定
及び表示部40では、音源強度分布の強度ピークの位置
から音源位置標定を行い、結果を表示する機能を有す
る。
FIG. 1 shows a configuration of a sound source searching apparatus according to the present invention. This is an example applied to sound source search in a closed space in a plant. Eight acoustic sensors 11 to 18 are provided, and their output signals are amplified by the amplifier 20. The sound source scanning unit 30 calculates a sound source intensity distribution in the monitoring area from detection signals of the acoustic sensors 11 to 18 arranged around the monitoring area. The sound source location and display unit 40 has a function of performing sound source location from the position of the intensity peak of the sound source intensity distribution, and displaying the result.

【0009】次に、図2,図3,図4を用いて、監視領
域内の音源強度分布算出の概念を説明する。図2は、設
定した監視領域における、音源と音響センサ間の距離の
関係を示す。今、音源点から漏洩音が発生したとする
と、音源と音響センサ11〜18の設置位置間の距離に
応じた遅れを伴って、信号S1〜S8が検出される。音
源で発生した信号と検出信号S1〜S8の時間的な関連
を、図3に示す。監視領域内に仮想音源点を設置し、仮
想音源点から音が発生したとして検出信号S1〜S8の
伝播遅れ時間を補正し、これらの信号の平均をとる。結
果が、図3の下段に示す音源信号SBである。仮想音源
点と実音源が一致した場合は、伝播時間遅れ補正により
位相がそろって振幅が大きくなり、一致しない場合は位
相がそろわず、振幅は小さい。この、仮想音源点毎に音
源信号を求めることで、監視領域の各位置における音源
信号が算出できる。
Next, the concept of calculating the sound source intensity distribution in the monitoring area will be described with reference to FIGS. FIG. 2 shows the relationship between the distance between the sound source and the acoustic sensor in the set monitoring area. Now, assuming that a leak sound is generated from the sound source point, the signals S1 to S8 are detected with a delay corresponding to the distance between the sound source and the installation positions of the acoustic sensors 11 to 18. FIG. 3 shows the temporal relationship between the signal generated by the sound source and the detection signals S1 to S8. A virtual sound source point is set in the monitoring area, the sound is generated from the virtual sound source point, the propagation delay time of the detection signals S1 to S8 is corrected, and the average of these signals is obtained. The result is the sound source signal SB shown in the lower part of FIG. When the virtual sound source point and the real sound source match, the phase becomes uniform due to the propagation time delay correction and the amplitude increases, and when they do not match, the phase does not match and the amplitude is small. By obtaining the sound source signal for each virtual sound source point, the sound source signal at each position in the monitoring area can be calculated.

【0010】この音源信号を2乗し、その時間積分をと
ることで仮想音源点毎の音源強度を得る。この音源強度
を、監視領域上にプロットした結果を、図4に示す。強
度が強いほど黒く、すなわち濃度を濃くして示した。こ
れにより、監視領域上のどの位置で大きな音が発生して
いるかがわかる。この、音源強度分布の強度ピークの位
置から、実音源点の位置を知ることができる。今、音源
は点音源を想定しているため、理想的には実音源点位置
だけが強度大で、他の点では強度0となるはずである
が、実際には信号の周波数が低いほど実音源点の周りの
点でも、ある程度の強度が観測される。また、反射音等
が種々の位置で2次的な音源となり、実音源点以外の位
置でも強度が0にならないことが多い。
By squaring this sound source signal and taking the time integration thereof, the sound source intensity for each virtual sound source point is obtained. FIG. 4 shows the result of plotting the sound source intensity on the monitoring area. The higher the intensity, the darker the black, that is, the higher the density. Thereby, it is possible to know at which position on the monitoring area a loud sound is being generated. The position of the actual sound source point can be known from the position of the intensity peak of the sound source intensity distribution. Now, since the sound source is assumed to be a point sound source, ideally only the actual sound source point position should have a high intensity, and the intensity should be 0 at other points. Some intensity is also observed at points around the sound source point. Also, the reflected sound or the like becomes a secondary sound source at various positions, and the intensity often does not become zero at positions other than the actual sound source point.

