JP2004210054A - 車両用ブレーキ制御装置 - Google Patents

車両用ブレーキ制御装置 Download PDF

Info

Publication number
JP2004210054A
JP2004210054A JP2002380313A JP2002380313A JP2004210054A JP 2004210054 A JP2004210054 A JP 2004210054A JP 2002380313 A JP2002380313 A JP 2002380313A JP 2002380313 A JP2002380313 A JP 2002380313A JP 2004210054 A JP2004210054 A JP 2004210054A
Authority
JP
Japan
Prior art keywords
braking force
wheel
command value
target command
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002380313A
Other languages
English (en)
Inventor
Masahiro Kubota
正博 久保田
Tadatsugu Tamamasa
忠嗣 玉正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2002380313A priority Critical patent/JP2004210054A/ja
Publication of JP2004210054A publication Critical patent/JP2004210054A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Regulating Braking Force (AREA)

Abstract

【課題】制動力センサが故障した場合でも、最適な制動力を発生させて、4輪の制動力のバランスをとることができる。
【解決手段】コントローラは、押圧力センサが検出した各車輪の制動力に基づいて目標指令値を調整し、この調整した目標指令値を電動モータに出力して車両姿勢を制御し(ステップS26、ステップS27)、押圧力センサの故障を検出し(ステップS22)、その故障が検出された押圧力センサにより制動力が検出される車輪の電動ブレーキへの目標指令値の出力を停止するとともに、この車輪の制動力を推定し(ステップS23、ステップS24)、その推定した制動力に基づいて、押圧力センサが正常な車輪に制動力を与える電動モータへの目標指令値を調整する(ステップS25)。
【選択図】 図5

