JP2004211115A - Method for producing copper pipe - Google Patents

Method for producing copper pipe Download PDF

Info

Publication number
JP2004211115A
JP2004211115A JP2002378901A JP2002378901A JP2004211115A JP 2004211115 A JP2004211115 A JP 2004211115A JP 2002378901 A JP2002378901 A JP 2002378901A JP 2002378901 A JP2002378901 A JP 2002378901A JP 2004211115 A JP2004211115 A JP 2004211115A
Authority
JP
Japan
Prior art keywords
copper
pipe
tube
intermediate annealing
copper tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002378901A
Other languages
Japanese (ja)
Other versions
JP4150585B2 (en
Inventor
Manabu Nakai
学 中井
Akio Isozaki
昭夫 礒崎
Junichi Nakadoi
淳一 中土居
Michihiko Niwa
充彦 丹羽
Masahiko Sato
匡彦 佐藤
Makoto Kobayashi
誠 小林
Hisashi Sakahara
久 阪原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2002378901A priority Critical patent/JP4150585B2/en
Publication of JP2004211115A publication Critical patent/JP2004211115A/en
Application granted granted Critical
Publication of JP4150585B2 publication Critical patent/JP4150585B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Metal Extraction Processes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a copper pipe by which a small diameter copper pipe having an outer diameter of ≤ 10 mmϕ produced by applying a cold-working of a large reducing area ratio of ≥ 99% to an extruded blank pipe hardly causes crack when the pipe is further subjected to pipe-expanding work or pipe-shrinking work having a large expanding ratio or shrinking ratio. <P>SOLUTION: When producing the small diameter copper pipe of an outer diameter of ≤ 10 mmϕ which is used after being subjected to the pipe-expanding work or the pipe-shrinking work, on the way of the cold-working, an intermediate annealing of the copper pipe is performed and the copper pipe is tempered with the intermediate annealing, in the range of O to 1/8H in quality symbol of JIS and also, the area reducing ratio of the copper pipe in the cold-working to a finish annealing after the intermediate annealing, is made to be 10-95% to the extruded blank pipe. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、銅管に更に拡管加工あるいは縮管加工が施される際の割れ発生を防止した銅管の製造方法に関するものである。
【0002】
【従来の技術】
冷凍機、空調機などに汎用されている銅管の通常の製造方法は概ね以下の通りである。即ち、主としてりん脱酸銅などの純銅を溶解、鋳造後、熱間押出によって素管とされ、これをレデューサなどによって冷間圧延後、抽伸 (引き抜き、延伸) 加工され、仕上げ焼鈍されて、製品銅管とされる。この製品銅管は、前記仕上げ焼鈍後に、更に抽伸されて、より小径化される場合も含めて、前記冷凍機、空調機などの配管として、加工、組立される。
【0003】
近年、冷凍機、空調機などからの要求に伴い、これら銅管は益々小径化され、外径がΦ10mm以下のような小径銅管も汎用されるようになっている。そして、これらの小径銅管が、更に拡管加工あるいは縮管加工が施された上で、前記冷凍機、空調機などの配管として組立される場合も増している。
【0004】
しかし、小径銅管に、これら拡管加工あるいは縮管加工を施した場合、銅管加工部分に割れが生じやすくなる。この割れは、拡管率や縮管率が大きいなどの、拡管加工あるいは縮管加工の加工条件が厳しい場合に、特に生じやすくなる。
【0005】
また、この割れの発生は銅管が小径であるほど顕著になる傾向にある。近年では、小径銅管は、銅管の生産性の向上のために、大口径の押出素管を用い、押出素管に対し99% 以上の減面率 (押出素管に対する断面積比) となるような大きな冷間加工度で製造される。このような大きな冷間加工度となる、外径が特にΦ10mm以下の小径製品銅管の場合に、この割れの問題は顕著になる。
【0006】
そして、この割れの問題は、前記仕上げ焼鈍後に、更に抽伸されるか否かを問わず、拡管加工あるいは縮管加工される小径製品銅管の結晶粒が著しく粗大化したり、未再結晶粒 (ファイバー状加工組織) が組織に残留した場合に顕著になる傾向がある。
【0007】
従来から、製品銅管の結晶粒を緻密な再結晶粒とするために、外径がΦ10mm以下のような小径製品銅管を含め、前記冷間圧延後の抽伸の途中で銅管の中間焼鈍を行なうことが知られている (例えば、特許文献1 、2 参照)。
【0008】
【特許文献1】
特開2001-96337号公報 (第1 〜5 頁)
【特許文献2】
特開2001-96338号公報 (第1 〜5 頁)
【0009】
また、これら特許文献1 、2 などの中間焼鈍条件よりも、より低温の400 〜600 ℃の温度での中間焼鈍条件も公知である (例えば、特許文献3 参照)。
【0010】
【特許文献3】
特開平11-92898号公報 (第1 〜6 頁)
【0011】
【発明が解決しようとする課題】
しかし、上記特許文献1 、2 などの方法は、りん脱酸銅などの純銅を溶解、鋳造後、熱間押出によって素管とする、本発明で前提とする製造方法ではない。これらの製造方法は、りん脱酸銅を溶解後、連続鋳造によって、熱間押出を省略して、直接、外径がΦ36mm程度の比較的小径素管とし、その後抽伸して、外径がΦ10mm以下の小径製品銅管とするものである。
