JP2004207203A - Power supply for recharging and recharging method - Google Patents

Power supply for recharging and recharging method Download PDF

Info

Publication number
JP2004207203A
JP2004207203A JP2002383616A JP2002383616A JP2004207203A JP 2004207203 A JP2004207203 A JP 2004207203A JP 2002383616 A JP2002383616 A JP 2002383616A JP 2002383616 A JP2002383616 A JP 2002383616A JP 2004207203 A JP2004207203 A JP 2004207203A
Authority
JP
Japan
Prior art keywords
charging
rectifier
battery
lead
recharging
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002383616A
Other languages
Japanese (ja)
Inventor
Akiya Kozawa
昭弥 小沢
Yoshiyori Yokoi
義順 横井
Masaya Yokoi
正弥 横井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2002383616A priority Critical patent/JP2004207203A/en
Publication of JP2004207203A publication Critical patent/JP2004207203A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power supply and a charging method, whereby a lead acid battery can be simply regenerated, and its life can be substantially extended. <P>SOLUTION: In this power supply for recharging, one end of a rectifier is connected to one of secondary terminals of a sliding transformer, and the other end of the rectifier is connected to one of terminals connected to the lead acid battery. In this recharging method, a commercial ac voltage is transformed by using the sliding transformer, the transformed ac is rectified by the rectifier, the rectified current is sent to the lead acid battery wherein a single or a plurality of lead acid batteries are connected in series, and the lead acid battery is charged by a low current value. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【産業上の利用分野】本発明は、鉛蓄電池の寿命を著しく延長することができる再生充電用電源およびそれを用いた再生充電法に関する。
【0002】
【従来の技術】従来、乗用車、トラック、バス、フォークリフト、ゴルフカート等に用いる電源として、主として鉛蓄電池が用いられ、その充電は、通常原動機により駆動されるオルタネーターか、商用電源を降圧して整流する充電器を用いて行なわれている。
【0003】
【考案が解決しようとする課題】しかしながら、その充電は、過充電による電極の劣化を防止する目的で、セル1個当り最高2.4ボルト、即ち定格12ボルトの鉛蓄電池に対しては最高14.4ボルト程度に制限されており、このために頻繁に充放電が繰り返される運転条件では、電池が充電不足の状態となり、硫酸鉛の結晶が成長し、充放電サイクル寿命が短くなる欠点があった。特に、電池の充放電サイクル寿命を延長する効果のあるポリビニルアルコール等の添加剤を用いた場合、充電不足の傾向が大きく、添加剤の本来の効果を充分に発揮できない場合があった。また、セル間の充電度合いのばらつきを少なくするために均等充電と称して、長時間小電流で充電する方法があるが、高価な充電器を長時間占有することになるので、使用されることが少なく、且つその時間も高々10時間程度であり、十分な効果が得られていなかった。
【0004】
【課題を解決するための手段】本発明は、上記課題を解決するためになされたものであり、鉛蓄電池の充電において、摺動変圧器の二次側端子の一つに整流器の一端が接続され、該整流器の他端が鉛蓄電池に接続する端子の一つに接続されている再生充電用電源、および、商用交流電圧を摺動変圧器を用いて変圧し、その変圧した交流を整流器で整流し、その整流された電流を単数または複数個が直列に接続された鉛蓄電池に通電し、0.04Cアンペアないし0.0005Cアンペアの電流値で鉛蓄電池を充電する再生充電法である。ここでCとは、5時間率で放電した場合の定格容量(アンペアアワー)の数値を指す。例えば定格容量40アンペアアワーの電池では0.04Cアンペアは1.6アンペアに相当する。
【0005】
【作用】本発明で用いる摺動変圧器とは、環状の磁芯に導体を多数回巻きつけ、その任意の巻線に接する摺動刷子から任意の二次電圧を取り出せる構造の単巻変圧器であり、一般に「スライダック」の商品名で呼ばれている。この摺動変圧器は、数十アンペアの電流容量のものが容易に得られ、且つ変圧器の熱容量が大きく放熱特性に優れ短時間の過負荷に優れた耐久性を示すので、負荷の条件が毎回大きく変化する鉛蓄電池の再生充電回路用変圧器として特別な安全回路や電流制御回路を用いることなく適用することができ、極めて簡便で、且つ耐久性に優れている。更に、一般の変圧器では二次電圧はタップにより固定されるので、充電器の電流調節はタップの切替と、その間を補間する電流制御要素が必要である。特に鉛蓄電池では電池の内部抵抗が小さく、従って僅かの端子電圧の変化で充電電流の値が大きく変化するので、小電流での充電を維持する為には抵抗器やトランジスタ等の電流制御要素が不可欠であった。これに対し、摺動変圧器ではそれ自体で二次電圧を連続的に細かく調節することが可能であり、それ以外の電流制御要素を必要としない。したがって余分な発熱が無く、充電の際のエネルギー高率が高い。
【0006】本発明で用いる摺動変圧器は、鉛蓄電池の充電不足によって成長した硫酸鉛の結晶を分解するための充電に使用するもので、これに要する電気量は鉛電池全体の電気容量に比べれば僅かである。したがって、再生充電回路の電流容量は、通常の鉛電池の充電に用いられる充電回路の電流容量の十分の一ないし百分の一程度の小型のもので充分である。
【0007】本発明で適用する充電電流は0.04Cアンペアないし0.0005Cアンペアが好適である。0.04Cアンペアより高い場合は、水の電気分解が激しく、長時間継続すると陽極の劣化が促進されるので好ましくない。また0.0005Cアンペアより小さい電流では再生の効果が小さく、且つ再生に著しく長時間を要するので好ましくない。
