WO2012128240A1 - Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger - Google Patents

Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger Download PDF

Info

Publication number
WO2012128240A1
WO2012128240A1 PCT/JP2012/056966 JP2012056966W WO2012128240A1 WO 2012128240 A1 WO2012128240 A1 WO 2012128240A1 JP 2012056966 W JP2012056966 W JP 2012056966W WO 2012128240 A1 WO2012128240 A1 WO 2012128240A1
Authority
WO
WIPO (PCT)
Prior art keywords
seamless
tube
coil
seamless pipe
level
Prior art date
Application number
PCT/JP2012/056966
Other languages
French (fr)
Japanese (ja)
Inventor
勝政 平工
正明 小平
聖健 澤
Original Assignee
株式会社住軽伸銅
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社住軽伸銅 filed Critical 株式会社住軽伸銅
Priority to KR1020137023313A priority Critical patent/KR101385801B1/en
Priority to CN201280011837.5A priority patent/CN103415643B/en
Priority to JP2012533811A priority patent/JP5132845B2/en
Publication of WO2012128240A1 publication Critical patent/WO2012128240A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/08Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/047Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F1/00Tubular elements; Assemblies of tubular elements
    • F28F1/10Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
    • F28F1/40Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only inside the tubular element
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F21/00Constructions of heat-exchange apparatus characterised by the selection of particular materials
    • F28F21/08Constructions of heat-exchange apparatus characterised by the selection of particular materials of metal
    • F28F21/081Heat exchange elements made from metals or metal alloys
    • F28F21/085Heat exchange elements made from metals or metal alloys from copper or copper alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes

Definitions

  • the present invention relates to a seamless pipe made of phosphorous-deoxidized copper used for heat transfer pipes or refrigerant pipes for air conditioner heat exchangers, refrigerators and the like.
  • heat pipes for air conditioners such as room air conditioners and packaged air conditioners, and heat transfer pipes or refrigerant pipes for refrigerators, etc.
  • heat pipes for air conditioners such as room air conditioners and packaged air conditioners
  • heat transfer pipes or refrigerant pipes for refrigerators etc.
  • various physical properties such as strength, workability, and heat transfer properties.
  • JIS C1220T phosphorus-deoxidized copper pipe
  • Patent Document 1 Japanese Unexamined Patent Publication No. 2003-268467 discloses a seamless pipe made of a copper alloy having high strength.
  • the strength is improved by work hardening when performing strong processing called hairpin bending (U bending) in the process of assembling to the heat exchanger.
  • hairpin bending U bending
  • the yield strength is about 200 MPa and the elongation is less than 30%, which causes a problem that normal bending cannot be performed.
  • wrinkles are generated in the inner part of the bend, the bend is flattened, and the value in appearance quality is significantly impaired. In extreme cases, breakage occurs.
  • the diameter and thickness of the heat transfer tube are reduced and the hairpin bending pitch is small and the hairpin bending conditions are severe, it is increasingly difficult to perform normal hairpin bending.
  • the present invention is to provide a seamless tube made of phosphorus-deoxidized copper that has high strength and can perform hairpin bending normally.
  • the present inventors have specified the total degree of work in cold working in the process of manufacturing seamless pipes by processing phosphorous deoxidized copper.
  • the range, the holding temperature of the final annealing by a specific range the tensile strength (sigma B) despite the high 0.2% proof stress (sigma 0.2) is low, elongation ( A seamless pipe having a high ⁇ ) is obtained, and the tensile strength ( ⁇ B ) is set to a specific range, and the 0.2% proof stress ( ⁇ 0.2 ) and the elongation ( ⁇ ) are set to a specific range.
  • the present seamless pipe has been found to be able to bend hairpin normally despite its high strength, and has completed the present invention.
  • the present invention (1) is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger,
  • the material of the seamless pipe is phosphorus deoxidized copper
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe is 0.040 or less
  • the seamless pipe has a tensile strength ( ⁇ B ) of 245 MPa or more, 0.2% proof stress ( ⁇ 0.2 ) is 140 MPa or less, Elongation ( ⁇ ) is 40% or more
  • a seamless tube characterized by the above is provided.
  • this invention (2) is a coil produced by winding a seamless pipe,
  • the material of the seamless pipe wound around the coil is phosphorus deoxidized copper,
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the coil is 0.040 or less,
  • the tensile strength ( ⁇ B ) of the seamless pipe wound around the coil is 245 MPa or more, 0.2% proof stress ( ⁇ 0.2 ) is 130 MPa or less, Elongation ( ⁇ ) is 40% or more,
  • the coil characterized by this is provided.
  • the present invention (3) is a level-wound coil in which the coil is produced by arranging multiple layers in a cylindrical shape.
  • the material of the seamless pipe wound around the level wound coil is phosphorous deoxidized copper,
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less,
  • the tensile strength ( ⁇ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more, 0.2% proof stress ( ⁇ 0.2 ) is 130 MPa or less, Elongation ( ⁇ ) is 40% or more,
  • a level-wound coil characterized by the above is provided.
  • the material is phosphorous deoxidized copper
  • the ratio (t / D) of the thickness (mm) to the outer diameter (mm) is 0.040 or less
  • the tensile strength ( ⁇ B ) is 245 MPa or more
  • 0.2% proof stress ( ⁇ 0.2 ) is 120 MPa or less
  • a level-wound coil-producing seamless pipe having an elongation ( ⁇ ) of 40% or more is aligned in a cylindrical shape.
  • the present invention provides a method for producing a level-wound coil that is wound to produce a level-wound coil.
  • the present invention (5) comprises hairpin bending the seamless pipe of the present invention (1), the coil of the present invention (2), or the seamless pipe unwound from the level wound coil of the present invention (3), and aluminum fins.
  • the cross fin tube heat exchanger obtained by assembling to is provided.
  • the present invention (6) is a method of bending the seamless tube unrolled from the seamless tube of the present invention (1), the coil of the present invention (2) or the level wound coil of the present invention (3) by hairpin bending,
  • a cross fin tube type heat exchanger is obtained by assembling to a cross fin tube type heat exchanger.
  • the seamless tube of the present invention is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger
  • the material of the seamless pipe is phosphorus deoxidized copper
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe is 0.040 or less
  • the seamless pipe has a tensile strength ( ⁇ B ) of 245 MPa or more, 0.2% proof stress ( ⁇ 0.2 ) is 140 MPa or less, Elongation ( ⁇ ) is 40% or more, It is a seamless tube characterized by.
  • the seamless tube of the present invention is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger. That is, the seamless pipe of the present invention is a seam used for manufacturing a cross fin tube type heat exchanger by being hairpin bent and assembled to a fin material when the cross fin tube type heat exchanger is manufactured. There is no pipe.
  • the seamless pipe of the present invention is made of phosphorous deoxidized copper.
  • the phosphorus-deoxidized copper according to the seamless pipe of the present invention does not contain various alloy components, and the chemical composition is defined in JIS H3300 C1220 or C1201, so that the phosphorus-deoxidized copper according to the seamless pipe of the present invention.
  • the P content of the acid copper is 0.004 to 0.040 mass%, preferably 0.015 to 0.030 mass%, and the Cu content is 99.90 mass% or more.
  • the seamless pipe of this invention is a product made from phosphorus deoxidation copper, it is excellent in recyclability.
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe of the present invention is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0. .038.
  • t / D is in the above range, the seamless pipe can sufficiently cope with the reduction in diameter and thickness.
  • the outer diameter D (mm) of the seamless pipe of the present invention is 3 to 8 mm, particularly preferably 4 to 7 mm.
  • the wall thickness t (mm) of the seamless pipe of the present invention is determined by the outer diameter (D) of the seamless pipe and the ratio of the wall thickness to the outer diameter (t / D). 0.15 to 0.30 mm is preferable.
  • the tensile strength ( ⁇ B ) of the seamless pipe of the present invention is 245 MPa or more, preferably 245 to 265 MPa.
  • ⁇ B The tensile strength of the seamless pipe of the present invention.
  • the 0.2% proof stress ( ⁇ 0.2 ) of the seamless pipe of the present invention is 140 MPa or less, preferably 80 to 120 MPa.
  • the elongation ( ⁇ ) of the seamless pipe of the present invention is 40% or more, preferably 40 to 55%.
  • the hairpin bending workability is improved.
  • strong processing with a small bending pitch P for example, hairpin processing with a bending pitch P of 22 mm or less shown in FIG. 1
  • the tube is flattened, or is damaged in an extreme case.
  • the 0.2% proof stress of the seamless pipe is less than 80 MPa, problems such as buckling and clogging are likely to occur in the bending process because the degree of bending and bending of the material increases before being subjected to bending.
  • the bending pitch P is a distance between the tube axes (code
  • Examples of the seamless pipe according to the present invention include an inner surface smooth tube (bearing tube) in which no inner surface groove is formed and an inner surface grooved tube in which an inner surface groove is formed.
  • the outer diameter D of the seamless tube is the outer diameter of the tube in a cross section when the seamless tube is cut by a plane perpendicular to the tube axis direction, and the wall thickness t of the seamless tube. Is the thickness of the pipe in a cross section when the seamless pipe is cut along a plane perpendicular to the pipe axis direction.
  • the outer diameter D of the seamless pipe is the outer diameter of the pipe in a cross section when the seamless pipe is cut by a plane perpendicular to the pipe axis direction.
  • the wall thickness t is the thickness of the pipe (bottom wall thickness) at the deepest position s of the inner groove in the cross section when the seamless pipe is cut along a plane perpendicular to the pipe axis direction. It is.
  • the manufacturing method of the seamless pipe of the first aspect of the present invention is a manufacturing method in the case where the seamless pipe is an inner surface smooth pipe.
  • the manufacturing method of the seamless pipe of the 2nd form of this invention is a manufacturing method in case a seamless pipe is an internal grooved pipe.
  • the method for producing a seamless pipe according to the first aspect of the present invention includes a casting process for casting phosphorous deoxidized copper, a hot extrusion process, and a cold working with a total working degree of 99.5% or more in terms of a cross-section reduction rate.
  • a cold working process for performing a final annealing process in which annealing is performed at a holding temperature of 360 to 600 ° C. is performed in this order, and an intermediate annealing process is not performed between the hot extrusion process and the final annealing process. It is a manufacturing method.
  • a casting process, a hot extrusion process, a cold working process, and a final annealing process are performed in this order.
  • performing these in order does not mean that a hot extrusion process is performed immediately after the casting process, a cold working process is performed immediately after the hot extrusion process, and a final annealing process is performed immediately after the cold working process. It means that a hot extrusion process is performed after the casting process, a cold working process is performed after the hot extrusion process, and a final annealing process is performed after the cold working process.
  • the seamless pipe manufacturing method includes a casting process for casting phosphorous deoxidized copper, a hot extrusion process, and a cold working with a total workability of 99.8% or more in terms of the cross-section reduction rate.
  • a cold working process in which hot working is performed, an intermediate annealing process (A), a rolling process process, and a final annealing process in which annealing is performed at a holding temperature of 360 to 600 ° C. are sequentially performed, and a hot extrusion process and an intermediate annealing process are performed.
  • This is a seamless pipe manufacturing method in which no other intermediate annealing treatment is performed between the treatment (A).
  • a casting process, a hot extrusion process, a cold working process, an intermediate annealing process (A), a rolling process process, and a final annealing process In order.
  • performing these in order means that a hot extrusion process is performed immediately after the casting process, a cold processing process is performed immediately after the hot extrusion process, an intermediate annealing process (A) is performed immediately after the cold processing process, and an intermediate annealing process.
  • the rolling process is performed immediately after the process (A), and the final annealing process is not performed immediately after the rolling process, but the hot extrusion process is performed after the casting process, and the cold processing process is performed after the hot extrusion process.
  • the intermediate annealing process (A) is performed after the cold working process
  • the rolling process process is performed after the intermediate annealing process (A)
  • the final annealing process is performed after the rolling process process.
  • the casting process according to the method for manufacturing a seamless pipe according to the first aspect of the present invention and the method for manufacturing the seamless pipe according to the second aspect of the present invention involves melting and casting in accordance with a conventional method, and a predetermined element is a predetermined element. It is a step of obtaining a billet that is blended by content.
  • a predetermined element is a predetermined element.
  • the casting process for example, copper ingot, copper scrap, Cu-P master alloy, etc. are blended and the components are adjusted so that the P content becomes a predetermined content, and then a high frequency melting furnace or the like is used. And billet is cast.
  • heat for extruding a billet obtained by performing a casting process is then performed.
  • Inter-extrusion process is performed.
  • the billet is heated at a predetermined temperature before hot extrusion, and then hot extrusion is performed.
  • Hot extrusion is performed by mandrel extrusion. That is, hot extruding is performed with a mandrel inserted into a billet that has been previously perforated cold before heating, or a billet that has been perforated hot before extrusion to obtain a seamless hot extruded element tube. .
  • the seamless hot-extrusion element tube obtained by performing the hot extrusion process is quickly cooled after the hot extrusion process.
  • the cooling is performed by extruding the seamless hot-extrusion element tube into water or by introducing the seamless hot-extrusion element tube after hot extrusion into water.
  • the seamless extruded element pipe after cooling is then cold-worked.
  • a cold working process is performed to reduce the outer diameter and thickness.
  • Cold working is cold drawing (drawing) or a combination of cold rolling with a tube laser and cold drawing (drawing).
  • cold working such as rolling and drawing can be performed a plurality of times.
  • the cold working step refers to all of the cold working.
  • the method for manufacturing the seamless pipe according to the first aspect of the present invention and the method for manufacturing the seamless pipe according to the second aspect of the present invention are different from each other.
  • the final annealing treatment of the seamless bare tube after the cold working obtained by performing the cold working step is performed.
  • the holding temperature and holding time of the final annealing treatment are appropriately selected so that the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ) and elongation ( ⁇ ) of the seamless pipe are within the predetermined ranges. Is done.
  • a temperature of “recrystallization temperature (° C.) ⁇ 0.7” to “recrystallization temperature (° C.) ⁇ 0.8” is selected in the range of 360 to 600 ° C.
  • a temperature of 420 to 480 ° C. is selected.
  • an intermediate annealing process is not performed between a hot extrusion process and a final annealing process, but the total workability ( (Section reduction rate) is 99.5% or more.
  • the total degree of cold working process is the machining of the seamless tube after the last cold working performed in the cold working process for the first seamless steel pipe before the cold working performed in the cold working process. It indicates the degree and is represented by the cross-sectional reduction rate shown in the following formula (1).
  • Cross-sectional reduction rate (%) ((cross-sectional area before processing of pipe ⁇ cross-sectional area after processing of pipe) / (cross-sectional area before processing of pipe)) ⁇ 100 (1)
  • cross-sectional reduction rate (%) ((cross-sectional area before the first cold rolling of the tube ⁇ Cross sectional area after the last cold drawing of the tube) / (Cross sectional area before the first cold rolling of the tube)) ⁇ 100 ”.
  • the intermediate annealing process is not performed, and the total processing degree of the cold working process is not performed.
  • the tensile strength ( ⁇ B ) of the seamless pipe obtained by final annealing is 245 MPa or more, preferably 245 to 265 MPa.
  • the 2% proof stress ( ⁇ 0.2 ) can be 140 MPa or less, preferably 80 to 120 MPa, and the elongation ( ⁇ ) can be 40% or more, preferably 40 to 55%.
  • the seamless pipe of the present invention can be obtained by performing the seamless pipe manufacturing method of the first aspect of the present invention.
  • the cold-worked seamless pipe obtained by performing the cold-working process subsequent to the cold-working process is subjected to 450 to 600 ° C.
  • An intermediate annealing process (A) is performed by heating at the holding temperature. By performing the intermediate annealing process (A), the rolling process in the rolling process is facilitated.
  • the seamless pipe manufacturing method of the second aspect of the present invention after the intermediate annealing process (A) is performed, no other heat treatment is performed until the rolling process step is performed. That is, the intermediate annealing process (A) is a heat treatment before the rolling process.
  • a rolling process step of rolling the seamless pipe after the intermediate annealing treatment (A) is then performed.
  • the rolling process is a process of forming a groove on the inner surface of the pipe material.
  • the rolling process is performed by forming a spiral groove on the outer surface of the seamless pipe after the intermediate annealing (A). This is done by placing the formed plug and pressing it from the outside of the tube with a plurality of rolling balls rotating at high speed to transfer the groove of the formed plug to the inner surface of the tube.
  • a rolling process process is performed after performing an intermediate annealing process (A), after performing a diameter reduction process.
  • a final annealing process is then performed on the internally grooved pipe after the rolling process obtained by performing the rolling process.
  • the holding temperature of the final annealing treatment is a temperature of 360 to 600 ° C.
  • the processing time for the final annealing treatment is appropriately selected so that the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe are within a predetermined range.
  • the manufacturing method of the seamless pipe of the 2nd form of this invention does not perform heat processing, such as another intermediate annealing process, between a hot extrusion process and an intermediate annealing process (A).
  • the total processing degree (cross-sectional reduction rate) of the processing steps is 99.8% or more and keeping the holding temperature of the final annealing treatment within the above range
  • the tensile strength of the seamless pipe obtained by performing the final annealing treatment ( ⁇ B ) is 245 MPa or more, preferably 245 to 265 MPa
  • 0.2% proof stress ( ⁇ 0.2 ) is 140 MPa or less, preferably 80 to 120 MPa
  • elongation ( ⁇ ) is 40% or more, preferably 40 to 55. %.
  • the total degree of cold working process is the processing of the seamless element tube after the cold working performed last in the cold working process for the first seamless element tube performed before the cold working process.
  • Degree (degree (1)) is the total degree of cold working process.
  • the seamless pipe of the present invention can be obtained by performing the method for producing the seamless pipe of the second aspect of the present invention.
  • the seamless tube is an internally grooved tube, it is possible to maintain both the heat transfer performance and the bending workability of the tube by setting the dimensional parameters of the internal groove within the following range, preferable.
  • When fin height is h (mm) and wall thickness (bottom wall thickness) is t (mm), h / t is 0.50 to 1.2 ⁇
  • lead angle is ⁇ (°) and fin apex angle is ⁇ (°) ⁇ / ⁇ is 0.70 or more
  • the fin height h, the wall thickness (bottom wall thickness) t, and the fin apex angle ⁇ are denoted by symbols h, t, and ⁇ in FIG.
  • the lead angle ⁇ is an inclination angle of the inner surface groove with respect to the tube axis direction of the seamless pipe.
  • the seamless pipe is usually wound in a coil shape to form a coil.
  • a coil that is, the coil of the present invention is a coil produced by winding a seamless tube,
  • the material of the seamless pipe wound around the coil is phosphorus deoxidized copper,
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the coil is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.
  • the tensile strength ( ⁇ B ) of the seamless pipe wound around the coil is 245 MPa or more, preferably 245 to 265 MPa, 0.2% proof stress ( ⁇ 0.2 ) is 130 MPa or less, preferably 80 to 120 MPa, Elongation ( ⁇ ) is 40% or more, preferably 40 to 55%, It is a coil characterized by this.
  • the seamless tube is usually unwound from the coil wound with the seamless tube, and the unwound seamless tube is subjected to hairpin bending, but the coil is cylindrical. It is often a level-wound coil that is wound in multiple layers. That is, the seamless pipe used for the cross fin tube type heat exchanger is often a seamless pipe unwound from the level wound coil.
  • the level wound coil is a bobbin in which seamless pipes are aligned and wound in a cylindrical shape, and the first layer, the second layer, the third layer, etc. wound in a cylindrical shape from the inner surface side of the cylindrical shape. In order from the nth layer, the multilayered layers are wound up to the final nth layer on the outer surface of the cylindrical shape.
  • the level wound coil includes a level wound coil in which the seamless tube is unwound from the inner surface side, and a level wound coil in which the seamless tube is unwound from the outer surface side. Examples of the level wound coil in which the seamless tube is unwound from the outer surface side include a level wound coil disclosed in FIG. 11 of JP-A-2002-370869. Further, examples of the level wound coil in which the seamless pipe is unwound from the inner surface side include a level wound coil disclosed in FIG. 14 of JP-A-2002-370869.
  • the seamless pipe when manufacturing a cross fin tube heat exchanger, the seamless pipe is unwound from the inner or outer surface side of the level-wound coil, but when the seamless pipe is unwound from the level-wound coil. Since seamless hardening is added to the seamless pipe by extending the pipe, the 0.2% proof stress of the seamless pipe after being unwound becomes the 0.2% proof stress of the seamless pipe before being unrolled. Compared to increase. Therefore, the 0.2% proof stress of the seamless pipe wound around the level-wound coil (the seamless pipe before being unwound from the level-wound coil) is a hairpin bending process when manufacturing a cross fin tube type heat exchanger.
  • the level wound coil must be designed so that the 0.2% proof stress ( ⁇ 0.2 ) of the seamless pipe wound is taken into account in the increment when unwinding.
  • Such a level-wound coil i.e., the level-wound coil of the present invention, is a level-wound coil produced by aligning multiple layers of seamless tubes,
  • the material of the seamless pipe wound around the level wound coil is phosphorous deoxidized copper
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less
  • the tensile strength ( ⁇ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more
  • 0.2% proof stress ( ⁇ 0.2 ) is 130 MPa or less
  • elongation ( ⁇ ) is 40% or more
  • Is a level-wound coil is a level-wound coil.
  • the material of the seamless tube wound around the level wound coil is phosphorous deoxidized copper.
  • the phosphorous deoxidized copper according to the level wound coil of the present invention is the same as the phosphorous deoxidized copper of the seamless tube of the present invention.
  • the outer diameter D and the wall thickness t of the seamless pipe wound around the level wound coil are the same as the outer diameter D and the wall thickness t of the seamless pipe of the present invention.
  • the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less, preferably 0.020. To 0.040, particularly preferably 0.030 to 0.038.
  • the tensile strength ( ⁇ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more, preferably 245 to 265 MPa. Since the tensile strength ( ⁇ B ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, a cross-fin tube heat exchanger
  • the tensile strength ( ⁇ B ) of the seamless pipe subjected to the hairpin bending process for the production of 245 MPa can be 245 MPa or more, preferably 245 to 265 MPa.
  • the 0.2% yield strength ( ⁇ 0.2 ) of the seamless pipe wound around the level wound coil is 130 MPa or less, preferably 80 to 110 MPa. Since the 0.2% proof stress ( ⁇ 0.2 ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, the cross fin tube.
  • the 0.2% proof stress ( ⁇ 0.2 ) of a seamless pipe subjected to hairpin bending for the production of a mold heat exchanger can be 140 MPa or less, preferably 80 to 120 MPa.
  • the elongation ( ⁇ ) of the seamless pipe wound around the level wound coil is 40% or more, preferably 40 to 55%. Since the elongation ( ⁇ ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, the production of the cross fin tube type heat exchanger Therefore, the elongation ( ⁇ ) of the seamless pipe subjected to the hairpin bending process can be 40% or more, preferably 40 to 55%.
  • the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ) and elongation ( ⁇ ) of the seamless pipe wound around the level wound coil are within the above ranges.
  • the tensile strength ( ⁇ B ) of the seamless pipe after being unwound from the level wound coil, that is, the seamless pipe subjected to hairpin processing is 245 MPa or more, preferably 245 to 265 MPa.
  • the 0.2% proof stress ( ⁇ 0.2 ) is 140 MPa or less, preferably 80 to 120 MPa
  • the elongation ( ⁇ ) is 40% or more, preferably 40 to 55%.
  • the seamless pipe obtained by performing the final annealing treatment according to the first seamless pipe manufacturing method of the present invention or the second seamless pipe manufacturing method of the present invention has a cylindrical shape. It is wound up into an aligned multilayer winding.
  • the 0.2% proof stress of the seamless pipe wound around the level wound coil is Compared to the 0.2% proof stress of the seamless pipe before being wound around the level wound coil.
  • the 0.2% proof stress of the seamless pipe also increases when it is unwound from the level wound coil.
  • the 0.2% proof stress of the seamless pipe before being wound around the level wound coil for example, the manufacturing method of the seamless pipe according to the first aspect of the present invention or the seamless pipe according to the second aspect of the present invention.
  • the 0.2% proof stress of the seamless pipe obtained by performing the final annealing treatment according to the manufacturing method takes into account the increase when wound around the level wound coil and the increase when unrolled from the level wound coil. Must be designed to the specified range.
  • the seamless pipe used for the production of the level wound coil is made of phosphorous-deoxidized copper, and the ratio of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe.
  • T / D is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0.038, and the tensile strength ( ⁇ B ) of the seamless pipe is 245 MPa or more, preferably Is 245 to 265 MPa, 0.2% proof stress ( ⁇ 0.2 ) is 120 MPa or less, preferably 80 to 100 MPa, and elongation ( ⁇ ) is 40% or more, preferably 40 to 55%.
  • a seamless tube for producing a wound coil is preferred.
  • such a levelwound coil production seamless tube is wound in a multilayered arrangement in a cylindrical shape to produce a levelwound coil, and then the seamless tube is unwound from the produced levelwound coil to obtain a cross fin.
  • the material is phosphorous deoxidized copper, and the ratio of thickness (mm) to outer diameter (mm) (t / D) Is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0.038, and the tensile strength ( ⁇ B ) is 245 MPa or more, preferably 245 to 265 MPa.
  • ⁇ B tensile strength
  • the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe for producing the level wound coil are set in the above ranges.
  • the total working degree of the cold working step, the holding temperature or holding of the intermediate annealing process (A) or the final annealing process By appropriately selecting the time, the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe for producing the level wound coil can be within the above ranges.
  • the coil of the present invention is not limited to this.
  • it may be a coil obtained by stacking pancakes in multiple layers by sequentially repeating bunch winding or adjusting the winding diameter directly on the tray without performing aligned winding on bobbins.
  • the cross fin tube type heat exchanger of the present invention is obtained by bending a seamless tube unwound from the seamless tube of the present invention, the coil of the present invention or the level wound coil of the present invention by hairpin bending into an aluminum fin. It is a cross fin tube type heat exchanger obtained by assembling.
  • Example 1 An ingot of phosphorous deoxidized copper (JIS H3300 C1220) having the following chemical components was melted and cast to produce a billet for hot extrusion.
  • -Phosphorus-deoxidized copper had a P content of 0.025% by mass, a Cu content of 99.97% by mass, and the others were inevitable impurities.
  • the billet was heated and subjected to hot extrusion at 850 ° C. to obtain an extruded tube. Next, the extruded extruded tube was extruded into water and quenched. -The inner diameter was about 75 mm perforated before extrusion.
  • the outer diameter of the extruded element tube was 102 mm, and the inner diameter was 75 mm.
  • the extruded blank was cold-rolled with a Birger mill to obtain a rolled blank.
  • the rolling tube had an outer diameter of 46 mm and an inner diameter of 39.8 mm.
  • the degree of work in cold rolling (cross-sectional reduction rate) was 88.9%.
  • Cross-sectional reduction rate (%) ((cross-sectional area before processing ⁇ cross-sectional area after processing) / cross-sectional area before processing) ⁇ 100 (4)
  • the above-mentioned rolled blank was cold drawn a plurality of times to obtain a drawn blank.
  • the outer diameter of the drawing element tube was 38 mm, and the inner diameter was 33 mm.
  • the above-mentioned drawn element pipe was subjected to intermediate annealing to obtain an original pipe for use in the rolling process. ⁇ Intermediate annealing conditions are as shown in Table 1. Table 1 shows the 0.2% proof stress ( ⁇ 0.2 ) and average grain size of the original pipe. (6) The above-mentioned original pipe was processed by ball rolling to obtain an internally grooved pipe A having the following dimensions.
  • -Annealing method performed in a roller hearth continuous annealing furnace.
  • the holding temperature is as shown in Table 1, the rate of temperature increase is 5.0 ° C / min from 25 ° C to the holding temperature, and the cooling rate is 2.2 ° C / min from the holding temperature to 25 ° C. It was.
  • Table 1 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe (for LWC production) after the final annealing treatment.
  • the above seamless pipe (for LWC production) was wound around a cylindrical aligned multilayer winding to produce an LWC of the type that was unwound from the inner surface side.
  • Table 1 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe wound around the LWC.
  • the seamless tube was unwound from the inner surface side of the LWC to obtain a seamless tube (for heat transfer tubes of a cross fin tube type heat exchanger).
  • Table 1 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of seamless tubes (for heat transfer tubes of cross fin tube heat exchangers).
  • a hairpin bending test was performed under the following conditions to evaluate workability. The results are shown in Table 1.
  • Wrinkle generation rate (%) (number of tubes with wrinkles / number of tubes tested) ⁇ 100 (II) Flatness
  • Flatness ratio (%) ((maximum outer diameter ⁇ minimum outer diameter) / nominal outer diameter) ⁇ 100
  • a measurement position is a 45 degree, 90 degree, and 135 degree position of a hairpin bending part, and a nominal outer diameter is 7.0 mm in this example.
  • a nominal outer diameter is 7.0 mm in this example.
  • 1, 45 degrees, 90 degrees, and 135 degrees of a hairpin bending part are the position (code
  • the flatness of each seamless pipe tested was determined, and the average value of the flatness was 15% or less.
  • the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe were measured according to JIS Z 2241.
  • the outer diameter of the extruded element tube was 102 mm, and the inner diameter was 75 mm.
  • the extruded blank was cold-rolled with a Birger mill to obtain a rolled blank.
  • the rolling tube had an outer diameter of 46 mm and an inner diameter of 39.8 mm.
  • the degree of work in cold rolling (cross-sectional reduction rate) was 88.9%.
  • Cross-sectional reduction rate (%) ((cross-sectional area before processing ⁇ cross-sectional area after processing) / cross-sectional area before processing) ⁇ 100 (4)
  • the above-mentioned rolled blank was cold drawn a plurality of times to obtain a drawn blank.
  • the outer diameter of the drawing element tube was 38 mm, and the inner diameter was 33 mm.
  • -Annealing method performed in a roller hearth continuous annealing furnace.
  • the holding temperature is as shown in Table 1, the rate of temperature increase is 5.0 ° C / min from 25 ° C to the holding temperature, and the cooling rate is 2.2 ° C / min from the holding temperature to 25 ° C. It was.
  • Table 2 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe (for LWC production) after the final annealing treatment.
  • the above seamless pipe (for LWC production) was wound around a cylindrical aligned multilayer winding to produce an LWC of the type that was unwound from the inner surface side.
  • Table 2 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of the seamless pipe wound around the LWC.
  • the seamless tube was unwound from the inner surface side of the LWC to obtain a seamless tube (for heat transfer tubes of a cross fin tube type heat exchanger).
  • Table 2 shows the tensile strength ( ⁇ B ), 0.2% proof stress ( ⁇ 0.2 ), and elongation ( ⁇ ) of seamless tubes (for heat transfer tubes of cross fin tube heat exchangers).
  • ⁇ B tensile strength
  • ⁇ 0.2 0.2% proof stress
  • elongation
  • t / D exceeds 0.040 although t / D exceeded 0.040, although the hairpin bending wrinkle and the flatness ratio were passing and it was able to perform normal hairpin bending process, t / D exceeded 0.040. Since the mass per unit length of the seamless tube becomes too high, it cannot be thinned.