【0012】
このため、上記特許文献1 、2 などの方法では、その小径製品銅管の冷間加工における減面率は連続鋳造管に対して90% を越えることが無い。したがって、外径がΦ90mm以上の大口径の押出素管に対して99% 以上の減面率の大きな冷間加工を施して、外径がΦ10mm以下の小径製品銅管とするような、本発明で前提とする製造方法に比して、冷間加工における加工度は著しく低いものとなる。
【0013】
この結果、上記特許文献1 、2 などのような小径製品銅管の冷間加工度が低い場合の中間焼鈍では、銅管は比較的容易に、微細に再結晶しやすい。
【0014】
しかし、本発明の前提となる製造方法など、冷間加工度を大きくして、外径がΦ10mm以下の小径製品銅管を得るような製造方法では、上記特許文献1 、2 などで好ましいとされる、650 〜880 ℃の中間焼鈍を施すと、却って再結晶粒が粗大化する。この結果、拡管率や縮管率が大きい厳しい加工条件での、前記拡管加工あるいは縮管加工のなどの際に、逆に、割れが生じやすくなる。
【0015】
更に、前記特許文献3 などで公知のより低温での中間焼鈍条件も、その目的はあくまで、前工程で蓄積された加工歪みの除去や、酸化変色部分の還元、銅管内外面に残留する加工油の除去、などの域を出ないものであった。即ち、中間焼鈍条件と、本発明で課題とする前記拡管加工あるいは縮管加工で生じる割れとの関係については、言い換えると、前記拡管加工あるいは縮管加工で生じる割れの解決策については、これまで不明であったのが実情である。
【0016】
本発明はこの様な事情に着目してなされたものであって、その目的は、押出素管に対し99% 以上の大きな減面率の冷間加工を施した、外径がΦ10mm以下の小径銅管であって、拡管率や縮管率が大きい拡管加工あるいは縮管加工の際にも割れが生じにくい、銅管の製造方法を提供しようとするものである。
【0017】
【課題を解決するための手段】
この目的を達成するために、本発明銅管の製造方法の要旨は、純銅の押出素管に対し99% 以上の減面率の冷間加工を施して仕上げ焼鈍した外径がΦ10mm以下の小径銅管であって、更に拡管加工あるいは縮管加工が施されて使用される銅管を製造するに際し、前記冷間加工の途中で銅管の中間焼鈍を行ない、この中間焼鈍によって銅管をJIS の質別記号でO から1/8Hまでの範囲に調質するとともに、この中間焼鈍後で前記仕上げ焼鈍までの冷間加工における銅管の減面率を前記押出素管に対し10〜95% とすることである。
【0018】
本発明者らの知見によれば、押出素管に対し99% 以上の大きな減面率で冷間加工を施した外径がΦ10mm以下の小径製品銅管を製造する際に、中間焼鈍が施されるまでの銅管の減面率 (加工度) を制限し、更に、銅管をJIS の質別記号でO から1/8Hまでの範囲に調質すべく中間焼鈍してやれば、Φ10mm以下の小径銅管の平均結晶粒径が例え大きくても、あるいは小径銅管の平均結晶粒径によらず、前記割れの問題が解決できることを知見した。
【0019】
本発明条件での中間焼鈍は、特に、拡管率や縮管率が大きいなど、加工条件が厳しい拡管加工あるいは縮管加工の際の小径製品銅管の割れを防止するのに有効である。
【0020】
【発明の実施の形態】
本発明が対象とする銅管は、冷凍機、空調機の配管などに汎用されている、直通管、内面溝付き管、外面溝付き管、内外面溝付き管などが主たる対象となる。このため、本発明製造方法では、製造工程自体は、これら銅管の通常の製造方法と同じである。即ち、先ず、主としてりん脱酸銅などの純銅を溶解、鋳造後、熱間押出によって素管とする。この押出素管を、前記中間焼鈍を含む、レデューサ等の冷間圧延、抽伸、引き抜き、延伸、などを適宜組み合わせた冷間加工を行なって、銅管となし、仕上げ焼鈍して製品銅管とする。なお、内面や外面に溝が付いた銅管の場合には、上記冷間加工後、あるいは冷間加工途中に、必要により再度中間焼鈍 (部分焼鈍を含む) が施された上で内面や外面に溝が加工され、その後仕上げ焼鈍して製品銅管とする。製品銅管の形態はコイル状であっても、管状であっても良い。
【0021】
先ず、本発明で用いる純銅は、無酸素銅、タフピッチ銅、脱酸銅などが例示される。ただ、この中でも、冷凍機、空調機の配管などに汎用されているりん脱酸銅が銅管材料として好ましい。りん脱酸銅としては、伸銅品のJIS 規格に化学成分が規定される、C1201 のりん脱酸銅1A種 (P:0.004 〜0.015 質量% 、Cu:99.90質量% 以上) 、1220のりん脱酸銅1B種(P:0.015〜0.040 質量% 、Cu:99.90質量% 以上) 、1221のりん脱酸銅2 種(P:0.004〜0.040 質量% 、Cu:99.75質量% 以上) などが例示される。これらのりん脱酸銅を小径製品銅管のグレードに合わせて、適宜選択して用いる。
【0022】
P は上記含有量範囲で含まれることによって、銅管の集合組織を発達させない効果が有り、前記厳しい加工条件の拡管加工あるいは縮管加工での割れを抑制する効果がある。また、銅合金などは、合金元素が集合組織を発達させるため、前記割れが生じやすくなる。したがって、この点からも、りん脱酸銅を用いることが好ましい。
【0023】
これらの純銅の溶解、鋳造によって、得られる丸棒の銅鋳片は、加熱されて均質化熱処理を受けた後、熱間押出加工によって素管とされる。この押出素管は、銅管製造工程の生産性を高めるために、外径がΦ90mm以上の大口径の押出素管とすることが好ましい。
【0024】
次いで押出素管は、前記中間焼鈍を含む冷間加工される。この際、冷間加工の途中における銅管の中間焼鈍は、この中間焼鈍が施されるまでの銅管の加工度を制約するとともに、この中間焼鈍によって銅管をJIS の質別記号でO から1/8Hまでの範囲に調質することとする。因みに、本発明では、上記中間焼鈍が施されるまでの銅管の加工度を、前記中間焼鈍後で前記仕上げ焼鈍までの冷間加工における銅管の減面率で規定し、押出素管に対し10〜95% の減面率とする。
【0025】
この中間焼鈍後の減面率が10% 未満となって、中間焼鈍が施されるまでの冷間加工における銅管の減面率 (加工度) が、前記押出素管に対して90% を越えた場合、上記条件で中間焼鈍しても、拡管加工あるいは縮管加工での割れが生じやすくなる。即ち、650 ℃以下の比較的低い処理温度での中間焼鈍条件では、銅管組織の微細な再結晶化が進まず、未再結晶粒 (ファイバー状加工組織) が組織に多く残留する。このため、中間焼鈍前の銅管の加工度が高い場合には、中間焼鈍を650 ℃を越える高温で行なう必要がある。しかし、このような高温の処理温度で中間焼鈍を施すと、再結晶粒が著しく粗大化し、小径製品銅管の平均結晶粒径も200 μm を大きく越えて粗大化する。このように200 μm を大きく越えて粗大化した場合は、本発明でも、拡管率や縮管率が大きい拡管加工あるいは縮管加工の際に、割れが生じやすくなる。
【0026】
この冷間加工途中の中間焼鈍によって、銅管を調質する際には、焼鈍後の銅管を、JIS の質別記号でO から1/8Hまでの範囲とする。この質別記号は、拡管率や縮管率が大きい拡管加工あるいは縮管加工の際に、割れが生じない、銅管組織の微細な再結晶化の程度を示している。
【0027】
直接、前記割れが生じない再結晶化の程度を定量化することは、測定方法や精度を含めて、非常に難しい。また、銅管組織の定量化した再結晶化が、一義的に、前記拡管加工時あるいは縮管加工時の割れに対応するとは言い難く、銅管の表面状況などの他の影響因子が関係してくる側面がある。これに対して、上記質別記号は、これら他の因子の影響も包含しているためか、前記割れの傾向と良く対応している。このため、本発明では、上記質別記号により、前記割れが生じない再結晶化の程度を示す。焼鈍後の銅管を、JIS の質別記号で1/8Hを越える、1/4H、1/2Hなどの硬さとした場合には、前記割れが生じやすくなる。