【0008】再生充電に要する時間は通常48時間以上が好適であり、一般に、約70時間を超えるとその効果が顕著に認められ、120時間以上では改善の効果がほぼ飽和する。即ち、鉛蓄電池の電解液の比重が、劣化した電池では1.15以下であったものが再生後は1.28以上になり、電池の内部抵抗が小さくなり、大電流放電の際の端子電圧の低下が小さくなる。
【0009】電解液の添加剤としてポリビニルアルコールを用いた場合、その濃度は0.001%ないし0.01%であることが好適であり、特にこの場合、小電流で長時間の充電により、電極内部の硫酸鉛の分解が促進され電池の再生が効果的に行なわれる。これに対し、通常の電流値での短時間の充電では陰極のサルフェーションが十分には解消されないという問題があるので、電池の活性化が殆ど起こらない。
【0010】
【実施例】
【実施例1】フォークリフト用48ボルト450AHの鉛蓄電池で約4.5年使用し、電解液の比重値が、通常の充電では1.18以上には上昇しないものを使用して以下の再生処理を行なった。全体で24個のセルのうち、12個のセルについて、平均重合度2000のポリビニルアルコールを電解液中に0.003%添加し、残りの12個のセルには何も加えなかった。このセルを直列に接続し、図1の回路を用いて8アンペア(0.018Cアンペア)で連続充電48時間の場合と、連続充電120時間の場合について行ない、鉛蓄電池の再生を試みた。図1では、AC100V電源1を摺動変圧器2の1次側に接続し、その2次出力を整流器3で整流し、セルを直列に接続した鉛電池5を充電し、充電電流を電流計4で検出した。その結果、電解液の比重は表1に示すように上昇し、特にポリビニルアルコールを電解液中に添加した場合は顕著に上昇した。
表1、 電解液の比重
条件 ポリビニルアルコール有り ポリビニルアルコール無し
充電前 平均1.18g/cc 平均1.18g/cc
48時間充電後 平均1.24g/cc 平均1.19g/cc
120時間充電後 平均1.29g/cc 平均1.22g/cc
【0011】
【実施例2】3年間使用して劣化した12ボルト定格容量145AHの鉛蓄電池を10個直列に接続し、平均重合度2000のポリビニルアルコールを電解液中に0.003%添加した場合と無添加の場合について、実施例1と同様の装置を用いて0.02C(2.9アンペア)で連続充電48時間の場合と、連続充電120時間の場合について行ない、鉛蓄電池の再生を試みた。その結果、200アンペア−5秒の高率放電特性は表2に示すように夫々改善されており、特に電解液にポリビニルアルコールを添加した電池では著しく改善された。
表2、 200アンペア−5秒放電後の電池端子電圧
条件 ポリビニルアルコール有り ポリビニルアルコール無し
充電前 平均8.02V 平均8.02V
48時間充電後 平均8.50V 平均8.30V
120時間充電後 平均9.50V 平均8.80V
【0012】
【発明の効果】以上の説明より明らかなように、本発明は、充電不足により生成した硫酸鉛を効果的に分解して鉛電池を再生することができる簡便な装置およびそれを用いた再生方法を提供するものである。
【図面の簡単な説明】
【図1】再生充電の回路図
【符号の説明】
1:AC100V電源
2:摺動変圧器
3:整流器
4:電流計
5:鉛蓄電池
[0001]
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a regenerative charging power source capable of significantly extending the life of a lead storage battery and a regenerative charging method using the same.
[0002]
2. Description of the Related Art Conventionally, a lead-acid battery is mainly used as a power supply for a car, truck, bus, forklift, golf cart, etc., and its charge is usually performed by stepping down an alternator driven by a motor or a commercial power supply. This is done using a charger.
[0003]
However, in order to prevent deterioration of the electrodes due to overcharging, the charging is performed at a maximum of 2.4 volts per cell, that is, at a maximum of 14 volts for a lead-acid battery rated at 12 volts. Under the operating conditions in which charging and discharging are frequently repeated, the battery is in a state of insufficient charge, lead sulfate crystals grow, and the charging and discharging cycle life is shortened. Was. In particular, when an additive such as polyvinyl alcohol, which has an effect of extending the charge / discharge cycle life of the battery, is used, the charge tends to be insufficient and the original effect of the additive may not be sufficiently exhibited. In addition, there is a method of charging with a small current for a long time, called equal charging, in order to reduce the variation in the degree of charging between cells, but it is used because it occupies an expensive charger for a long time. And the time was at most about 10 hours, and a sufficient effect was not obtained.
[0004]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and one end of a rectifier is connected to one of secondary terminals of a sliding transformer in charging a lead storage battery. Then, the other end of the rectifier is connected to one of the terminals connected to the lead-acid battery for regenerative charging, and a commercial AC voltage is transformed using a sliding transformer, and the transformed AC is supplied to the rectifier. This is a regenerative charging method in which rectification is performed, and the rectified current is supplied to a lead storage battery in which one or more are connected in series, and the lead storage battery is charged with a current value of 0.04C to 0.0005C. Here, C indicates the numerical value of the rated capacity (ampere hour) when discharging at a 5-hour rate. For example, for a battery with a rated capacity of 40 amp-hours, 0.04 C-amps correspond to 1.6 amps.