【0011】次に、本発明の主要部である音源走査信号
処理部30の詳細について説明する。音源走査信号処理
部30では、検出音響信号S1〜S8を用いて、音源強
度分布を推定する。音源強度分布の推定法の概念はすで
に述べた。但し、後述するように、検出音響信号S1〜
S8を概念での説明のように時間軸上で直接加算するの
ではなく、実際には、周波数領域上に移して演算を行
う。具体的には、検出音響信号S1〜S8をフーリエ変
換し、異なった2つの信号のすべての組み合わせのクロ
ススペクトルを算出し、算出したすべてのクロススペク
トルに仮想音源位置に相当する時間補正を与えて加算す
ることで、仮想音源点毎の強度を得る。この強度を、図
4に示したように仮想音源点毎に並べることで、音源強
度分布を作成できる。
Next, the details of the sound source scanning signal processing section 30, which is a main part of the present invention, will be described. The sound source scanning signal processing unit 30 estimates the sound source intensity distribution using the detected sound signals S1 to S8. The concept of the method for estimating the sound source intensity distribution has already been described. However, as described later, the detected sound signals S1 to S1
Instead of directly adding S8 on the time axis as described in the concept, the operation is actually shifted to the frequency domain and performed. More specifically, the detected acoustic signals S1 to S8 are subjected to Fourier transform, cross spectra of all combinations of two different signals are calculated, and time correction corresponding to the virtual sound source position is given to all the calculated cross spectra. By adding, the intensity for each virtual sound source point is obtained. By arranging the intensities for each virtual sound source point as shown in FIG. 4, a sound source intensity distribution can be created.

【0012】図5で、音源走査信号処理部30の具体的
な構成を示す。高速ADC31,FFTプロセッサ3
2,クロススペクトルプロセッサ33,音響センサ用位
相補正機能付き音源強度分布作成部34からなる。高速
ADC31は、アナログ信号である検出信号をディジタ
ル信号に変換する機能を有する。FFTプロセッサ32
は、いわゆる高速フーリエ変換装置であり、検出音響信
号S1〜S8をフーリエ変換して、周波数領域に移す機
能を有する。クロススペクトルプロセッサ33は、異な
った2つの信号のすべての組み合わせのクロススペクト
ルを算出する機能を有する。この、クロススペクトル
は、フーリエ変換信号とフーリエ変換信号の複素共役の
積として求めることができる。音響センサ用の位相補正
機能付き音源強度分布作成部34は、算出したクロスス
ペクトルのすべてを仮想音源点に応じて位相をずらせて
加算するが、本発明では同時にマイクロホンの周波数特
性による位相の補正も行う様にしている。これにより、
周波数毎の位相補正がマイクロホン毎に実施できること
になる。
FIG. 5 shows a specific configuration of the sound source scanning signal processing section 30. High-speed ADC 31, FFT processor 3
2, a cross spectrum processor 33, and a sound source intensity distribution creating unit 34 with a phase correction function for an acoustic sensor. The high-speed ADC 31 has a function of converting a detection signal, which is an analog signal, into a digital signal. FFT processor 32
Is a so-called fast Fourier transform device, which has a function of performing a Fourier transform on the detected acoustic signals S1 to S8 and transferring the detected acoustic signals to the frequency domain. The cross spectrum processor 33 has a function of calculating a cross spectrum of all combinations of two different signals. This cross spectrum can be obtained as the product of the Fourier transform signal and the complex conjugate of the Fourier transform signal. The sound source intensity distribution creating unit 34 with a phase correction function for the acoustic sensor adds all of the calculated cross spectra by shifting the phase according to the virtual sound source point. In the present invention, the phase correction based on the frequency characteristics of the microphone is also performed at the same time. I do it. This allows
The phase correction for each frequency can be performed for each microphone.