【0028】
焼鈍後の銅管を、JIS の質別記号でO から1/8Hまでの範囲とするためには、上記加工度の銅管であることを前提に、前記した通り、小径製品銅管の平均結晶粒径も200 μm を越えて粗大化させないように、中間焼鈍を500 〜650 ℃の比較的低温で施すことが好ましい。中間焼鈍が500 ℃未満の低温となった場合には、上記加工度の銅管であることを前提にすると、銅管組織の微細な再結晶化が進まず、未再結晶粒が組織に多く残留して、前記割れを防止できない可能性が高い。
【0029】
中間焼鈍時間は、JIS の質別記号の選択と、この温度範囲から選択される温度とによって、適宜選択される。この中間焼鈍は、不活性ガス雰囲気など、非酸化性雰囲気で行なわれることが好ましい。
【0030】
このような条件で中間焼鈍された銅管を、更に冷間加工し、仕上げ焼鈍までに、最終的に、合計の減面率が、押出素管に対し99% 以上の減面率の冷間加工を施した、外径がΦ10mm以下の小径銅管とする。この小径銅管は、仕上げ焼鈍後、必要により、更に、強度向上のために冷間加工される場合を含めて、小径製品銅管とされる。仕上げ焼鈍自体は、光輝雰囲気下での光輝焼鈍など、常法による条件が選択される。そして、本発明小径製品銅管は、前記冷凍機、空調機などの配管として加工、組立される際に、更に拡管加工あるいは縮管加工が施される。
【0031】
なお、外径がΦ10mmを越えるような大きな外径の銅管や、押出素管に対し99% 未満の減面率の冷間加工を施した銅管の、拡管加工あるいは縮管加工は、比較的容易であり、割れが生じにくく、本発明では対象としない。
【0032】
【実施例】
次に、本発明の実施例を説明する。C1201 のりん脱酸銅1A種 (P:0.015 % 、Fe:0.002% 、Pb:0.001% 、Ni: <0.001%、Co: <0.001%、Sn: <0.001%、As: <0.001%、Sb: <0.001%、Zn: <0.001%、Cr: <0.001%、Mn: <0.001%、S:<0.001%、Ag: <0.001%、Si: <0.001%、Mg: <0.001%、その他不純物:0.004% 、O:24ppm 、残部Cu:99.90質量% 以上) を溶解、鋳造し、得られた丸棒の銅鋳片 (外径Φ300mm)を熱間押出温度に加熱後、熱間押出加工して、外径Φ94mm、肉厚10mmの押出素管を得た。この押出素管を、レデューサにて冷間圧延後、抽伸機で抽伸し、その後銅管の中間焼鈍を行なった。中間焼鈍後、更に抽伸機で抽伸後、450 ℃の温度で2 時間光輝仕上げ焼鈍して、仕上げ焼鈍までの段階で押出素管に対し99% 以上の減面率の冷間加工 (抽伸) を施した、外径Φ6.4mm 、肉厚0.8mm の小径製品銅管を製造した。
【0033】
そして、この小径製品銅管に、更に強度を得るための抽伸加工を施し、試験評価用の外径Φ6.35mm、肉厚0.8mm の小径製品銅管とした。なお、この仕上げ焼鈍後の抽伸加工を加えると、各例とも、最終的な減面率は約99.5% 程度となり、引張強度は約340MPa程度であった。なお、引張試験はJIS Z 2201にしたがって行うとともに、試験片形状はJIS 5 号試験片で行い、試験片長手方向が抽伸方向と一致するように作製した。したがって、各銅管の引張強さ (σB ) は抽伸方向に平行なL 方向の測定とした。また、クロスヘッド速度は5mm/分で、試験片が破断するまで一定の速度で行った。
【0034】
ここで、中間焼鈍を施さない比較例銅管 (表1 の比較例5)も製造したが、この比較例銅管も、仕上げ焼鈍までの段階で、他の例と同様に、押出素管に対し99.5% の減面率の抽伸を施した。
【0035】
この際、中間焼鈍が施されるまでの銅管の減面率 (押出素管に対する断面積比、%)、中間焼鈍温度、中間焼鈍後の銅管の調質度を変化させた。これらの条件を表1 に示す。但し、中間焼鈍が施されるまでの銅管の減面率は、中間焼鈍後仕上げ焼鈍までの減面率で記載している。なお、各例とも、仕上げ焼鈍までの段階での合計の減面率をほぼ同じとするために、中間焼鈍後の抽伸における減面率を各々変えている。
【0036】
これら得られた試験評価用の外径Φ6.35mm、肉厚0.8mm の小径製品銅管を、更に拡管加工した際の割れ発生度を求めた。また、これら小径製品銅管の平均結晶粒径は各例とも200 μm 以下であった。なお、平均結晶粒径は銅管の抽伸(L) 方向の結晶粒の平均径とした。より具体的には、銅管を0.05〜0.1mm 機械研磨した後電解エッチングした表面を光学顕微鏡を用いて平均結晶粒径を観察し、前記L 方向に、ラインインターセプト法で測定する。1 測定ライン長さは0.95mmとし、1 視野当たり各3 本で合計5 視野を観察することにより、全測定ライン長さを0.95×15mmとした。
【0037】
銅管を拡管加工した際の割れ発生度は、各例とも、長手方向にランダムに採取した10本の試験用銅管の各管端部にマンドレルを挿入して、拡管率200%で各管端部を拡管加工した際の、各管端部における割れ発生状況によって評価した。各例とも、試験銅管の内、1 本でも管端部に割れが発生している場合を×、1 本でも管端部に割れの前段階としての肌荒れが発生している (割れが発生する可能性がある) 場合を△、10本とも管端部に割れも肌荒れも発生していない場合を○、として評価した。これらの結果も表1 に示す。
【0038】
表1 のように、発明例1 〜4 は、冷間圧延後の抽伸の途中で銅管の中間焼鈍を行ない、この中間焼鈍によって銅管をJIS の質別記号でO から1/8Hまでの範囲に調質し、この中間焼鈍後から仕上げ焼鈍までの銅管の減面率を押出素管に対し10〜95% の減面率とすることで、中間焼鈍が施されるまでの銅管の減面率を制御している。この上で、押出素管に対し99% 以上の減面率の冷間加工を施した外径Φ10mm以下の小径製品銅管を製造している。
【0039】
このような発明例1 〜4 は、表1 から明らかな通り、前記拡管加工試験においても、銅管に割れが生じず、拡管性に優れていることが分かる。この結果から、同程度の減面率である縮管加工においても割れが発生しないことが予想でき、縮管性にも優れていると言うことができる。
【0040】
これに対して、上記中間焼鈍を施さない、言わば従来例に相当する比較例5 は前記拡管加工試験において割れが生じている。
【0041】
また、中間焼鈍後から仕上げ焼鈍までの銅管の減面率を押出素管に対し93% の減面率とし、中間焼鈍が施されるまでの銅管の減面率を発明例と同じく適正に制御した比較例6 は、中間焼鈍温度が400 ℃と低過ぎ、中間焼鈍による銅管の質別記号が1/4 となっており、前記拡管加工試験において割れが生じている。
【0042】
更に、中間焼鈍後から仕上げ焼鈍までの銅管の減面率が99.0% と高過ぎ、中間焼鈍が施されるまでの銅管の減面率が低過ぎる比較例7 は、550 ℃の中間焼鈍条件として、中間焼鈍による銅管の質別記号がO であっても、前記拡管加工試験において割れが生じている。
【0043】
また、中間焼鈍後から仕上げ焼鈍までの銅管の減面率が5.0%と低過ぎ、中間焼鈍が施されるまでの銅管の減面率が高過ぎる比較例8 は、630 ℃の中間焼鈍条件として、中間焼鈍による銅管の質別記号がO であっても、前記拡管加工試験において割れが生じている。
【0044】
したがって、これらの実施例から、中間焼鈍、中間焼鈍による銅管の質別記号、中間焼鈍後の銅管の減面率などの本発明の各要件の臨界的な意義が分かる。
【0045】
【表1】