[0005]
The sliding transformer used in the present invention is an autotransformer having a structure in which a conductor is wound around an annular magnetic core many times and an arbitrary secondary voltage can be taken out from a sliding brush in contact with an arbitrary winding. And is generally referred to by the trade name “Slidac”. This sliding transformer can easily obtain a current capacity of several tens of amperes, and has a large heat capacity of the transformer, excellent heat radiation characteristics, and excellent durability against short-time overload. It can be applied without using a special safety circuit or current control circuit as a transformer for a regenerative charging circuit of a lead storage battery that changes greatly every time, and is extremely simple and excellent in durability. Furthermore, since the secondary voltage is fixed by a tap in a general transformer, the current control of the charger requires switching of the tap and a current control element for interpolating between the taps. In particular, in lead-acid batteries, the internal resistance of the battery is low, and the value of the charging current changes greatly with a slight change in terminal voltage.Therefore, in order to maintain charging at a small current, current control elements such as resistors and transistors are required. Was indispensable. On the other hand, the sliding transformer can continuously and finely adjust the secondary voltage by itself, and does not require other current control elements. Therefore, there is no excess heat generation, and the energy efficiency at the time of charging is high.
[0006] The sliding transformer used in the present invention is used for charging for decomposing the lead sulfate crystals grown due to insufficient charging of the lead storage battery. The amount of electricity required for this is determined by the electric capacity of the entire lead battery. It is a little compared. Therefore, the current capacity of the regenerative charging circuit is sufficient to be as small as about one tenth to one hundredth of the current capacity of the charging circuit used for charging a normal lead battery.
[0007] The charging current applied in the present invention is preferably 0.04 C amperes to 0.0005 C amperes. When it is higher than 0.04 C amperes, electrolysis of water is severe, and if it is continued for a long time, deterioration of the anode is promoted, which is not preferable. Further, a current smaller than 0.0005 C amperes is not preferable because the effect of reproduction is small and the reproduction takes an extremely long time.
[0008] The time required for regenerative charging is usually preferably 48 hours or more. Generally, when the time exceeds about 70 hours, the effect is remarkably recognized. That is, the specific gravity of the electrolyte of the lead-acid battery was 1.15 or less in the deteriorated battery, but became 1.28 or more after regeneration, the internal resistance of the battery was reduced, and the terminal voltage during large-current discharge was reduced. Decrease is small.
When polyvinyl alcohol is used as an additive for the electrolyte, the concentration is preferably 0.001% to 0.01%. The decomposition of lead sulfate inside is promoted, and the battery is effectively regenerated. On the other hand, there is a problem that the sulfation of the cathode is not sufficiently eliminated by short-time charging with a normal current value, so that activation of the battery hardly occurs.
[0010]
【Example】
Example 1 Forty-four-volt, 450-AH lead-acid battery for forklift is used for about 4.5 years, and the following regenerating treatment is carried out using an electrolyte whose specific gravity does not rise to 1.18 or more in normal charging. Was performed. Of the 24 cells in total, for 12 cells, 0.003% of polyvinyl alcohol having an average degree of polymerization of 2000 was added to the electrolytic solution, and nothing was added to the remaining 12 cells. The cells were connected in series, and the circuit of FIG. 1 was used for a continuous charge of 48 hours and a continuous charge of 120 hours at 8 amps (0.018 C amps) to try to regenerate the lead storage battery. In FIG. 1, an AC 100V power supply 1 is connected to the primary side of a sliding transformer 2, its secondary output is rectified by a rectifier 3, a lead battery 5 in which cells are connected in series is charged, and a charging current is measured by an ammeter. 4 and detected. As a result, the specific gravity of the electrolytic solution increased as shown in Table 1, and in particular, when polyvinyl alcohol was added to the electrolytic solution, it increased significantly.
Table 1, Specific gravity condition of electrolyte solution With polyvinyl alcohol Without polyvinyl alcohol Before charging Average 1.18 g / cc Average 1.18 g / cc
After charging for 48 hours Average 1.24g / cc Average 1.19g / cc
After charging for 120 hours Average 1.29g / cc Average 1.22g / cc
[0011]
Example 2 Ten lead-acid batteries of 12 volts rated capacity 145 AH deteriorated after three years of use were connected in series, and 0.003% of polyvinyl alcohol having an average degree of polymerization of 2,000 was added to the electrolyte and no addition was made. In the case of (1), the same device as in Example 1 was used for a continuous charging of 48 hours and a continuous charging of 120 hours at 0.02 C (2.9 amps) to regenerate the lead storage battery. As a result, the high-rate discharge characteristics of 200 amps-5 seconds were improved as shown in Table 2, and in particular, the battery in which polyvinyl alcohol was added to the electrolytic solution was significantly improved.
Table 2, Battery terminal voltage conditions after 200 amps-5 second discharge With polyvinyl alcohol Without polyvinyl alcohol Before charging Average 8.02V Average 8.02V
8.50V on average after charging for 48 hours 8.30V on average
9.50V on average after charging for 120 hours 8.80V on average
[0012]
As is apparent from the above description, the present invention provides a simple apparatus capable of effectively decomposing lead sulfate generated due to insufficient charging to regenerate a lead battery and a regenerating method using the same. Is provided.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of regenerative charging.
1: AC100V power supply 2: Sliding transformer 3: Rectifier 4: Ammeter 5: Lead storage battery

Claims (4)

摺動変圧器の二次側端子の一つに整流器の一端が接続され、該整流器の他端が鉛蓄電池に接続する端子の一つに接続されていることを特徴とする再生充電用電源。A power supply for regenerative charging, wherein one end of a rectifier is connected to one of the secondary terminals of the sliding transformer, and the other end of the rectifier is connected to one of terminals connected to a lead storage battery. 商用交流電圧を摺動変圧器を用いて変圧し、その変圧した交流を整流器で整流し、その整流された電流を単数または複数個が直列に接続された鉛蓄電池に通電し、0.04Cアンペアないし0.0005Cアンペアの電流値で鉛蓄電池を充電することを特徴とする再生充電法。A commercial AC voltage is transformed by using a sliding transformer, the transformed AC is rectified by a rectifier, and the rectified current is supplied to a lead-acid battery having one or more connected in series, and a current of 0.04 C is applied. And charging the lead storage battery with a current value of 0.0005 C amperes. 請求項2において、該鉛蓄電池が電解液中に0.001%ないし0.01%のポリビニルアルコールを含むものである再生充電法。3. The method according to claim 2, wherein the lead storage battery contains 0.001% to 0.01% of polyvinyl alcohol in the electrolyte. 請求項2において、充電を延べ48時間以上行なう再生充電法。3. The regeneration charging method according to claim 2, wherein the charging is performed for a total of 48 hours or more.
JP2002383616A 2002-12-24 2002-12-24 Power supply for recharging and recharging method Pending JP2004207203A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002383616A JP2004207203A (en) 2002-12-24 2002-12-24 Power supply for recharging and recharging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002383616A JP2004207203A (en) 2002-12-24 2002-12-24 Power supply for recharging and recharging method

Publications (1)

Publication Number Publication Date
JP2004207203A true JP2004207203A (en) 2004-07-22

Family

ID=32818284

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002383616A Pending JP2004207203A (en) 2002-12-24 2002-12-24 Power supply for recharging and recharging method

Country Status (1)

Country Link
JP (1) JP2004207203A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085467A (en) * 2010-10-13 2012-04-26 Honda Motor Co Ltd Charging apparatus and method of charging

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012085467A (en) * 2010-10-13 2012-04-26 Honda Motor Co Ltd Charging apparatus and method of charging

Similar Documents

Publication Publication Date Title
CN105308825B (en) Precharge for DC-AC inverter and voltage supply system
JP6293010B2 (en) Power storage system
JP6531221B2 (en) Device and method for managing battery pack
JP2009072039A (en) Power system
CN103490114A (en) Storage battery charging regenerator
JPWO2014038100A1 (en) Vehicle battery system and vehicle equipped with the same
KR101567557B1 (en) Voltage balancing apparatus and method of secondary battery cells
KR101572178B1 (en) Voltage balancing apparatus and method of secondary battery cells
Valeriote et al. Fast charging of lead-acid batteries
JP2010160955A (en) Method of charging battery pack
WO2012008910A1 (en) Battery reconditioning method and device
JP2013233002A (en) Power storage system and method of controlling charge/discharge thereof
JP2004207203A (en) Power supply for recharging and recharging method
CN102709614B (en) Method for charging and discharging lithium secondary battery
US20210391743A1 (en) Battery charger and method for charging a battery
CN110867922B (en) Pulse charging method for pulling high voltage in floating charging stage and power supply charger
JPH06290815A (en) Equipment system
Chang et al. Rapid partial charging of lead/acid batteries
JP3746135B2 (en) Charging method for sealed lead-acid batteries
JP2003169424A (en) Secondary battery charging method and charging device
Tuphorn Valve-regulated lead/acid batteries: systems, properties and applications
JP3184308B2 (en) Rechargeable battery charge control method
JPH0869811A (en) Lead-acid battery
CN2703353Y (en) Lead-acid, cadmium-nickel and hydrogen-nickel cell combined pulse charger for electric bicycle use
CN102738529B (en) Discharging method for secondary battery