Description

【0001】
【発明の属する技術分野】
本発明は、制動力付与手段が各車輪に実際に与えた制動力を制動力検出手段により検出し、制動力検出手段が検出した制動力に基づいて、制動力付与手段によるブレーキ摩擦部材の駆動を制御することで各車輪に与える制動力を調整する車両用ブレーキ制御装置に関し、特に、電気信号により制動力付与手段を制御するブレーキバイワイヤシステムに好適な車両用ブレーキ制御装置に関する。
【0002】
【従来の技術】
車輪への制動力を検出しつつ、その検出結果に基づいて所望の制動力になるようにブレーキアクチュエータを制御する車両用ブレーキ制御装置がある。例えば、従来技術として、車輪の故障時に、車両に発生するヨーモーメントを打ち消すように左側前後輪の制動力和と右側前後輪の制動力和とを一致させる制御を行うブレーキ装置が提案されている(特許文献1)。この技術では、圧力センサを用いて車輪の故障を検出している。
【0003】
【特許文献1】
特開平11−048945号公報
【0004】
【発明が解決しようとする課題】
ところで、制動力センサが故障した場合、車輪にどの程度制動力を与えているかが不明になり、制動力センサの検出結果に基づくブレーキアクチュエータの制御ができなくなる。例えば、前記特許文献1に示すような技術にあっては、制動力センサをなす圧力センサが故障した場合、左側前後輪の制動力和と右側前後輪の制動力和とを一致させる制御ができなくなる。この場合、4輪の制動力のバランスが崩れてしまい、車両に発生するヨーモーメントが大きくなってしまう場合がある。
本発明は、前述の実情に鑑みてなされたものであり、制動力センサが故障した場合でも、最適な制動力を発生させて、4輪の制動力のバランスをとることができる車両用ブレーキ制御装置の提供を目的とする。
【0005】
【課題を解決するための手段】
前述の問題を解決するために、請求項1記載の発明に係る車両用ブレーキ制御装置は、車体側に取り付けられているブレーキ摩擦部材を駆動し、このブレーキ摩擦部材を各車輪の被摩擦部に当てて当該各車輪に制動力を与える制動力付与手段を備え、複数の制動力検出手段により前記制動力付与手段が各車輪に実際に与えた制動力を検出し、前記制動力検出手段が検出した制動力に基づいて、前記制動力付与手段によるブレーキ摩擦部材の駆動を制御することで各車輪に与える制動力を調整し、車両姿勢を制御する車両用ブレーキ制御装置である。
【0006】
この請求項1記載の発明に係る車両用ブレーキ制御装置は、前記制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の前記ブレーキ摩擦部材の駆動を停止するとともに、この車輪の制動力を推定し、この推定した制動力に基づいて、正常な制動力検出手段によって制動力が検出される車輪への制動力を調整して車両姿勢を制御する。
【0007】
また、請求項2記載の発明に係る車両用ブレーキ制御装置は、入力された駆動信号に基づいて、車体側に取り付けられているブレーキ摩擦部材を駆動し、このブレーキ摩擦部材を各車輪の被摩擦部に当てて当該各車輪に制動力を与える制動力付与手段と、前記制動力付与手段が各車輪に実際に与えた制動力を検出する複数の制動力検出手段と、前記複数の制動力検出手段が検出した各車輪の制動力に基づいて駆動信号を調整し、この調整した駆動信号を前記制動力付与手段に出力して車両姿勢を制御する車両姿勢制御手段と、を備えている。
【0008】
この請求項2記載の発明に係る車両用ブレーキ制御装置は、前記制動力検出手段の故障を故障検出手段により検出し、前記故障検出手段が前記制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の制動力付与手段への駆動信号の出力を停止するとともに、この車輪の制動力を制動力推定手段により推定し、前記制動力推定手段が推定した制動力に基づいて、前記制動力検出手段が正常な車輪に制動力を与える前記制動力付与手段への駆動信号を前記車両姿勢制御手段により調整する。
【0009】
すなわち、本発明に係る車両用ブレーキ制御装置は、制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の制動力を推定できるようにして、これにより推定した制動力に基づいて、正常な制動力検出手段によって制動力が検出される車輪への制動力を調整し、車両姿勢を制御している。特に、請求項2記載の発明に係る車両用ブレーキ制御装置では、制動力付与手段のブレーキ摩擦部材を駆動信号により駆動するものである。
【0010】
ここで、推定される制動力としては、ブレーキ摩擦部材と被摩擦部材との間の摩擦力がある。例えば、制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪のブレーキ摩擦部材の駆動を停止している。これにより、駆動停止時の位置に維持されているブレーキ摩擦部材と被摩擦部材との間に摩擦力が発生した状態が維持されるようになる。そして、この摩擦力を前記制動力として推定する。
【0011】
【発明の効果】
本発明によれば、制動力検出手段が故障した場合でも、4輪の制動力のバランスをとることができる。
【0012】
【発明の実施の形態】
以下、本発明の実施の形態を図面を参照しながら詳細に説明する。
図1は、本発明に係る第1の実施の形態であり、電気信号により制動力付与手段を制御するブレーキバイワイヤシステムとして構成されているブレーキ制御装置を示す。
【0013】
このブレーキ制御装置では、運転者がブレーキペダル1を踏み込み操作すると、反力発生装置2によりブレーキペダル1に擬似的な反力が発生する。一方、ブレーキペダル1の操作量をペダル操作量センサ3で検出する。ペダル操作センサ3は、例えば反力発生装置2内に搭載されているものでもよい。このペダル操作量センサ3は、その検出値をコントローラ20に出力する。
【0014】
また、車両には、各輪の輪速度を検出する各輪速センサ4、車両に発生している前後加速度を検出する前後加速度センサ(前後Gセンサ)5及び、車両に発生しているヨーレートを検出するヨーレートセンサ6が搭載されており、この各輪速センサ4、前後加速度センサ(前後Gセンサ)5及びヨーレートセンサ6はそれぞれ、検出値をコントローラ20に出力する。
【0015】
コントローラ20は、入力される各種信号に基づいて、電動ブレーキ30a,30b,30c,30dを制御するように構成されている。すなわち、コントローラ20は、ペダル操作センサ3からのペダル操作量や車両状態に基づいて、電動ブレーキ30a,30b,30c,30dの駆動量となる各輪の目標制動力(目標指令値)をCPU21により算出している。また、コントローラ20は、目標指令値算出用のマップや過去の情報を記憶するメモリ22を備えており、このメモリ22に記憶されているマップに基づいて目標指令値を算出する。ここで、過去の情報としては、後述する推定値としての制動力や目標指令値が挙げられる。なお、コントローラ20は、車両の他の構成部を制御するための構成を有していることはいうまでもない。
【0016】
このコントローラ20は、CPU21が算出した、或いは前記マップから得た各輪に対応する目標指令値を第1及び第2のドライバ7,8に出力する。第1のドライバ7は、FR輪とRL輪を駆動するためのドライバであり、コントローラ20からの目標指令値に基づいて、第1のバッテリ9から供給される電力を用いて、FR輪及びRL輪それぞれに対応する電動ブレーキ30a,30bを駆動する。また、第2のドライバ8は、FL輪とRR輪を駆動するためのドライバであり、コントローラ20からの目標指令値に基づいて、第1のバッテリ10から供給される電力を用いて、FL輪及びRR輪それぞれに対応する電動ブレーキ30c,30dを駆動する。このように、各ドライバ7,8に対して電動ブレーキ30a,30b,30c,30dがX配置となるように接続されている。
【0017】
図2は、電動ブレーキ30(30a,30b,30c,30d)の構成を示す。電動ブレーキ30は、筐体をなすブリッジ31に、ブレーキロータ32の外周部と、このブレーキロータ32の外周部を挟持する第1及び第2のパッド33a,33bとを収容可能な構成になっている。図2中右側に配置されている第2のパッド33bはブリッジ31の一端部に固定されている。例えば、ブレーキロータ32とパッド33a,33bは従来の油圧式ブレーキのものと同じ形状とされている。
【0018】
また、電動ブレーキ30はモータ34により駆動される。モータ34は、ドライバ7,8からの電力が供給されて回転駆動するようになっている。このモータ34は、ブリッジ31の他端部に固定されている。また、モータ34には、モータ角度センサ35が取り付けられている。モータ角度センサ35は例えばエンコーダである。このモータ34からの回転力は、回転軸36を介してボールネジなどの直線変換機構からなる回転部材37に伝達され、その回転部材37の回転動作として直動部材であるピストン38に伝達される。このように、電動ブレーキ30は、ドライバ7,8によって回転駆動されるモータ33からの回転力を、回転部材37及びピストン38により直動方向の力に変換している。また、ピストン38と当該ピストン38に対向する第1のパッド33aとの間に押圧力センサ39が取り付けられている。押圧力センサ39は、制動軸力としてブレーキ制動力或いはブレーキ押し付け力を計測するセンサである。押圧力センサ39は例えば応力センサや軸力センサである。本発明の適用により、後述するように、コントローラ20は、この押圧力センサ39の故障を検出するための故障検出処理を行っている。
【0019】
このように構成されている電動ブレーキ30は次のよう動作する。
ブレーキ作動時には、回転軸35からみて回転部材36が左回転し、ピストン38がブレーキロータ32側へ移動し、これによりピストン38が押圧力センサ39を介して第1のパッド33aをブレーキロータ32へ押し付ける。このとき、ピストン38に生じた反力が、回転部材37、駆動軸36、モータ34を介してブリッジ31に伝達され、すなわち、モータ34に着目すれば、当該モータ34がブレーキロータ32から遠ざかる方向に移動する。これによりブリッジ31が移動することで、第2のパッド33bを第1のパッド33aとは逆方向からブレーキロータ32に押し付ける。これにより、第1及び第2のパッド33a,33bでブレーキロータ32を挟持することで摩擦力を発生させる。この結果、車輪に制動力が発生する。
【0020】
一方、ブレーキ解除時には、モータ34がブレーキ作動時の場合とは逆方向に回転することで、第1及び第2のパッド33a,33bそれぞれをブレーキロータ32に対して離間した状態にすることで、車輪に与える制動力を解除する。
そして、実施の制御では、ブレーキ制御装置は、押圧力センサ39により検出した制動軸力を用いて、電動ブレーキ30のフィードバック制御を行っている。フィードバック制御では、各押圧力センサ39により電動ブレーキ30が各車輪に実際に与えた制動力(実際は制動軸力)を検出し、その検出した制動力に基づいて、パッド33a,33bの駆動(具体的にはモータ34の駆動)を制御することで各車輪に与える制動力を調整し、所望の車両姿勢となるような制御である。ここで、所望の車両姿勢としては、4輪の制動力バランスをとることで、ヨーモーメントの発生を抑制した車両姿勢が挙げられる。
【0021】
次に、コントローラ20が行う各種処理について説明する。
先ず、コントローラ20が行うブレーキ制御処理の処理手順を説明する。図3は、その処理手順を示す。
先ずステップS1及びステップS2において、コントローラ20は、ペダル操作センサ3からペダル操作量、押圧力センサ39から実際に発生している制動軸力を読込む。
【0022】
続いてステップS3において、コントローラ20は、前記ステップS1で得たペダル操作量に基づいてブレーキペダル1が操作されているか否かを判定する。ここで、コントローラ20は、ブレーキペダル1が操作されている場合、ステップS4に進み、ブレーキペダル1が操作されていない場合、ステップS6に進む。
【0023】
ステップS6では、コントローラ20は、非制動時における電動ブレーキ30の制御をする。具体的には、ブレーキロータ32とパッド33a,33bとが引き摺りを起こさない程度の所定のクリアランスが確保されるように電動ブレーキ30を制御する。
ステップS4では、コントローラ20は、ブレーキ操作量に基づいて各輪の目標指令値を算出し、ステップS6に進む。この目標指令値の算出処理については後で詳述する。
【0024】
ステップS5では、コントローラ20は、前記ステップS4で算出した目標指令値と前記ステップS2で得ている制動軸力とに基づいて電動ブレーキ30を制御する。すなわち、算出した目標指令値と押圧力センサ39が得た実測値である制動軸力とに基づいて、目標指令値(所望の制動力)が得られるように電動ブレーキ30をフィードバック制御する。
【0025】
以上がコントローラ20が行うブレーキ制御処理の処理手順である。
次に、コントローラ20が行う押圧力センサ39の故障を検出する故障検出処理の処理手順を説明する。図4は、その処理手順を示す。コントローラ20は、前記ブレーキ制御処理に所定時間間隔で割り込んでこの故障検出処理を実施している。
【0026】
先ずステップS11では、コントローラ20は、目標値である目標制動力(目標指令値に対応する制動力)と押圧力センサ39の検出結果から得られる計測値である実制動力とを比較する。具体的には、目標値と計測値とを比較結果として、それら値の差分値の絶対値を得ている。ここで、コントローラ20は、前記差分値の絶対値が所定値α(>0)以上の場合、ステップS12に進み、前記差分値の絶対値が所定値α以下の場合、ステップS16に進む。
【0027】
コントローラ20は、ステップS12でタイマー値Nをインクリメント(N=N+1)するとともに、ステップS13に進みタイマー値Nが所定値(所定時間)β以上か否かを判定する。ここで、所定値βは、押圧力センサ39の故障判定のための時間となるので、そのような目的に合致した値になっている。
コントローラ20は、タイマー値Nが所定値β以上の場合、ステップS14に進み、エラーフラグFLG_ERRを1に設定し(FLG_ERR=1)、タイマー値Nが所定値β未満の場合、ステップS15に進み、エラーフラグFLG_ERRを0に設定する(FLG_ERR=0)。
【0028】
また、前記ステップS11で前記差分値の絶対値が所定値α以下の場合に進むステップS16では、コントローラ20は、タイマー値Nを0にする(N=0)。続いてステップS17において、コントローラ20は、エラーフラグFLG_ERRを0に設定する(FLG_ERR=0)。
以上がコントローラ20が行う故障検出処理の処理手順である。このような故障検出処理により、タイマー値Nがβ以上になった時、すなわち一定時間検出誤差が発生した場合に、押圧力センサ39の故障を発生したとして、エラーフラグFLG_ERRを0から1に切り替えている。
【0029】
次に、コントローラ20が前記図3のステップS4の目標指令値の算出処理の処理手順を説明する。図5は、その処理手順の概略を示す。
先ずステップS21において、コントローラ20は、ブレーキペダル1の操作量に基づいて、各輪の目標指令値を算出する。
続いてステップS22において、コントローラ20は、前記図4の故障検出処理に基づいて、故障している押圧力センサ39があるか否かを判定する。すなわち、エラーフラグFLG_ERRが1となっている押圧力センサ39があるか否かを判定する。ここで、コントローラ20は、故障している押圧力センサ39がある場合、ステップS23に進み、故障している押圧力センサ39がない場合、ステップS27に進む。
【0030】
ステップS27では、コントローラ20は、前記ステップS21で算出した目標指令値をそのまま各ドライバ7,8に出力する。
一方、コントローラ20は、ステップS23において、押圧力センサ39が故障している車輪(具体的にはドライバ)への目標指令値の出力を停止するとともに、続くステップS24において、押圧力センサ39が故障している車輪の目標指令値を推定する。ここで、目標指令値の出力の停止は、目標指令値を0にすることにより行う。
【0031】
続いてステップS25において、コントローラ20は、前記ステップS24で推定した目標指令値に基づいて、押圧力センサ39が正常な各車輪に出力する目標指令値を算出或いは修正する。具体的には、押圧力センサ39が故障している車輪の制動力を推定して、その推定した制動力と、押圧力センサ39が正常な車輪に実際に与えられている制動力とのバランスをとり、車両に発生するヨーモーメントを抑制するような目標指令値を算出する。
【0032】
より具体的には、次のように目標指令値を算出している。例えば、FR輪の押圧力センサ39が故障している場合について説明する。
現在の走行状態から、車両に発生するヨーモーメントを抑制するように、各輪が分担する制動力を算出する。そして、算出したFR輪が分担する制動力から推定した制動力を引いた制動力をRR輪の制動力として与える。また、この右前後輪(FR輪、RR輪)の制動力輪和と、左前後輪(FL輪、RL輪)の制動力和とが一致するように、左前後輪(FL輪、RL輪)の制動力を決定する。そして、このような制動力を発生させるような目標指令値を算出する。
【0033】
なお、このようなことから、前記ステップS24で算出する目標指令値は、押圧センサ39が故障している車輪に制動力(推定した制動力)が作用しているものとして得た値となる。また、制動力の推定については後で詳述する。
続いてステップS26において、コントローラ20は、前記ステップS25で算出した(修正した)目標指令値を対応するドライバに出力する。
【0034】
以上が指令値算出処理の概略であり、図6乃至図10は、その指令値算出処理について、さらに具体的な処理手順を示す。
なお、以下の説明では、FR輪の電動ブレーキ30aに取り付けられている押圧力センサ39をFR輪押圧力センサ39といい、FL輪の電動ブレーキ30cに取り付けられている押圧力センサ39をFL輪押圧力センサ39といい、RR輪の電動ブレーキ30dに取り付けられている押圧力センサ39をRR輪押圧力センサ39といい、RL輪の電動ブレーキ30bに取り付けられている押圧力センサ39をRL輪押圧力センサ39という。
【0035】
また、以下の説明では、FR輪の電動ブレーキ30aを駆動するためにコントローラ20が出力する目標指令値をFR輪目標指令値といい、FL輪の電動ブレーキ30cを駆動するためにコントローラ20が出力する目標指令値をFL輪目標指令値といい、RR輪の電動ブレーキ30dを駆動するためにコントローラ20が出力する目標指令値をRR輪目標指令値といい、RL輪の電動ブレーキ30bを駆動するためにコントローラ20が出力する目標指令値をRL輪目標指令値という。
【0036】
先ず図6に示すステップS31において、コントローラ20は、ブレーキペダル1の操作量に基づいて、各輪の目標指令値を算出する。具体的には、各輪の目標指令値を算出は、メモリ等に記憶されているペダル操作量と目標指令値(目標制動力)とが対応づけされているマップを使用して、ペダル操作量に対応する各輪の目標指令値を得ることにより行う。図11は、前記マップの例である。このマップに示すように、例えば、前輪と後輪とで、ペダル操作量に対応する目標指令値(目標制動力)が異なっている。
【0037】
続いてステップS32において、コントローラ20は、前記図4の故障検出処理に基づいて、故障している押圧力センサ39があるか否かを判定する。すなわち、故障検出処理で得ているエラーフラグ(FLG_ERR)を監視し、4輪全ての押圧力センサ39が正常に作動しているか(FLG_ERRが0であるか)否かを判定する。ここで、コントローラ20は、4輪全ての押圧力センサ39が正常に作動している場合、ステップS33に進み、4輪のいずれかの押圧力センサ39が故障している場合、ステップS40に進む。
【0038】
ステップS33では、コントローラ20は、前記ステップS31で算出した目標指令値をそのまま、各輪の電動ブレーキ30a〜30dを駆動するドライバ7,8に出力する。
コントローラ20は、ステップS40以降の処理で、故障している押圧力センサ39を特定し、その特定した押圧力センサ39に対応する処理を行う。すなわち、コントローラ20は、ステップS40において、FR輪押圧力センサ39が故障しているか否かを判定する。ここで、コントローラ20は、FR輪押圧力センサ39が故障している場合、図7に示すステップS41に進み、FR輪押圧力センサ39が正常に作動している場合、ステップS50に進む。
【0039】
ステップS50では、コントローラ20は、RR輪押圧力センサ39が故障しているか否かを判定する。ここで、コントローラ20は、RR輪押圧力センサ39が故障している場合、図8に示すステップS51に進み、RR輪押圧力センサ39が正常に作動している場合、ステップS60に進む。
ステップS60では、コントローラ20は、FL輪押圧力センサ39が故障しているか否かを判定する。ここで、コントローラ20は、FL輪押圧力センサ39が故障している場合、図9に示すステップS61に進み、FL輪押圧力センサ39が正常に作動している場合、図10に示すステップS71に進む。ここで、図9に示すステップS71へ進む場合とは、RL輪押圧力センサ39が故障している場合である。
【0040】
前記ステップS40でFR輪押圧力センサ39が故障している場合に進む図7に示すステップS41では、コントローラ20は、FR輪目標指令値をすぐに0に切り替える。例えば、ドライバ内部にリレー等を設けておき、コントローラ20は、故障を検出した際にこのリレーによりドライバから電動ブレーキへの電力の供給を遮断するようにしてもよい。
【0041】
続いてステップS42において、コントローラ20は、FR輪押圧力センサ39のFR輪目標指令値を推定する。以下、ここで推定により得たFR輪目標指令値をFR輪推定目標指令値という。
なお、この目標指令値の推定は、制動力を推定して得られる値であり、その制動力の推定については後で詳述する。以下、FL輪押圧力センサ39、RL輪押圧力センサ39、及びRR輪押圧力センサ39の場合についても同様である。
【0042】
続いてステップS43において、コントローラ20は、その時の減速度できまるRR輪のタイヤロック制動力に対応するRR輪目標指令値(以下、RR輪タイヤロック値という。)を算出する。
ここで、図12は、車両減速度とタイヤロックが起きるタイヤ限界との関係を示す。この図12に示すように、前輪と後輪とでは、車両減速度とタイヤ限界との関係が異なっている。このような特性図(テーブル)を用いて、車両減速度に対応するタイヤ限界を前記タイヤロック制動力として得て、そのタイヤロック制動力に相当するタイヤロック値を得る。
【0043】
そして、コントローラ20は、このようにして得たRR輪タイヤロック値と、RR輪押圧力センサ39が正常時のRR輪目標指令値にFR輪押圧力センサ39が正常時のFR輪目標指令値を加算し、この加算値から、前記ステップS42で得たFR輪推定目標指令値を減算した値とを比較する。すなわち、下記式により比較する。
【0044】
RR輪タイヤロック値>RR輪目標指令値(正常時値)+FR輪目標指令値(正常時値)−FR輪推定目標指令値
ここで、コントローラ20は、前者の方が大きい場合、すなわちタイヤロックが起きない場合、ステップS44に進み、後者の方が大きい場合、すなわちタイヤロックが起きる場合、ステップS45に進む。
【0045】
ステップS44では、各目標指令値を次のように設定する。
▲1▼FR輪目標指令値=FR輪推定目標指令値
▲2▼RR輪目標指令値=RR輪目標指令値(正常時値)+FR輪目標指令値(正常時値)−FR輪推定目標指令値
▲3▼FL目標指令値及びRL目標指令値はそのまま(調整なし)
一方、ステップS45では、各目標指令値を次のように設定する。
【0046】
▲1▼FR輪目標指令値=FR輪推定目標指令値
▲2▼RR輪目標指令値=RR輪タイヤロック値
▲3▼FL輪目標指令値=RR輪タイヤロック値×FL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
▲4▼RL輪目標指令値=RR輪タイヤロック値×RL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
このように、各目標指令値を設定或いは変更する。
【0047】
続いてステップS46において、コントローラ20は、FR輪目標指令値がFR輪推定目標指令値をとるとの仮定のもとで、RR輪目標指令値、FL輪目標指令値及びRL輪目標指令値をそれぞれ出力する。
一方、前記ステップS50でRR輪押圧力センサ39が故障している場合に進む図8に示すステップS51では、コントローラ20は、RR輪目標指令値をすぐに0に切り替える。例えば、ドライバ内部にリレー等を設けておき、コントローラ20は、故障を検出した際にこのリレーによりドライバから電動ブレーキへの電力の供給を遮断するようにしてもよい。
【0048】
続いてステップS52において、コントローラ20は、RR輪押圧力センサ39のRR輪目標指令値を推定する。以下、ここで推定により得たRR輪目標指令値をRR輪推定目標指令値という。
続いてステップS53において、コントローラ20は、その時の減速度できまるFR輪のタイヤロック制動力に対応するFR輪目標指令値(以下、FR輪タイヤロック値という。)を算出する。具体的には、前記図12に示した特性図(テーブル)を用いてFR輪タイヤロック値を得る。
【0049】
そして、コントローラ20は、このFR輪タイヤロック値と、FR輪押圧力センサ39が正常時のFR輪目標指令値にRR輪押圧力センサ39が正常時のRR輪目標指令値を加算し、この加算値から、前記ステップS52で得たRR輪推定目標指令値を減算した値とを比較する。すなわち、下記式により比較する。
FR輪タイヤロック値>FR輪目標指令値(正常時値)+RR輪目標指令値(正常時値)−RR輪推定目標指令値
ここで、コントローラ20は、前者の方が大きい場合、すなわちタイヤロックが起きない場合、ステップS54に進み、後者の方が大きい場合、すなわちタイヤロックが起きる場合、ステップS55に進む。
【0050】
ステップS54では、各目標指令値を次のように設定する。
▲1▼RR輪目標指令値=RR輪推定目標指令値
▲2▼FR輪目標指令値=FR輪目標指令値(正常時値)+RR輪目標指令値(正常時値)−RR輪推定目標指令値
▲3▼FL目標指令値及びRL目標指令値はそのまま(調整なし)
一方、ステップS54では、各目標指令値を次のように設定する。
【0051】
▲1▼RR輪目標指令値=RR輪推定目標指令値
▲2▼FR輪目標指令値=FR輪タイヤロック値
▲3▼FL輪目標指令値=FR輪タイヤロック値×FL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
▲4▼RL輪目標指令値=FR輪タイヤロック値×RL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
このように、各目標指令値を設定或いは変更する。
【0052】
続いてステップS56において、コントローラ20は、RR輪目標指令値がRR輪推定目標指令値をとるとの仮定のもとで、FR輪目標指令値、FL輪目標指令値及びRL輪目標指令値をそれぞれ出力する。
一方、前記ステップS60でRFL輪押圧力センサ39が故障している場合に進む図9に示すステップS61では、コントローラ20は、FL輪目標指令値をすぐに0に切り替える。例えば、ドライバ内部にリレー等を設けておき、コントローラ20は、故障を検出した際にこのリレーによりドライバから電動ブレーキへの電力の供給を遮断するようにしてもよい。
【0053】
続いてステップS62において、コントローラ20は、FL輪押圧力センサ39のFL輪目標指令値を推定する。以下、ここで推定により得たFL輪目標指令値をFL輪推定目標指令値という。
続いてステップS63において、コントローラ20は、その時の減速度できまるRL輪のタイヤロック制動力に対応するRL輪目標指令値(以下、RL輪タイヤロック値という。)を算出する。具体的には、前記図12に示した特性図(テーブル)を用いてRL輪タイヤロック値を得る。
【0054】
そして、コントローラ20は、このRL輪タイヤロック値と、RL輪押圧力センサ39が正常時のRL輪目標指令値にFL輪押圧力センサ39が正常時のFL輪目標指令値を加算し、この加算値から、前記ステップS62で得たFL輪推定目標指令値を減算した値とを比較する。すなわち、下記式により比較する。
RL輪タイヤロック値>RL輪目標指令値(正常時値)+FL輪目標指令値(正常時値)−FL輪推定目標指令値
ここで、コントローラ20は、前者の方が大きい場合、すなわちタイヤロックが起きない場合、ステップS64に進み、後者の方が大きい場合、すなわちタイヤロックが起きる場合、ステップS65に進む。
【0055】
ステップS64では、各目標指令値を次のように設定する。
▲1▼FL輪目標指令値=FL輪推定目標指令値
▲2▼RL輪目標指令値=RL輪目標指令値(正常時値)+FL輪目標指令値(正常時値)−FL輪推定目標指令値
▲3▼FR目標指令値及びRR目標指令値はそのまま(調整なし)
一方、ステップS65では、各目標指令値を次のように設定する。
【0056】
▲1▼FL輪目標指令値=FL輪推定目標指令値
▲2▼RL輪目標指令値=RL輪タイヤロック値
▲3▼FR輪目標指令値=RL輪タイヤロック値×FR輪目標指令値(正常時値)/(FR目標指令値(正常時値)+RR目標指令値(正常時値))
▲4▼RR輪目標指令値=RL輪タイヤロック値×RR輪目標指令値(正常時値)/(FR目標指令値(正常時値)+RR目標指令値(正常時値))
このように、各目標指令値を設定或いは変更する。
【0057】
続いてステップS66において、コントローラ20は、FL輪目標指令値がFL輪推定目標指令値をとるとの仮定のもとで、RL輪目標指令値、FR輪目標指令値及びRR輪目標指令値をそれぞれ出力する。
一方、前記ステップS70でRL輪押圧力センサ39が故障している場合に進む図10に示すステップS71では、コントローラ20は、RL輪目標指令値をすぐに0に切り替える。例えば、ドライバ内部にリレー等を設けておき、コントローラ20は、故障を検出した際にこのリレーによりドライバから電動ブレーキへの電力の供給を遮断するようにしてもよい。
【0058】
続いてステップS72において、コントローラ20は、RL輪押圧力センサ39のRL輪目標指令値を推定する。以下、ここで推定により得たRL輪目標指令値をRL輪推定目標指令値という。
続いてステップS73において、コントローラ20は、その時の減速度できまるFL輪のタイヤロック制動力に対応するFL輪目標指令値(以下、FL輪タイヤロック値という。)を算出する。具体的には、前記図12に示した特性図(テーブル)を用いてFL輪タイヤロック値を得る。そして、コントローラ20は、このFL輪タイヤロック値と、FL輪押圧力センサ39が正常時のFL輪目標指令値にRL輪押圧力センサ39が正常時のRL輪目標指令値を加算し、この加算値から、前記ステップS72で得たRL輪推定目標指令値を減算した値とを比較する。すなわち、下記式により比較する。
【0059】
FL輪タイヤロック値>FL輪目標指令値(正常時値)+RL輪目標指令値(正常時値)−RL輪推定目標指令値
ここで、コントローラ20は、前者の方が大きい場合、すなわちタイヤロックが起きない場合、ステップS74に進み、後者の方が大きい場合、すなわちタイヤロックが起きる場合、ステップS75に進む。
【0060】
ステップS74では、各目標指令値を次のように設定する。
▲1▼RL輪目標指令値=RL輪推定目標指令値
▲2▼FL輪目標指令値=FL輪目標指令値(正常時値)+RL輪目標指令値(正常時値)−RL輪推定目標指令値
▲3▼FR目標指令値及びRR目標指令値はそのまま(調整なし)
一方、ステップS74では、各目標指令値を次のように設定する。
【0061】
▲1▼RL輪目標指令値=RL輪推定目標指令値
▲2▼FL輪目標指令値=FL輪タイヤロック値
▲3▼FR輪目標指令値=FL輪タイヤロック値×FR輪目標指令値(正常時値)/(FR目標指令値(正常時値)+RL目標指令値(正常時値))
▲4▼RR輪目標指令値=FL輪タイヤロック値×RR輪目標指令値(正常時値)/(FR目標指令値(正常時値)+RR目標指令値(正常時値))
このように、各目標指令値を設定或いは変更する。
【0062】
続いてステップS76において、コントローラ20は、RL輪目標指令値がRL輪推定目標指令値をとるとの仮定のもとで、FL輪目標指令値、FR輪目標指令値及びRR輪目標指令値をそれぞれ出力する。
以上が指令値算出処理である。なお、図13は、FR輪押圧力センサ39が故障している場合を例に挙げ、この場合に押圧力センサ39が正常な車輪に出力される目標指令値をイメージとして示す。
【0063】
この図13に示すように、RR輪のタイヤロックを考慮し、RR輪がタイヤロックを起こさない場合、
▲1▼FR輪目標指令値=FR輪推定目標指令値
▲2▼RR輪目標指令値=RR輪目標指令値(正常時値)+FR輪目標指令値(正常時値)−FR輪推定目標指令値
▲3▼FL目標指令値及びRL目標指令値はそのまま(調整なし)
にする。一方、RR輪がタイヤロックを起こすような場合、
▲1▼FR輪目標指令値=FR輪推定目標指令値
▲2▼RR輪目標指令値=RR輪タイヤロック値
▲3▼FL輪目標指令値=RR輪タイヤロック値×FL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
▲4▼RL輪目標指令値=RR輪タイヤロック値×RL輪目標指令値(正常時値)/(FL目標指令値(正常時値)+RL目標指令値(正常時値))
にしている。
【0064】
次に、コントローラ20が前記図5のステップS24、或いは図7のステップS42、図8のステップS52、図9のステップS62及び図10のステップS72で推定目標指令値を得るための制動力推定処理の処理手順を説明する。例えば、FR輪押圧力センサ39が故障した場合について説明する。
先ずステップS81において、コントローラ20は、前記図4で押圧力センサ39の故障の判定のために使用するタイマー値Nを読み込む。
【0065】
続いてステップS82において、コントローラ20は、前記ステップS81で読み込んだタイマー値Nが0であるか否かを判定する。ここで、コントローラ20は、タイマー値Nが0でない場合、すなわち目標値と計測値との差分値が所定値αよりも大きい場合、ステップS83に進み、タイマー値Nが0の場合、すなわち目標値と計測値との差が所定値α以下の場合、ステップS86に進む。
【0066】
ステップS86では、コントローラ20は、その時、押圧力センサ39の検出結果により得ている制動力を記憶する。
一方、ステップS83では、コントローラ20は、FR輪押圧力センサ39が故障しているか否かを判定する。ここで、FR輪の故障については、前記図4の故障検出処理のステップS14でコントローラ20は、ステップS12でエラーフラグFLG_ERRが1に設定されている場合であり(FLG_ERR=1)、すなわちタイマー値Nが所定値β以上になった場合である。
【0067】
ステップS84及びそれに続くステップS85では、コントローラ20は、推定制動力(推定値)を算出する。ここでは、コントローラ20は、タイマー値Iをインクリメントしながら、このタイマー値Iに対応して制動力を推定する。
前述したように、押圧力センサ39が故障していることを検出した場合、コントローラ20は、当該押圧力センサ39が故障している車輪への目標指令値の出力を停止しており(前記ステップS23、ステップS41、ステップS51、ステップS61又はステップS71)、これにより、故障している押圧力センサ39が取り付けられている車輪にかかっている制動力が徐々に減少していく。
【0068】
ここで、車輪の制動力が徐々に減少するのは、すなわち目標指令値の出力を停止しても車輪に制動力が残っているのは、ブレーキロータ32とパッド33a,33bとの間に発生する摩擦力が発生しているからである。より具体的には、次のような理由による。
本実施の形態であるブレーキ制御装置は、ブレーキバイワイヤシステムを前提として構成としており、すなわち、コントローラ20からの電気信号である目標指令値によりドライバ7,8を制御することで、電動ブレーキ30の第1のパッドパッド33aを駆動する構成になっている。これにより、コントローラ20は、目標指令値に基づいて第1のパッド33aを駆動して、この第1のパッド33aとブレーキロータ32との間の押圧力、すなわち摩擦力を調整している。このような構成になっていることから、目標指令値が0にされた場合、目標指令値が0にされた時の位置、すなわち駆動停止時の位置に第1のパッド33aが維持されるようになるので、第1のパッド33aとブレーキロータ32との間では摩擦力が発生した状態が維持される。このような摩擦力が、目標指令値の出力を停止した後、車輪に制動力として残ってしまう。また、その制動力の減少は、パッド33a,33bの磨耗による厚さ減少によるものや、移動可能として支持されている第1のパッド33aが、ブレーキロータ32から離間する方向に押し戻されるからである。
【0069】
このように、押圧力センサ39の故障を検出した場合には、当該押圧力センサ39が故障している車輪への目標指令値の出力を停止し、その際に制動力が徐々に減少していくことを前提として、目標指令値の出力を停止した場合に減少する制動力を予め得ている。ここで、制動力を予め得る手法としては、予め計測しておく手法や予め計算式により得る手法がある。そして、このようにして予め得ている制動力をタイマー値Iに対応させて予め記憶させている。
【0070】
コントローラ20は、以上のようにしてタイマー値Iに対応させて記憶した制動力を、当該タイマー値Iに対応させて出力する(読み込む)。これにより、例えば前記ステップS24の目標指令値の推定は、この制動力に基づいて行っている。
ここで、図15は、そのようにタイマー値Iに対応させて記憶した制動力、すなわち推定制動力を示す。また、この図15は、タイマー値Iに対応させて3種類(大、中、小)の制動力を記憶している場合を示している。前述したように、目標指令値を停止した後、車両に制動力が残り、その残った制動力は時間とともに減少する。そして、その制動力の減少傾向は、目標指令値を停止した時の車輪に発生している制動力(初期時推定制動力)により決まる。図15は、そのように目標指令値を停止した時の車輪に発生している制動力に対応して、記憶している制動力(推定制動力)を示す。
【0071】
次に動作を説明する。
ブレーキ制御装置は、ペダル操作量センサ3が検出したペダル操作量と押圧力センサ39が検出した制動軸力とを読込み(前記ステップS1及びステップS2)、読み込んだペダル操作量に基づいてブレーキペダル1が操作されていないと判断した場合、非制動時における電動ブレーキ30の制御をする(前記ステップS3及びステップS6)。具体的には、ブレーキロータ32とパッド33a,33bとが引き摺りを起こさないように所定のクリアランスが確保されるように電動ブレーキ30を制御する。一方、ブレーキ制御装置は、ブレーキペダル操作量に基づいてブレーキペダル1が操作されている場合、ペダル操作量に基づいて各輪の目標指令値を算出し(前記ステップS3及びステップS4)、その算出した各輪の目標指令値と先に読み込んでいる制動軸力とに基づいて電動ブレーキ30を制御する(前記ステップS5)。
【0072】
ここで、ブレーキ制御装置は、各輪の目標指令値を算出する際に、押圧力センサ39の故障の判定結果を参照して当該目標指令値を最終的に決定している。具体的には次のように目標指令値を決定する。
先ず、ブレーキ制御装置は、ペダル操作量に基づいて各輪の目標指令値を算出する(前記ステップS21)。そして、ブレーキ制御装置は、前記図4の故障検出処理に基づいて、故障している押圧力センサ39があるか否かを判定し、押圧力センサ39が故障していない場合、目標指令値をそのまま各ドライバ7,8に出力する(前記ステップS22及びステップS26)。一方、ブレーキ制御装置は、押圧力センサ39が故障している場合、押圧力センサ39が故障している車輪(具体的にはドライバ)への目標指令値の出力を停止するとともに(前記ステップS22及びステップS23)、押圧力センサ39が故障している車輪の目標指令値を推定する(前記ステップS24)。具体的には、予め得ている推定制動力に基づいて目標指令値の推定を行っている(前記ステップS84及びステップS85)。さらに、ブレーキ制御装置は、推定した目標指令値に基づいて、押圧力センサ39が正常な各車輪に出力する目標指令値を算出し(修正し)、その算出した目標指令値を対応するドライバに出力する(前記ステップS25及びステップS26)。このとき、目標指令値は、車両に発生するヨーモーメントを抑制するような目標指令値となる。なお、押圧力センサ39の故障の判定結果に基づく目標指令値の算出とその出力の処理は、具体的には、前記図6乃至図10に示す処理になる。
【0073】
次に効果を説明する。
押圧力センサ39が故障した場合には当該押圧力センサ39に発生している制動力が不明(計測できない)になるが、前述したように、押圧力センサ39が故障した車輪への目標指令値の出力を停止するとともに、押圧力センサ39が故障した車輪に発生している目標指令値(制動力)を推定し、その推定した目標指令値(制動力)に基づいて、他の車輪(押圧力センサ39が正常な車輪)の目標指令値を、車両に発生するヨーモーメントが抑制されるような目標指令値として得る。そして、この目標指令値で前記他の車輪の制動力を制御する。これにより、押圧力センサ39が故障した場合に当該押圧力センサ39に発生している制動力が不明(計測できない)になった場合でも、4輪の制動力バランスをとり、車両に発生するヨーモーメントを抑制することで、車両を安定して走行させることができる。これにより、車両挙動が運転者に違和感を与えてしまうことを防止できる。
【0074】
なお、押圧力センサ39が故障した車輪への目標指令値の出力を停止して、押圧力センサ39が故障した車輪に発生している目標指令値(制動力)を推定している。このことは、言い換えれば、目標指令値を停止することで、前述したようにパッド33a,33bとブレーキロータ32との摩擦力により依存するものとして制動力を推定可能にして、簡単に制動力を推定できるようにしていると言える。
【0075】
ここで、図16及び図17を用いて効果を説明する。図16は本発明に対しての比較例を示し、図17は本発明を適用した効果を示す。
前述したように、目標値と計測値との差分値(絶対値)が所定値α以上の場合で押圧力センサ39が故障していることを検出した場合に、当該押圧力センサ39が取り付けられている車輪への目標指令値の出力を停止している。よって、前記差分値が負値で前記所定値α以上となる、すなわち計測値が目標値を所定値α分下回るような押圧力センサ39の故障の場合、当該押圧力センサ39が検出する制動力は、図16中(A)に示すように、当該押圧力センサ39の故障の時から、正常な制動力F0から減少し、押圧力センサ39の故障検出で目標指令値の出力が停止された以降で、さらに減少する(制動力F1→制動力F2への変化)。ここで、押圧力センサ39の故障検出により目標指令値の出力を停止した以降の制動力(制動力F1→制動力F2への変化)は、押圧力センサ39の故障によるオフセット分がのったままである。
【0076】
また、前記差分値が正値で前記所定値α以上となる、すなわち計測値が目標値を所定値α分上回るような押圧力センサ39の故障の場合、当該押圧力センサ39が検出する制動力は、図16中(A)に示すように、当該押圧力センサ39の故障の時から、正常な制動力F0から一旦増加し、その後、押圧力センサ39の故障検出で目標指令値の出力が停止された時点で減少に転じる(制動力F3→制動力F4への変化)。ここで、押圧力センサ39の故障検出により目標指令値の出力を停止した以降の制動力時点(制動力F3→制動力F4への変化)は、押圧力センサ39の故障によるオフセット分がのったままである。
【0077】
このような場合、押圧力センサ39の故障以降では、押圧力センサ39に発生している制動軸力が不明になり、これにより、当該押圧力センサ39が取り付けられている車輪(例えばFL輪)の制動力が不明になるので、4輪の制動バランスをあわせることができなくなる。この結果、図16中(B)に示すように、車両に発生するヨーモーメントが大きくなってしまう場合がある。
【0078】
一方、本発明を適用することで、図17中(A)に示すように、押圧力センサ39の故障を検出した場合、当該押圧力センサ39が取り付けられている車輪への目標指令値の出力を停止する一方で、正常値F0から減少するような制動力F5を推定し、その制動力に対応する目標指令値を推定する。
そして、その推定した目標指令値に基づいて、他の車輪(正常な押圧力センサ39が取り付けられた車輪)の目標指令値を、車両に発生するヨーモーメントが抑制されるような目標指令値として得る。そして、この目標指令値で前記他の車輪を駆動制御する。これにより、押圧力センサ39が故障した場合に当該押圧力センサ39に発生している制動軸力が不明(計測できない)になった場合でも、4輪の制動バランスをとることができ、車両に発生するヨーモーメントを抑えることができる。
【0079】
また、前記図15に示すように、推定する制動力を複数種類予め記憶しておくことで、図18中(A)に示すように、押圧力センサ39が故障した時点の制動力(実際の制動力)に対応して制動力の推定をすることができる。ここで、推定される制動力は、前述したように、押圧力センサ39の故障後に目標指令値の出力を停止した後に推定される制動力であり、図18中(A)に対応すると、図18中(B)に示すように変化する値になる。
【0080】
なお、この場合、押圧力センサ39の故障を検出する直前の実際の制動力の検出が必要になる。例えば、前記図14のステップS86において押圧力センサ39が故障するまで(タイマー値Nが0の間)に検出している制動力或いはその制動力から推定した値を、押圧力センサ39の故障を検出時の制動力とする。
このように、押圧力センサ39の故障を検出する直前の制動力に対応して、その後の制動力を推定することで、押圧力センサ39が故障した時点での実際の制動力に応じて制動力の推定ができるようになる。すなわち、押圧力センサ39の故障検出時の制動力にほぼ比例して、制動力を推定することができる。
【0081】
次に第2の実施の形態を説明する。
第2の実施の形態では、前述の第1の実施の形態とで、目標指令値(制動力)の推定処理が異なっている。この第2の実施の形態では、電動モータ30の駆動系の摩擦力に基づいて、目標指令値(制動力)を推定している。なお、第2の実施の形態のブレーキ制御装置について、特に言及しない限り、前述の第1の実施の形態と同様な構成及び動作をするものとする。
【0082】
図19は、電動モータ30の駆動系での摩擦力に基づいて目標指令値(制動力)を推定するための処理の処理手順を示す。
先ずステップS101において、コントローラ20は、前記図4で得ている押圧力センサ39の故障結果を示すエラーフラグFLG_ERRを読み込む。
続いてステップS102において、コントローラ20は、前記ステップS101で読み込んだエラーフラグFLG_ERRが0か否か、すなわち目標値と計測値との差分値が所定値α以下か否かを判定する。ここで、コントローラ20は、FLG_ERRが0でない場合(FLG_ERRが1の場合)、すなわち目標値と計測値との差分値が所定値αよりも大きい場合、当該図19に示す処理を終了し、FLG_ERRが0の場合、すなわち目標値と計測値との差分値が所定値α以下の場合、ステップS103に進む。
【0083】
ステップS103では、コントローラ20は、制動力Fの時間微分(dF/dt)が所定値γ1(γ1>0)よりも大きいか否かを判定する。すなわち、制動力Fが所定の増加傾向を示しているか否かを判定する。ここで、コントローラ20は、制動力Fの時間微分(dF/dt)が所定値γ1よりも大きい場合、ステップS104に進み、制動力Fの時間微分(dF/dt)が所定値γ1以下の場合、ステップS109に進む。
【0084】
ステップS104では、コントローラ20は、電動ブレーキ30を駆動するための電流値であるモータ電流値を記憶する。続いてステップS105において、コントローラ20は、そのモータ電流値のときの制動力を記憶する。
続いてステップS106において、コントローラ20は、前記ステップS104及びステップS105で記憶したモータ電流値及び制動力に基づいて、近似式を得る。ここで、当該図19に示す処理を複数回実施することで、前記ステップS103を満たす限り、前記ステップS104及びステップS105で、複数のモータ電流値及び制動力が得られるようになるので、そのようにして得た複数のモータ電流値及び制動力に基づいて近似式を算出している。例えば、図20中(A)に示すように(●印)、複数のモータ電流値及び制動力を得て、これら値に基づいて近似式f2を算出する。これにより、制動力が増加過程のときの当該制動力とモータ電流値との関係を示す近似式を得ることができる。そして、コントローラ20は、ステップS107に進む。
【0085】
一方、前記ステップS103において制動力Fの時間微分(dF/dt)が所定値γ1以下の場合に進むステップS109では、コントローラ20は、制動力Fの時間微分(dF/dt)が所定値γ2(γ2<0)よりも小さいか否かを判定する。すなわち、制動力Fが所定の減少傾向を示しているか否かを判定する。ここで、コントローラ20は、制動力Fの時間微分(dF/dt)が所定値γ2よりも小さい場合、ステップS110に進み、制動力Fの時間微分(dF/dt)が所定値γ2以上の場合、当該図19に示す処理を終了する。
【0086】
ステップS110では、コントローラ20は、電動ブレーキ30を駆動するための電流値であるモータ電流値を記憶する。続いてステップS111において、コントローラ20は、そのモータ電流値のときの制動力を記憶する。
続いてステップS112において、コントローラ20は、前記ステップS110及びステップS111で記憶したモータ電流値及び制動力に基づいて、近似式を得る。ここで、当該図19に示す処理を複数回実施することで、前記ステップS109を満たす限り、前記ステップS110及びステップS111で、複数のモータ電流値及び制動力が得られるようになるので、そのようにして得た複数のモータ電流値及び制動力に基づいて近似式を算出している。例えば、図20中(A)に示すように(×印)、複数のモータ電流値及び制動力を得て、これら値に基づいて近似式f1を算出する。これにより、制動力が減少過程のときの当該制動力とモータ電流値との関係を示す近似式を得ることができる。そして、コントローラ20は、ステップS107に進む。
【0087】
ステップS107では、コントローラ20は、摩擦相当電流値を算出する。具体的には、コントローラ20は、前記ステップS112で得た、制動力が減少過程にある場合の近似式と、前記ステップS106で得た、制動力が増加過程にある場合の近似式との差分から摩擦相当電流値を求める。
ここで、制動力が減少過程にある場合の近似式と制動力が増加過程にある場合の近似式との間に差分が発生するのは、次のような理由による。
【0088】
図21中(A)は、制動力とモータ電流値との関係を示す。この図21中(A)に示すように、モータ電流値を増加させると、制動力が増加し、モータ電流値を減少させると制動力が減少する。そして、この図21中(A)に示すように、同一のモータ電流値でも、制動力が増加過程にある場合と、制動力が減少過程にある場合とでは、得られる制動力が異なっている。具体的には、同じ制動力を得る場合でも、制動力の減少過程の方が、モータ電流値が小さい値で済むようになる。これは、制動力の増加過程では、制動力が減少過程の制動力と同等な制動力を得ようとすれば、電動ブレーキ30の駆動系の摩擦力、例えば駆動部摺動抵抗やブリッジ31やパッド33a,33bの歪に打ち勝つだけのモータ電流が必要になるからである。なお、ここで、電動ブレーキ30の駆動系の摩擦力は、当該電動ブレーキ30の駆動に影響を与えていることから、電動ブレーキ30の駆動特性とも言える。
【0089】
このようなことから、前記図20中(A)或いは図21中(B)に示すように、制動力が増加過程の当該制動力F11とモータ電流値との関係、及び制動力が減少過程の当該制動力F12とモータ電流値との関係として得ることができる。そして、このような関係により、制動力が減少過程にある場合の近似式と制動力が増加過程にある場合の近似式とを、それら式間に差分があるものとして得ることができる。そして、このような差分値を摩擦力摩擦相当電流値として得る。
【0090】
そして、続いてステップS108において、コントローラ20は、前記ステップS107で得た摩擦相当電流値を摩擦力に換算する。具体的には、図20中(B)に示すように、摩擦相当電流値から摩擦力を得る。例えば、モータトルクがモータ電流に比例することを利用し、摩擦相当電流値にモータトルク定数を乗算して摩擦力を算出する。
【0091】
以上のように、電動モータ30の駆動系での摩擦力を推定している。
そして、第2の実施の形態では、このようにして得た推定摩擦力に基づいて、押圧力センサ39の故障検出後に車輪の制動力を推定する。すなわち、押圧力センサ39の故障の検出後に目標指令値の出力を停止した場合に、その際に電動モータ30の駆動系内で発生している摩擦力が、車輪の制動力に影響するもとして、摩擦力を関数とする制動力を推定している。
【0092】
使用経時で電動ブレーキ30の駆動系の摩擦力(駆動特性)も変化するようになるが、このように電動モータ30の駆動系内で発生している摩擦力を関数として制動力を推定することで、電動ブレーキ30の駆動系の摩擦力が制動力に与える影響を、その電動ブレーキ30の使用経時を考慮することができる。例えば、電動ブレーキ30の駆動系の摩擦力の推定を定期的に実施しておけば、電動ブレーキ30の駆動系の摩擦力の使用経時変化を考慮した制動力の推定ができるようになる。
【0093】
例えば、推定摩擦力を含む制動力は下記(1)式の運動方程式で与えることができる。
md(dx/dt)dt=kx(t)−T(F) ・・・(1)
ここで、Fは押圧力センサ39が故障する直前の制動力であり、Tはその制動力Fを変数とする摩擦力である。例えば、図20中(B)或いは図21中(C)に示すように、制動力と摩擦力とを対応させた特性図(テーブル)を用意しておくことで、押圧力センサ39が故障する直前の制動力に対応する摩擦力を得ることができる。また、xはピストンの変位(制動時にパッドを圧縮する変位)であり、kはパッドの圧縮剛性であり、mはパッド33a,33b及びピストン38の質量である。
【0094】
この運動方程式を解いて、kx(t)を変数として、摩擦力により発生する制動力を推定する。すなわち、ピストン38の変位xにより制動力を推定する。このようにkx(t)により制動力を推定することで、制動状態やアクチュエータの経時劣化状態に関係なく車両の制動バランスを崩すことなく、ヨーモーメントを抑制することができる。
【0095】
図22は第2の実施の形態を適用した結果を示す。図22中(A)に示すように、電動ブレーキ30に発生する摩擦力を考慮して制動力を推定することができる。ここで、推定される制動力は、前述したように、押圧力センサ39の故障後に目標指令値の出力を停止した後に推定される制動力であり、図22中(B)に示すように変化する値である。この図22に示すように、電動ブレーキ30に発生する摩擦力に応じて、減少傾向が異なるものとして制動力を推定することができる。すなわち、摩擦力が大きい場合の方が、制動力への影響が強いことから、推定される制動力の時間変化割合も少なくなっている。ここで、摩擦力が小さい場合とは、電動ブレーキ30の使用経時が短い場合であり、摩擦力が大きい場合とは、電動ブレーキ30の使用経時が長い場合である。
【0096】
以上、本発明の実施の形態について説明した。しかし、本発明は、前述の実施の形態として実現されることに限定されるものではない。
すなわち、前述の実施の形態では、具体的に図4により、押圧力センサ39の故障検出について説明している。しかし、これに限定されるものではない。例えば、異なる処理手順或いはハードウェア的に自己診断するセンサを用いて故障検出するようにしてもよい。
【0097】
また、前述の実施の形態では、押圧力センサ39が故障している車輪の制動力を推定して、この推定した制動力を基準に、他の車輪の目標指令値を算出或いは修正している。ここで、算出或いは修正される車輪の目標指令値は、4輪の制動バランスを崩すことのないようにして、車両に発生するヨーモーメントを抑制するような値である。そして、そのような目標指令値の算出或いは修正を、図7乃至図13を用いて具体的な式を挙げて説明している。しかし、これに限定されるものではない。すなわち、4輪の制動バランスを崩すことのなく、或いは車両に発生するヨーモーメントを抑制するような値であれば、他の手法、例えば他の計算式により、目標指令値を算出或いは修正するようにしてもよい。
【0098】
また、前述の実施の形態では、ドライバとバッテリとをそれぞれ2個備えているが、それぞれ1個でもよく、それぞれ3個以上でもよい。また、各ドライバ7,8に対して電動ブレーキ30a,30b,30c,30dがX配置となるように接続されているが、前後配置などの他の接続であってもよい。
また、前述の実施の形態では、制動力の検出に、制動軸力を計測する押圧力センサ39を用いている。しかし、これに限定されるものではない。例えば、そのようにセンサは、車輪にかかる制動力(制動軸力×パッドμ×ブレーキロータ有効半径/タイヤ動半径)を計測するセンサであってもよい。これにより、直接計測した制動力に基づいて電動ブレーキ30のフィードバック制御を行う。
【0099】
また、前述の第2の実施の形態では、ピストンの変位xにより制動力を推定している。しかし、これに限定されるものではない。例えば、予め時系列データを求め、これを記憶しておいてもよい。具体的には、押圧力センサ39が故障検出される直前の制動力や時間経過に対応して推定される摩擦力を記憶しておく。これにより、押圧力センサ39の故障検出後の制動力を、前記押圧力センサ39が故障検出される直前の制動力や時間経過に対応して推定される摩擦力に基づいて算出する。
【0100】
なお、前述の実施の形態の説明において、電動ブレーキ30は、入力された駆動信号(目標指令値)に基づいて、車体側に取り付けられているブレーキ摩擦部材(パッド33a,33b)を駆動し、このブレーキ摩擦部材を各車輪の被摩擦部(ブレーキロータ32)に当てて当該各車輪に制動力を与える制動力付与手段を実現しており、押圧力センサ39は、前記制動力付与手段が各車輪に実際に与えた制動力を検出する複数の制動力検出手段を実現しており、コントローラ20による図5に示すステップS26及びステップS27は、前記複数の制動力検出手段が検出した各車輪の制動力に基づいて駆動信号を調整し、この調整した駆動信号を前記制動力付与手段に出力して車両姿勢を制御する車両姿勢制御手段を実現しており、コントローラ20による図4及び図5に示すステップS22に示す処理は、前記制動力検出手段の故障を検出する故障検出手段を実現しており、コントローラ20による図5に示すステップS23及びステップS24の処理は、前記故障検出手段が前記制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の制動力付与手段への駆動信号の出力を停止するとともに、この車輪の制動力を推定する制動力推定手段を実現しており、コントローラ20による図5に示すステップS25の処理は、前記制動力推定手段が推定した制動力に基づいて、前記制動力検出手段が正常な車輪に制動力を与える前記制動力付与手段への駆動信号を調整する車両姿勢制御手段を実現している。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態のブレーキ制御装置の構成を示す図である。
【図2】前記ブレーキ制御装置の電動ブレーキの構成を示す断面図である。
【図3】前記ブレーキ制御装置のコントローラによるブレーキ制御処理の処理手順を示すフローチャートである。
【図4】前記コントローラによる押圧力センサの故障検出処理を示す処理手順を示すフローチャートである。
【図5】前記コントローラによる目標指令値の算出処理の処理手順を示すフローチャートである。
【図6】前記コントローラによる目標指令値の具体的な算出処理中の、押圧力センサの故障検出処理部分を示すフローチャートである。
【図7】前記コントローラによる目標指令値の具体的な算出処理中の、FR輪押圧力センサが故障している場合の目標指令値の算出処理部分を示すフローチャートである。
【図8】前記コントローラによる目標指令値の具体的な算出処理中の、RR輪押圧力センサが故障している場合の目標指令値の算出処理部分を示すフローチャートである。
【図9】前記コントローラによる目標指令値の具体的な算出処理中の、FL輪押圧力センサが故障している場合の目標指令値の算出処理部分を示すフローチャートである。
【図10】前記コントローラによる目標指令値の具体的な算出処理中の、RL輪押圧力センサが故障している場合の目標指令値の算出処理部分を示すフローチャートである。
【図11】ペダル操作量に対応する目標制動力を得るためのテーブルを示す特性図である。
【図12】車両減速度とタイヤロックが起きるタイヤ限界との関係を示す特性図である。
【図13】FR輪押圧力センサが故障している場合に算出される目標指令値を示す図である。
【図14】コントローラによる制動力の推定処理の処理手順を示すフローチャートである。
【図15】タイマー値Iに対応させて記憶した推定制動力を示す特性図である。
【図16】本発明の効果の説明のために使用した比較例を示す図である。
【図17】本発明の効果の説明のために使用した図である。
【図18】本発明の効果の説明のために使用した図であり、押圧力センサの故障を検出する直前の制動力に基づいて制動力を推定する場合を示す図である。
【図19】第2の実施の形態におけるコントローラによる目標指令値の推定のための処理の処理手順を示す図である。
【図20】前記コントローラによる摩擦力の検出の処理を説明するために使用した図である。
【図21】前記摩擦力の検出原理を説明するために使用した図である。
【図22】本発明の効果の説明に使用した図である。
【符号の説明】
4 各車輪速センサ
5 前後加速度センサ
6 ヨーレートセンサ
7,8 ドライバ
9,10 バッテリ
30a,30b,30c,30d 電動ブレーキ
31 ブリッジ
32 ブレーキロータ
33a,33b パッド
34 モータ
35 モータ角度センサ
36 回転軸
37 回転部材
38 ピストン
39 押圧力センサ

Claims (5)

  1. 車体側に取り付けられているブレーキ摩擦部材を駆動し、このブレーキ摩擦部材を各車輪の被摩擦部に当てて当該各車輪に制動力を与える制動力付与手段を備え、複数の制動力検出手段により前記制動力付与手段が各車輪に実際に与えた制動力を検出し、前記制動力検出手段が検出した制動力に基づいて、前記制動力付与手段によるブレーキ摩擦部材の駆動を制御することで各車輪に与える制動力を調整し、車両姿勢を制御する車両用ブレーキ制御装置において、
    前記制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の前記ブレーキ摩擦部材の駆動を停止するとともに、この車輪の制動力を推定し、この推定した制動力に基づいて、正常な制動力検出手段によって制動力が検出される車輪への制動力を調整して車両姿勢を制御することを特徴とする車両用ブレーキ制御装置。
  2. 入力された駆動信号に基づいて、車体側に取り付けられているブレーキ摩擦部材を駆動し、このブレーキ摩擦部材を各車輪の被摩擦部に当てて当該各車輪に制動力を与える制動力付与手段と、
    前記制動力付与手段が各車輪に実際に与えた制動力を検出する複数の制動力検出手段と、
    前記複数の制動力検出手段が検出した各車輪の制動力に基づいて駆動信号を調整し、この調整した駆動信号を前記制動力付与手段に出力して車両姿勢を制御する車両姿勢制御手段と、
    前記制動力検出手段の故障を検出する故障検出手段と、
    前記故障検出手段が前記制動力検出手段の故障を検出した場合、その故障を検出した制動力検出手段により制動力が検出される車輪の制動力付与手段への駆動信号の出力を停止するとともに、この車輪の制動力を推定する制動力推定手段と、を備え、
    前記車両姿勢制御手段は、前記制動力推定手段が推定した制動力に基づいて、前記制動力検出手段が正常な車輪に制動力を与える前記制動力付与手段への駆動信号を調整することを特徴とする車両用ブレーキ制御装置。
  3. 前記制動力検出手段が故障する前の制動力に基づいて、前記制動力の推定をすることを特徴とする請求項1又は2に記載の車両用ブレーキ制御装置。
  4. 使用経時で変化する前記制動力付与手段の駆動力特性を検出し、前記駆動力特性に基づいて、前記制動力の推定をすることを特徴とする請求項1乃至3のいずれかに記載の車両用ブレーキ制御装置。
  5. 前記ブレーキ摩擦部材の駆動電流に基づいて、使用経時で変化する前記制動力付与手段の駆動力特性を検出することを特徴とする請求項4記載の車両用ブレーキ制御装置。
JP2002380313A 2002-12-27 2002-12-27 車両用ブレーキ制御装置 Pending JP2004210054A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002380313A JP2004210054A (ja) 2002-12-27 2002-12-27 車両用ブレーキ制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002380313A JP2004210054A (ja) 2002-12-27 2002-12-27 車両用ブレーキ制御装置

Publications (1)

Publication Number Publication Date
JP2004210054A true JP2004210054A (ja) 2004-07-29

Family

ID=32816575

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002380313A Pending JP2004210054A (ja) 2002-12-27 2002-12-27 車両用ブレーキ制御装置

Country Status (1)

Country Link
JP (1) JP2004210054A (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191041A (ja) * 2006-01-19 2007-08-02 Advics:Kk タイヤ前後力推定装置
JP2008056074A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd ブレーキ制御システム
JP2008068840A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 電動パーキングブレーキシステム
JP2010013101A (ja) * 2009-10-14 2010-01-21 Hitachi Ltd ブレーキ制御システム
JP2010076624A (ja) * 2008-09-26 2010-04-08 Toyota Motor Corp 自動車両制動装置
JP2016074411A (ja) * 2014-10-06 2016-05-12 本田技研工業株式会社 車両安定化装置
WO2016104682A1 (ja) * 2014-12-27 2016-06-30 マツダ株式会社 電動ブレーキシステム
US9598074B2 (en) 2014-10-06 2017-03-21 Honda Motor Co., Ltd. Vehicle stabilization device
WO2018052068A1 (ja) * 2016-09-15 2018-03-22 Ntn株式会社 電動ブレーキ装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007191041A (ja) * 2006-01-19 2007-08-02 Advics:Kk タイヤ前後力推定装置
JP4697430B2 (ja) * 2006-01-19 2011-06-08 株式会社アドヴィックス タイヤ前後力推定装置
JP2008056074A (ja) * 2006-08-31 2008-03-13 Hitachi Ltd ブレーキ制御システム
US7644998B2 (en) 2006-08-31 2010-01-12 Hitachi, Ltd. Brake control system
JP4670779B2 (ja) * 2006-09-15 2011-04-13 トヨタ自動車株式会社 電動パーキングブレーキシステム
JP2008068840A (ja) * 2006-09-15 2008-03-27 Toyota Motor Corp 電動パーキングブレーキシステム
JP2010076624A (ja) * 2008-09-26 2010-04-08 Toyota Motor Corp 自動車両制動装置
JP2010013101A (ja) * 2009-10-14 2010-01-21 Hitachi Ltd ブレーキ制御システム
JP2016074411A (ja) * 2014-10-06 2016-05-12 本田技研工業株式会社 車両安定化装置
US9598074B2 (en) 2014-10-06 2017-03-21 Honda Motor Co., Ltd. Vehicle stabilization device
WO2016104682A1 (ja) * 2014-12-27 2016-06-30 マツダ株式会社 電動ブレーキシステム
CN107107899A (zh) * 2014-12-27 2017-08-29 马自达汽车株式会社 电动制动系统
JPWO2016104682A1 (ja) * 2014-12-27 2018-01-11 マツダ株式会社 電動ブレーキシステム
WO2018052068A1 (ja) * 2016-09-15 2018-03-22 Ntn株式会社 電動ブレーキ装置

Similar Documents

Publication Publication Date Title
EP1095834B1 (en) Braking torque control apparatus
JP2660171B2 (ja) ブレーキ制御方法
JP4902373B2 (ja) ブレーキ装置およびブレーキ装置の制御方法
US6496768B2 (en) Vehicular brake control apparatus and control method therefor
JP5764103B2 (ja) 車両の制動制御装置
JP5381954B2 (ja) 車両駆動力制御装置
US20080048596A1 (en) Electric Braking Apparatus and Method of Controlling Thereof
WO2007091337A1 (ja) 電動ブレーキ装置
BR112012031055B1 (pt) sistema de controle de freio de veículo
JP2006205912A (ja) 制動力制御装置
US10246064B2 (en) Electric brake device
WO2015041333A1 (ja) ブレーキ温度検出装置および電動駐車ブレーキ制御装置
US7002314B2 (en) Electric brake system
JP2004210054A (ja) 車両用ブレーキ制御装置
US6988595B2 (en) Vehicular braking apparatus and method
WO2020066645A1 (ja) 電動ブレーキおよび制御装置
JP6011175B2 (ja) 車両の制動制御装置
JP5962356B2 (ja) 車両の制動制御装置
US7195323B2 (en) Electric brake system
JP5251319B2 (ja) 電動ブレーキ装置
JP2005067247A (ja) 制動装置
JP6513625B2 (ja) 電動ブレーキシステム
JP6765265B2 (ja) 電動ブレーキ装置
JP2003063376A (ja) 電動ブレーキ装置
JP2003220943A (ja) 制動制御装置