Figure 2004211115
【0046】
【発明の効果】
本発明によれば、押出素管に対し99% 以上の大きな減面率の冷間加工を施した、外径がΦ10mm以下の小径銅管であって、拡管率や縮管率が大きい厳しい加工条件の拡管加工あるいは縮管加工などの際に割れが生じにくい、銅管の製造方法を提供することができる。したがって、銅管の前記拡管加工用途あるいは縮管加工用途への拡大を図ることができる点で、多大な工業的な価値を有するものである。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a copper tube in which a crack is prevented from occurring when the copper tube is further expanded or contracted.
[0002]
[Prior art]
A general method of manufacturing a copper pipe generally used for a refrigerator, an air conditioner, and the like is as follows. In other words, pure copper such as phosphorous deoxidized copper is melted, cast, and then made into a raw tube by hot extrusion, which is cold-rolled by a reducer or the like, drawn (drawn, drawn), finished, annealed, and finished. It is a copper tube. This product copper tube is processed and assembled as piping for the refrigerator, the air conditioner, and the like, including the case where the product copper tube is further drawn and reduced in diameter after the finish annealing.
[0003]
In recent years, with the demand from refrigerators, air conditioners, and the like, these copper tubes have been increasingly reduced in diameter, and small-diameter copper tubes having an outer diameter of Φ10 mm or less have been widely used. In addition, there is an increasing number of cases where these small-diameter copper tubes are further expanded or contracted, and then assembled as piping for the refrigerator, the air conditioner, or the like.
[0004]
However, when these small-diameter copper pipes are subjected to such pipe expansion processing or contraction processing, cracks are likely to occur in the copper pipe processing portion. This crack is particularly likely to occur when processing conditions for pipe expansion or contraction are severe, such as when the pipe expansion or contraction rate is large.
[0005]
In addition, the occurrence of the crack tends to be more remarkable as the copper pipe has a smaller diameter. In recent years, small-diameter copper tubes use large-diameter extruded raw tubes in order to improve the productivity of copper tubes, and have a surface reduction rate (cross-sectional area ratio to extruded raw tubes) of 99% or more compared to extruded raw tubes. It is manufactured with a large degree of cold work. This problem of cracking becomes remarkable in the case of a small-diameter product copper pipe having an outer diameter of not more than Φ10 mm, which has such a large degree of cold work.
[0006]
The problem of the cracks is that, after the finish annealing, regardless of whether or not it is further drawn, the crystal grains of the small-diameter product copper pipe to be expanded or contracted are significantly coarsened or unrecrystallized grains ( (Fibrous processed structure) tends to be significant when remaining in the structure.
[0007]
Conventionally, in order to make the crystal grains of the product copper tube into dense recrystallized grains, including a small-diameter product copper tube having an outer diameter of 10 mm or less, intermediate annealing of the copper tube during the drawing after the cold rolling. (See, for example, Patent Documents 1 and 2).
[0008]
[Patent Document 1]
JP-A-2001-96337 (pages 1 to 5)
[Patent Document 2]
JP 2001-96338 A (Pages 1 to 5)
[0009]
Also, intermediate annealing conditions at a temperature of 400 to 600 ° C., which is lower than the intermediate annealing conditions of Patent Documents 1 and 2, are known (for example, see Patent Document 3).
[0010]
[Patent Document 3]
JP-A-11-92898 (pages 1 to 6)
[0011]
[Problems to be solved by the invention]
However, the methods described in Patent Documents 1 and 2 are not the production methods presupposed in the present invention in which pure copper such as phosphorous deoxidized copper is melted, cast, and then extruded into a raw tube by hot extrusion. These production methods, after dissolving the phosphorus deoxidized copper, by continuous casting, omitting hot extrusion, directly into a relatively small diameter tube with an outer diameter of about Φ36mm, then drawing, the outer diameter of Φ10mm The following small-diameter product copper tubes shall be used.
[0012]
For this reason, in the methods of Patent Documents 1 and 2, etc., the reduction in area of the small-diameter product copper tube in cold working does not exceed 90% with respect to the continuous casting tube. Accordingly, the present invention provides a large-diameter extruded raw tube having an outer diameter of Φ90 mm or more, which is subjected to a large cold reduction process with a reduction in area of 99% or more to obtain a small-diameter product copper tube having an outer diameter of Φ10 mm or less. As compared with the manufacturing method presupposed in the above, the working ratio in the cold working is remarkably low.
[0013]
As a result, the copper tube is relatively easily and finely recrystallized by the intermediate annealing when the cold working degree of the small-diameter product copper tube is low as in Patent Documents 1 and 2 and the like.
[0014]
However, in a manufacturing method such as a manufacturing method presupposed by the present invention, in which the degree of cold working is increased to obtain a small-diameter product copper tube having an outer diameter of Φ10 mm or less, the above Patent Documents 1 and 2 are preferred. When the intermediate annealing at 650-880 ° C. is performed, the recrystallized grains are rather coarsened. As a result, cracks are likely to occur on the contrary in the case of the above-mentioned pipe expansion or contraction under severe processing conditions where the pipe expansion or contraction rate is large.
[0015]
Furthermore, the intermediate annealing conditions at lower temperatures known in Patent Document 3 and the like are used for the purpose of removing the processing strain accumulated in the previous process, reducing the oxidation discoloration portion, and processing remaining on the inner and outer surfaces of the copper tube. It did not leave the area such as oil removal. That is, the relationship between the intermediate annealing conditions and the cracks generated by the pipe expansion or contraction processing, which is the subject of the present invention, in other words, the solutions for the cracks generated by the pipe expansion or contraction processing have been described so far. The fact was unknown.
[0016]
The present invention has been made in view of such circumstances, and an object of the present invention is to provide an extruded raw tube that has been subjected to cold working with a large area reduction of 99% or more and has a small diameter of 10 mm or less in outer diameter. An object of the present invention is to provide a method for producing a copper tube, which is a copper tube and is less likely to be cracked even during the tube expansion or the tube reduction having a large tube expansion ratio or a tube reduction ratio.
[0017]
[Means for Solving the Problems]
In order to achieve this object, the gist of the method for producing a copper tube of the present invention is that a pure copper extruded raw tube is subjected to cold working with a reduction of area of 99% or more and finish-annealed to a small diameter of Φ10 mm or less. In producing a copper tube which is a copper tube, which is further subjected to a tube expansion process or a contraction tube process, an intermediate annealing of the copper tube is performed in the middle of the cold working, and the copper tube is subjected to JIS according to the intermediate annealing. With a temper symbol of O and temper in the range of 1 / 8H, the area reduction rate of the copper tube in the cold working until the finish annealing after this intermediate annealing is 10-95% with respect to the extruded raw tube. It is to be.
[0018]
According to the knowledge of the present inventors, when producing a small-diameter product copper tube having an outer diameter of Φ10 mm or less, which has been subjected to cold working with a large area reduction rate of 99% or more with respect to an extruded raw tube, intermediate annealing is performed. If the copper pipe is subjected to intermediate annealing to reduce the surface reduction rate (working rate) of the copper pipe until it is processed and further temper the copper pipe in the range from O to 1 / 8H with the JIS temper symbol, a small diameter of Φ10mm or less can be obtained. It has been found that the problem of cracking can be solved regardless of the average crystal grain size of the copper tube even if the average crystal grain size of the copper tube is large or the average crystal grain size of the small-diameter copper tube.