Abstract

A seamless tube for a heat transfer tube for a cross-fin-tube-type heat exchanger, which is characterized in that the material for the seamless tube is phosphorus deoxidized copper, the ratio of the thickness (mm) of the seamless tube to the outer diameter (mm) of the seamless tube (i.e., t/D) is 0.040 or less, and the seamless tube has a tensile strength (σB) of 245 MPa or more, a 0.2% offset yield strength (σ0.2) of 140 MPa or less and an elongation (δ) of 40% or more. It becomes possible to provide a seamless tube made of phosphorus deoxidized copper, which has high strength and can be bent in a hairpin shape in a normal manner.

Description

継目無管、コイル、レベルワウンドコイル、レベルワウンドコイルの製造方法、クロスフィンチューブ型熱交換器及びクロスフィンチューブ型熱交換器の製造方法Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
 本発明は、空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管に使用されるりん脱酸銅製の継目無管に関する。 The present invention relates to a seamless pipe made of phosphorous-deoxidized copper used for heat transfer pipes or refrigerant pipes for air conditioner heat exchangers, refrigerators and the like.
 従来より、ルームエアコン、パッケージエアコン等の空調機用熱交換器、冷凍機等の伝熱管又は冷媒配管には、継目無管が多く採用されており、強度や加工性、伝熱性等の諸物性、並びに材料及び加工コストにバランスの取れたりん脱酸銅管(JIS C1220T)が使用されてきた。 Conventionally, heat pipes for air conditioners such as room air conditioners and packaged air conditioners, and heat transfer pipes or refrigerant pipes for refrigerators, etc., have been adopted with many seamless pipes, and various physical properties such as strength, workability, and heat transfer properties. In addition, a phosphorus-deoxidized copper pipe (JIS C1220T) balanced in material and processing cost has been used.
 近年、これらの熱交換器では、重量の低減又はコストダウンの要求により、継目無管の薄肉化が必要となってきており、例えば、国際公開第2008/041777号公報(特許文献1)や、特開2003-268467号公報(特許文献2)には、強度の高い銅合金製の継目無管が開示されている。 In recent years, in these heat exchangers, it has become necessary to reduce the thickness of seamless pipes due to demands for weight reduction or cost reduction, for example, International Publication No. 2008/041777 (Patent Document 1), Japanese Unexamined Patent Publication No. 2003-268467 (Patent Document 2) discloses a seamless pipe made of a copper alloy having high strength.
国際公開第2008/041777号公報(特許請求の範囲)International Publication No. 2008/041777 (Claims) 特開2003-268467号公報(特許請求の範囲)JP 2003-268467 A (Claims)
 しかしながら、特許文献1又は2に記載されているような銅合金製の継目無管が用いられているルームエアコン、パッケージエアコン等の空調機用熱交換器、冷凍機等では、それらの廃却の際、機器を分解して、各材料をリサイクルする場合に、銅合金製の継目無管が、銅以外に添加されている合金元素の存在により、リサイクル先が制限され、リサイクル材としての価値が低くなってしまう。また、銅合金製の継目無管を製造する際、製造工程で発生する屑を再溶解して使用するときに、その使用先が制限されると共に、添加されている合金元素による溶解炉の汚染が生じる。 However, heat exchangers for air conditioners such as room air conditioners, packaged air conditioners, refrigerators, etc. in which seamless pipes made of copper alloy as described in Patent Document 1 or 2 are used are discarded. However, when disassembling the equipment and recycling each material, the copper alloy seamless pipes are limited in their recycling destination due to the presence of alloying elements added in addition to copper, making them valuable as recycling materials. It will be lower. In addition, when manufacturing seamless pipes made of copper alloy, when the waste generated in the manufacturing process is redissolved and used, the use destination is restricted and the melting furnace is contaminated by the added alloying elements. Occurs.
 このようなことから、継目無管を構成する銅材料として、りん脱酸銅を採用した上で、耐圧強度を高くしつつ、薄肉化したいという要求があり、りん脱酸銅の高強度化が望まれている。 For this reason, there is a demand to reduce the thickness of the copper dephosphorized copper while adopting phosphorous deoxidized copper as the copper material constituting the seamless pipe, while increasing the pressure strength, and increasing the strength of the phosphorous deoxidized copper. It is desired.
 りん脱酸銅には、銅合金のように、固溶強化又は析出強化という手段を用いることはできないが、加工硬化という手段を用いて高強度化することが、従来より行われていた。例えば、銅管を加工する最終工程にて、所定の加工度を、引き抜き加工(抽伸加工)で加えることが、従来より行われていた。 For phosphorus deoxidized copper, it is not possible to use means for solid solution strengthening or precipitation strengthening like copper alloys, but it has been conventionally practiced to increase the strength by means of work hardening. For example, in the final process of processing a copper tube, it has been conventionally performed to add a predetermined degree of processing by drawing (drawing).
 しかしながら、クロスフィンチューブ型熱交換器の伝熱管用の継目無管の場合、熱交換器に組み付ける工程で、ヘアピン曲げ(U曲げ)と呼ばれる強加工を行う際に、加工硬化により強度を向上させた薄肉のりん脱酸銅継目無管を使用すると、耐力が200MPa程度、伸びが30%未満程度となって、正常な曲げが行えなくなるという問題が生じる。具体的には、曲げの内側部分にしわが発生したり、曲げ部分が扁平化したり、外観品質上の価値を著しく損なう。極端な場合、破断が生じる。特に、伝熱管の細径化及び薄肉化がなされ、ヘアピン曲げピッチが小さく厳しいヘアピン曲げ条件で行われている現状では、正常なヘアピン曲げを行うことが益々難しくなっている。 However, in the case of a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger, the strength is improved by work hardening when performing strong processing called hairpin bending (U bending) in the process of assembling to the heat exchanger. When a thin-walled phosphorus-deoxidized copper seamless pipe is used, the yield strength is about 200 MPa and the elongation is less than 30%, which causes a problem that normal bending cannot be performed. Specifically, wrinkles are generated in the inner part of the bend, the bend is flattened, and the value in appearance quality is significantly impaired. In extreme cases, breakage occurs. In particular, in the current situation where the diameter and thickness of the heat transfer tube are reduced and the hairpin bending pitch is small and the hairpin bending conditions are severe, it is increasingly difficult to perform normal hairpin bending.
 従って、本発明は、強度が高く且つヘアピン曲げを正常に行うことができるりん脱酸銅製の継目無管を提供することにある。 Therefore, the present invention is to provide a seamless tube made of phosphorus-deoxidized copper that has high strength and can perform hairpin bending normally.
 本発明者らは、上記従来技術における課題を解決すべく、鋭意研究を重ねた結果、りん脱酸銅を加工して継目無管を製造する工程において、冷間加工での総加工度を特定の範囲とし、最終の焼鈍処理の保持温度を特定の範囲とすることにより、引張強さ(σ)が高いにも関わらず、0.2%耐力(σ0.2)が低く、伸び(δ)が高い継目無管が得られること、そして、引張強さ(σ)が特定の範囲にされ且つ0.2%耐力(σ0.2)や伸び(δ)が特定の範囲にされている継目無管は、強度が高いにも関わらず、ヘアピン曲げを正常に行うことができること等を見出し、本発明を完成させるに至った。 As a result of intensive studies to solve the problems in the prior art, the present inventors have specified the total degree of work in cold working in the process of manufacturing seamless pipes by processing phosphorous deoxidized copper. the range, the holding temperature of the final annealing by a specific range, the tensile strength (sigma B) despite the high 0.2% proof stress (sigma 0.2) is low, elongation ( A seamless pipe having a high δ) is obtained, and the tensile strength (σ B ) is set to a specific range, and the 0.2% proof stress (σ 0.2 ) and the elongation (δ) are set to a specific range. The present seamless pipe has been found to be able to bend hairpin normally despite its high strength, and has completed the present invention.
 すなわち、本発明(1)は、クロスフィンチューブ型熱交換器の伝熱管用の継目無管であって、
 該継目無管の材質が、りん脱酸銅であり、
 該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
 該継目無管の引張強さ(σ)が245MPa以上であり、
 0.2%耐力(σ0.2)が140MPa以下であり、
 伸び(δ)が40%以上であること、
を特徴とする継目無管を提供するものである。
That is, the present invention (1) is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger,
The material of the seamless pipe is phosphorus deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe is 0.040 or less,
The seamless pipe has a tensile strength (σ B ) of 245 MPa or more,
0.2% proof stress (σ 0.2 ) is 140 MPa or less,
Elongation (δ) is 40% or more,
A seamless tube characterized by the above is provided.
 また、本発明(2)は、継目無管を巻き回して作製されたコイルであり、
 該コイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
 該コイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
 該コイルに巻かれている継目無管の引張強さ(σ)が245MPa以上であり、
 0.2%耐力(σ0.2)が130MPa以下であり、
 伸び(δ)が40%以上であること、
を特徴とするコイルを提供するものである。
Moreover, this invention (2) is a coil produced by winding a seamless pipe,
The material of the seamless pipe wound around the coil is phosphorus deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the coil is 0.040 or less,
The tensile strength (σ B ) of the seamless pipe wound around the coil is 245 MPa or more,
0.2% proof stress (σ 0.2 ) is 130 MPa or less,
Elongation (δ) is 40% or more,
The coil characterized by this is provided.
 また、本発明(3)は、コイルが、円筒状に整列多層巻きにして作製されたレベルワウンドコイルであり、
 該レベルワウンドコイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
 該レベルワウンドコイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
 該レベルワウンドコイルに巻かれている継目無管の引張強さ(σ)が245MPa以上であり、
 0.2%耐力(σ0.2)が130MPa以下であり、
 伸び(δ)が40%以上であること、
を特徴とするレベルワウンドコイルを提供するものである。
Further, the present invention (3) is a level-wound coil in which the coil is produced by arranging multiple layers in a cylindrical shape.
The material of the seamless pipe wound around the level wound coil is phosphorous deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less,
The tensile strength (σ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more,
0.2% proof stress (σ 0.2 ) is 130 MPa or less,
Elongation (δ) is 40% or more,
A level-wound coil characterized by the above is provided.
 また、本発明(4)は、材質が、りん脱酸銅であり、外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、引張強さ(σ)が245MPa以上であり、0.2%耐力(σ0.2)が120MPa以下であり、伸び(δ)が40%以上であるレベルワウンドコイル作製用継目無管を、円筒状に整列多層巻きして、レベルワウンドコイルを作製することを特徴とするレベルワウンドコイルの作製方法を提供するものである。 In the present invention (4), the material is phosphorous deoxidized copper, the ratio (t / D) of the thickness (mm) to the outer diameter (mm) is 0.040 or less, and the tensile strength (σ B ) is 245 MPa or more, 0.2% proof stress (σ 0.2 ) is 120 MPa or less, and a level-wound coil-producing seamless pipe having an elongation (δ) of 40% or more is aligned in a cylindrical shape. The present invention provides a method for producing a level-wound coil that is wound to produce a level-wound coil.
 また、本発明(5)は、本発明(1)の継目無管、本発明(2)のコイル又は本発明(3)のレベルワウンドコイルより巻き解いた継目無管をヘアピン曲げし、アルミニウムフィンに組み付けることにより得られたクロスフィンチューブ熱交換器を提供するものである。 In addition, the present invention (5) comprises hairpin bending the seamless pipe of the present invention (1), the coil of the present invention (2), or the seamless pipe unwound from the level wound coil of the present invention (3), and aluminum fins. The cross fin tube heat exchanger obtained by assembling to is provided.
 また、本発明(6)は、本発明(1)の継目無管、本発明(2)のコイル又は本発明(3)のレベルワウンドコイルより巻き解いた継目無管をヘアピン曲げし、アルミニウムフィンに組み付けることによりクロスフィンチューブ型熱交換器を得ることを特徴とするクロスフィンチューブ熱交換器の製造方法を提供するものである。 Further, the present invention (6) is a method of bending the seamless tube unrolled from the seamless tube of the present invention (1), the coil of the present invention (2) or the level wound coil of the present invention (3) by hairpin bending, A cross fin tube type heat exchanger is obtained by assembling to a cross fin tube type heat exchanger.
 本発明によれば、強度が高く且つヘアピン曲げを正常に行うことができるりん脱酸銅製の継目無管を提供することができる。 According to the present invention, it is possible to provide a seamless pipe made of phosphorus-deoxidized copper which has high strength and can perform hairpin bending normally.
クロスフィンチューブ型熱交換器中の継目無管のヘアピン曲げ部分の近傍を示す模式図である。It is a schematic diagram which shows the vicinity of the hairpin bending part of the seamless pipe in a cross fin tube type heat exchanger. 内面溝付管の溝形状を示す模式的な断面図である。It is typical sectional drawing which shows the groove shape of an inner surface grooved pipe | tube.
 本発明の継目無管は、クロスフィンチューブ型熱交換器の伝熱管用の継目無管であって、
 該継目無管の材質が、りん脱酸銅であり、
 該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
 該継目無管の引張強さ(σ)が245MPa以上であり、
 0.2%耐力(σ0.2)が140MPa以下であり、
 伸び(δ)が40%以上であること、
を特徴とする継目無管である。
The seamless tube of the present invention is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger,
The material of the seamless pipe is phosphorus deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe is 0.040 or less,
The seamless pipe has a tensile strength (σ B ) of 245 MPa or more,
0.2% proof stress (σ 0.2 ) is 140 MPa or less,
Elongation (δ) is 40% or more,
It is a seamless tube characterized by.
 本発明の継目無管は、クロスフィンチューブ型熱交換器の伝熱管用の継目無管である。つまり、本発明の継目無管は、クロスフィンチューブ型熱交換器の製造のときに、ヘアピン曲げ加工がなされ、フィン材に組み付けられることにより、クロスフィンチューブ型熱交換器の製造に用いられる継目無管である。 The seamless tube of the present invention is a seamless tube for a heat transfer tube of a cross fin tube type heat exchanger. That is, the seamless pipe of the present invention is a seam used for manufacturing a cross fin tube type heat exchanger by being hairpin bent and assembled to a fin material when the cross fin tube type heat exchanger is manufactured. There is no pipe.
 本発明の継目無管は、りん脱酸銅製である。本発明の継目無管に係るりん脱酸銅は、種々の合金成分を含まず、JIS H3300 C1220又はC1201で、その化学成分が規定されているように、本発明の継目無管に係るりん脱酸銅のP含有量は、0.004~0.040質量%、好ましくは0.015~0.030質量%であり、且つ、Cu含有量は、99.90質量%以上である。そして、本発明の継目無管は、りん脱酸銅製であるので、リサイクル性に優れる。 The seamless pipe of the present invention is made of phosphorous deoxidized copper. The phosphorus-deoxidized copper according to the seamless pipe of the present invention does not contain various alloy components, and the chemical composition is defined in JIS H3300 C1220 or C1201, so that the phosphorus-deoxidized copper according to the seamless pipe of the present invention. The P content of the acid copper is 0.004 to 0.040 mass%, preferably 0.015 to 0.030 mass%, and the Cu content is 99.90 mass% or more. And since the seamless pipe of this invention is a product made from phosphorus deoxidation copper, it is excellent in recyclability.
 本発明の継目無管の外径(mm)に対する肉厚(mm)の比(t/D)は、0.040以下、好ましくは0.020~0.040、特に好ましくは0.030~0.038である。t/Dが上記範囲にあることにより、継目無管として細径及び薄肉化に十分対応したものとなる。 The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe of the present invention is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0. .038. When t / D is in the above range, the seamless pipe can sufficiently cope with the reduction in diameter and thickness.
 本発明の継目無管の外径D(mm)は、3~8mm、特に好ましくは4~7mmである。また、本発明の継目無管の肉厚t(mm)は、継目無管の外径(D)と外径に対する肉厚の比(t/D)により、定められるが、通常、肉厚は0.15~0.30mmが好ましい。 The outer diameter D (mm) of the seamless pipe of the present invention is 3 to 8 mm, particularly preferably 4 to 7 mm. The wall thickness t (mm) of the seamless pipe of the present invention is determined by the outer diameter (D) of the seamless pipe and the ratio of the wall thickness to the outer diameter (t / D). 0.15 to 0.30 mm is preferable.
 本発明の継目無管の引張強さ(σ)は、245MPa以上、好ましくは245~265MPaである。継目無管の引張強さが上記範囲にあることにより、薄肉化によっても十分な耐圧強度を有することができる。一方、継目無管の引張強度が上記範囲未満だと、薄肉化したときに、耐圧強度が不足する。また、継目無管の引張強さが265MPaを超えると、0.2%耐力(σ0.2)を140MPa以下、且つ、伸び(δ)を40%以上とすることが困難となり易くなる。 The tensile strength (σ B ) of the seamless pipe of the present invention is 245 MPa or more, preferably 245 to 265 MPa. When the seamless pipe has a tensile strength in the above range, a sufficient pressure resistance can be obtained even by thinning. On the other hand, when the tensile strength of the seamless pipe is less than the above range, the pressure resistance is insufficient when the thickness is reduced. If the tensile strength of the seamless pipe exceeds 265 MPa, it becomes difficult to make the 0.2% proof stress (σ 0.2 ) 140 MPa or less and the elongation (δ) 40% or more.
 本発明の継目無管の0.2%耐力(σ0.2)は、140MPa以下、好ましくは80~120MPaである。また、本発明の継目無管の伸び(δ)は、40%以上、好ましくは40~55%である。継目無管の0.2%耐力(σ0.2)及び伸び(δ)が上記範囲にあることにより、ヘアピン曲げ加工性が良好となる。一方、継目無管の0.2%耐力が上記範囲を超え、伸びが上記範囲を下回ると、曲げピッチPが小さい強加工(例えば、図1に示す曲げピッチPが22mm以下のヘアピン加工)を行うことが困難となり、ヘアピン曲げ加工のときに、曲げ内側部分にしわが発生したり、管が扁平化したり、極端な場合には破損する。また、継目無管の0.2%耐力が80MPa未満だと、曲げ加工に供する以前に材料のたわみや曲がりの程度が増加することで、曲げ加工工程における座屈や詰まりなどの不具合が生じ易くなる。なお、曲げピッチPとは、図1に示すように、ヘアピン曲げにより略平行に並ぶ2つ継目無管の管軸(符号1)間の距離である。 The 0.2% proof stress (σ 0.2 ) of the seamless pipe of the present invention is 140 MPa or less, preferably 80 to 120 MPa. The elongation (δ) of the seamless pipe of the present invention is 40% or more, preferably 40 to 55%. When the 0.2% proof stress (σ 0.2 ) and the elongation (δ) of the seamless pipe are in the above ranges, the hairpin bending workability is improved. On the other hand, when the 0.2% proof stress of the seamless pipe exceeds the above range and the elongation is below the above range, strong processing with a small bending pitch P (for example, hairpin processing with a bending pitch P of 22 mm or less shown in FIG. 1) is performed. It becomes difficult to perform, and at the time of hairpin bending, wrinkles are generated in the inner part of the bend, the tube is flattened, or is damaged in an extreme case. Also, if the 0.2% proof stress of the seamless pipe is less than 80 MPa, problems such as buckling and clogging are likely to occur in the bending process because the degree of bending and bending of the material increases before being subjected to bending. Become. In addition, the bending pitch P is a distance between the tube axes (code | symbol 1) of the 2 seamless pipes arranged in parallel substantially by hairpin bending, as shown in FIG.
 本発明の継目無管の形態例としては、内面溝が形成されていない内面平滑管(ベアー管)及び内面溝が形成されている内面溝付管がある。内面平滑管の場合、継目無管の外径Dとは、継目無管を管軸方向に対して垂直な面で切ったときの断面における管の外径であり、継目無管の肉厚tとは、継目無管を管軸方向に対して垂直な面で切ったときの断面における管の肉厚である。また、内面溝付管の場合、継目無管の外径Dとは、継目無管を管軸方向に対して垂直な面で切ったときの断面における管の外径であり、継目無管の肉厚tとは、図2に示すように、継目無管を管軸方向に対して垂直な面で切ったときの断面において、内面溝の最も深い位置sの管の厚み(底肉厚)である。 Examples of the seamless pipe according to the present invention include an inner surface smooth tube (bearing tube) in which no inner surface groove is formed and an inner surface grooved tube in which an inner surface groove is formed. In the case of an inner smooth tube, the outer diameter D of the seamless tube is the outer diameter of the tube in a cross section when the seamless tube is cut by a plane perpendicular to the tube axis direction, and the wall thickness t of the seamless tube. Is the thickness of the pipe in a cross section when the seamless pipe is cut along a plane perpendicular to the pipe axis direction. In the case of an internally grooved pipe, the outer diameter D of the seamless pipe is the outer diameter of the pipe in a cross section when the seamless pipe is cut by a plane perpendicular to the pipe axis direction. As shown in FIG. 2, the wall thickness t is the thickness of the pipe (bottom wall thickness) at the deepest position s of the inner groove in the cross section when the seamless pipe is cut along a plane perpendicular to the pipe axis direction. It is.
 本発明の継目無管を製造する方法について述べる。本発明の第一の形態の継目無管の製造方法は、継目無管が内面平滑管である場合の製造方法である。また、本発明の第二の形態の継目無管の製造方法は、継目無管が内面溝付管である場合の製造方法である。 The method for producing the seamless pipe of the present invention will be described. The manufacturing method of the seamless pipe of the first aspect of the present invention is a manufacturing method in the case where the seamless pipe is an inner surface smooth pipe. Moreover, the manufacturing method of the seamless pipe of the 2nd form of this invention is a manufacturing method in case a seamless pipe is an internal grooved pipe.
 本発明の第一の形態の継目無管の製造方法は、りん脱酸銅を鋳造する鋳造工程と、熱間押出工程と、断面減少率で99.5%以上の総加工度の冷間加工を行う冷間加工工程と、360~600℃の保持温度で焼鈍する最終焼鈍処理と、を順に行い、熱間押出工程と最終焼鈍処理との間には中間焼鈍処理を行わない継目無管の製造方法である。 The method for producing a seamless pipe according to the first aspect of the present invention includes a casting process for casting phosphorous deoxidized copper, a hot extrusion process, and a cold working with a total working degree of 99.5% or more in terms of a cross-section reduction rate. A cold working process for performing a final annealing process in which annealing is performed at a holding temperature of 360 to 600 ° C. is performed in this order, and an intermediate annealing process is not performed between the hot extrusion process and the final annealing process. It is a manufacturing method.
 本発明の第一の形態の継目無管の製造方法では、鋳造工程と、熱間押出工程と、冷間加工工程と、最終焼鈍処理と、を順に行う。なお、これらを順に行うとは、鋳造工程の直後に熱間押出工程を、熱間押出工程の直後に冷間加工工程を、冷間加工工程の直後に最終焼鈍処理を行うということではなく、鋳造工程より後に熱間押出工程を、熱間押出工程より後に冷間加工工程を、冷間加工工程より後に最終焼鈍処理を行うということ指す。 In the seamless pipe manufacturing method of the first aspect of the present invention, a casting process, a hot extrusion process, a cold working process, and a final annealing process are performed in this order. In addition, performing these in order does not mean that a hot extrusion process is performed immediately after the casting process, a cold working process is performed immediately after the hot extrusion process, and a final annealing process is performed immediately after the cold working process. It means that a hot extrusion process is performed after the casting process, a cold working process is performed after the hot extrusion process, and a final annealing process is performed after the cold working process.
 また、本発明の第二の形態の継目無管の製造方法は、りん脱酸銅を鋳造する鋳造工程と、熱間押出工程と、断面減少率で99.8%以上の総加工度の冷間加工を行う冷間加工工程と、中間焼鈍処理(A)と、転造加工工程と、360~600℃の保持温度で焼鈍する最終焼鈍処理と、を順に行い、熱間押出工程と中間焼鈍処理(A)との間には他の中間焼鈍処理を行わない継目無管の製造方法である。 In addition, the seamless pipe manufacturing method according to the second aspect of the present invention includes a casting process for casting phosphorous deoxidized copper, a hot extrusion process, and a cold working with a total workability of 99.8% or more in terms of the cross-section reduction rate. A cold working process in which hot working is performed, an intermediate annealing process (A), a rolling process process, and a final annealing process in which annealing is performed at a holding temperature of 360 to 600 ° C. are sequentially performed, and a hot extrusion process and an intermediate annealing process are performed. This is a seamless pipe manufacturing method in which no other intermediate annealing treatment is performed between the treatment (A).
 本発明の第二の形態の継目無管の製造方法では、鋳造工程と、熱間押出工程と、冷間加工工程と、中間焼鈍処理(A)と、転造加工工程と、最終焼鈍処理と、を順に行う。なお、これらを順に行うとは、鋳造工程の直後に熱間押出工程を、熱間押出工程の直後に冷間加工工程を、冷間加工工程の直後に中間焼鈍処理(A)を、中間焼鈍処理(A)の直後に転造加工工程を、転造加工工程の直後に最終焼鈍処理を行うということではなく、鋳造工程より後に熱間押出工程を、熱間押出工程より後に冷間加工工程を、冷間加工工程より後に中間焼鈍処理(A)を、中間焼鈍処理(A)より後に転造加工工程を、転造加工工程より後に最終焼鈍処理を行うということ指す。 In the seamless pipe manufacturing method of the second aspect of the present invention, a casting process, a hot extrusion process, a cold working process, an intermediate annealing process (A), a rolling process process, and a final annealing process, , In order. In addition, performing these in order means that a hot extrusion process is performed immediately after the casting process, a cold processing process is performed immediately after the hot extrusion process, an intermediate annealing process (A) is performed immediately after the cold processing process, and an intermediate annealing process. The rolling process is performed immediately after the process (A), and the final annealing process is not performed immediately after the rolling process, but the hot extrusion process is performed after the casting process, and the cold processing process is performed after the hot extrusion process. Indicates that the intermediate annealing process (A) is performed after the cold working process, the rolling process process is performed after the intermediate annealing process (A), and the final annealing process is performed after the rolling process process.
 本発明の第一の形態の継目無管の製造方法の鋳造工程から冷間加工工程までと、本発明の第二の形態の継目無管の製造方法の鋳造工程から冷間加工工程までとは、同様である。 From the casting process to the cold working process of the seamless pipe manufacturing method of the first aspect of the present invention and from the casting process to the cold working process of the seamless pipe manufacturing method of the second aspect of the present invention. The same.
 本発明の第一の形態の継目無管の製造方法及び本発明の第二の形態の継目無管の製造方法に係る鋳造工程は、常法に従って、溶解、鋳造し、所定の元素が所定の含有量で配合されているビレットを得る工程である。鋳造工程では、例えば、銅の地金、銅スクラップ、Cu-P母合金等を配合して、P含有量が所定の含有量となるように成分調整を行い、次いで、高周波溶解炉等を用いて、ビレットを鋳造する。 The casting process according to the method for manufacturing a seamless pipe according to the first aspect of the present invention and the method for manufacturing the seamless pipe according to the second aspect of the present invention involves melting and casting in accordance with a conventional method, and a predetermined element is a predetermined element. It is a step of obtaining a billet that is blended by content. In the casting process, for example, copper ingot, copper scrap, Cu-P master alloy, etc. are blended and the components are adjusted so that the P content becomes a predetermined content, and then a high frequency melting furnace or the like is used. And billet is cast.
 本発明の第一の形態の継目無管の製造方法及び本発明の第二の形態の継目無管の製造方法では、次いで、鋳造工程を行うことにより得られたビレットを熱間押出加工する熱間押出工程を行う。熱間押出工程では、熱間押出加工前にビレットを所定の温度で加熱した後、熱間押出加工を行う。熱間押出加工は、マンドレル押出によって行われる。すなわち、加熱前に、冷間で予め穿孔したビレット、あるいは、押出前に熱間で穿孔したビレットに、マンドレルを挿入した状態で、熱間押出を行なって、継目無熱間押出素管を得る。 In the method for manufacturing a seamless pipe according to the first aspect of the present invention and the method for manufacturing the seamless pipe according to the second aspect of the present invention, heat for extruding a billet obtained by performing a casting process is then performed. Inter-extrusion process is performed. In the hot extrusion process, the billet is heated at a predetermined temperature before hot extrusion, and then hot extrusion is performed. Hot extrusion is performed by mandrel extrusion. That is, hot extruding is performed with a mandrel inserted into a billet that has been previously perforated cold before heating, or a billet that has been perforated hot before extrusion to obtain a seamless hot extruded element tube. .
 熱間押出工程を行うことにより得られた継目無熱間押出素管を、熱間押出工程後、速やかに冷却する。冷却は、継目無熱間押出素管を水中へ押し出すこと又は熱間押出後の継目無熱間押出素管を水中へ投入することによって、行われる。 The seamless hot-extrusion element tube obtained by performing the hot extrusion process is quickly cooled after the hot extrusion process. The cooling is performed by extruding the seamless hot-extrusion element tube into water or by introducing the seamless hot-extrusion element tube after hot extrusion into water.
 本発明の第一の形態の継目無管の製造方法及び本発明の第二の形態の継目無管の製造方法では、次いで、冷却後の継目無押出素管の冷間加工を行い、管の外径及び肉厚を減じていく冷間加工工程を行う。冷間加工は、冷間での抽伸加工(引き抜き加工)か、あるいは、チューブレーザーによる冷間での圧延加工と冷間での抽伸加工(引き抜き加工)の組み合わせである。冷間加工工程では、圧延加工や抽伸加工等の冷間加工を、複数回行うことができる。なお、本発明の第一の形態の継目無管の製造方法及び本発明の第二の形態の継目無管の製造方法では、冷間加工工程とは、冷間で行う加工の全てを指す。 In the method for producing a seamless pipe according to the first aspect of the present invention and the method for producing the seamless pipe according to the second aspect of the present invention, the seamless extruded element pipe after cooling is then cold-worked. A cold working process is performed to reduce the outer diameter and thickness. Cold working is cold drawing (drawing) or a combination of cold rolling with a tube laser and cold drawing (drawing). In the cold working process, cold working such as rolling and drawing can be performed a plurality of times. In the method for manufacturing a seamless pipe according to the first aspect of the present invention and the method for manufacturing a seamless pipe according to the second aspect of the present invention, the cold working step refers to all of the cold working.
 冷間加工工程より後は、本発明の第一の形態の継目無管の製造方法と、本発明の第二の形態の継目無管の製造方法とでは、異なるので、それぞれ説明する。 After the cold working step, the method for manufacturing the seamless pipe according to the first aspect of the present invention and the method for manufacturing the seamless pipe according to the second aspect of the present invention are different from each other.
 本発明の第一の形態の継目無管の製造方法では、冷間加工工程に次いで、冷間加工工程を行うことにより得られた冷間加工後の継目無素管の最終焼鈍処理を行う。最終焼鈍処理の保持温度及び保持時間は、継目無管の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)が所定の範囲となるように、適宜選択される。特に、保持温度については、360~600℃の範囲にて、「再結晶温度(℃)×0.7」~「再結晶温度(℃)×0.8」の温度が選択される。例えば、再結晶温度が600℃の場合、420~480℃の温度が選択される。 In the seamless pipe manufacturing method of the first aspect of the present invention, after the cold working step, the final annealing treatment of the seamless bare tube after the cold working obtained by performing the cold working step is performed. The holding temperature and holding time of the final annealing treatment are appropriately selected so that the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ) and elongation (δ) of the seamless pipe are within the predetermined ranges. Is done. In particular, with respect to the holding temperature, a temperature of “recrystallization temperature (° C.) × 0.7” to “recrystallization temperature (° C.) × 0.8” is selected in the range of 360 to 600 ° C. For example, when the recrystallization temperature is 600 ° C., a temperature of 420 to 480 ° C. is selected.
 そして、本発明の第一の形態の継目無管の製造方法では、熱間押出工程と最終焼鈍処理との間には、中間焼鈍処理を行わず、この間の冷間加工工程の総加工度(断面減少率)を99.5%以上とする。なお、冷間加工工程の総加工度とは、冷間加工工程で最初に行う冷間加工前の継目無素管に対する冷間加工工程で行う最後の冷間加工後の継目無素管の加工度を指し、下記式(1)に示す断面減少率で表す。
   断面減少率(%)=((管の加工前の断面積-管の加工後の断面積)/(管の加工前の断面積))×100   (1)
 例えば、冷間加工工程で、冷間圧延を複数回行い、次いで、冷間での抽伸を複数回行う場合、「断面減少率(%)=((管の最初の冷間圧延前の断面積-管の最後の冷間抽伸後の断面積)/(管の最初の冷間圧延前の断面積))×100」となる。
And in the manufacturing method of the seamless pipe of the 1st form of this invention, an intermediate annealing process is not performed between a hot extrusion process and a final annealing process, but the total workability ( (Section reduction rate) is 99.5% or more. In addition, the total degree of cold working process is the machining of the seamless tube after the last cold working performed in the cold working process for the first seamless steel pipe before the cold working performed in the cold working process. It indicates the degree and is represented by the cross-sectional reduction rate shown in the following formula (1).
Cross-sectional reduction rate (%) = ((cross-sectional area before processing of pipe−cross-sectional area after processing of pipe) / (cross-sectional area before processing of pipe)) × 100 (1)
For example, in the cold working process, when cold rolling is performed a plurality of times and then cold drawing is performed a plurality of times, “cross-sectional reduction rate (%) = ((cross-sectional area before the first cold rolling of the tube −Cross sectional area after the last cold drawing of the tube) / (Cross sectional area before the first cold rolling of the tube)) × 100 ”.
 本発明の第一の継目無管の製造方法では、熱間押出工程を行った後、最終焼鈍処理を行う前までの間には、中間焼鈍処理を行わず、冷間加工工程の総加工度を上記範囲とし、且つ、最終焼鈍処理の保持温度を上記範囲とすることにより、最終焼鈍を行い得られる継目無管の引張強さ(σ)を245MPa以上、好ましくは245~265MPa、0.2%耐力(σ0.2)を140MPa以下、好ましくは80~120MPa、且つ、伸び(δ)を40%以上、好ましくは40~55%とすることができる。 In the first method for producing a seamless pipe of the present invention, after performing the hot extrusion process and before performing the final annealing process, the intermediate annealing process is not performed, and the total processing degree of the cold working process is not performed. Is within the above range, and the holding temperature of the final annealing treatment is within the above range, the tensile strength (σ B ) of the seamless pipe obtained by final annealing is 245 MPa or more, preferably 245 to 265 MPa. The 2% proof stress (σ 0.2 ) can be 140 MPa or less, preferably 80 to 120 MPa, and the elongation (δ) can be 40% or more, preferably 40 to 55%.
 このように、本発明の第一の形態の継目無管の製造方法を行うことにより、本発明の継目無管を得ることができる 。 Thus, the seamless pipe of the present invention can be obtained by performing the seamless pipe manufacturing method of the first aspect of the present invention.
 本発明の第二の形態の継目無管の製造方法では、冷間加工工程に次いで、冷間加工工程を行うことにより得られた冷間加工後の継目無素管を、450~600℃の保持温度で加熱する中間焼鈍処理(A)を行う。中間焼鈍処理(A)を行うことにより、転造加工工程での転造加工をし易くする。本発明の第二の形態の継目無管の製造方法では、中間焼鈍処理(A)を行った後、転造加工工程を行うまでは、他の熱処理を行わない。つまり、中間焼鈍処理(A)は、転造加工工程の前の熱処理である。 In the method for producing a seamless pipe according to the second aspect of the present invention, the cold-worked seamless pipe obtained by performing the cold-working process subsequent to the cold-working process is subjected to 450 to 600 ° C. An intermediate annealing process (A) is performed by heating at the holding temperature. By performing the intermediate annealing process (A), the rolling process in the rolling process is facilitated. In the seamless pipe manufacturing method of the second aspect of the present invention, after the intermediate annealing process (A) is performed, no other heat treatment is performed until the rolling process step is performed. That is, the intermediate annealing process (A) is a heat treatment before the rolling process.
 本発明の第二の形態の継目無管の製造方法では、次いで、中間焼鈍処理(A)後の継目無素管を転造加工する転造加工工程を行う。転造加工は、管材料の内面に、内面溝を形成させる転造加工を行う工程であり、中間焼鈍処理(A)後の継目無素管内に、外面にらせん状の溝加工を施した転造プラグを配置して、高速回転する複数の転造ボールによって、管の外側から押圧して、管の内面に転造プラグの溝を転写することにより行われる。また、通常、中間焼鈍処理(A)を行った後、縮径加工を行ってから、転造加工工程を行う。 In the seamless pipe manufacturing method according to the second aspect of the present invention, a rolling process step of rolling the seamless pipe after the intermediate annealing treatment (A) is then performed. The rolling process is a process of forming a groove on the inner surface of the pipe material. The rolling process is performed by forming a spiral groove on the outer surface of the seamless pipe after the intermediate annealing (A). This is done by placing the formed plug and pressing it from the outside of the tube with a plurality of rolling balls rotating at high speed to transfer the groove of the formed plug to the inner surface of the tube. Moreover, after performing an intermediate annealing process (A), after performing a diameter reduction process, a rolling process process is performed.
 本発明の第二の形態の継目無管の製造方法では、次いで、転造加工工程を行うことにより得られた転造加工後の内面溝付管の最終焼鈍処理を行う。最終焼鈍処理の保持温度は、360~600℃の温度である。また、最終焼鈍処理の処理時間は、継目無管の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)が所定の範囲となるように、適宜選択される。 In the seamless pipe manufacturing method of the second aspect of the present invention, a final annealing process is then performed on the internally grooved pipe after the rolling process obtained by performing the rolling process. The holding temperature of the final annealing treatment is a temperature of 360 to 600 ° C. The processing time for the final annealing treatment is appropriately selected so that the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe are within a predetermined range. The
 そして、本発明の第二の形態の継目無管の製造方法では、熱間押出工程と中間焼鈍処理(A)との間には他の中間焼鈍処理等の熱処理を行わず、この間の冷間加工工程の総加工度(断面減少率)を99.8%以上とし、且つ、最終焼鈍処理の保持温度を上記範囲とすることにより、最終焼鈍処理を行い得られる継目無管の引張強さ(σ)を245MPa以上、好ましくは245~265MPa、0.2%耐力(σ0.2)を140MPa以下、好ましくは80~120MPa、且つ、伸び(δ)を40%以上、好ましくは40~55%とすることができる。なお、冷間加工工程の総加工度とは、冷間加工工程で最初に行う冷間加工前の継目無素管に対する冷間加工工程で最後に行う冷間加工後の継目無素管の加工度を指す(前記式(1))。 And in the manufacturing method of the seamless pipe of the 2nd form of this invention, it does not perform heat processing, such as another intermediate annealing process, between a hot extrusion process and an intermediate annealing process (A). By setting the total processing degree (cross-sectional reduction rate) of the processing steps to 99.8% or more and keeping the holding temperature of the final annealing treatment within the above range, the tensile strength of the seamless pipe obtained by performing the final annealing treatment ( σ B ) is 245 MPa or more, preferably 245 to 265 MPa, 0.2% proof stress (σ 0.2 ) is 140 MPa or less, preferably 80 to 120 MPa, and elongation (δ) is 40% or more, preferably 40 to 55. %. Note that the total degree of cold working process is the processing of the seamless element tube after the cold working performed last in the cold working process for the first seamless element tube performed before the cold working process. Degree (degree (1)).
 このように、本発明の第二の形態の継目無管の製造方法に行うことにより、本発明の継目無管を得ることができる。 Thus, the seamless pipe of the present invention can be obtained by performing the method for producing the seamless pipe of the second aspect of the present invention.
 なお、継目無管が内面溝付管の場合、内面溝の寸法パラメータを以下の範囲に設定することにより、管の伝熱性能と曲げ加工性の両方を良好に維持することが可能となり、より好ましい。
・フィン高さをh(mm)、肉厚(底肉厚)をt(mm)としたとき、
   h/tが、0.50~1.2
・リード角をθ(°)、フィン頂角をα(°)としたとき、
   θ/αが、0.70以上
 なお、フィン高さh、肉厚(底肉厚)t、フィン頂角αは、図2中の符号h、t及びαである。また、リード角θとは、継目無管の管軸方向に対する内面溝の傾斜角である。
If the seamless tube is an internally grooved tube, it is possible to maintain both the heat transfer performance and the bending workability of the tube by setting the dimensional parameters of the internal groove within the following range, preferable.
・ When fin height is h (mm) and wall thickness (bottom wall thickness) is t (mm),
h / t is 0.50 to 1.2
・ When lead angle is θ (°) and fin apex angle is α (°)
θ / α is 0.70 or more Note that the fin height h, the wall thickness (bottom wall thickness) t, and the fin apex angle α are denoted by symbols h, t, and α in FIG. The lead angle θ is an inclination angle of the inner surface groove with respect to the tube axis direction of the seamless pipe.
 継目無管は、通常、コイル状に巻き回されて、コイルにされる。このようなコイル、すなわち、本発明のコイルは、継目無管を巻き回して作製されたコイルであり、
 該コイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
 該コイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下、好ましくは0.020~0.040、特に好ましくは0.030~0.038であり、
 該コイルに巻かれている継目無管の引張強さ(σ)が245MPa以上、好ましくは245~265MPaであり、
 0.2%耐力(σ0.2)が130MPa以下、好ましくは80~120MPaであり、
 伸び(δ)が40%以上、好ましくは40~55%であること、
を特徴とするコイルである。
The seamless pipe is usually wound in a coil shape to form a coil. Such a coil, that is, the coil of the present invention is a coil produced by winding a seamless tube,
The material of the seamless pipe wound around the coil is phosphorus deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the coil is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0. .030-0.038,
The tensile strength (σ B ) of the seamless pipe wound around the coil is 245 MPa or more, preferably 245 to 265 MPa,
0.2% proof stress (σ 0.2 ) is 130 MPa or less, preferably 80 to 120 MPa,
Elongation (δ) is 40% or more, preferably 40 to 55%,
It is a coil characterized by this.
 特に、クロスフィンチューブ型熱交換器の製造では、通常、継目無管を巻き回したコイルから、継目無管を巻き解き、巻き解いた継目無管を、ヘアピン曲げ加工に供するが、コイルが円筒状に整列多層巻きされたレベルワウンドコイルであることが多い。つまり、クロスフィンチューブ型熱交換器に用いられる継目無管は、多くの場合、レベルワウンドコイルから巻き解かれた継目無管である。 In particular, in the manufacture of a cross fin tube type heat exchanger, the seamless tube is usually unwound from the coil wound with the seamless tube, and the unwound seamless tube is subjected to hairpin bending, but the coil is cylindrical. It is often a level-wound coil that is wound in multiple layers. That is, the seamless pipe used for the cross fin tube type heat exchanger is often a seamless pipe unwound from the level wound coil.
 レベルワウンドコイルとは、ボビンに継目無管が円筒状に整列多層巻きされたものであり、円筒形状の内面側から円筒状に巻かれた第一層、第二層、第三層・・・第n層と順に、円筒形状の外側面の最終第n層まで整列多層巻きされたものである。レベルワウンドコイルには、内面側から継目無管が巻き解かれるレベルワウンドコイルと、外面側から継目無管が巻き解かれるレベルワウンドコイルとがある。外面側から継目無管が巻き解かれるレベルワウンドコイルとしては、例えば、特開2002-370869号公報の図11等に開示されているレベルワウンドコイルが挙げられる。また、内面側から継目無管が巻き解かれるレベルワウンドコイルとしては、例えば、特開2002-370869号公報の図14等に開示されているレベルワウンドコイルが挙げられる。 The level wound coil is a bobbin in which seamless pipes are aligned and wound in a cylindrical shape, and the first layer, the second layer, the third layer, etc. wound in a cylindrical shape from the inner surface side of the cylindrical shape. In order from the nth layer, the multilayered layers are wound up to the final nth layer on the outer surface of the cylindrical shape. The level wound coil includes a level wound coil in which the seamless tube is unwound from the inner surface side, and a level wound coil in which the seamless tube is unwound from the outer surface side. Examples of the level wound coil in which the seamless tube is unwound from the outer surface side include a level wound coil disclosed in FIG. 11 of JP-A-2002-370869. Further, examples of the level wound coil in which the seamless pipe is unwound from the inner surface side include a level wound coil disclosed in FIG. 14 of JP-A-2002-370869.
 レベルワウンドコイルでは、クロスフィンチューブ型熱交換器を製造するときに、レベルワウンドコイルの内面側又は外面側から継目無管が巻き解かれるが、レベルワウンドコイルから継目無管が巻き解かれるときに、継目無管には、管を伸ばすことによる加工硬化が加わるため、巻き解かれた後の継目無管の0.2%耐力が、巻き解かれる前の継目無管の0.2%耐力に比べ、増加する。そのため、レベルワウンドコイルに巻かれている継目無管(レベルワウンドコイルから巻き解かれる前の継目無管)の0.2%耐力は、クロスフィンチューブ型熱交換器を製造するときにヘアピン曲げ加工に供される継目無管(レベルワウンドコイルから巻き解かれた後の継目無管)の0.2%耐力より低くなければならない。そのため、レベルワウンドコイルは、巻かれている継目無管の0.2%耐力(σ0.2)が、巻き解かれるときの増加分を加味した範囲に設計されたものでなければならない。 In the level-wound coil, when manufacturing a cross fin tube heat exchanger, the seamless pipe is unwound from the inner or outer surface side of the level-wound coil, but when the seamless pipe is unwound from the level-wound coil. Since seamless hardening is added to the seamless pipe by extending the pipe, the 0.2% proof stress of the seamless pipe after being unwound becomes the 0.2% proof stress of the seamless pipe before being unrolled. Compared to increase. Therefore, the 0.2% proof stress of the seamless pipe wound around the level-wound coil (the seamless pipe before being unwound from the level-wound coil) is a hairpin bending process when manufacturing a cross fin tube type heat exchanger. Must be lower than the 0.2% proof stress of the seamless pipe (seamless pipe after being unwound from the level wound coil). Therefore, the level wound coil must be designed so that the 0.2% proof stress (σ 0.2 ) of the seamless pipe wound is taken into account in the increment when unwinding.
 このようなレベルワウンドコイル、すなわち、本発明のレベルワウンドコイルは、継目無管を整列多層巻きして作製されたレベルワウンドコイルであり、
 該レベルワウンドコイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
 該レベルワウンドコイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
 該レベルワウンドコイルに巻かれている該継目無管の引張強さ(σ)が245MPa以上であり、
 0.2%耐力(σ0.2)が130MPa以下であり、且つ、伸び(δ)が40%以上であること、
を特徴とするレベルワウンドコイルである。
Such a level-wound coil, i.e., the level-wound coil of the present invention, is a level-wound coil produced by aligning multiple layers of seamless tubes,
The material of the seamless pipe wound around the level wound coil is phosphorous deoxidized copper,
The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less,
The tensile strength (σ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more,
0.2% proof stress (σ 0.2 ) is 130 MPa or less and elongation (δ) is 40% or more,
Is a level-wound coil.
 本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の材質は、りん脱酸銅である。本発明のレベルワウンドコイルに係るりん脱酸銅は、本発明の継目無管のりん脱酸銅と同様である。また、本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の外径D及び肉厚tは、本発明の継目無管の外径D及び肉厚tと同様である。 In the level wound coil of the present invention, the material of the seamless tube wound around the level wound coil is phosphorous deoxidized copper. The phosphorous deoxidized copper according to the level wound coil of the present invention is the same as the phosphorous deoxidized copper of the seamless tube of the present invention. In the level wound coil of the present invention, the outer diameter D and the wall thickness t of the seamless pipe wound around the level wound coil are the same as the outer diameter D and the wall thickness t of the seamless pipe of the present invention.
 本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の外径(mm)に対する肉厚(mm)の比(t/D)は、0.040以下、好ましくは0.020~0.040、特に好ましくは0.030~0.038である。 In the level wound coil of the present invention, the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less, preferably 0.020. To 0.040, particularly preferably 0.030 to 0.038.
 本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の引張強さ(σ)は、245MPa以上、好ましくは、245~265MPaである。レベルワウンドコイルに巻かれている継目無管の引張強さ(σ)が上記範囲にあることにより、レベルワウンドコイルから巻き解かれた後の継目無管、すなわち、クロスフィンチューブ型熱交換器の製造のためにヘアピン曲げ加工に供される継目無管の引張強さ(σ)を、245MPa以上、好ましくは245~265MPaとすることができる。 In the level wound coil of the present invention, the tensile strength (σ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more, preferably 245 to 265 MPa. Since the tensile strength (σ B ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, a cross-fin tube heat exchanger The tensile strength (σ B ) of the seamless pipe subjected to the hairpin bending process for the production of 245 MPa can be 245 MPa or more, preferably 245 to 265 MPa.
 本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の0.2%耐力(σ0.2)は、130MPa以下、好ましくは、80~110MPaである。レベルワウンドコイルに巻かれている継目無管の0.2%耐力(σ0.2)が上記範囲にあることにより、レベルワウンドコイルから巻き解かれた後の継目無管、すなわち、クロスフィンチューブ型熱交換器の製造のためにヘアピン曲げ加工に供される継目無管の0.2%耐力(σ0.2)を、140MPa以下、好ましくは80~120MPaにすることができる。 In the level wound coil of the present invention, the 0.2% yield strength (σ 0.2 ) of the seamless pipe wound around the level wound coil is 130 MPa or less, preferably 80 to 110 MPa. Since the 0.2% proof stress (σ 0.2 ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, the cross fin tube The 0.2% proof stress (σ 0.2 ) of a seamless pipe subjected to hairpin bending for the production of a mold heat exchanger can be 140 MPa or less, preferably 80 to 120 MPa.
 本発明のレベルワウンドコイルにおいて、レベルワウンドコイルに巻かれている継目無管の伸び(δ)が40%以上、好ましくは40~55%である。レベルワウンドコイルに巻かれている継目無管の伸び(δ)が上記範囲にあることにより、レベルワウンドコイルから巻き解かれた後の継目無管、すなわち、クロスフィンチューブ型熱交換器の製造のためにヘアピン曲げ加工に供される継目無管の伸び(δ)を、40%以上、好ましくは40~55%にすることができる。 In the level wound coil of the present invention, the elongation (δ) of the seamless pipe wound around the level wound coil is 40% or more, preferably 40 to 55%. Since the elongation (δ) of the seamless pipe wound around the level-wound coil is in the above range, the seamless pipe after being unwound from the level-wound coil, that is, the production of the cross fin tube type heat exchanger Therefore, the elongation (δ) of the seamless pipe subjected to the hairpin bending process can be 40% or more, preferably 40 to 55%.
 そして、本発明のレベルワウンドコイルでは、レベルワウンドコイルに巻かれている継目無管の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)が上記範囲に設定されていることにより、レベルワウンドコイルから巻き解かれた後の継目無管、すなわち、ヘアピン加工に供される継目無管の引張強さ(σ)が245MPa以上、好ましくは245~265MPaであり、0.2%耐力(σ0.2)が140MPa以下、好ましくは80~120MPaであり、且つ、伸び(δ)が40%以上、好ましくは40~55%となる。 In the level wound coil of the present invention, the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ) and elongation (δ) of the seamless pipe wound around the level wound coil are within the above ranges. By being set, the tensile strength (σ B ) of the seamless pipe after being unwound from the level wound coil, that is, the seamless pipe subjected to hairpin processing, is 245 MPa or more, preferably 245 to 265 MPa. The 0.2% proof stress (σ 0.2 ) is 140 MPa or less, preferably 80 to 120 MPa, and the elongation (δ) is 40% or more, preferably 40 to 55%.
 レベルワウンドコイルは、例えば、本発明の第一の継目無管の製造方法又は本発明の第二の継目無管の製造方法に係る最終焼鈍処理を行い得られた継目無管が、円筒状に整列多層巻きに巻き取られて、作製される。ここで、継目無管が円筒状に巻き取られるときに、継目無管には、曲げることによる加工硬化が加わるため、レベルワウンドコイルに巻き取られた継目無管の0.2%耐力が、レベルワウンドコイルに巻き取られる前の継目無管の0.2%耐力に比べ、増加する。また、前述したように、レベルワウンドコイルから巻き解かれるときにも、継目無管の0.2%耐力は増加する。そのため、レベルワウンドコイルに巻き取られる前の継目無管の0.2%耐力、例えば、本発明の第一の形態の継目無管の製造方法又は本発明の第二の形態の継目無管の製造方法に係る最終焼鈍処理を行うことにより得られた継目無管の0.2%耐力は、レベルワウンドコイルに巻き取られるときの増加分及びレベルワウンドコイルから巻き解かれるときの増加分を加味した範囲に設計されたものでなければならない。 In the level wound coil, for example, the seamless pipe obtained by performing the final annealing treatment according to the first seamless pipe manufacturing method of the present invention or the second seamless pipe manufacturing method of the present invention has a cylindrical shape. It is wound up into an aligned multilayer winding. Here, when the seamless pipe is wound into a cylindrical shape, since the work hardening by bending is added to the seamless pipe, the 0.2% proof stress of the seamless pipe wound around the level wound coil is Compared to the 0.2% proof stress of the seamless pipe before being wound around the level wound coil. As described above, the 0.2% proof stress of the seamless pipe also increases when it is unwound from the level wound coil. Therefore, the 0.2% proof stress of the seamless pipe before being wound around the level wound coil, for example, the manufacturing method of the seamless pipe according to the first aspect of the present invention or the seamless pipe according to the second aspect of the present invention. The 0.2% proof stress of the seamless pipe obtained by performing the final annealing treatment according to the manufacturing method takes into account the increase when wound around the level wound coil and the increase when unrolled from the level wound coil. Must be designed to the specified range.
 このようなことから、レベルワウンドコイルの作製に用いられる継目無管は、継目無管の材質が、りん脱酸銅であり、継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下、好ましくは0.020~0.040、特に好ましくは0.030~0.038であり、継目無管の引張強さ(σ)が245MPa以上、好ましくは、245~265MPaであり、0.2%耐力(σ0.2)が120MPa以下、好ましくは80~100MPaあり、且つ、伸び(δ)が40%以上、好ましくは40~55%であるレベルワウンドコイル作製用継目無管が好ましい。そして、このようなレベルワウンドコイル作製用継目無管を、円筒状に整列多層巻きして、レベルワウンドコイルを作製し、次いで、作製したレベルワウンドコイルから継目無管を巻き解くことにより、クロスフィンチューブ型熱交換器を製造するときにヘアピン曲げ加工に供される継目無管として、材質が、りん脱酸銅であり、外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下、好ましくは0.020~0.040、特に好ましくは0.030~0.038であり、引張強さ(σ)が245MPa以上、好ましくは、245~265MPaであり、0.2%耐力(σ0.2)が140MPa以下、好ましくは、80~120MPa、且つ、伸び(δ)が40%以上、好ましくは40~55%である継目無管を得ることができる。 For this reason, the seamless pipe used for the production of the level wound coil is made of phosphorous-deoxidized copper, and the ratio of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe. (T / D) is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0.038, and the tensile strength (σ B ) of the seamless pipe is 245 MPa or more, preferably Is 245 to 265 MPa, 0.2% proof stress (σ 0.2 ) is 120 MPa or less, preferably 80 to 100 MPa, and elongation (δ) is 40% or more, preferably 40 to 55%. A seamless tube for producing a wound coil is preferred. Then, such a levelwound coil production seamless tube is wound in a multilayered arrangement in a cylindrical shape to produce a levelwound coil, and then the seamless tube is unwound from the produced levelwound coil to obtain a cross fin. As a seamless tube used for hairpin bending when manufacturing a tube heat exchanger, the material is phosphorous deoxidized copper, and the ratio of thickness (mm) to outer diameter (mm) (t / D) Is 0.040 or less, preferably 0.020 to 0.040, particularly preferably 0.030 to 0.038, and the tensile strength (σ B ) is 245 MPa or more, preferably 245 to 265 MPa. Obtaining a seamless tube having a 2% proof stress (σ 0.2 ) of 140 MPa or less, preferably 80 to 120 MPa and an elongation (δ) of 40% or more, preferably 40 to 55% Can do.
 レベルワウンドコイル作製用継目無管の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)を上記範囲にする方法であるが、例えば、本発明の第一の形態の継目無管の製造方法又は本発明の第二の形態の継目無管の製造方法において、冷間加工工程の総加工度、中間焼鈍処理(A)又は最終焼鈍処理の保持温度又は保持時間を適宜選択することにより、レベルワウンドコイル作製用継目無管の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)を上記範囲にすることができる。 In this method, the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe for producing the level wound coil are set in the above ranges. In the method of manufacturing a seamless pipe of the form of the present invention or the method of manufacturing the seamless pipe of the second aspect of the present invention, the total working degree of the cold working step, the holding temperature or holding of the intermediate annealing process (A) or the final annealing process By appropriately selecting the time, the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe for producing the level wound coil can be within the above ranges.
 なお、上記ではレベルワウンドコイルについて詳しく述べたが、本発明のコイルはこれに限定されることはない。例えば、ボビンへの整列巻きは行わず、トレイ上に直接バンチ巻き、又は巻き径の調整を順次繰り返し、パンケーキ巻きを多層に重ねることによって得られるコイルであっても構わない。 In addition, although the level-wound coil was described in detail above, the coil of the present invention is not limited to this. For example, it may be a coil obtained by stacking pancakes in multiple layers by sequentially repeating bunch winding or adjusting the winding diameter directly on the tray without performing aligned winding on bobbins.
 本発明のクロスフィンチューブ型熱交換器は、前記本発明の継目無管、前記本発明のコイル又は前記本発明のレベルワウンドコイルから巻き解かれた継目無管をヘアピン曲げ加工し、アルミニウムフィンに組み付けて得られるクロスフィンチューブ型熱交換器である。 The cross fin tube type heat exchanger of the present invention is obtained by bending a seamless tube unwound from the seamless tube of the present invention, the coil of the present invention or the level wound coil of the present invention by hairpin bending into an aluminum fin. It is a cross fin tube type heat exchanger obtained by assembling.
 次に、実施例を挙げて本発明を更に具体的に説明するが、これは単に例示であって、本発明を制限するものではない。 Next, the present invention will be described more specifically with reference to examples. However, this is merely an example and does not limit the present invention.
 以下に、継目無管が内面溝付管である場合の実施例を示す。
(実施例1~2)
(1)下記化学成分のりん脱酸銅(JIS H3300 C1220)の鋳塊を溶解及び鋳造し、熱間押出用のビレットを作製した。
・りん脱酸銅のP含有量は0.025質量%、Cu含有量は99.97質量%であり、その他は不可避不純物であった。
(2)上記ビレットを加熱し、850℃にて熱間押出を行い、押出素管を得た。次いで、熱間押出した押出素管を、水中に押出して急冷した。
・押出前に熱間で内径約75mm穿孔した。
・押出素管の外径は102mm、内径は75mmであった。
(3)上記押出素管を、ビルガーミル圧延機によって冷間圧延し、圧延素管を得た。
・圧延素管の外径は46mm、内径は39.8mmであった。
・冷間圧延での加工度(断面減少率)は、88.9%であった。
 断面減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
(4)上記の圧延素管を、冷間にて抽伸を複数回行い、抽伸素管を得た。
・抽伸素管の外径は38mm、内径は33mmであった。
・冷間抽伸全体での加工度は、断面減少率で98.2%であった。
・冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.8%であった。
(5)上記の抽伸素管を中間焼鈍し、転造工程に供するための原管を得た。
・中間焼鈍条件は、表1に示す通り。
・原管の0.2%耐力(σ0.2)及び平均結晶粒度を、表1に示す。
(6)上記の原管を、ボール転造加工して、下記寸法諸元の内面溝付管Aを得た。
<内面溝付管Aの寸法諸元>
・外径:7.0mm
・肉厚(図2中、符号t):0.26mm
・フィン高さ(図2中、符号h):0.22mm
・フィン頂角(図2中、符号α):13°
・溝条数:44条
・リード角θ:28°
・内面溝付管の外径(mm)に対する肉厚(mm)の比(t/D):0.037
(7)上記の内面溝付管を巻き取ってコイル状とし、下記の条件の最終焼鈍処理を行い、継目無管(レベルワウンドコイル(LWC)作製用)を得た。
・焼鈍方法:ローラーハース連続焼鈍炉にて行った。
・条件:保持温度は表1に示す通りであり、昇温速度は25℃から保持温度まで5.0℃/分であり、冷却速度は保持温度から25℃まで2.2℃/分であった。
・最終焼鈍処理後の継目無管(LWC作製用)の引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)を表1に示す。
(8)上記の継目無管(LWC作製用)を円筒状の整列多層巻きに巻き取り、内面側から巻き解かれる方式のLWCを作製した。
・LWCに巻かれている継目無管の引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)を表1に示す。
(9)上記のLWCの内面側から継目無管を巻き解き、継目無管(クロスフィンチューブ型熱交換器の伝熱管用)を得た。
・継目無管(クロスフィンチューブ型熱交換器の伝熱管用)の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)を表1に示す。
(10)上記の継目無管(クロスフィンチューブ型熱交換器の伝熱管用)を用い、下記の条件にてヘアピン曲げ加工試験を行い、加工性を評価した。その結果を表1に示す。
・ヘアピン曲げ加工試験の方法:片首振りボールマンドレルの肩部と曲げ金型の曲げ開始位置が一直線上に並んだ位置を0点とし、曲げ型R部から遠ざかる方向へマンドレル位置を2.0~5.5mmの範囲でずらしながら、ヘアピン加工性の評価を行った。
・ヘアピン曲げ加工試験の条件:ボールマンドレル外径が5.90mm、曲げピッチが22mm
・各実施例及び比較例の継目無管について、20本ずつ試験を行った。
<評価>
(I)しわ発生
 ヘアピン曲げの内側部分にしわが発生している継目無管の数を数え、下記式にて、しわ発生率を求めた。しわ発生率が0%の場合を合格とした。
   しわ発生率(%)=(しわが発生した管の本数/試験した管の本数)×100
(II)扁平率
 ヘアピン曲げ後の曲げ部の扁平率を下記にて算出した。
   扁平率(%)=((最大外径-最小外径)/呼称外径)×100
 なお、測定位置は、ヘアピン曲げ部の45°、90°、135°位置であり、呼称外径は、本例では7.0mmである。なお、ヘアピン曲げ部の45°、90°、135°とは、図1に示すように、継目無管を45°曲げた位置(符号a)、90°曲げた位置(符号b)、135°曲げた位置(符号c)である。
 試験した各継目無管の扁平率を求め、扁平率の平均値が15%以下の場合を合格とした。
<引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)>
 継目無管の引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)は、JIS Z 2241に準拠して測定した。
<平均結晶粒度>
 継目無管の平均結晶粒度は、JIS H0501に定められた比較法を用いて結晶粒度を測定し、任意の10ヶ所の平均した値を平均結晶粒度とした。
Below, the Example in case a seamless pipe is an internal grooved pipe is shown.
(Examples 1 and 2)
(1) An ingot of phosphorous deoxidized copper (JIS H3300 C1220) having the following chemical components was melted and cast to produce a billet for hot extrusion.
-Phosphorus-deoxidized copper had a P content of 0.025% by mass, a Cu content of 99.97% by mass, and the others were inevitable impurities.
(2) The billet was heated and subjected to hot extrusion at 850 ° C. to obtain an extruded tube. Next, the extruded extruded tube was extruded into water and quenched.
-The inner diameter was about 75 mm perforated before extrusion.
-The outer diameter of the extruded element tube was 102 mm, and the inner diameter was 75 mm.
(3) The extruded blank was cold-rolled with a Birger mill to obtain a rolled blank.
-The rolling tube had an outer diameter of 46 mm and an inner diameter of 39.8 mm.
-The degree of work in cold rolling (cross-sectional reduction rate) was 88.9%.
Cross-sectional reduction rate (%) = ((cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing) × 100
(4) The above-mentioned rolled blank was cold drawn a plurality of times to obtain a drawn blank.
-The outer diameter of the drawing element tube was 38 mm, and the inner diameter was 33 mm.
-The degree of work in the entire cold drawing was 98.2% in terms of the cross-section reduction rate.
-The total working degree of cold rolling and cold drawing, that is, the total working degree of cold working was 99.8% in terms of the cross-section reduction rate.
(5) The above-mentioned drawn element pipe was subjected to intermediate annealing to obtain an original pipe for use in the rolling process.
・ Intermediate annealing conditions are as shown in Table 1.
Table 1 shows the 0.2% proof stress (σ 0.2 ) and average grain size of the original pipe.
(6) The above-mentioned original pipe was processed by ball rolling to obtain an internally grooved pipe A having the following dimensions.
<Dimensions of inner grooved tube A>
・ Outer diameter: 7.0mm
・ Wall thickness (in FIG. 2, symbol t): 0.26 mm
-Fin height (symbol h in FIG. 2): 0.22 mm
-Fin apex angle (symbol α in FIG. 2): 13 °
・ Number of grooves: 44 ・ Lead angle: 28 °
-Ratio of thickness (mm) to outer diameter (mm) of inner grooved tube (t / D): 0.037
(7) The inner grooved tube was wound up into a coil shape and subjected to a final annealing treatment under the following conditions to obtain a seamless tube (for producing a level wound coil (LWC)).
-Annealing method: performed in a roller hearth continuous annealing furnace.
-Conditions: The holding temperature is as shown in Table 1, the rate of temperature increase is 5.0 ° C / min from 25 ° C to the holding temperature, and the cooling rate is 2.2 ° C / min from the holding temperature to 25 ° C. It was.
Table 1 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe (for LWC production) after the final annealing treatment.
(8) The above seamless pipe (for LWC production) was wound around a cylindrical aligned multilayer winding to produce an LWC of the type that was unwound from the inner surface side.
Table 1 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe wound around the LWC.
(9) The seamless tube was unwound from the inner surface side of the LWC to obtain a seamless tube (for heat transfer tubes of a cross fin tube type heat exchanger).
Table 1 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of seamless tubes (for heat transfer tubes of cross fin tube heat exchangers).
(10) Using the above seamless tube (for heat transfer tube of cross fin tube type heat exchanger), a hairpin bending test was performed under the following conditions to evaluate workability. The results are shown in Table 1.
・ Hairpin bending test method: The position where the shoulder of the one-neck swing ball mandrel and the bending start position of the bending mold are aligned on a straight line is 0 point, and the mandrel position is 2.0 in the direction away from the bending R part. The hairpin processability was evaluated while shifting within a range of ˜5.5 mm.
-Hairpin bending test conditions: Ball mandrel outer diameter is 5.90 mm, bending pitch is 22 mm
-About 20 seamless pipes of each Example and Comparative Example, 20 tests were performed.
<Evaluation>
(I) Wrinkle generation The number of seamless tubes in which wrinkles are generated in the inner part of the hairpin bend was counted, and the wrinkle generation rate was determined by the following formula. The case where the wrinkle occurrence rate was 0% was regarded as acceptable.
Wrinkle generation rate (%) = (number of tubes with wrinkles / number of tubes tested) × 100
(II) Flatness The flatness of the bent part after hairpin bending was calculated as follows.
Flatness ratio (%) = ((maximum outer diameter−minimum outer diameter) / nominal outer diameter) × 100
In addition, a measurement position is a 45 degree, 90 degree, and 135 degree position of a hairpin bending part, and a nominal outer diameter is 7.0 mm in this example. In addition, as shown in FIG. 1, 45 degrees, 90 degrees, and 135 degrees of a hairpin bending part are the position (code | symbol a) which bent the seamless pipe 45 degrees, the position (code | symbol b) which bent 90 degrees, and 135 degrees. It is the bent position (symbol c).
The flatness of each seamless pipe tested was determined, and the average value of the flatness was 15% or less.
<Tensile strength (σ B ), 0.2% yield strength (σ 0.2 ), elongation (δ)>
The tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe were measured according to JIS Z 2241.
<Average grain size>
The average crystal grain size of the seamless tube was measured by using a comparative method defined in JIS H0501, and an average value of 10 arbitrary points was defined as the average crystal grain size.
 実施例1及び2は、いずれも、ヘアピン曲げ皺及び扁平率が合格となり、正常なヘアピン曲げ加工を行うことができた。 In both Examples 1 and 2, the hairpin bending wrinkles and the flatness ratio passed, and a normal hairpin bending process could be performed.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(比較例1~2及び参考例1)
(1)下記化学成分のりん脱酸銅(JIS H3300 C1220)の鋳塊を溶解及び鋳造し、熱間押出用のビレットを作製した。
・りん脱酸銅のP含有量は0.025質量%、Cu含有量は99.97質量%であり、その他は不可避不純物であった。
(2)上記ビレットを加熱し、850℃にて熱間押出を行い、押出素管を得た。次いで、熱間押出した押出素管を、水中に押出して急冷した。
・押出前に熱間で内径約75mm穿孔した。
・押出素管の外径は102mm、内径は75mmであった。
(3)上記押出素管を、ビルガーミル圧延機によって冷間圧延し、圧延素管を得た。
・圧延素管の外径は46mm、内径は39.8mmであった。
・冷間圧延での加工度(断面減少率)は、88.9%であった。
 断面減少率(%)=((加工前の断面積-加工後の断面積)/加工前の断面積)×100
(4)上記の圧延素管を、冷間にて抽伸を複数回行い、抽伸素管を得た。
・抽伸素管の外径は38mm、内径は33mmであった。
(5)上記の抽伸素管を中間焼鈍し、転造工程に供するための原管を得た。
・中間焼鈍条件は、表2に示す通り。
・中間焼鈍処理(A)を440℃で行ったものを原管とする。
・原管の0.2%耐力(σ0.2)及び平均結晶粒度を、表2に示す。
(6)上記の原管を、ボール転造加工して、下記寸法諸元の内面溝付管A又はBを得た。
<内面溝付管Aの寸法諸元>
・外径:7.0mm
・肉厚(図2中、符号t):0.26mm
・フィン高さ(図2中、符号h):0.22mm
・フィン頂角(図2中、符号α):13°
・溝条数:44条
・リード角θ:28°
・内面溝付管の外径(mm)に対する肉厚(mm)の比(t/D):0.037
・なお、内面溝付管Aの製造においては、冷間抽伸全体での加工度は、断面減少率で98.2%であり、冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.8%であった。
<内面溝付管Bの寸法諸元>
・外径:7.0mm
・肉厚(図2中、符号t):0.29mm
・フィン高さ(図2中、符号h):0.22mm
・フィン頂角(図2中、符号α):13°
・溝条数:44条
・リード角θ:28°
・内面溝付管の外径(mm)に対する肉厚(mm)の比(t/D):0.041
・なお、内面溝付管Bの製造においては、冷間抽伸全体での加工度は、断面減少率で97.2%であり、冷間圧延及び冷間抽伸の総加工度、すなわち、冷間加工の総加工度は、断面減少率で99.7%であった。
(7)上記の内面溝付管を巻き取ってコイル状とし、下記の条件の最終焼鈍処理を行い、継目無管(レベルワウンドコイル(LWC)作製用)を得た。
・焼鈍方法:ローラーハース連続焼鈍炉にて行った。
・条件:保持温度は表1に示す通りであり、昇温速度は25℃から保持温度まで5.0℃/分であり、冷却速度は保持温度から25℃まで2.2℃/分であった。
・最終焼鈍処理後の継目無管(LWC作製用)の引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)を表2に示す。
(8)上記の継目無管(LWC作製用)を円筒状の整列多層巻きに巻き取り、内面側から巻き解かれる方式のLWCを作製した。
・LWCに巻かれている継目無管の引張強さ(σ)、0.2%耐力(σ0.2)、伸び(δ)を表2に示す。
(9)上記のLWCの内面側から継目無管を巻き解き、継目無管(クロスフィンチューブ型熱交換器の伝熱管用)を得た。
・継目無管(クロスフィンチューブ型熱交換器の伝熱管用)の引張強さ(σ)、0.2%耐力(σ0.2)及び伸び(δ)を表2に示す。
(10)上記の継目無管(クロスフィンチューブ型熱交換器の伝熱管用)を用い、実施例と同様の条件にてヘアピン曲げ加工試験を行い、加工性を評価した。その結果を表2に示す。
(Comparative Examples 1 and 2 and Reference Example 1)
(1) An ingot of phosphorous deoxidized copper (JIS H3300 C1220) having the following chemical components was melted and cast to produce a billet for hot extrusion.
-Phosphorus-deoxidized copper had a P content of 0.025% by mass, a Cu content of 99.97% by mass, and the others were inevitable impurities.
(2) The billet was heated and subjected to hot extrusion at 850 ° C. to obtain an extruded tube. Next, the extruded extruded tube was extruded into water and quenched.
-The inner diameter was about 75 mm perforated before extrusion.
-The outer diameter of the extruded element tube was 102 mm, and the inner diameter was 75 mm.
(3) The extruded blank was cold-rolled with a Birger mill to obtain a rolled blank.
-The rolling tube had an outer diameter of 46 mm and an inner diameter of 39.8 mm.
-The degree of work in cold rolling (cross-sectional reduction rate) was 88.9%.
Cross-sectional reduction rate (%) = ((cross-sectional area before processing−cross-sectional area after processing) / cross-sectional area before processing) × 100
(4) The above-mentioned rolled blank was cold drawn a plurality of times to obtain a drawn blank.
-The outer diameter of the drawing element tube was 38 mm, and the inner diameter was 33 mm.
(5) The above-mentioned drawn element pipe was subjected to intermediate annealing to obtain an original pipe for use in the rolling process.
・ Intermediate annealing conditions are as shown in Table 2.
-The one that has been subjected to the intermediate annealing treatment (A) at 440 ° C is used as the original pipe.
Table 2 shows the 0.2% proof stress (σ 0.2 ) and average grain size of the original tube.
(6) The above-mentioned original pipe was subjected to ball rolling to obtain an internally grooved pipe A or B having the following dimensions.
<Dimensions of inner grooved tube A>
・ Outer diameter: 7.0mm
・ Wall thickness (in FIG. 2, symbol t): 0.26 mm
-Fin height (symbol h in FIG. 2): 0.22 mm
-Fin apex angle (symbol α in FIG. 2): 13 °
・ Number of grooves: 44 ・ Lead angle: 28 °
-Ratio of thickness (mm) to outer diameter (mm) of inner grooved tube (t / D): 0.037
In addition, in the manufacture of the inner surface grooved tube A, the workability of the entire cold drawing is 98.2% in terms of the cross-sectional reduction rate, that is, the total workability of cold rolling and cold drawing, that is, cold The total processing degree of processing was 99.8% in terms of the cross-section reduction rate.
<Dimensions of inner grooved tube B>
・ Outer diameter: 7.0mm
・ Wall thickness (in FIG. 2, symbol t): 0.29 mm
-Fin height (symbol h in FIG. 2): 0.22 mm
-Fin apex angle (symbol α in FIG. 2): 13 °
・ Number of grooves: 44 ・ Lead angle: 28 °
-Ratio (t / D) of wall thickness (mm) to outer diameter (mm) of inner grooved tube: 0.041
In addition, in the manufacture of the inner surface grooved tube B, the workability in the entire cold drawing is 97.2% in terms of the cross-sectional reduction rate, that is, the total workability of cold rolling and cold drawing, ie, cold The total degree of processing was 99.7% in terms of the cross-section reduction rate.
(7) The inner grooved tube was wound up into a coil shape and subjected to a final annealing treatment under the following conditions to obtain a seamless tube (for producing a level wound coil (LWC)).
-Annealing method: performed in a roller hearth continuous annealing furnace.
-Conditions: The holding temperature is as shown in Table 1, the rate of temperature increase is 5.0 ° C / min from 25 ° C to the holding temperature, and the cooling rate is 2.2 ° C / min from the holding temperature to 25 ° C. It was.
Table 2 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe (for LWC production) after the final annealing treatment.
(8) The above seamless pipe (for LWC production) was wound around a cylindrical aligned multilayer winding to produce an LWC of the type that was unwound from the inner surface side.
Table 2 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of the seamless pipe wound around the LWC.
(9) The seamless tube was unwound from the inner surface side of the LWC to obtain a seamless tube (for heat transfer tubes of a cross fin tube type heat exchanger).
Table 2 shows the tensile strength (σ B ), 0.2% proof stress (σ 0.2 ), and elongation (δ) of seamless tubes (for heat transfer tubes of cross fin tube heat exchangers).
(10) Using the above seamless tube (for heat transfer tube of cross fin tube type heat exchanger), a hairpin bending test was performed under the same conditions as in Example, and the workability was evaluated. The results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 ヘアピン曲げ供試の継目無管の0.2%耐力が、140MPaを超える比較例1及び2は、ペアピン曲げ皺及び扁平率が不合格であり、正常なヘアピン曲げ加工を行うことができなかった。 In Comparative Examples 1 and 2 in which the 0.2% proof stress of the seamless tube of the hairpin bending test exceeds 140 MPa, the paired pin bending wrinkles and the flatness ratio were unacceptable, and normal hairpin bending processing could not be performed. .
 また、t/Dが、0.040を超える比較例3は、ヘアピン曲げ皺及び扁平率が合格であり、正常なヘアピン曲げ加工を行えたものの、t/Dが、0.040を超えており、継目無管の単位長さ当たりの質量が高くなり過ぎるので、薄肉化できていない。 Moreover, t / D exceeds 0.040 although t / D exceeded 0.040, although the hairpin bending wrinkle and the flatness ratio were passing and it was able to perform normal hairpin bending process, t / D exceeded 0.040. Since the mass per unit length of the seamless tube becomes too high, it cannot be thinned.
 本発明の継目無管は、強度が高く且つヘアピン曲げを正常に行うことができるりん脱酸銅製の継目無管であるので、りん脱酸銅製の伝熱管の薄肉化が可能となる。そのため、本発明の継目無管を組み付けて製造されるクロスフィンチューブ型熱交換器は、廃棄後に伝熱管のリサイクルが容易となる。 Since the seamless pipe of the present invention is a seamless pipe made of phosphorous deoxidized copper which has high strength and can bend hairpin normally, the heat transfer pipe made of phosphorous deoxidized copper can be thinned. Therefore, the cross fin tube type heat exchanger manufactured by assembling the seamless tube of the present invention can easily recycle the heat transfer tube after disposal.
1      管軸
P      曲げピッチ
t      肉厚(底肉厚)
h      フィン高さ
s      内面溝の最も深い位置
α      フィン頂角
1 Pipe axis P Bending pitch t Thickness (bottom thickness)
h Fin height s Deepest position of inner groove α Fin apex angle

Claims (9)

  1.  クロスフィンチューブ型熱交換器の伝熱管用の継目無管であって、
     該継目無管の材質が、りん脱酸銅であり、
     該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
     該継目無管の引張強さ(σ)が245MPa以上であり、
     0.2%耐力(σ0.2)が140MPa以下であり、
     伸び(δ)が40%以上であること、
    を特徴とする継目無管。
    A seamless tube for a heat transfer tube of a cross fin tube type heat exchanger,
    The material of the seamless pipe is phosphorus deoxidized copper,
    The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe is 0.040 or less,
    The seamless pipe has a tensile strength (σ B ) of 245 MPa or more,
    0.2% proof stress (σ 0.2 ) is 140 MPa or less,
    Elongation (δ) is 40% or more,
    Seamless tube characterized by
  2.  りん脱酸銅を鋳造する鋳造工程と、熱間押出工程と、断面減少率で99.5%以上の総加工度の冷間加工を行う冷間加工工程と、中間焼鈍処理(A)と、転造加工工程と、360~600℃の保持温度で焼鈍する最終焼鈍処理と、を順に行い得られる継目無管であることを特徴とする請求項1記載の継目無管。 A casting process for casting phosphorous deoxidized copper, a hot extrusion process, a cold working process for performing cold working with a total working degree of 99.5% or more in cross-sectional reduction rate, an intermediate annealing process (A), The seamless pipe according to claim 1, wherein the seamless pipe is obtained by sequentially performing a rolling process step and a final annealing treatment in which annealing is performed at a holding temperature of 360 to 600 ° C.
  3.  内面に複数の螺旋溝が設けられている内面溝付管であることを特徴とする請求項1又は2いずれか1項記載の継目無管。 The seamless pipe according to any one of claims 1 and 2, wherein the inner pipe is a grooved pipe provided with a plurality of spiral grooves on the inner face.
  4.  継目無管を巻き回して作製されたコイルであり、
     該コイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
     該コイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
     該コイルに巻かれている継目無管の引張強さ(σ)が245MPa以上であり、
     0.2%耐力(σ0.2)が130MPa以下であり、
     伸び(δ)が40%以上であること、
    を特徴とするコイル。
    A coil made by winding a seamless tube,
    The material of the seamless pipe wound around the coil is phosphorus deoxidized copper,
    The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the coil is 0.040 or less,
    The tensile strength (σ B ) of the seamless pipe wound around the coil is 245 MPa or more,
    0.2% proof stress (σ 0.2 ) is 130 MPa or less,
    Elongation (δ) is 40% or more,
    Coil characterized by
  5.  コイルが、円筒状に整列多層巻きにして作製されたレベルワウンドコイルであり、
     該レベルワウンドコイルに巻かれている該継目無管の材質が、りん脱酸銅であり、
     該レベルワウンドコイルに巻かれている該継目無管の外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、
     該レベルワウンドコイルに巻かれている継目無管の引張強さ(σ)が245MPa以上であり、
     0.2%耐力(σ0.2)が130MPa以下であり、
     伸び(δ)が40%以上であること、
    を特徴とするレベルワウンドコイル。
    The coil is a level-wound coil made by aligning multiple layers in a cylindrical shape,
    The material of the seamless pipe wound around the level wound coil is phosphorous deoxidized copper,
    The ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) of the seamless pipe wound around the level wound coil is 0.040 or less,
    The tensile strength (σ B ) of the seamless pipe wound around the level wound coil is 245 MPa or more,
    0.2% proof stress (σ 0.2 ) is 130 MPa or less,
    Elongation (δ) is 40% or more,
    A level-wound coil characterized by
  6.  前記レベルワウンドコイルが、コイル軸を垂直に配置して、前記コイルの円筒状の内面側から前記継目無管が巻き解かれるレベルワウンドコイルであることを特徴とする請求項5記載のレベルワウンドコイル。 6. The level-wound coil according to claim 5, wherein the level-wound coil is a level-wound coil in which the seamless axis is unwound from the cylindrical inner surface side of the coil with the coil axis arranged vertically. .
  7.  材質が、りん脱酸銅であり、外径(mm)に対する肉厚(mm)の比(t/D)が0.040以下であり、引張強さ(σ)が245MPa以上であり、0.2%耐力(σ0.2)が120MPa以下であり、伸び(δ)が40%以上であるレベルワウンドコイル作製用継目無管を、円筒状に整列多層巻きして、レベルワウンドコイルを作製することを特徴とするレベルワウンドコイルの作製方法。 The material is phosphorous deoxidized copper, the ratio (t / D) of the wall thickness (mm) to the outer diameter (mm) is 0.040 or less, the tensile strength (σ B ) is 245 MPa or more, 0 A level-wound coil is manufactured by winding a level-wound coil seamless pipe having a 2% proof stress (σ 0.2 ) of 120 MPa or less and an elongation (δ) of 40% or more in a cylindrical arrangement. A method for producing a level-wound coil.
  8.  請求項1~3いずれか1項記載の継目無管又は請求項4~6いずれか1項記載のコイルより巻き解いた継目無管をヘアピン曲げし、アルミニウムフィンに組み付けることにより得られたクロスフィンチューブ熱交換器。 A cross-fin obtained by bending a seamless pipe unwound from the coil according to any one of claims 1 to 3 or a seamless pipe unwound from the coil according to any one of claims 4 to 6 into a hairpin and assembling it to an aluminum fin. Tube heat exchanger.
  9.  請求項1~3いずれか1項記載の継目無管又は請求項4~6いずれか1項記載のコイルより巻き解いた継目無管をヘアピン曲げし、アルミニウムフィンに組み付けて、クロスフィンチューブ型熱交換器を得ることを特徴とするクロスフィンチューブ熱交換器の製造方法。 A seamless tube according to any one of claims 1 to 3 or a seamless tube unwound from a coil according to any one of claims 4 to 6 is bent with a hairpin and assembled to an aluminum fin to produce a cross fin tube type heat A method of manufacturing a cross fin tube heat exchanger, comprising obtaining an exchanger.
PCT/JP2012/056966 2011-03-23 2012-03-19 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger WO2012128240A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137023313A KR101385801B1 (en) 2011-03-23 2012-03-19 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
CN201280011837.5A CN103415643B (en) 2011-03-23 2012-03-19 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger
JP2012533811A JP5132845B2 (en) 2011-03-23 2012-03-19 Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-063777 2011-03-23
JP2011063777 2011-03-23

Publications (1)

Publication Number Publication Date
WO2012128240A1 true WO2012128240A1 (en) 2012-09-27

Family

ID=46879387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056966 WO2012128240A1 (en) 2011-03-23 2012-03-19 Seamless tube, coil, level wound coil, method for manufacturing level wound coil, cross-fin-tube-type heat exchanger, and method for manufacturing cross-fin-tube-type heat exchanger

Country Status (5)

Country Link
JP (1) JP5132845B2 (en)
KR (1) KR101385801B1 (en)
CN (1) CN103415643B (en)
MY (1) MY156255A (en)
WO (1) WO2012128240A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003679A (en) 2013-07-01 2015-01-09 가부시키가이샤 코벨코 마테리아루 도칸 Phosphorus dioxidized copper tube for heat exchanger
JP2017020063A (en) * 2015-07-08 2017-01-26 株式会社コベルコ マテリアル銅管 Copper and copper alloy tube for flare processing

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096338A (en) * 1999-09-27 2001-04-10 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing copper tube for refrigerator or air-conditioner
JP2004211115A (en) * 2002-12-27 2004-07-29 Kobe Steel Ltd Method for producing copper pipe
WO2008041777A1 (en) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Copper alloy for seamless pipes
JP2010222692A (en) * 2009-03-25 2010-10-07 Sumitomo Light Metal Ind Ltd Copper alloy seamless pipe for supplying water and hot water
JP2010236063A (en) * 2009-03-31 2010-10-21 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3303778B2 (en) * 1998-06-16 2002-07-22 三菱マテリアル株式会社 Seamless copper alloy tube for heat exchanger with excellent 0.2% proof stress and fatigue strength

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001096338A (en) * 1999-09-27 2001-04-10 Mitsui Eng & Shipbuild Co Ltd Method of manufacturing copper tube for refrigerator or air-conditioner
JP2004211115A (en) * 2002-12-27 2004-07-29 Kobe Steel Ltd Method for producing copper pipe
WO2008041777A1 (en) * 2006-10-04 2008-04-10 Sumitomo Light Metal Industries, Ltd. Copper alloy for seamless pipes
JP2010222692A (en) * 2009-03-25 2010-10-07 Sumitomo Light Metal Ind Ltd Copper alloy seamless pipe for supplying water and hot water
JP2010236063A (en) * 2009-03-31 2010-10-21 Kobelco & Materials Copper Tube Inc Copper alloy tube for heat exchanger

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150003679A (en) 2013-07-01 2015-01-09 가부시키가이샤 코벨코 마테리아루 도칸 Phosphorus dioxidized copper tube for heat exchanger
JP2017020063A (en) * 2015-07-08 2017-01-26 株式会社コベルコ マテリアル銅管 Copper and copper alloy tube for flare processing

Also Published As

Publication number Publication date
CN103415643B (en) 2015-06-10
KR101385801B1 (en) 2014-04-16
JPWO2012128240A1 (en) 2014-07-24
JP5132845B2 (en) 2013-01-30
KR20130105755A (en) 2013-09-25
MY156255A (en) 2016-01-29
CN103415643A (en) 2013-11-27

Similar Documents

Publication Publication Date Title
KR101053007B1 (en) Copper Alloy Pipes for Heat Exchangers
JP5132845B2 (en) Seamless tube, coil, level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
JP6114939B2 (en) Seamless pipe, level wound coil, cross fin tube type heat exchanger and method for manufacturing the same
JP6388398B2 (en) Internal grooved tube for heat exchanger and its manufacturing method
US20180291491A1 (en) Highly corrosion-resistant copper tube
JP2013040397A (en) Copper alloy material for pipe having high strength and high conductivity and method for manufacturing the same
JP5404139B2 (en) Copper alloy tube for heat exchanger
JP2014109040A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
JP6101969B2 (en) Level-wound coil, method for manufacturing level-wound coil, cross-fin tube type heat exchanger, and method for manufacturing cross-fin tube type heat exchanger
WO2013157461A1 (en) Level wound coil, method for manufacturing level wound coil, cross fin tube type heat exchanger, and method for manufacturing cross fin tube type heat exchanger
JP5990496B2 (en) Phosphorus deoxidized copper pipe for heat exchanger
JP6244213B2 (en) Copper tube for heat exchanger
JP2017036468A (en) Copper alloy tube
JP2014109041A (en) Level wound coil, manufacturing method of level wound coil, cross fin tube type heat exchanger and manufacturing method of cross fin tube type heat exchanger
JP5208562B2 (en) Seamless pipe
JP6360363B2 (en) Copper alloy tube
JP2017036467A (en) Copper alloy tube
JP6402043B2 (en) High strength copper alloy tube
JP7089839B2 (en) Manufacturing method of spiral coil laminated body, manufacturing method of stacked body of spiral coil laminated body
JP2016180170A (en) Copper alloy tube
JP2011094175A (en) Copper alloy seamless tube
JP2011094176A (en) Copper alloy seamless tube
JP2016180169A (en) Copper alloy tube

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012533811

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12760917

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20137023313

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 1301005249

Country of ref document: TH

122 Ep: pct application non-entry in european phase

Ref document number: 12760917

Country of ref document: EP

Kind code of ref document: A1