【0013】次に、本発明で問題としているマイクロホ
ンの周波数特性により生ずる具体的な音源強度分布算出
への影響について説明する。図6,図7は、マイクロホ
ンの周波数特性を、2極の伝達関数で模擬した例であ
る。図6は感度を、図7は位相を示す。横軸は、共振周
波数で規格化した周波数である。選択度Qの値が0.707,
5,10の3つの場合について示してある。Qが小さい
と、図7からわかるように、位相変化は緩やかになる
が、それでも変化そのものが消失するわけではない。い
ずれにせよ、共振点近傍では、位相の変化は避けられな
いことがわかる。周波数毎に位相が違っている。共振点
近傍の信号を取り扱う場合、マイクロホンで検出した音
の位相が周波数毎に違っており、見かけ上周波数によっ
て音速が違うということになる。
Next, a specific effect on the calculation of the sound source intensity distribution caused by the frequency characteristics of the microphone, which is a problem in the present invention, will be described. FIG. 6 and FIG. 7 are examples in which the frequency characteristics of the microphone are simulated by a two-pole transfer function. FIG. 6 shows the sensitivity and FIG. 7 shows the phase. The horizontal axis is the frequency normalized by the resonance frequency. The value of selectivity Q is 0.707,
Three cases of 5 and 10 are shown. When Q is small, as can be seen from FIG. 7, the phase change becomes gentle, but the change itself does not disappear. In any case, it is understood that a phase change is unavoidable near the resonance point. The phase is different for each frequency. When handling a signal near the resonance point, the phase of the sound detected by the microphone differs for each frequency, which means that the sound speed apparently differs depending on the frequency.

【0014】たとえば、共振周波数が10kHzとする
と、位相遅れが1.57radであるから、空気中では音速
340m/sとして距離8.5mm に相当する時間遅れが
生じる。共振周波数が低くなったり、伝達関数の極数が
多くなるとさらにこの時間遅れが大きくなる。各マイク
ロホンともに同じ特性であれば、音速を補正すれば良
い。しかし、通常、マイクロホンは、共振点より低周波
の特性が平坦な部分で使用することを想定しており、共
振点近傍の特性を同じとする努力はなされていない。こ
のため、共振点近傍の周波数帯域を使用する場合、位相
補正が必要となる。
For example, if the resonance frequency is 10 kHz, the phase delay is 1.57 rad, so that a time delay corresponding to a distance of 8.5 mm at a sound speed of 340 m / s in air occurs. As the resonance frequency decreases and the number of poles of the transfer function increases, the time delay further increases. If the microphones have the same characteristics, the sound speed may be corrected. However, normally, it is assumed that the microphone is used in a portion where the characteristics at a low frequency than the resonance point are flat, and no effort has been made to make the characteristics near the resonance point the same. For this reason, when a frequency band near the resonance point is used, phase correction is required.

【0015】図8,図9に位相補正の有無による音源強
度部分布算出結果の違いを示す。図8が、位相補正を行
わない場合であり、図9が位相補正を行った場合であ
る。位相補正を行わないとピークがぼけていることがわ
かる。一方、位相補正により、ピークが明瞭となり、音
源位置が正確に求められることがわかる。
FIG. 8 and FIG. 9 show the difference in the calculation result of the sound source intensity portion distribution depending on the presence or absence of the phase correction. FIG. 8 shows a case where the phase correction is not performed, and FIG. 9 shows a case where the phase correction is performed. It can be seen that the peak is blurred unless phase correction is performed. On the other hand, it can be seen that the peak becomes clear by the phase correction, and the sound source position can be accurately obtained.

【0016】本発明の音源探査装置の運用に際しては、
音響センサの周波数特性をあらかじめ求めておく必要が
ある。音響検出器としてマイクロホンを使う本実施例で
は、各マイクロホン毎に無響室で周波数特性を測定し
て、このデータを基に、各マイクロホンの各周波数毎の
位相補正量を決定した。音響センサとして、加速度セン
サ等を用いれば、容器内部の音源探査が出来るのはもち
ろんである。加速度センサは、取り付け状態によって、
その周波数特性が大きく違う場合があり得る。このよう
な場合は、実際の取り付け状態で周波数特性を測定する
ことも可能である。周波数特性は、必ずしも絶対値でな
くても、使用する音響センサの相対的な周波数特性の違
いを用い実現可能である。
In operation of the sound source detection device of the present invention,
It is necessary to obtain the frequency characteristics of the acoustic sensor in advance. In the present embodiment using a microphone as an acoustic detector, frequency characteristics were measured in an anechoic chamber for each microphone, and the phase correction amount for each frequency of each microphone was determined based on this data. If an acceleration sensor or the like is used as the acoustic sensor, it goes without saying that a sound source can be searched inside the container. The acceleration sensor depends on the mounting condition.
The frequency characteristics may be significantly different. In such a case, it is also possible to measure the frequency characteristics in an actual mounting state. Even if the frequency characteristic is not always an absolute value, it can be realized by using a relative frequency characteristic difference of an acoustic sensor to be used.

【0017】本実施例では、音響センサの周波数特性の
補正を、クロススペクトルの位相を補正することで実現
している。他の方法として、検出音響信号そのものを逆
の特性を有するフィルタを通すことで、補正することも
可能である。逆の特性とは、音響センサが位相遅れを伴
うならば、位相進みのあるフィルタが、それにあたる。
本実施例では、音響センサの特性の違いを、単にデータ
を変更するだけで、フィルタ設計作業を伴わないと言う
観点で、クロススペクトルの位相を補正する方法を採用
している。また、ディジタル的に実現した方が、補正の
精度が高いという点も特徴である。
In this embodiment, the frequency characteristic of the acoustic sensor is corrected by correcting the phase of the cross spectrum. As another method, it is also possible to correct the detected acoustic signal itself by passing it through a filter having the opposite characteristic. The opposite characteristic is that if the acoustic sensor has a phase delay, a filter with a phase lead corresponds to it.
In the present embodiment, a method of correcting the phase of the cross spectrum is adopted from the viewpoint that the difference in the characteristics of the acoustic sensor is merely changed by the data and does not involve a filter design operation. Another characteristic is that the digital implementation realizes higher correction accuracy.

【0018】本発明は、音響式SGの漏洩検出装置に限
定するものではない。監視領域内の音源の有無や音源位
置標定等に用いることが出来る。例えば、ガス絶縁開閉
器の内部の導電性微小異物の存在が起因となって生じる
部分放電音や異物の飛び跳ねに伴う衝突音を捉える異物
監視装置,変圧器等の容器内部の音源監視にも適用可能
である。
The present invention is not limited to an acoustic SG leak detection device. It can be used for the presence or absence of a sound source in the monitoring area, sound source location, and the like. For example, it can be applied to a foreign substance monitoring device that captures a partial discharge noise caused by the presence of conductive minute foreign substances inside a gas insulated switchgear and a collision noise caused by the jumping of foreign substances, and also to a sound source monitoring inside a container such as a transformer. It is possible.

【0019】以上説明した本実施例の特有の効果として
は下記の点が挙げられる。
As described above, the following advantages can be given as specific effects of this embodiment.

【0020】(1)位相補正をディジタル的に実現する
ことにより、補正の精度を高くでき、結果的に高い位置
標定精度が得られることになり、音源探査装置の性能向
上の効果がある。
(1) By realizing the phase correction digitally, the accuracy of the correction can be increased, and as a result, a high positioning accuracy can be obtained, which has the effect of improving the performance of the sound source searching device.

【0021】(2)位相補正をディジタル的に実現する
ことにより、音響センサの変更等で新たな位相補正用の
フィルタの設計が不要となり、音源探査装置の運用が簡
単となり、結果的に装置の経済性向上の効果がある。
(2) By realizing the phase correction digitally, it is not necessary to design a new filter for phase correction by changing the acoustic sensor or the like, so that the operation of the sound source locating apparatus is simplified, and as a result, the operation of the apparatus is simplified. It has the effect of improving economy.

【0022】(3)位相補正をディジタル的に実現する
ことにより、複雑な音響特性の補正も可能になるため、
音源探査装置の性能向上の効果がある。
(3) Digitally implementing the phase correction makes it possible to correct complicated acoustic characteristics.
This has the effect of improving the performance of the sound source detection device.

【0023】[0023]

【発明の効果】以上述べたように、本発明により音響セ
ンサの周波数特性により見かけ上発生する音速変化を補
正することが可能になり、結果的に音源強度分布の位置
標定精度を向上できるため、結果的に音源探査装置性能
向上の効果がある。
As described above, according to the present invention, it is possible to correct the apparent change in sound speed due to the frequency characteristics of the acoustic sensor, and as a result, it is possible to improve the position localization accuracy of the sound source intensity distribution. As a result, there is an effect of improving the performance of the sound source searching device.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の音源探査装置の構成図。FIG. 1 is a configuration diagram of a sound source detection device of the present invention.

【図2】音響センサ配置と実音源点の位置関係を示した
図。
FIG. 2 is a diagram showing a positional relationship between an acoustic sensor arrangement and an actual sound source point.

【図3】音響信号の時間変化と信号処理の概要の説明
図。
FIG. 3 is an explanatory diagram of an outline of a time change of an acoustic signal and signal processing.

【図4】音源強度分布の例を示す図。FIG. 4 is a diagram showing an example of a sound source intensity distribution.

【図5】実施例の音源探査信号処理部の内部構成図。FIG. 5 is an internal configuration diagram of a sound source search signal processing unit of the embodiment.

【図6】マイクロホンの感度特性図。FIG. 6 is a sensitivity characteristic diagram of a microphone.

【図7】マイクロホンの位相特性図。FIG. 7 is a phase characteristic diagram of a microphone.

【図8】位相補正前の音源強度分布を示す図。FIG. 8 is a diagram showing a sound source intensity distribution before phase correction.

【図9】位相補正後の音源強度分布図。FIG. 9 is a sound source intensity distribution diagram after phase correction.

【符号の説明】[Explanation of symbols]

11〜18…音響センサ、20…増幅器、30…音源走
査信号処理部、31…高速ADC、32…FFTプロセ
ッサ、33…クロススペクトルプロセッサ、34…位相
補正機能付き音源強度分布作成部、40…音源位置標定
及び表示部。
Reference numerals 11 to 18: acoustic sensor, 20: amplifier, 30: sound source scanning signal processing unit, 31: high-speed ADC, 32: FFT processor, 33: cross spectrum processor, 34: sound source intensity distribution creating unit with phase correction function, 40: sound source Location and display.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】監視対象領域近傍の複数点に配置した音響
検出手段と、複数の検出音響信号から監視領域の音源強
度分布を算出する手段と、音源強度分布の最大値を検索
し、最大値の位置を音源位置として判別する音源位置標
定手段からなる音源探査装置において、音源強度算出手
段に各音響検出点毎、周波数毎に音響センサの位相変化
を補正する手段を付加したことを特徴とする音源探査装
置。
1. Sound detecting means arranged at a plurality of points near a monitoring target area; means for calculating a sound source intensity distribution in a monitoring area from a plurality of detected sound signals; A sound source location device comprising a sound source position locating means for determining a position of a sound source as a sound source position, wherein a means for correcting a phase change of an acoustic sensor for each sound detection point and each frequency is added to the sound source intensity calculating means. Sound source locator.
【請求項2】請求項1において、音源強度算出手段が、
複数の検出音響信号をフーリエ変換する手段と、複数の
検出音響信号の各組み合わせでクロススペクトルを算出
する手段と、仮想音源点毎にクロススペクトルから音源
強度を算出する手段からなり、この音源強度算出手段に
各クロススペクトルの各周波数毎に音響センサの位相補
正を行う手段を付加したことを特徴とする音源探査装
置。
2. The sound source intensity calculating means according to claim 1,
Means for Fourier transforming a plurality of detected sound signals, means for calculating a cross spectrum by each combination of the plurality of detected sound signals, and means for calculating a sound source intensity from the cross spectrum for each virtual sound source point. A sound source searching apparatus characterized in that means for correcting the phase of the acoustic sensor for each frequency of each cross spectrum is added to the means.
JP15251998A 1998-06-02 1998-06-02 Sound source probing device Pending JPH11344408A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15251998A JPH11344408A (en) 1998-06-02 1998-06-02 Sound source probing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15251998A JPH11344408A (en) 1998-06-02 1998-06-02 Sound source probing device

Publications (1)

Publication Number Publication Date
JPH11344408A true JPH11344408A (en) 1999-12-14

Family

ID=15542224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15251998A Pending JPH11344408A (en) 1998-06-02 1998-06-02 Sound source probing device

Country Status (1)

Country Link
JP (1) JPH11344408A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027687A (en) * 2009-07-29 2011-02-10 Tobishima Corp Detector for sound or vibration generation point
WO2018003158A1 (en) * 2016-06-29 2018-01-04 日本電気株式会社 Correlation function generation device, correlation function generation method, correlation function generation program, and wave source direction estimation device
CN114152331A (en) * 2021-12-02 2022-03-08 华能山东石岛湾核电有限公司 High-temperature gas cooled reactor primary circuit pressure vessel sound monitoring and positioning system and method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027687A (en) * 2009-07-29 2011-02-10 Tobishima Corp Detector for sound or vibration generation point
WO2018003158A1 (en) * 2016-06-29 2018-01-04 日本電気株式会社 Correlation function generation device, correlation function generation method, correlation function generation program, and wave source direction estimation device
JPWO2018003158A1 (en) * 2016-06-29 2019-05-09 日本電気株式会社 Correlation function generation device, correlation function generation method, correlation function generation program and wave source direction estimation device
CN114152331A (en) * 2021-12-02 2022-03-08 华能山东石岛湾核电有限公司 High-temperature gas cooled reactor primary circuit pressure vessel sound monitoring and positioning system and method

Similar Documents

Publication Publication Date Title
US7183964B2 (en) Mine detection using radar vibrometer
JP2002181913A (en) Sound source probing system
JPWO2003104841A1 (en) Distance measuring method and apparatus
Kotus et al. Calibration of acoustic vector sensor based on MEMS microphones for DOA estimation
JP2004193782A (en) Method of measuring sound wave propagation time between speaker and microphone, and apparatus thereof
JPS6148662B2 (en)
US7495611B2 (en) Method for determining signal direction using artificial doppler shifts
JP2702876B2 (en) Sound source detection device
JPH11344408A (en) Sound source probing device
KR101815584B1 (en) Compensation method for bias errors in 3D intensity probe used for the source localization in precision
Szwoch et al. Detection of the incoming sound direction employing MEMS microphones and the DSP
JP4631615B2 (en) Surface acoustic wave propagation state measuring device, surface acoustic wave propagation state measuring method, environment change measuring device, environment change measuring method, and multi-round surface acoustic wave element
JP2560632B2 (en) Lightning position locator
EP1216422B1 (en) Method and apparatus for extracting physical parameters from an acoustic signal
Bianchi et al. Ionospheric Doppler measurements by means of HF-radar techniques
JPH0949860A (en) Antenna measuring apparatus
JP3199240B2 (en) Acoustic positioning device and method for running noise with Doppler correction
Raczyński Elimination of the Phase Mismatch Error in PP Probe Using Synchronous Measurement Technique
CN116299147B (en) One-dimensional structure internal sound source positioning method based on acoustic coherence technology
JP2880787B2 (en) Directional hearing device
JPH11153660A (en) Sound source searching device
JPH11352225A (en) Speed-measuring apparatus
KR20110016514A (en) Location positioning system and method using phase-difference detection
JP2010133766A (en) Radio wave monitoring device
Liu et al. Motion parameter measurement of multiple air targets for a multi-frequency continuous wave radar