[0019]
Intermediate annealing under the conditions of the present invention is particularly effective in preventing cracking of small-diameter product copper pipes during expansion or contraction, which is a severe processing condition such as a large expansion or contraction rate.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
The copper pipe to which the present invention is applied is mainly a direct pipe, an inner grooved pipe, an outer grooved pipe, an inner and outer grooved pipe, etc., which are generally used for refrigerators and air conditioner pipes. For this reason, in the manufacturing method of the present invention, the manufacturing process itself is the same as the ordinary manufacturing method of these copper tubes. That is, first, pure copper such as phosphorous deoxidized copper is melted and cast, and then a raw tube is formed by hot extrusion. This extruded raw tube, including the intermediate annealing, cold rolling of a reducer or the like, drawing, drawing, stretching, etc., are subjected to cold working appropriately combined, etc., to form a copper tube, finish annealing and product copper tube. I do. In the case of a copper tube with a groove on the inner or outer surface, after the above-mentioned cold working or during the cold working, intermediate annealing (including partial annealing) is performed again if necessary, and then the inner or outer surface is processed. A groove is machined, and then finish annealing is performed to obtain a product copper tube. The form of the product copper tube may be a coil shape or a tubular shape.
[0021]
First, pure copper used in the present invention is exemplified by oxygen-free copper, tough pitch copper, deoxidized copper and the like. However, among them, phosphorus deoxidized copper, which is widely used for piping of refrigerators and air conditioners, is preferable as a copper tube material. Phosphorus-deoxidized copper, whose chemical components are specified in the JIS standard for copper products, C1201 phosphorous deoxidized copper 1A class (P: 0.004 to 0.015% by mass, Cu: 99.90% by mass or more), Copper oxide 1B type (P: 0.015 to 0.040% by mass, Cu: 99.90% by mass or more), 1221 phosphorous deoxidized copper 2 type (P: 0.004 to 0.040% by mass, Cu: 99.75% by mass or more) . These phosphorus deoxidized copper are appropriately selected and used in accordance with the grade of the small-diameter product copper tube.
[0022]
When P is contained in the above content range, it has the effect of preventing the development of the texture of the copper pipe, and has the effect of suppressing cracking in the pipe expansion or contraction processing under the strict processing conditions. Further, in a copper alloy or the like, since the alloy element develops a texture, the crack is easily generated. Therefore, from this point, it is preferable to use phosphorus deoxidized copper.
[0023]
The copper slab of the round bar obtained by melting and casting these pure coppers is heated and subjected to a homogenizing heat treatment, and then turned into a raw tube by hot extrusion. This extruded raw tube is preferably a large-diameter extruded raw tube having an outer diameter of 90 mm or more in order to increase the productivity of the copper tube manufacturing process.
[0024]
Next, the extruded tube is subjected to cold working including the intermediate annealing. At this time, the intermediate annealing of the copper tube during the cold working limits the degree of work of the copper tube until this intermediate annealing is performed, and the intermediate annealing causes the copper tube to be changed from O with a JIS classification symbol of O. Temper up to 1 / 8H. Incidentally, in the present invention, the working degree of the copper tube until the above-mentioned intermediate annealing is performed is defined by the area reduction rate of the copper tube in the cold working after the intermediate annealing until the finish annealing, and the extruded raw tube is On the other hand, the area reduction rate is 10 to 95%.
[0025]
The area reduction after the intermediate annealing is less than 10%, and the area reduction (working degree) of the copper tube in the cold working until the intermediate annealing is performed is 90% of the extruded raw tube. If it exceeds, even if it is subjected to intermediate annealing under the above conditions, cracks are liable to occur in pipe expansion or contraction. That is, under the intermediate annealing condition at a relatively low processing temperature of 650 ° C. or less, fine recrystallization of the copper tube structure does not proceed, and many unrecrystallized grains (fibrous processed structure) remain in the structure. Therefore, when the workability of the copper tube before the intermediate annealing is high, it is necessary to perform the intermediate annealing at a high temperature exceeding 650 ° C. However, when the intermediate annealing is performed at such a high processing temperature, the recrystallized grains are remarkably coarsened, and the average crystal grain size of the small-diameter product copper tube is significantly larger than 200 μm. In the case of coarsening exceeding 200 μm as described above, cracks are liable to occur in the present invention in the case of pipe expansion or contraction in which the pipe expansion or contraction rate is large.
[0026]
When tempering a copper tube by this intermediate annealing during cold working, the copper tube after annealing shall be in the range of O to 1 / 8H in JIS temper symbol. This temper symbol indicates the degree of fine recrystallization of the copper tube structure that does not cause cracking during pipe expansion or contraction with a large pipe expansion or contraction rate.
[0027]
It is very difficult to directly quantify the degree of recrystallization in which the crack does not occur, including the measurement method and accuracy. In addition, it is difficult to say that the quantified recrystallization of the copper tube structure uniquely corresponds to the cracks at the time of the tube expansion or the tube reduction, and other influence factors such as the surface condition of the copper tube are involved. There are aspects to come. On the other hand, the above-mentioned gender symbol corresponds well to the tendency of the crack, probably because it includes the influence of these other factors. For this reason, in the present invention, the degree of recrystallization in which the crack does not occur is indicated by the temper symbol. If the copper pipe after annealing has a hardness of more than 1 / 8H, 1 / 4H, 1 / 2H or the like as indicated by the JIS quality symbol, the cracks are likely to occur.
[0028]
In order for the annealed copper pipe to be in the range of O to 1 / 8H in the JIS quality symbol, as described above, the average of small diameter Intermediate annealing is preferably performed at a relatively low temperature of 500 to 650 ° C. so that the crystal grain size does not increase beyond 200 μm. When the intermediate annealing is performed at a low temperature of less than 500 ° C, fine recrystallization of the copper tube structure does not proceed, assuming that the copper tube has the above-mentioned workability, and many unrecrystallized grains are present in the structure. There is a high possibility that the cracks cannot be prevented from remaining.
[0029]
The intermediate annealing time is appropriately selected depending on the selection of the JIS quality symbol and the temperature selected from this temperature range. This intermediate annealing is preferably performed in a non-oxidizing atmosphere such as an inert gas atmosphere.
[0030]
The copper tube intermediately annealed under these conditions is further cold-worked, and by the end of the final annealing, the total area reduction is more than 99% of that of the extruded raw pipe. A small-diameter copper tube with an outer diameter of 10 mm or less that has been processed. This small-diameter copper tube is made into a small-diameter product copper tube after finish annealing, including a case where it is cold-worked for further improving strength as necessary. For the finish annealing itself, conditions according to a conventional method such as bright annealing in a bright atmosphere are selected. When the small-diameter product copper tube of the present invention is processed and assembled as piping for the refrigerator, the air conditioner, or the like, it is further expanded or contracted.
[0031]
The expansion or contraction of copper pipes with a large outside diameter exceeding Φ10 mm or copper pipes with cold reduction of less than 99% of the extruded raw pipe are compared. It is easy to achieve, cracking hardly occurs, and is not targeted in the present invention.
[0032]
【Example】
Next, examples of the present invention will be described. Phosphorus deoxidized copper 1A species of C1201 (P: 0.015%, Fe: 0.002%, Pb: 0.001%, Ni: <0.001%, Co: <0.001%, Sn: <0.001%, As: <0.001%, Sb: <0.001%, Zn: <0.001%, Cr: <0.001%, Mn: <0.001%, S: <0.001%, Ag: <0.001%, Si: <0.001%, Mg: <0.001%, Other impurities: 0.004 %, O: 24 ppm, the balance Cu: 99.90 mass% or more) was melted and cast, and the obtained copper slab of the round bar (outer diameter Φ300 mm) was heated to a hot extrusion temperature, and then hot-extruded. An extruded raw tube having an outer diameter of 94 mm and a wall thickness of 10 mm was obtained. The extruded tube was cold-rolled by a reducer, drawn by a drawing machine, and then subjected to intermediate annealing of the copper tube. After intermediate annealing, after drawing with a drawing machine, bright finish annealing is performed at 450 ° C for 2 hours, and cold work (drawing) with a reduction of 99% or more of the area of the extruded raw tube until the finish annealing is performed. A small-diameter product copper tube having an outer diameter of 6.4 mm and a wall thickness of 0.8 mm was manufactured.
[0033]
Then, the small-diameter product copper tube was subjected to a drawing process for obtaining further strength, thereby obtaining a small-diameter product copper tube having an outer diameter of 6.35 mm and a wall thickness of 0.8 mm for test evaluation. In addition, when drawing was performed after the finish annealing, the final area reduction rate was about 99.5% and the tensile strength was about 340 MPa in each case. In addition, the tensile test was performed according to JIS Z 2201, and the test piece shape was performed using a JIS No. 5 test piece, and the test piece was manufactured such that the longitudinal direction of the test piece coincided with the drawing direction. Therefore, the tensile strength (σ B ) of each copper tube was measured in the L direction parallel to the drawing direction. The crosshead speed was 5 mm / min, and the test was performed at a constant speed until the test piece broke.
[0034]
Here, a comparative example copper tube not subjected to intermediate annealing was also manufactured (Comparative Example 5 in Table 1), but this comparative example copper tube was also formed into an extruded raw tube in the stage until finish annealing, as in the other examples. On the other hand, a 99.5% reduction in area was drawn.
[0035]
At this time, the area reduction ratio (cross-sectional area ratio to the extruded raw tube,%) of the copper tube until the intermediate annealing was performed, the intermediate annealing temperature, and the tempering degree of the copper tube after the intermediate annealing were changed. Table 1 shows these conditions. However, the area reduction rate of the copper tube before the intermediate annealing is given is the area reduction rate from the intermediate annealing to the finish annealing. In each example, in order to make the total area reduction rate up to the stage of the final annealing substantially the same, the area reduction rate in the drawing after the intermediate annealing is changed.
[0036]
The degree of cracking when the obtained small-diameter product copper tube having an outer diameter of 6.35 mm and a wall thickness of 0.8 mm for test evaluation was further expanded was determined. In addition, the average crystal grain size of these small-diameter product copper tubes was 200 μm or less in each case. The average crystal grain size was the average diameter of crystal grains in the drawing (L) direction of the copper tube. More specifically, the surface of the copper tube that has been mechanically polished by 0.05 to 0.1 mm and then electrolytically etched is observed for the average crystal grain size using an optical microscope, and is measured in the L direction by a line intercept method. 1 The length of the measurement line was 0.95 mm, and the total length of the measurement line was 0.95 x 15 mm by observing a total of 5 visual fields with 3 lines per visual field.
[0037]
In each case, the degree of cracking when the copper tube was expanded was determined by inserting a mandrel into each tube end of 10 test copper tubes randomly sampled in the longitudinal direction, and expanding each tube at an expansion ratio of 200%. Evaluation was made based on the state of occurrence of cracks at the ends of each pipe when the ends were expanded. In each case, x indicates that at least one of the test copper tubes had cracks at the pipe end, and at least one of the test copper pipes had rough skin as a stage prior to cracking at the pipe end. (There is a possibility of occurrence of cracking). The case was evaluated as △, and the case where no crack or rough surface occurred at the pipe end was evaluated as ○. Table 1 also shows these results.
[0038]
As shown in Table 1, the invention examples 1 to 4 perform the intermediate annealing of the copper tube during the drawing after the cold rolling, and the copper tube is reduced from O to 1 / 8H by the JIS quality symbol by the intermediate annealing. After the tempering to the range, the area reduction rate of the copper tube from this intermediate annealing to the finish annealing is set to 10 to 95% of the extruded raw tube, so that the copper tube until the intermediate annealing is performed Is controlled. On this basis, a small-diameter product copper tube with an outer diameter of Φ10 mm or less, which has been subjected to cold working with a surface reduction rate of 99% or more on the extruded raw tube, is manufactured.
[0039]
As is apparent from Table 1, such invention examples 1 to 4 do not crack in the copper pipe even in the pipe expansion test, and are excellent in pipe expandability. From this result, it can be expected that no crack is generated even in the tube shrinking with the same area reduction rate, and it can be said that the tube is excellent in tube shrinkability.
[0040]
On the other hand, in Comparative Example 5, which was not subjected to the above-described intermediate annealing, that is, a conventional example, cracks occurred in the pipe expansion test.
[0041]
The area reduction rate of the copper pipe from the intermediate annealing to the finish annealing was set to 93% of the area of the extruded raw pipe, and the area reduction rate of the copper pipe until the intermediate annealing was applied was the same as in the invention. In Comparative Example 6, the intermediate annealing temperature was too low, 400 ° C., and the temper symbol of the copper tube by the intermediate annealing was / 4, and cracks occurred in the pipe expansion test.
[0042]
Furthermore, the reduction rate of the copper pipe from the intermediate annealing to the finish annealing was too high at 99.0%, and the reduction rate of the copper pipe before the intermediate annealing was applied was too low. As a condition, even if the temper symbol of the copper tube obtained by the intermediate annealing is O 2, a crack occurs in the pipe expansion test.
[0043]
In addition, the reduction rate of the copper pipe from the intermediate annealing to the finish annealing was too low at 5.0%, and the reduction rate of the copper pipe before the intermediate annealing was performed was too high. As a condition, even if the temper symbol of the copper tube obtained by the intermediate annealing is O 2, a crack occurs in the pipe expansion test.
[0044]
Therefore, these examples show the critical significance of each requirement of the present invention, such as intermediate annealing, the symbol of the temper of the copper tube by the intermediate annealing, and the area reduction rate of the copper tube after the intermediate annealing.
[0045]
[Table 1]
Figure 2004211115
[0046]
【The invention's effect】
According to the present invention, an extruded raw tube is a small-diameter copper tube having an outer diameter of 10 mm or less subjected to cold working with a large area reduction rate of 99% or more, and has a severe expansion rate and a large contraction rate. It is possible to provide a method for manufacturing a copper pipe, in which cracks are less likely to occur during expansion or contraction of the pipe under conditions. Therefore, the copper pipe has a great industrial value in that it can be expanded to the above-mentioned pipe expanding and contracting applications.

Claims (3)

純銅の押出素管に対し99% 以上の減面率の冷間加工を施して仕上げ焼鈍した外径がΦ10mm以下の小径銅管であって、更に拡管加工あるいは縮管加工が施されて使用される銅管を製造するに際し、前記冷間加工の途中で銅管の中間焼鈍を行ない、この中間焼鈍によって銅管をJIS の質別記号でO から1/8Hまでの範囲に調質するとともに、この中間焼鈍後で前記仕上げ焼鈍までの冷間加工における銅管の減面率を前記押出素管に対し10〜95% とすることを特徴とする銅管の製造方法。This is a small-diameter copper tube with an outer diameter of Φ10 mm or less that has been subjected to cold working with a surface reduction rate of 99% or more on a pure copper extruded raw tube and finish annealed, and is used after further expanding or contracting. In producing a copper tube, an intermediate annealing of the copper tube is performed in the middle of the cold working, and the copper tube is tempered by the intermediate annealing to a range of O to 1 / 8H by a JIS temper symbol, A method for producing a copper pipe, wherein a reduction in area of the copper pipe in the cold working from the intermediate annealing to the finish annealing is 10 to 95% of the extruded raw pipe. 前記中間焼鈍が450 〜650 ℃の温度で施される請求項1に記載の銅管の製造方法。The method according to claim 1, wherein the intermediate annealing is performed at a temperature of 450 to 650 ° C. 前記純銅がりん脱酸銅である請求項1または2に記載の銅管の製造方法。The method for producing a copper tube according to claim 1, wherein the pure copper is phosphorus deoxidized copper.
JP2002378901A 2002-12-27 2002-12-27 Copper tube manufacturing method Expired - Fee Related JP4150585B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002378901A JP4150585B2 (en) 2002-12-27 2002-12-27 Copper tube manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002378901A JP4150585B2 (en) 2002-12-27 2002-12-27 Copper tube manufacturing method

Publications (2)

Publication Number Publication Date
JP2004211115A true JP2004211115A (en) 2004-07-29
JP4150585B2 JP4150585B2 (en) 2008-09-17

Family

ID=32815578

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002378901A Expired - Fee Related JP4150585B2 (en) 2002-12-27 2002-12-27 Copper tube manufacturing method

Country Status (1)

Country Link
JP (1) JP4150585B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151422A (en) * 2006-12-18 2008-07-03 Daikin Ind Ltd Heat exchanger
JP2011168846A (en) * 2010-02-19 2011-09-01 Kobe Steel Ltd Copper tube for heat exchanger having excellent fracture strength and bending workability
WO2012128240A1 (en) * 2011-03-23 2012-09-27 株式会社住軽伸銅 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN103486342A (en) * 2013-10-09 2014-01-01 苏州市吴中区曙光铜管厂 Copper pipe
CN103567252A (en) * 2012-07-19 2014-02-12 常州市武进长虹结晶器有限公司 Thick-wall copper pipe production process
CN113578998A (en) * 2021-07-21 2021-11-02 江西铜业集团有限公司 Ultrathin-wall oxygen-free copper pipe and preparation method thereof
CN114101371A (en) * 2021-11-09 2022-03-01 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band
CN115584410A (en) * 2022-10-11 2023-01-10 沈阳宏远电磁线股份有限公司 High-purity oxygen-free copper pipe and preparation method and application thereof

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008151422A (en) * 2006-12-18 2008-07-03 Daikin Ind Ltd Heat exchanger
JP2011168846A (en) * 2010-02-19 2011-09-01 Kobe Steel Ltd Copper tube for heat exchanger having excellent fracture strength and bending workability
CN103415643B (en) * 2011-03-23 2015-06-10 株式会社住轻伸铜 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
KR101385801B1 (en) 2011-03-23 2014-04-16 가부시키가이샤 스미케이 신도 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN103415643A (en) * 2011-03-23 2013-11-27 株式会社住轻伸铜 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP5132845B2 (en) * 2011-03-23 2013-01-30 株式会社住軽伸銅 Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
WO2012128240A1 (en) * 2011-03-23 2012-09-27 株式会社住軽伸銅 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN103567252B (en) * 2012-07-19 2015-09-02 常州市武进长虹结晶器有限公司 The manufacture craft of heavy wall copper pipe
CN103567252A (en) * 2012-07-19 2014-02-12 常州市武进长虹结晶器有限公司 Thick-wall copper pipe production process
CN103486342A (en) * 2013-10-09 2014-01-01 苏州市吴中区曙光铜管厂 Copper pipe
CN113578998A (en) * 2021-07-21 2021-11-02 江西铜业集团有限公司 Ultrathin-wall oxygen-free copper pipe and preparation method thereof
CN113578998B (en) * 2021-07-21 2024-02-02 江西铜业集团有限公司 Ultrathin-wall oxygen-free copper pipe and preparation method thereof
CN114101371A (en) * 2021-11-09 2022-03-01 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band
CN114101371B (en) * 2021-11-09 2023-05-30 中铝洛阳铜加工有限公司 Processing method of large-caliber thick-wall copper pipe for annular conduction band
CN115584410A (en) * 2022-10-11 2023-01-10 沈阳宏远电磁线股份有限公司 High-purity oxygen-free copper pipe and preparation method and application thereof
CN115584410B (en) * 2022-10-11 2023-07-21 沈阳宏远电磁线股份有限公司 High-purity oxygen-free copper tube and preparation method and application thereof

Also Published As

Publication number Publication date
JP4150585B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
JP4694527B2 (en) Copper alloy tube for heat-resistant and high-strength heat exchanger and method for producing the same
EP0459909B1 (en) Process for manufacturing corrosion-resistant seamless titanium alloy tubes and pipes
KR101053007B1 (en) Copper Alloy Pipes for Heat Exchangers
JP2009030153A (en) Process for production of high alloy steel pipe
JP4332889B2 (en) Method for producing magnesium-based alloy compact
JP2009242837A (en) Tool-wearing reduced copper alloy cast billet and copper alloy tube
JP5111922B2 (en) Copper alloy tube for heat exchanger
JP4150585B2 (en) Copper tube manufacturing method
KR20160120315A (en) Copper alloy material and copper alloy pipe
JP4818179B2 (en) Copper alloy tube
JP6388398B2 (en) Internal grooved tube for heat exchanger and its manufacturing method
JP4900385B2 (en) High alloy rolling mandrel bar, surface treatment method and manufacturing method thereof, and method of operating seamless steel pipe manufacturing apparatus
JP5078368B2 (en) Method for producing copper alloy tube for heat exchanger
JP5107841B2 (en) Copper alloy tube for heat exchangers with excellent bending workability
JP5451217B2 (en) Manufacturing method of internally grooved tube
CN105143479A (en) Copper alloy seamless tube for heat transfer tube
JP5792696B2 (en) High strength copper alloy tube
JP3735101B2 (en) Magnesium-based alloy pipe manufacturing method
JP2014109040A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
JP2006009053A (en) Brass material having excellent stress corrosion cracking resistance and its production method
JP2022025817A (en) Copper alloy tube and manufacturing method thereof
JP5336296B2 (en) Copper alloy tube for heat exchangers with excellent workability
JP2005089788A (en) Aluminum alloy piping material for heat exchanger having excellent corrosion resistance, and its manufacturing method
JPH0751733A (en) Manufacture of mo or mo alloy seamless capillary tube
JP2023042797A (en) Tube with inner groove and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080415

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4150585

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees