JPH06290815A - Equipment system - Google Patents

Equipment system

Info

Publication number
JPH06290815A
JPH06290815A JP5076762A JP7676293A JPH06290815A JP H06290815 A JPH06290815 A JP H06290815A JP 5076762 A JP5076762 A JP 5076762A JP 7676293 A JP7676293 A JP 7676293A JP H06290815 A JPH06290815 A JP H06290815A
Authority
JP
Japan
Prior art keywords
lithium secondary
secondary battery
voltage
charging
battery group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5076762A
Other languages
Japanese (ja)
Other versions
JP3378293B2 (en
Inventor
Motoi Kanda
基 神田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP07676293A priority Critical patent/JP3378293B2/en
Publication of JPH06290815A publication Critical patent/JPH06290815A/en
Application granted granted Critical
Publication of JP3378293B2 publication Critical patent/JP3378293B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide an equipment system provided with a control system, by which safety in use can be easily secured, by providing plural groups of lithium secondary battery connected in parallel in the constitution of a secondary battery, which consists of plural lithium secondary batteries and has a large capacity. CONSTITUTION:A charging voltage control part 2 controls a voltage during a charge to plural groups (B1-Bm) of lithium secondary batteries 1, which are connected to each other in parallel, to be the voltage, by which lithium dendrite is deposited in a negative electrode, or less. As respective lithium secondary batteries 1 are connected in parallel, all the lithium secondary batteries can always maintain the sane voltage. Therefore, an overcharge in all the lithium secondary batteries can be prevented by adjusting the maximum voltage of the charging device to the upper limit voltage during a charge, while an over discharge in all the lithium secondary batteries can be surely prevented by setting the lower limit voltage during a discharge.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、少なくとも2個のリチ
ウム二次電池から成るリチウム二次電池電源を作動源
(駆動源)とする機器システムに係り、特にリチウム二
次電池電源に対する充電および放電の制御システムを考
慮したリチウム二次電池電源作動源とする機器システム
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an equipment system using a lithium secondary battery power source composed of at least two lithium secondary batteries as an operation source (driving source), and more particularly to charging and discharging of the lithium secondary battery power source. The present invention relates to a device system using a lithium secondary battery power source as a power source in consideration of the control system of the above.

【0002】[0002]

【従来の技術】近年、いわゆるリチウム二次電池の研究
・開発が進展し、実用化も始まろうとしている。すなわ
ち、リチウム金属あるいはリチウム原子ないしリチウム
イオンをインターカレートした炭素を負極とし、リチウ
ムおよび遷移金属を主成分とする複合酸化物を正極と
し、有機溶媒にリチウム塩を溶解させた電解液を電解質
として成るリチウム二次電池が開発されている。そし
て、このリチウム二次電池は、電池電圧が4V程度と高い
こと、エネルギー密度がきわめて大きいことなど性能面
ですぐれている一方、軽量なことなどの特長を有するの
で、機器システムの作動(駆動)源として魅力的な二次
電池電源として注目されている。この種のリチウム二次
電池においては、最近、安全性の面から負極に炭素材料
を用いた形式の電池の開発が特に進められ、民生用では
一部実用化が始まりつつある。
2. Description of the Related Art In recent years, research and development of so-called lithium secondary batteries have progressed, and practical application is about to begin. That is, lithium metal or carbon intercalated with lithium atoms or lithium ions is used as a negative electrode, a composite oxide containing lithium and a transition metal as a main component is used as a positive electrode, and an electrolyte solution obtained by dissolving a lithium salt in an organic solvent is used as an electrolyte. Has been developed. This lithium secondary battery is superior in performance such as high battery voltage of about 4V and extremely high energy density, while it has features such as light weight. It is attracting attention as an attractive secondary battery power source. In this type of lithium secondary battery, recently, from the viewpoint of safety, the development of a battery of a type using a carbon material for the negative electrode has been particularly advanced, and a part of it has been put into practical use for consumer use.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記構成のリ
チウム二次電池は、水溶性電解液を使用した他の二次電
池と異なり、充電および放電の条件が厳しく制御され
る。すなわち、いずれも安全性に係ることであるが、充
電の終止電圧(上限電圧…4.2V程度)、および放電の終
止電圧(下限電圧…2.7V程度)をそれぞれ限界とし、こ
の値を外れた電圧での充電や放電を行ってはならない。
この条件を守らないと、充電時(つまり過充電時)に
は、リチウムデンドライトが負極面に形成され、内蔵す
る電解液の分解や電池の内部ショートなどが起こり、結
果的に電池の破損を招来し、最悪の場合には電池の破裂
・発火が起きるなど危険性がある。一方、放電時(つま
り過放電時)にも、同様に内蔵する電解液の分解や、電
極物質の不可逆化などが起こり、電池の破損を招来し、
最悪の場合には電池の破裂の可能性もある。
However, unlike the other secondary batteries using the water-soluble electrolytic solution, the lithium secondary battery having the above-described structure has strict control of charging and discharging conditions. In other words, both are related to safety, but the voltage that deviates from this value is the limit voltage of charge (upper limit voltage: about 4.2V) and the final voltage of discharge (lower limit voltage: about 2.7V). Do not charge or discharge at.
If these conditions are not observed, during charging (that is, during overcharging), lithium dendrites form on the negative electrode surface, which may cause decomposition of the built-in electrolyte solution or internal short circuit of the battery, resulting in damage to the battery. However, in the worst case, there is a risk that the battery will burst or ignite. On the other hand, also during discharge (that is, during overdischarge), similarly, decomposition of the built-in electrolyte solution, irreversible electrode material, etc. occur, causing damage to the battery,
In the worst case, the battery may burst.

【0004】したがって、前記リチウム二次電池を安全
に使用するに当たっては、リチウム二次電池の充電およ
び放電に十分な注意ないし配慮が必要であり、特に、こ
の種リチウム二次電池を、複数個接続して大きな電池電
源として使用する場合には、前記のような充放電時にお
ける問題が複合的におこり易いので、より細かな使用上
の工夫も必要と想定される。たとえば、図6 (a)にリチ
ウム二次電池の充電および放電の特性例を示すごとく、
一般的に破損などを防止するため、充電時においては所
定の電流を流しながら充電上限電圧まで充電し、上限電
圧を超えないように制御され、一方放電時においては放
電の下限電圧に達した時点で放電を停止する。そして、
この種のリチウム二次電池は、一定の仕様で製造したリ
チウム二次電池間においても特性差が認められ、あるい
はサイクル運転を行うと劣化の程度が個々のリチウム二
次電池によって異なることから特性差が生じる。つま
り、図6 (b)に例示するごとく、充電時において充電終
止電圧(4.2V程度)に達する時間の長短、および放電時
において放電終止電圧(2.7V程度)に達する時間の長短
など特性差があるため、一様な仕様で対応し得ないこと
になる。しかし、未だ、そのような複数個接続型の電池
電源が開発・実用化されていないため、前記のような細
かな使用上の工夫や構成・手段など、具体的な対応策に
ついての提案や考察などもなされていないのが現状であ
る。
Therefore, in using the lithium secondary battery safely, it is necessary to pay sufficient attention and consideration to charging and discharging of the lithium secondary battery. In particular, a plurality of lithium secondary batteries of this type are connected. When used as a large battery power source, the above-mentioned problems at the time of charging and discharging are likely to occur in a complex manner. For example, as shown in FIG. 6 (a), an example of charging and discharging characteristics of a lithium secondary battery,
Generally, in order to prevent damage, it is controlled to charge to the charging upper limit voltage while flowing a predetermined current during charging and not to exceed the upper limit voltage, while at the time of reaching the discharge lower limit voltage during discharging. Stop the discharge with. And
In this type of lithium secondary battery, characteristic differences are recognized even between lithium secondary batteries manufactured with certain specifications, or the degree of deterioration varies depending on the individual lithium secondary batteries when cycled, and therefore characteristic differences are observed. Occurs. That is, as illustrated in FIG. 6 (b), there are characteristic differences such as the length of time to reach the charge end voltage (about 4.2V) during charging and the length of time to reach the discharge end voltage (about 2.7V) during discharging. Therefore, uniform specifications cannot be met. However, since such a multiple-connection type battery power source has not been developed and put into practical use yet, proposals and discussions regarding specific countermeasures such as the above-mentioned detailed usage ideas, configurations, means, etc. The current situation is that neither has been done.

【0005】この点、さらに言及すると、10数 V以上の
入力電圧を必要とするコードレス機器、あるいは近い将
来、たとえば電気自動車や家庭用のロードレベリングな
どの機器システムにおける駆動源として、容量の大きい
二次電池(電源)が使用される可能性は大きく、このよ
うな場合、 100〜300V程度の高い直流電圧が必要になる
ので、この要求に対応した電源システムを構成すること
が望まれる。そして、この場合必要なことは、容量の大
きいことともに、リチウム二次電池群(電源)の充放電
制御が安全に行われることであり、リチウム二次電池の
特性を十分に考慮した充放電制御なども必要である。通
常、負荷(機器)を駆動するには、負荷の種類にも依存
するが、高い電圧を要求されることが多く、したがっ
て、複数個のリチウム二次電池を直列に接続した構成を
採ることになる。しかし、上述したように、リチウム二
次電池では個々の電池において、充電時および放電時に
それぞれ上限電圧および下限電圧の範囲内で扱うこと
が、使用上の安全を確保する上で必須で、こうしたこと
を考慮したリチウム二次電池(電源システム)の構築が
必要となる。
To further mention this point, as a drive source in a cordless device requiring an input voltage of ten or more V or more, or a device system such as an electric vehicle or a load leveling for a home in the near future, a large capacity two-source device is used. The secondary battery (power supply) is likely to be used, and in such a case, a high DC voltage of about 100 to 300 V is required, so it is desirable to configure a power supply system that meets this requirement. In this case, what is necessary is that the charging and discharging control of the lithium secondary battery group (power supply) is performed safely with the large capacity, and the charging and discharging control that fully considers the characteristics of the lithium secondary battery. And so on. Usually, driving a load (device) depends on the type of load, but a high voltage is often required. Therefore, a configuration in which a plurality of lithium secondary batteries are connected in series is adopted. Become. However, as described above, in lithium secondary batteries, it is essential to handle each individual battery within the range of the upper limit voltage and the lower limit voltage at the time of charging and discharging in order to ensure safety in use. It is necessary to build a lithium secondary battery (power supply system) that takes into consideration the above.

【0006】本発明は上記事情に対処してなされたもの
で、複数個のリチウム二次電池を電気的に接続して容量
の大きい二次電池(電源)の構成において、使用上の安
全を容易に確保することなどが可能な制御システムを具
備したリチウム二次電池電源を備えて成る機器システム
の提供を目的とする。
The present invention has been made in consideration of the above circumstances, and facilitates safety in use in the construction of a secondary battery (power source) having a large capacity by electrically connecting a plurality of lithium secondary batteries. It is an object of the present invention to provide an equipment system including a lithium secondary battery power source having a control system that can be secured in the above.

【0007】[0007]

【課題を解決するための手段】本発明に係る第1の機器
システムは、並列に接続した複数のリチウム二次電池か
ら成るリチウム二次電池群と、前記リチウム二次電池群
の出力で作動する負荷と、前記リチウム二次電池群に接
続しリチウム二次電池群を充電する充電手段と、前記充
電手段によるリチウム二次電池群の充電電圧を検出し、
リチウム二次電池が具備する負極にリチウムデントライ
トの析出する電圧以下の値に予め設定された充電設定電
圧値以下に、リチウム二次電池群の充電電圧を制御する
充電電圧制御手段と、前記リチウム二次電池群の放電電
圧を検出し、予め設定された放電終止電圧に達したとき
リチウム二次電池群の放電を停止する放電停止手段と、
前記リチウム二次電池群と前記負荷との間に配置され、
リチウム二次電池群から出力された電圧を負荷が要する
電圧に調整・変換する電圧調整・変換手段とを具備して
成るリチウム二次電池電源を有する機器システムであ
る。
A first device system according to the present invention operates with a lithium secondary battery group consisting of a plurality of lithium secondary batteries connected in parallel, and the output of the lithium secondary battery group. A load, charging means for connecting the lithium secondary battery group to charge the lithium secondary battery group, and detecting a charging voltage of the lithium secondary battery group by the charging means,
A charging voltage control means for controlling the charging voltage of the lithium secondary battery group to a value equal to or lower than a charging preset voltage value set to a value equal to or lower than a voltage at which lithium dendrite is deposited on the negative electrode of the lithium secondary battery, and the lithium. Discharge stopping means for detecting the discharge voltage of the secondary battery group and stopping the discharge of the lithium secondary battery group when the preset discharge end voltage is reached,
Disposed between the lithium secondary battery group and the load,
An apparatus system having a lithium secondary battery power supply, comprising voltage adjusting / converting means for adjusting / converting a voltage output from a lithium secondary battery group into a voltage required by a load.

【0008】本発明に係る第2の機器システムは、直列
に複数個のリチウム二次電池を接続したリチウム二次電
池ユニットを複数個並列に接続したリチウム二次電池群
と、前記リチウム二次電池群の出力で作動する負荷と、
前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、前記充電手段によるリチウム二次
電池群の充電電圧を検出し、[リチウム二次電池が具備
する負極にリチウムデントライトの析出する電圧×リチ
ウム二次電池ユニット中のリチウム二次電池の数]の値
以下に予め設定された充電設定電圧値以下に、リチウム
二次電池群に対する充電電圧を制御する充電電圧制御手
段と、前記リチウム二次電池ユニットの放電電圧を検出
し、予め設定された[放電終止設定電圧×リチウム二次
電池ユニット中のリチウム二次電池の数]の値以下に達
したときリチウム二次電池群の放電を停止する放電停止
手段と、前記リチウム二次電池群と前記負荷との間に配
置され、リチウム二次電池群から出力された電圧を負荷
が要する電圧に調整・変換する電圧調整・変換手段とを
具備して成るリチウム二次電池電源を有する機器システ
ムである。
A second device system according to the present invention is a lithium secondary battery group in which a plurality of lithium secondary battery units in which a plurality of lithium secondary batteries are connected in series are connected in parallel, and the lithium secondary battery. A load operating at the output of the group,
A charging unit that connects to the lithium secondary battery group to charge the lithium secondary battery group, and a charging voltage of the lithium secondary battery group by the charging unit is detected, and [a lithium dendrite is included in the negative electrode of the lithium secondary battery And the number of lithium secondary batteries in the lithium secondary battery unit], the charging voltage control means for controlling the charging voltage for the lithium secondary battery group below a preset charging voltage When the discharge voltage of the lithium secondary battery unit is detected and the value is equal to or less than a preset value of [discharge end set voltage × the number of lithium secondary batteries in the lithium secondary battery unit], a lithium secondary battery group Is disposed between the lithium secondary battery group and the load, and the voltage output from the lithium secondary battery group is adjusted to a voltage required by the load. A device system having a lithium secondary battery power source including a voltage adjusting / converting means for converting.

【0009】本発明に係る第3の機器システムは、それ
ぞれ電池電圧の計測可能なモニターを備えた複数のリチ
ウム二次電池が直列に接続されてなるリチウム二次電池
群と、前記リチウム二次電池群の出力で作動する負荷
と、前記リチウム二次電池群に接続しリチウム二次電池
群を充電する充電手段と、前記モニターにより計測され
たリチウム二次電池群のいずれか1個のリチウム二次電
池が具備する負極にリチウムデントライトの析出する電
圧以下の値に予め設定された充電設定電圧値以下に達し
たとき充電の停止もしくは充電電圧を充電設定電圧値以
下に制御する充電電圧制御手段と、前記リチウム二次電
池群のいずれか1個の放電電圧が予め設定された放電終
止電圧値に達したとき放電を停止させる放電停止手段と
を具備して成るリチウム二次電池電源を有する機器シス
テムである。
A third device system according to the present invention is a lithium secondary battery group in which a plurality of lithium secondary batteries each having a monitor capable of measuring a battery voltage are connected in series, and the lithium secondary battery. A load that operates at the output of the group, a charging unit that connects to the lithium secondary battery group to charge the lithium secondary battery group, and one lithium secondary battery of the lithium secondary battery group measured by the monitor. A charging voltage control means for stopping charging or controlling the charging voltage to be equal to or lower than the charge setting voltage value when the charge setting voltage value is set to a value equal to or lower than a voltage at which lithium dendrite is deposited on the negative electrode of the battery. A discharge stopping means for stopping discharge when the discharge voltage of any one of the lithium secondary battery group reaches a preset discharge end voltage value. Arm is a device system having a rechargeable battery power supply.

【0010】本発明に係る第4の機器システムは、それ
ぞれ電圧の計測可能なモニターを備えた複数のリチウム
二次電池が直列に接続されてなるリチウム二次電池群
と、前記リチウム二次電池群の出力で作動する負荷と、
前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、前記各モニターにより計測された
リチウム二次電池の充電電圧が、リチウム二次電池が具
備する負極にリチウムデントライトの析出する電圧以下
の値に予め設定された充電設定電圧値以下に達したと
き、リチウム二次電池に対する充電回路リチウム二次電
池群から外す充電回路切り替え手段と、前記各モニター
により計測されたリチウム二次電池の放電電圧が、予め
設定された放電終止電圧値に達したときリチウム二次電
池の放電回路をリチウム二次電池群から取外す放電回路
切り替え手段とを具備して成るリチウム二次電池電源を
有する機器システムである。
A fourth device system according to the present invention is a lithium secondary battery group in which a plurality of lithium secondary batteries each having a voltage-measurable monitor are connected in series, and the lithium secondary battery group. Load operated by the output of
A charging means for connecting the lithium secondary battery group to charge the lithium secondary battery group, and a charging voltage of the lithium secondary battery measured by each of the monitors, a lithium detent light of a lithium dendrite is provided on the negative electrode of the lithium secondary battery. When the voltage reaches a value equal to or lower than a preset charging voltage value that is equal to or lower than the voltage to be deposited, charging circuit switching means for removing the charging circuit from the lithium secondary battery group to the lithium secondary battery, and the lithium secondary battery measured by each monitor. A lithium secondary battery power supply comprising a discharge circuit switching means for removing the discharge circuit of the lithium secondary battery from the lithium secondary battery group when the discharge voltage of the secondary battery reaches a preset discharge end voltage value. It is a device system that has.

【0011】本発明に係る第5の機器システムは、複数
のリチウム二次電池を接続してなるリチウム二次電池群
と、前記リチウム二次電池群の出力で作動する負荷と、
前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、前記リチウム二次電池群に対する
初期充電時には、リチウム二次電池群を成す各リチウム
二次電池を直列に接続し、後期充電時にはリチウム二次
電池群を成す各リチウム二次電池を並列に接続する切り
替え手段と、前記充電されたリチウム二次電池群の放電
時には、リチウム二次電池群を成す各リチウム二次電池
を直列に接続する接続回路切り替え手段とを具備して成
るリチウム二次電池電源を有する機器システムである。
A fifth equipment system according to the present invention comprises a lithium secondary battery group formed by connecting a plurality of lithium secondary batteries, and a load operated by the output of the lithium secondary battery group.
A charging means for connecting the lithium secondary battery group to charge the lithium secondary battery group, and at the time of initial charging for the lithium secondary battery group, connecting each lithium secondary battery forming the lithium secondary battery group in series, At the time of late charging, switching means for connecting each lithium secondary battery forming the lithium secondary battery group in parallel and each lithium secondary battery forming the lithium secondary battery group at the time of discharging the charged lithium secondary battery group. An apparatus system having a lithium secondary battery power supply, comprising a connection circuit switching means connected in series.

【0012】なお、本発明のリチウム二次電池電源を構
成するリチウム二次電池は、そのサイズ(電池容量)に
拘らずいずれをも使用でき、また、充電用の電力源は、
商用の交流電源を適切な電圧を持った直流に変換したも
のが使用されるが、この他に、たとえば燃料電池からな
る電源を使用してもよいし、あるいはガソリンエンジン
ないしはディーゼルエンジンなどから発電される電力を
用いてもよい。
Any of the lithium secondary batteries constituting the lithium secondary battery power source of the present invention can be used regardless of its size (battery capacity), and the power source for charging is
A commercial AC power source converted to a DC voltage having an appropriate voltage is used, but in addition to this, for example, a fuel cell power source may be used, or a gasoline engine or a diesel engine generates power. Power may be used.

【0013】[0013]

【作用】第1の発明においては、リチウム二次電池を並
列に接続した構成としたことによって、全リチウム二次
電池を常に同一の電圧に保持することが可能となる。し
たがって、充電時には充電器の最大電圧を上限電圧(概
ね4.0 から4.2Vの値をとる)に合わせておくことで、全
てのリチウム二次電池の過充電の防止ができ、また放電
時においても下限電圧(概ね3.0 から2.7Vの値をとる)
を設定しておくことで、全てのリチウム二次電池の過放
電を確実に防止できる。一方、リチウム二次電池と機器
(負荷)との間に、電圧変換器を設置したことにより、
放電時において機器(負荷)駆動のために必要な電圧が
確保される。つまり、全てのリチウム二次電池の電圧を
モニターするということが必要でなく、確実にかつ安全
に充電および放電が可能になり、比較的早期に劣化した
リチウム二次電池が、他のリチウム二次電池全体へ及ぼ
す影響も最小限に押さえることが可能となる。
In the first aspect of the invention, since the lithium secondary batteries are connected in parallel, the all lithium secondary batteries can be always kept at the same voltage. Therefore, by matching the maximum voltage of the charger to the upper limit voltage (generally taking a value of 4.0 to 4.2V) during charging, it is possible to prevent overcharging of all lithium secondary batteries, and also to keep the lower limit during discharging. Voltage (approx. 3.0 to 2.7V)
By setting, it is possible to reliably prevent over-discharge of all lithium secondary batteries. On the other hand, by installing a voltage converter between the lithium secondary battery and the device (load),
The voltage required for driving the device (load) is ensured during discharging. In other words, it is not necessary to monitor the voltage of all lithium secondary batteries, and reliable and safe charging and discharging are possible, and a lithium secondary battery that deteriorates relatively early can be replaced by another lithium secondary battery. It is possible to minimize the effect on the entire battery.

【0014】第2の発明においては、リチウム二次電池
複数個(好ましくは高々 6個程度)を直列接続した直列
電池群をユニットとし、このユニット複数を並列に接続
した構成としている。つまり、各リチウム二次電池の容
量など性能のばらつきが余り大きくない場合、これらを
複数個直列に接続してユニット化しても、単一のリチウ
ム二次電池の場合と同様に安全に作動することに着目し
たもので、前記ユニットの並列接続化により、負荷との
間に配置された電圧変換器の入力電圧も大きくなり、そ
れだけ変換効率が大きくなって、電力を有効に利用でき
ることになる。なお、この構成においては、直列電池ユ
ニットのリチウム二次電池数は、安全性が確保と電力変
換効率が低下しない範囲などを考慮すると 6個程度が限
界である。つまり、リチウム二次電池の直列接続ユニッ
ト化により、放電時の電圧が大きくなり、電圧変換効率
も格段に向上するので、電池エネルギーのロスを小さく
することが可能となる。
In the second aspect of the invention, a series battery group in which a plurality of lithium secondary batteries (preferably about 6 at most) are connected in series is used as a unit, and the plurality of units are connected in parallel. In other words, if the variations in performance such as the capacity of each lithium secondary battery are not so large, even if these are connected in series and unitized, they can operate safely as with a single lithium secondary battery. In connection with the parallel connection of the units, the input voltage of the voltage converter arranged between the unit and the load also increases, and the conversion efficiency increases accordingly, so that the electric power can be effectively used. In this configuration, the number of lithium secondary batteries in the series battery unit is limited to about 6 considering the range where safety is secured and power conversion efficiency does not decrease. That is, since the lithium secondary battery is connected in series as a unit, the voltage at the time of discharging increases and the voltage conversion efficiency is also significantly improved, so that the loss of battery energy can be reduced.

【0015】第3の発明においては、複数のリチウム二
次電池が全て直列接続されている場合、あるいは直列接
続と並列接続がが混合している場合のいずれにおいて
も、全てのリチウム二次電池の電圧をモニターし、その
一つでも充電時に上限電圧に達した場合は充電を終了
し、また、放電時においてリチウム二次電池の一つが下
限電圧に達した場合、放電を終了する構成を採ってい
る。すなわち、最も早く容量が劣化して小さくなったリ
チウム二次電池を基準に、リチウム二次電池全体の充放
電を規定するので、安全性が十分確保されることにな
る。つまり、並列接続の場合は勿論のこと、特に直列接
続したリチウム二次電池について、各別の接続の繋替え
を行うことなく充放電することが可能となるので、安全
性の改善・向上が図られる。
According to the third aspect of the present invention, the lithium secondary batteries of all the lithium secondary batteries are connected in series, or in the case where the series connection and the parallel connection are mixed. The voltage is monitored, and if any one of them reaches the upper limit voltage during charging, the charging is terminated, and if one of the lithium secondary batteries reaches the lower limit voltage during discharging, the discharging is terminated. There is. That is, since the charging / discharging of the entire lithium secondary battery is specified based on the lithium secondary battery whose capacity deteriorates and becomes the earliest, safety is sufficiently ensured. In other words, not only in the case of parallel connection, but especially in the case of lithium rechargeable batteries connected in series, it is possible to charge and discharge without reconnecting each separate connection, so it is possible to improve and improve safety. To be

【0016】第4の発明においては、リチウム二次電池
が全て直列接続されている場合、あるいは直列接続と並
列接続がが混合している場合のいずれにおいても、全て
のリチウム二次電池を能力一杯に使用することが可能と
なる。すなわち、各リチウム二次電池の電圧をモニター
しながら、全てのリチウム二次電池が、最終的に充電時
には上限電圧まで充電された場合、それを回路から電気
的に取り外し、充電電流がバイパスさせられ、各リチウ
ム二次電池の全てが上限電圧に達した時点ないしは最終
的に全てのリチウム二次電池が上限電圧で保持された状
態で充電を終了する。一方、放電時には下限電圧に達し
たリチウム二次電池は、その時点で回路から電気的に取
り外されるので、以後の放電がなくなる。このとき、リ
チウム二次電池電源の電圧は、その分低下することにな
るが、リチウム二次電池電源と負荷(機器)との間に配
置された電圧変換器にて、必要な電圧が確保される。つ
まり、放電を続けているリチウム二次電池数は順次減少
しながら、リチウム二次電池電源と機器との間に配置し
た電圧変換器が正常に作動する電圧まで、個々のリチウ
ム二次電池を効率よく放電させ得ることになる。
In the fourth aspect of the present invention, all the lithium rechargeable batteries are fully charged even when the lithium rechargeable batteries are all connected in series or when the series connection and the parallel connection are mixed. Can be used for. That is, while monitoring the voltage of each lithium secondary battery, when all lithium secondary batteries are finally charged to the upper limit voltage at the time of charging, they are electrically removed from the circuit and the charging current is bypassed. The charging is terminated when all the lithium secondary batteries reach the upper limit voltage or finally all the lithium secondary batteries are held at the upper limit voltage. On the other hand, at the time of discharging, the lithium secondary battery which has reached the lower limit voltage is electrically removed from the circuit at that time, so that no further discharging occurs. At this time, the voltage of the lithium secondary battery power supply will drop accordingly, but the required voltage is secured by the voltage converter placed between the lithium secondary battery power supply and the load (device). It In other words, while the number of lithium secondary batteries that continue to discharge decreases in sequence, the efficiency of each lithium secondary battery is increased to a voltage at which the voltage converter placed between the lithium secondary battery power supply and the device operates normally. You will be able to discharge well.

【0017】第5の発明においては、リチウム二次電池
群に対する充電が、初期の段階では直列接続の状態で行
われ、充電の後段では並列接合の状態でおこなわれるの
で、高い安全性をもって各リチウム二次電池の充電電圧
が確保される。つまり、通常の充電器には供給電力の上
限があるので、充電の全過程を並列接続で行う場合、初
期段階ではリチウム二次電池電圧が低いので大きな電流
が流れ、後期にはリチウム二次電池電圧の上昇およびリ
チウム二次電池電圧のインピーダンス上昇などにより、
充電電流が次第に小さくなって行く。ここで、電力制御
の観点からすると、低電圧,大電流よりも高電圧,小電
流の方が望ましこと、また充電の後期において並列接続
化することなどにより、上限電圧の制御が容易になり、
充電時の安全性などが大幅に向上・改善される。なお、
前記直列接続から並列接続への切り替え時期は、リチウ
ム二次電池の特性バラツキ、充電器の電力(電流)など
によっても異なるが、たとうばリチウム二次電池の定格
容量の50〜90%に達した時点を目安にするか、あるいは
いずれか1個のリチウム二次電池が上限電圧に達した時
点をモニターして行ってもよい。一方放電時において
は、リチウム二次電池群が直列接続系を採っているの
で、放電時の電圧が大きくなり、電圧変換効率も格段に
向上するので、電池エネルギーのロスを小さくすること
が可能となる。善
In the fifth aspect of the invention, the lithium secondary battery group is charged in the series connection state in the initial stage and in the parallel connection state in the latter stage of the charging, so that each lithium is highly safe. The charging voltage of the secondary battery is secured. In other words, a normal charger has an upper limit of power supply, so when performing the whole charging process in parallel, a large current flows because the lithium secondary battery voltage is low in the initial stage, and a lithium secondary battery in the latter stage. Due to voltage rise and lithium secondary battery voltage impedance rise,
The charging current gradually decreases. Here, from the viewpoint of power control, it is desirable to use a high voltage and a small current rather than a low voltage and a large current, and it is easy to control the upper limit voltage by connecting in parallel at the latter stage of charging. ,
The safety when charging is greatly improved and improved. In addition,
The timing of switching from the series connection to the parallel connection varies depending on the characteristic variation of the lithium secondary battery and the power (current) of the charger, but it reaches 50 to 90% of the rated capacity of the lithium secondary battery. The time may be used as a guide, or the time when any one of the lithium secondary batteries reaches the upper limit voltage may be monitored. On the other hand, at the time of discharging, since the lithium secondary battery group adopts a series connection system, the voltage at discharging becomes large and the voltage conversion efficiency is remarkably improved, so that it is possible to reduce the loss of battery energy. Become. good

【0018】[0018]

【実施例】以下、図1〜図5を参照しながら、本発明の
実施例を説明する。
Embodiments of the present invention will be described below with reference to FIGS.

【0019】実施例1 負極が炭素から成り、また正極がLiCO2 から成り、さら
に有機溶媒(リチウム塩を溶解した溶液)を電解液とし
て構成されたリチウムイオン電池(リチウム二次電池)
を60個用い、図1に概略構成をブロック図で示すよう
な、容量10Ahのリチウム二次電池電源を構成した。図1
において、1は互いに並列に接続した複数のリチウム二
次電池、2は前記リチウム二次電池1群に対する充電時
の電圧を、各リチウム二次電池1が具備する負極にリチ
ウムデントライトの析出する電圧以下に設定された設定
設定値以下にリチウム二次電池1群への充電電圧を制御
する充電電圧制御部、3は前記リチウム二次電池1群と
負荷4との間に配置され、前記負荷4に供給する電圧に
調整・変換するであつ変換機能と、リチウム二次電池1
群の設定された放電終止電圧を検出し、この検出された
電圧が予め設定された放電終止電圧値に達したときリチ
ウム二次電池1群の放電を停止・放電電圧制御機能とを
兼ね備えた電圧変換器である。なお、前記各リチウム二
次電池1の平均の放電電圧:3.6V、充電における上限電
圧:4.2V、放電における下限電圧:3.0Vであるため、リ
チウム二次電池電源としての全体のエネルギーは2160Wh
である。前記構成のリチウム二次電池電源で、平均電圧
200V,電流が 10Aの負荷4を駆動するに当たり、前記リ
チウム二次電池電源と負荷4との間に最低動作電圧3Vの
電圧変換器3を配置して200Vを発生させるとともに、放
電の終止電圧を3Vと設定した構成とする一方、前記リチ
ウム二次電池電源への充電に関与する充電電圧制御部2
の充電電圧最大値を4.2Vに設定した。この電気(電機)
回路構成で負荷4を駆動し、リチウム二次電池電源の機
能的な評価を行ったところ、安全性の高いリチウム二次
電池電源として機能することが確認された。なお、上記
実施例では電圧変換機能と放電制御機能を兼ね備えた電
圧変換器を用いたが、両機能を独立して有する回路とし
てもよい。
Example 1 A lithium ion battery (lithium secondary battery) in which the negative electrode was made of carbon, the positive electrode was made of LiCO 2 , and an organic solvent (solution in which a lithium salt was dissolved) was used as an electrolytic solution.
Using 60 cells, a lithium secondary battery power source with a capacity of 10 Ah was constructed as shown in the schematic block diagram of FIG. Figure 1
1, 1 is a plurality of lithium secondary batteries connected in parallel to each other, 2 is a voltage at the time of charging the group of lithium secondary batteries 1, and a voltage at which lithium dendrite is deposited on a negative electrode of each lithium secondary battery 1 A charging voltage control unit 3 for controlling the charging voltage to the lithium secondary battery 1 group below the set set value set below is disposed between the lithium secondary battery 1 group and the load 4, and the load 4 The conversion function of adjusting and converting to the voltage supplied to the lithium secondary battery 1
A voltage having a function of detecting the set discharge end voltage of the group and stopping the discharge of the lithium secondary battery group 1 when the detected voltage reaches a preset discharge end voltage value and a discharge voltage control function. It is a converter. In addition, since the average discharge voltage of each lithium secondary battery 1 is 3.6 V, the upper limit voltage in charging is 4.2 V, and the lower limit voltage in discharging is 3.0 V, the total energy as a lithium secondary battery power source is 2160 Wh.
Is. With the lithium secondary battery power source of the above configuration, the average voltage
When driving a load 4 of 200 V and a current of 10 A, a voltage converter 3 having a minimum operating voltage of 3 V is arranged between the lithium secondary battery power source and the load 4 to generate 200 V, and the end voltage of discharge is set. A charging voltage control unit 2 which is involved in charging the lithium secondary battery power source while having a configuration set to 3V
The maximum charging voltage of was set to 4.2V. This electricity
When the load 4 was driven by the circuit configuration and the functional evaluation of the lithium secondary battery power source was performed, it was confirmed that the lithium secondary battery power source functions as a highly safe lithium secondary battery power source. In the above embodiment, the voltage converter having both the voltage conversion function and the discharge control function is used, but a circuit having both functions independently may be used.

【0020】実施例2 実施例1の場合と同一構成のリチウムイオン電池(リチ
ウム二次電池) 6個を直列に接続して直列電池ユニット
を構成し、この直列電池ユニット10個を並列に接続して
リチウム二次電池電源を構成した。図2はこのリチウム
二次電池電源の概略構成を示すブロック図であり、5は
直列に複数個のリチウム二次電池1を接続したリチウム
二次電池ユニット(直列接続ユニット)、6は前記リチ
ウム二次電池ユニット5を並列に接続した複数のリチウ
ム二次電池群と、2は前記リチウム二次電池群6に対す
る充電時の電圧を、各リチウム二次電池1が具備する負
極にリチウムデントライトの析出する電圧×リチウム二
次電池ユニット5中のをリチウム二次電池1数の値(電
圧設定値)にリチウム二次電池群6への充電電圧を制御
する充電電圧制御部、3は前記リチウム二次電池群6と
負荷4との間に配置され、前記負荷4に供給する電圧に
調整・変換する電圧変換機能とともに、リチウム二次電
池群6の放電終止電圧×リチウム二次電池群6の値、換
言すると放電停止の電圧設定値に達したとき、リチウム
二次電池群6の放電停止または放電電圧制御機能を有す
る電圧変換器である。
Example 2 Six lithium ion batteries (lithium secondary batteries) having the same structure as in Example 1 were connected in series to form a series battery unit, and 10 series battery units were connected in parallel. To form a lithium secondary battery power supply. FIG. 2 is a block diagram showing a schematic configuration of the lithium secondary battery power source, 5 is a lithium secondary battery unit (series connection unit) in which a plurality of lithium secondary batteries 1 are connected in series, and 6 is the lithium secondary battery. A plurality of lithium secondary battery groups in which the secondary battery units 5 are connected in parallel, and 2 is a voltage at the time of charging the lithium secondary battery groups 6, and lithium dendrite is deposited on the negative electrode of each lithium secondary battery 1. Charging voltage × a charging voltage control unit for controlling the charging voltage to the lithium secondary battery group 6 to the value of the number of lithium secondary batteries 1 (voltage setting value) in the lithium secondary battery unit 5, 3 is the lithium secondary battery It is arranged between the battery group 6 and the load 4, and has a voltage conversion function of adjusting and converting into a voltage supplied to the load 4, and a discharge end voltage of the lithium secondary battery group 6 x a value of the lithium secondary battery group 6. Exchange In other words, it is a voltage converter having a function of stopping the discharge of the lithium secondary battery group 6 or controlling the discharge voltage when the voltage setting value for stopping the discharge is reached.

【0021】この構成においては、並列接続したリチウ
ム二次電池群6の充電の上限電圧を4.2× 6= 25.2Vと
し、放電の下限電圧を 18Vとし、またリチウム二次電池
電源と負荷(200V×10A )との間には 20V以上の電圧で
作動し、200Vの電圧を発生する電圧変換器3を配置し
た。なお、前記負荷4は電圧が260Vから190Vまでの間で
正常に作動するものである。この電気(電機)回路構成
で負荷4を駆動し、リチウム二次電池電源の機能的な評
価を行ったところ、電圧変換効率が格段に向上して、電
池エネルギーのロスも大幅に低減したリチウム二次電池
電源として機能することが確認された。
In this configuration, the upper limit voltage for charging the lithium secondary battery group 6 connected in parallel is 4.2 × 6 = 25.2V, the lower limit voltage for discharging is 18V, and the lithium secondary battery power source and load (200V × A voltage converter 3 that operates at a voltage of 20V or higher and generates a voltage of 200V is arranged between the 10A and 10A). The load 4 operates normally when the voltage is between 260V and 190V. When a load 4 was driven with this electric (electrical) circuit configuration and a functional evaluation of the lithium secondary battery power source was performed, the voltage conversion efficiency was significantly improved and the loss of battery energy was significantly reduced. It was confirmed to function as a secondary battery power source.

【0022】実施例3 実施例1の場合と同一構成のリチウムイオン電池(リチ
ウム二次電池)60個を直列に接続して直列電池ユニット
化し、充電電源の最大電圧252V(4.2V×60)、放電の下
限電圧180V(3V×60)のリチウム二次電池電源を構成し
た。図3はこのリチウム二次電池電源の概略構成を示す
ブロック図であり、5は複数のリチウム二次電池1が直
列に接続され、かつそれぞれ電圧の計測可能なモニター
7を備えたリチウム二次電池ユニット、2は前記リチウ
ム二次電池ユニット5に対する充電時の電圧をリチウム
二次電池1が具備する負極にリチウムデントライトが析
出する電圧以下の設定電圧値をモニターし、この設定電
圧値以下にリチウム二次電池ユニット5への充電電圧を
制御する充電電圧制御手段である。ここで、電圧制御方
法としては、充電電圧ないし放電電圧が設定電圧値に達
した時点で、充電を停止するか、あるいは設定電圧値以
下に保持する方法が挙げられる。
Example 3 Sixty lithium ion batteries (lithium secondary batteries) having the same structure as in Example 1 were connected in series to form a series battery unit, and the maximum voltage of the charging power supply was 252V (4.2V × 60), A lithium secondary battery power source with a discharge lower limit voltage of 180 V (3 V x 60) was constructed. FIG. 3 is a block diagram showing a schematic configuration of this lithium secondary battery power source, and 5 is a lithium secondary battery in which a plurality of lithium secondary batteries 1 are connected in series and each has a monitor 7 capable of measuring voltage. The unit 2 monitors the voltage at the time of charging the lithium secondary battery unit 5 at a set voltage value equal to or lower than the voltage at which lithium dendrite is deposited on the negative electrode of the lithium secondary battery 1, and the lithium voltage is set to the set voltage value or less. It is a charging voltage control means for controlling the charging voltage to the secondary battery unit 5. Here, as the voltage control method, there is a method of stopping the charging when the charging voltage or the discharging voltage reaches the set voltage value or holding the charging voltage below the set voltage value.

【0023】この構成においては、直列接続したリチウ
ム二次電池ユニット5の充電の上限電圧が 4.2×60=25
2V、放電の下限電圧を180Vで、またリチウム二次電池電
源と負荷(200V× 10A)は 260〜 190 V以上の電圧で作
動し、前記リチウム二次電池ユニット5を形成する各リ
チウム二次電池1中のいずれかが、充電の上限電圧4.2V
を超えたとき、または放電の下限電圧3V未満になったと
き、前記電圧の計測可能なモニター7によって容易に検
知されるので、手動的ないし自動的に充電や放電が制御
される。この電気(電機)回路構成で負荷4を駆動し、
リチウム二次電池電源の機能的な評価を行ったところ、
各リチウム二次電池1について、各別に回路を接続替え
せずに、所要の充放電を行うことが可能であるばかりで
なく、安全性にすぐれたリチウム二次電池電源として機
能することが確認された。
In this structure, the upper limit voltage for charging the lithium secondary battery units 5 connected in series is 4.2 × 60 = 25.
2V, the lower limit voltage of discharge is 180V, and the lithium secondary battery power source and load (200V × 10A) operate at a voltage of 260-190V or more, and each lithium secondary battery forming the lithium secondary battery unit 5 The upper limit voltage of charging is 4.2V
When the voltage exceeds the lower limit or the lower limit voltage of the discharge is lower than 3V, the voltage is easily detected by the monitor 7 capable of measuring the voltage, so that the charge or the discharge is controlled manually or automatically. Drive the load 4 with this electric circuit configuration,
After performing a functional evaluation of the lithium secondary battery power supply,
It has been confirmed that each lithium secondary battery 1 can be charged and discharged as required without changing the circuit for each lithium secondary battery 1 and that it functions as a highly safe lithium secondary battery power source. It was

【0024】実施例4 実施例1の場合と同一構成のリチウムイオン電池(リチ
ウム二次電池)60個を直列に接続し、かつ電気的にバイ
パスが可能にするように直列電池ユニット化し、充電電
源の最大電圧252V(4.2V×60)、放電の下限電圧180V
(3V×60)のリチウム二次電池電源を構成した。図4は
このリチウム二次電池電源の概略構成を示すブロック図
であり、5は複数個のリチウム二次電池1が直列に接続
され、かつそれぞれ電圧の計測可能なモニター7を備え
たリチウム二次電池ユニット、2は前記各リチウム二次
電池の充電時の電圧を、各リチウム二次電池が具備する
負極にリチウムデントライトの析出する電圧以下の電圧
設定値以下に制御する電圧制御部であり、この電圧設定
値に達した時点ごとに、各リチウム二次電池を接続の切
り替えスイッチ8を作動させ、充電回路から外させるも
のである。4は前記リチウム二次電池ユニット5から所
要の電力が供給される負荷である。8は接続の切り替え
スイッチである。
Example 4 Sixty lithium ion batteries (lithium secondary batteries) of the same construction as in Example 1 were connected in series and made into a series battery unit so as to be electrically bypassable, and a charging power source was used. Maximum voltage of 252V (4.2V × 60), discharge lower limit voltage 180V
A (3V x 60) lithium secondary battery power supply was constructed. FIG. 4 is a block diagram showing a schematic configuration of this lithium secondary battery power source, and 5 is a lithium secondary battery in which a plurality of lithium secondary batteries 1 are connected in series and each has a monitor 7 capable of measuring voltage. The battery unit 2 is a voltage control unit that controls the voltage during charging of each of the lithium secondary batteries to a voltage setting value that is less than or equal to the voltage at which lithium dendrite deposits on the negative electrode of each lithium secondary battery, Each time the voltage set value is reached, each lithium secondary battery is actuated by the connection changeover switch 8 to be removed from the charging circuit. Reference numeral 4 is a load to which required power is supplied from the lithium secondary battery unit 5. Reference numeral 8 is a connection changeover switch.

【0025】この構成においては、直列接続したリチウ
ム二次電池ユニット5の充電の上限電圧が 4.2×60=25
2V、放電の下限電圧を180Vで、またリチウム二次電池電
源と負荷(200V× 10A)は 260〜 190 V以上の電圧で
作動し、前記リチウム二次電池ユニット5を形成する各
リチウム二次電池1中のいずれかが、充電の上限電圧4.
2Vを超えたとき、または放電の下限電圧3V未満になった
とき、前記各別に設置されている電圧の計測可能なモニ
ター7によって容易にモニターされ、前記充電の上限電
圧4.2Vに達したリチウム二次電池1、または放電の下限
電圧3V未満に電圧が低下したリチウム二次電池1は、そ
れぞれ切り替えスイッチ8によって電気的にバイパスさ
れて、バイパスされたリチウム二次電池の充電や放電が
停止されるが、それ以外のリチウム二次電池の充電や放
電は継続される。なお、前記放電において、全体として
負荷4に対応する放電電圧(たとえば190V)が得られな
い状態になったとき、負荷4に対する放電(電力供給)
は停止される。この電気(電機)回路構成で負荷4を駆
動し、リチウム二次電池電源の機能的な評価を行ったと
ころ、各リチウム二次電池1について、それぞれ容量を
最大限に利用し得るとともに、単位リチウム二次電池1
の劣化が他の単位リチウム二次電池1に悪影響及ぼす恐
れも低減されており、信頼性などにすぐれたリチウム二
次電池電源として機能することが確認された。
In this structure, the upper limit voltage for charging the lithium secondary battery units 5 connected in series is 4.2 × 60 = 25.
2V, the lower limit voltage of discharge is 180V, and the lithium secondary battery power source and load (200V × 10A) operate at a voltage of 260-190V or more, and each lithium secondary battery forming the lithium secondary battery unit 5 One of 1 is the upper limit voltage of charging 4.
When the voltage exceeds 2V or the discharge lower limit voltage is lower than 3V, it is easily monitored by the above-mentioned separately measurable monitor 7 of the voltage, and the lithium upper limit voltage 4.2V is reached. The secondary battery 1 or the lithium secondary battery 1 whose voltage has dropped below the lower limit voltage of 3 V for discharging is electrically bypassed by the changeover switch 8 to stop charging or discharging of the bypassed lithium secondary battery. However, charging and discharging of other lithium secondary batteries are continued. When the discharge voltage (for example, 190 V) corresponding to the load 4 cannot be obtained as a whole in the discharge, the discharge (power supply) to the load 4 is performed.
Is stopped. When the load 4 is driven by this electric (electrical) circuit configuration and the lithium secondary battery power source is functionally evaluated, the capacity of each lithium secondary battery 1 can be maximally utilized and the unit lithium Secondary battery 1
It is confirmed that the deterioration of No. 1 adversely affects the other unit lithium secondary battery 1 is reduced, and it is confirmed to function as a lithium secondary battery power source having excellent reliability.

【0026】実施例5 定格3.6V,10Ahのリチウムイオン電池60個を接続切り替
え器によって、全リチウム二次電池を直列および並列に
接続にできるような、リチウム二次電池電源を構築し
た。図5に充電時における直列から並列接続への切り替
えを、各リチウム二次電池の電圧をモニターして行う場
合の概略構成を示す。図5において5はそれぞれの電圧
計測が可能なモニター7を付設した複数個のリチウム二
次電池1が直列に接続されたリチウム二次電池ユニッ
ト、2′は前記リチウム二次電池ユニット5に対する充
電時の電圧を、リチウム二次電池ユニット5中のいずれ
か1個のリチウム二次電池が具備する負極にリチウムデ
ントライトの析出する電圧以下の電圧設定値に達した時
点で、リチウム二次電池ユニット5への充電を直列接続
から並列接続へ切替え制御する充電切替え制御部であ
る。
Example 5 A lithium secondary battery power source was constructed in which 60 lithium ion batteries having a rating of 3.6 V and 10 Ah can be connected in series and in parallel by a connection switch. FIG. 5 shows a schematic configuration in the case of switching from series connection to parallel connection during charging by monitoring the voltage of each lithium secondary battery. In FIG. 5, reference numeral 5 denotes a lithium secondary battery unit in which a plurality of lithium secondary batteries 1 each having a voltage-measuring monitor 7 are connected in series, and 2'is a charging time for the lithium secondary battery unit 5. Of the lithium secondary battery unit 5 reaches a voltage set value equal to or lower than the voltage at which lithium dendrite is deposited on the negative electrode of any one of the lithium secondary battery units 5 in the lithium secondary battery unit 5. Is a charge switching control unit that controls charging from a series connection to a parallel connection.

【0027】この構成においては、接続回路に各リチウ
ム二次電池1に対応してたとえばスイッチ8が配置され
ており、直列接続と並列接続に切り替えられるようにな
っている。そして、この例ではリチウム二次電池群のう
ちの1個が4.2Vに達した時点で、前記スイッチ8を切り
替えて、全てリチウム二次電池が4.2Vに保持する状態を
続けた後、所用の充電を終了した。その後、直列接続の
状態で放電を行った。なお、この充電,放電のサイクル
運転を行ったところ、各リチウム二次電池1に発熱も認
められず安全に作動した。なお、充電時の直列接続から
並列接続への切り替えのタイミングは別の方式によって
もよい。たとえば充電回路中に電量計を挿入し、電池の
定格容量の50〜90%充電できた時点としてもよし、ある
いは前記電気量に相当する時間で行ってもよい。また、
放電において、この実施例では直列接続で行ったが、並
列接続のまま負荷との間に電圧変換器を挿入配置して放
電を行ってもよい。
In this structure, for example, a switch 8 is arranged in the connection circuit in correspondence with each lithium secondary battery 1, so that the connection can be switched between series connection and parallel connection. In this example, when one of the lithium secondary batteries reaches 4.2V, the switch 8 is switched to keep all the lithium secondary batteries at 4.2V. Charging has ended. After that, discharging was performed in the state of being connected in series. When the charging / discharging cycle operation was performed, no heat generation was observed in each lithium secondary battery 1, and the lithium secondary battery 1 operated safely. The timing of switching from serial connection to parallel connection during charging may be different. For example, a coulometer may be inserted into the charging circuit to charge 50 to 90% of the rated capacity of the battery, or it may be performed at a time corresponding to the amount of electricity. Also,
In this embodiment, the discharge is performed in series, but the voltage converter may be inserted and arranged between the load and the parallel connection to perform the discharge.

【0028】比較例 実施例1の場合と同一構成のリチウムイオン電池(リチ
ウム二次電池)60個を直列接続し、充電器の上限電圧:
252V,放電の下限電圧:180Vに設定したリチウム二次電
池電源を構成した。このリチアム二次電池電源と負荷と
の間に電圧変換器を置かない充放電制御システムとし、
運転した結果、このリチアム二次電池電源は、全体の電
池定格として216V,10Ahの電池であるが、充放電サイク
ルを繰り返している内に、10サイクル程度からいくつか
のリチウム二次電池が充電末期および放電末期での発熱
が異常に高まり、通常は30℃程度の電池温度であるの
に、60個中15個のリチウム二次電池が40℃前後の温度を
示し、危険な状態になったため、運転を取り止めた。
Comparative Example 60 lithium-ion batteries (lithium secondary batteries) having the same structure as in Example 1 were connected in series, and the upper limit voltage of the charger was:
A lithium secondary battery power source was set to 252V and the lower limit voltage of discharge: 180V. A charging / discharging control system in which no voltage converter is placed between the lithium secondary battery power supply and the load,
As a result of operation, this Lithium secondary battery power source is a battery with a total battery rating of 216V, 10Ah. And the heat generation at the end of discharge increased abnormally, and although the battery temperature is usually about 30 ° C, 15 of the 60 lithium secondary batteries showed a temperature of around 40 ° C, and became a dangerous state. I stopped driving.

【0029】一方、前記各実施例のリチウム二次電池電
源における制御システムの場合は、いずれもこのような
現象は観察されず、正常に作動することが確認された。
なお、各実施例のリチウム二次電池電源における制御シ
ステムにおける特長について言及すると、リチウム二次
電池電源の所定の定格に対するエネルギー効率は、実施
例1が最も低かったが(これは電圧変換器の特性が低電
圧入力時に低いためである)、サイクルライフとしては
最も長かった。また、実施例2の場合は、定格の電池エ
ネルギーに対して負荷を駆動するために使われたエネル
ギーから計算される変換効率は実施例1や実施例3より
も大きくなったが、 300サイクルを超えた時点で、直列
電池ユニット中、平均 1.5個の発熱が観察された。さら
に、実施例3の場合は、取り出せる容量は実施例1と同
程度になったが、リチウム二次電池の発熱などの不具合
は観察されず、実施例4の場合は、最も大きなエネルギ
ーを長いサイクルにわたって発揮し得た。なお、前記例
示において、充放電時などの接続(回路の)切り替え手
段は、スイッチ8など機械的な手段に限らず、電子的な
手段などであってもよい。
On the other hand, in the case of the control system of the lithium secondary battery power source of each of the above-mentioned examples, such a phenomenon was not observed, and it was confirmed that the system operates normally.
In addition, referring to the features of the control system in the lithium secondary battery power source of each example, the energy efficiency for a predetermined rating of the lithium secondary battery power source was the lowest in Example 1 (this is due to the characteristics of the voltage converter). Is because it is low at low voltage input), which was the longest cycle life. Moreover, in the case of Example 2, the conversion efficiency calculated from the energy used to drive the load with respect to the rated battery energy was higher than that of Examples 1 and 3, but 300 cycles When the temperature was exceeded, an average of 1.5 exotherms was observed in the series battery unit. Further, in the case of Example 3, the capacity that could be taken out was about the same as in Example 1, but no problems such as heat generation of the lithium secondary battery were observed, and in Example 4, the largest energy was taken for the long cycle. Could be demonstrated over. In the above example, the connection (circuit) switching means for charging / discharging is not limited to mechanical means such as the switch 8 but may be electronic means or the like.

【0030】[0030]

【発明の効果】以上実施例および比較例の説明から分か
るように、本発明によれば、リチウム二次電池のすぐれ
た特長を十分活かすことが可能となり、かつリチウム二
次電池を安全に、また長いサイクルに亘って作動(運
転)できる充放電制御システムを提供できる。
As can be seen from the above description of the examples and comparative examples, according to the present invention, the excellent features of the lithium secondary battery can be fully utilized, and the lithium secondary battery can be safely used. A charge / discharge control system that can operate (operate) over a long cycle can be provided.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るリチウム二次電池電源の要部構成
例を示すブロック図。
FIG. 1 is a block diagram showing a configuration example of a main part of a lithium secondary battery power source according to the present invention.

【図2】本発明に係る他のリチウム二次電池電源の要部
構成例を示すブロック図。
FIG. 2 is a block diagram showing a configuration example of a main part of another lithium secondary battery power source according to the present invention.

【図3】本発明に係るリチウム二次電池電源の他の要部
構成例を示すブロック図。
FIG. 3 is a block diagram showing another example of the main configuration of the lithium secondary battery power source according to the present invention.

【図4】本発明に係る別のリチウム二次電池電源の要部
構成例を示すブロック図。
FIG. 4 is a block diagram showing a configuration example of a main part of another lithium secondary battery power source according to the present invention.

【図5】本発明に係るさらに他のリチウム二次電池電源
の要部構成例を示すブロック図。
FIG. 5 is a block diagram showing a configuration example of a main part of still another lithium secondary battery power source according to the present invention.

【図6】(a) ,(b) はリチウム二次電池の充放電特性例
を示す曲線図。
6 (a) and 6 (b) are curve diagrams showing examples of charge / discharge characteristics of a lithium secondary battery.

【符号の説明】[Explanation of symbols]

1…リチウム二次電池 2…充電電圧制御部 3…
電圧変換部 4…負荷 5…直列接続ユニット(リ
チウム二次電池ユニット) 6,6′…リチウム二次
電池群 7…電圧計測可能なモニター 8…接続切
り替え手段(スイッチ)
1 ... Lithium secondary battery 2 ... Charging voltage control unit 3 ...
Voltage converter 4 ... Load 5 ... Series connection unit (lithium secondary battery unit) 6, 6 '... Lithium secondary battery group 7 ... Voltage measurable monitor 8 ... Connection switching means (switch)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 並列に接続した複数のリチウム二次電池
から成るリチウム二次電池群と、 前記リチウム二次電池群の出力で作動する負荷と、 前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、 前記充電手段によるリチウム二次電池群の充電電圧を検
出し、リチウム二次電池が具備する負極にリチウムデン
トライトの析出する電圧以下に予め設定された充電設定
電圧値以下に、リチウム二次電池群の充電電圧を制御す
る充電電圧制御手段と、 前記リチウム二次電池群の放電電圧を検出し、予め設定
された放電終止電圧に達したときリチウム二次電池群の
放電を停止する放電停止手段と、 前記リチウム二次電池群と前記負荷との間に配置され、
リチウム二次電池群から出力された電圧を負荷が要する
電圧に調整・変換する電圧調整・変換手段とを具備して
成るリチウム二次電池電源を有する機器システム。
1. A lithium secondary battery group including a plurality of lithium secondary batteries connected in parallel, a load operated by the output of the lithium secondary battery group, and a lithium secondary battery connected to the lithium secondary battery group. A charging unit that charges the battery group, and detects a charging voltage of the lithium secondary battery group by the charging unit, and a preset charge voltage that is equal to or lower than the voltage at which lithium dendrite is deposited on the negative electrode of the lithium secondary battery. Below the value, a charging voltage control means for controlling the charging voltage of the lithium secondary battery group, the discharge voltage of the lithium secondary battery group is detected, and when the preset discharge end voltage is reached, the lithium secondary battery group A discharge stopping means for stopping the discharge of, and is arranged between the lithium secondary battery group and the load,
An apparatus system having a lithium secondary battery power supply, comprising: a voltage adjusting / converting means for adjusting / converting a voltage output from a lithium secondary battery group into a voltage required by a load.
【請求項2】 直列に複数個のリチウム二次電池を接続
したリチウム二次電池ユニットを複数個並列に接続した
リチウム二次電池群と、 前記リチウム二次電池群の出力で作動する負荷と、 前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、 前記充電手段によるリチウム二次電池群の充電電圧を検
出し、[リチウム二次電池が具備する負極にリチウムデ
ントライトの析出する電圧×リチウム二次電池ユニット
中のリチウム二次電池の数]の値以下に予め設定された
充電設定電圧値以下に、リチウム二次電池群に対する充
電電圧を制御する充電電圧制御手段と、 前記リチウム二次電池ユニットの放電電圧を検出し、
[予め設定された放電終止設定電圧×リチウム二次電池
ユニット中のリチウム二次電池の数]の値に達したとき
リチウム二次電池群の放電を停止する放電停止手段と、 前記リチウム二次電池群と前記負荷との間に配置され、
リチウム二次電池群から出力された電圧を負荷が要する
電圧に調整・変換する電圧調整・変換手段とを具備して
成るリチウム二次電池電源を有する機器システム。
2. A lithium secondary battery group in which a plurality of lithium secondary battery units connected in series with a plurality of lithium secondary batteries are connected in parallel, and a load operated by the output of the lithium secondary battery group, A charging unit that is connected to the lithium secondary battery group to charge the lithium secondary battery group, and a charging voltage of the lithium secondary battery group detected by the charging unit is detected, [Lithium Dentrite is included in the negative electrode of the lithium secondary battery And the number of lithium secondary batteries in the lithium secondary battery unit], the charging voltage control means for controlling the charging voltage for the lithium secondary battery group below a preset charging voltage Detecting the discharge voltage of the lithium secondary battery unit,
Discharge stopping means for stopping the discharge of the lithium secondary battery group when the value of [a preset discharge end set voltage × the number of lithium secondary batteries in the lithium secondary battery unit] is reached, and the lithium secondary battery Disposed between the group and the load,
An apparatus system having a lithium secondary battery power supply, comprising: a voltage adjusting / converting means for adjusting / converting a voltage output from a lithium secondary battery group into a voltage required by a load.
【請求項3】 それぞれ電池電圧の計測可能なモニター
を備えた複数のリチウム二次電池が直列に接続されてな
るリチウム二次電池群と、 前記リチウム二次電池群の出力で作動する負荷と、 前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、 前記モニターにより計測されたリチウム二次電池群のい
ずれか1個のリチウム二次電池が具備する負極にリチウ
ムデントライトの析出する電圧以下の値に予め設定され
た充電設定電圧値に達したとき充電の停止もしくは充電
電圧を充電設定電圧値以下に制御する充電電圧制御手段
と、 前記リチウム二次電池群のいずれか1個の放電電圧が予
め設定された放電終止電圧値に達したとき放電を停止さ
せる放電停止手段とを具備して成るリチウム二次電池電
源を有する機器システム。
3. A lithium secondary battery group in which a plurality of lithium secondary batteries each having a monitor capable of measuring a battery voltage are connected in series, and a load operated by the output of the lithium secondary battery group, A charging unit that is connected to the lithium secondary battery group to charge the lithium secondary battery group, and a lithium dendrite on the negative electrode of any one of the lithium secondary battery groups measured by the monitor. Charging voltage control means for controlling the charging to stop or to control the charging voltage to be equal to or lower than the charging preset voltage value when the preset charging voltage value is set to a value equal to or lower than the deposited voltage of the lithium secondary battery group. A device system having a lithium secondary battery power supply, comprising: discharge stopping means for stopping discharge when one discharge voltage reaches a preset discharge end voltage value. .
【請求項4】 それぞれ電圧の計測可能なモニターを備
えた複数のリチウム二次電池が直列に接続されてなるリ
チウム二次電池群と、 前記リチウム二次電池群の出力で作動する負荷と、 前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、 前記各モニターにより計測されたリチウム二次電池の充
電電圧が、リチウム二次電池が具備する負極にリチウム
デントライトの析出する電圧以下の値に予め設定された
充電設定電圧値に達したとき、リチウム二次電池に対す
る充電回路リチウム二次電池群から外す充電回路切り替
え手段と、前記各モニターにより計測されたリチウム二
次電池の放電電圧が、予め設定された放電終止電圧値に
達したときリチウム二次電池の放電回路をリチウム二次
電池群から取外す放電回路切り替え手段とを具備して成
るリチウム二次電池電源を有する機器システム。
4. A lithium secondary battery group in which a plurality of lithium secondary batteries each having a voltage-measurable monitor are connected in series, a load operated by the output of the lithium secondary battery group, and A charging means for connecting the lithium secondary battery group to charge the lithium secondary battery group, and the charging voltage of the lithium secondary battery measured by each of the monitors is the deposition of lithium dendrite on the negative electrode of the lithium secondary battery. The charging circuit switching means for removing the charging circuit for the lithium secondary battery from the lithium secondary battery group when the preset charging voltage value is set to a value equal to or lower than the voltage, and the lithium secondary battery measured by each of the monitors. When the discharge voltage of reaches the preset discharge end voltage value, the discharge circuit of the lithium secondary battery is removed from the lithium secondary battery group. And a device system having a lithium secondary battery power supply.
【請求項5】 複数のリチウム二次電池を接続してなる
リチウム二次電池群と、 前記リチウム二次電池群の出力で作動する負荷と、 前記リチウム二次電池群に接続しリチウム二次電池群を
充電する充電手段と、 前記リチウム二次電池群に対する初期充電時には、リチ
ウム二次電池群を成す各リチウム二次電池を直列に接続
し、後期充電時にはリチウム二次電池群を成す各リチウ
ム二次電池を並列に接続する切り替え手段と、 前記充電されたリチウム二次電池群の放電時には、リチ
ウム二次電池群を成す各リチウム二次電池を直列に接続
する接続回路切り替え手段とを具備して成るリチウム二
次電池電源を有する機器システム。
5. A lithium secondary battery group formed by connecting a plurality of lithium secondary batteries, a load operated by the output of the lithium secondary battery group, and a lithium secondary battery connected to the lithium secondary battery group. Charging means for charging the group, and each lithium secondary battery forming the lithium secondary battery group is connected in series at the time of initial charging of the lithium secondary battery group, and each lithium secondary battery forming the lithium secondary battery group at the time of late charging. A switching unit that connects secondary batteries in parallel, and a connection circuit switching unit that connects each lithium secondary battery forming the lithium secondary battery group in series when the charged lithium secondary battery group is discharged. A device system having a lithium secondary battery power supply.
JP07676293A 1993-04-02 1993-04-02 Equipment system Expired - Fee Related JP3378293B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07676293A JP3378293B2 (en) 1993-04-02 1993-04-02 Equipment system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07676293A JP3378293B2 (en) 1993-04-02 1993-04-02 Equipment system

Publications (2)

Publication Number Publication Date
JPH06290815A true JPH06290815A (en) 1994-10-18
JP3378293B2 JP3378293B2 (en) 2003-02-17

Family

ID=13614610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07676293A Expired - Fee Related JP3378293B2 (en) 1993-04-02 1993-04-02 Equipment system

Country Status (1)

Country Link
JP (1) JP3378293B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034035B1 (en) * 2008-06-12 2011-05-11 (주)동성이엔씨 Battery pack circuit and method of protecting the battery by using the battery pack circuit
JP2011164258A (en) * 2010-02-08 2011-08-25 Asahi Kasei Corp Led flash device and electronic equipment
JP2012517003A (en) * 2009-02-06 2012-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive battery with improved usability
CN102939684A (en) * 2010-04-16 2013-02-20 Sb锂摩托有限公司 Battery with cell balancing
US8538711B2 (en) 2009-10-01 2013-09-17 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type lithium ion secondary battery system, method of determining lithium deposition in the system, and vehicle mounting the system
EP2385605A3 (en) * 2010-05-03 2015-03-18 Infineon Technologies AG Active charge balancing circuit
CN113224470A (en) * 2020-02-05 2021-08-06 大有能源科技有限公司 Power supply battery of electric vehicle
CN113690986A (en) * 2021-08-29 2021-11-23 浙江锋锂新能源科技有限公司 Lithium metal battery module and charge-discharge control method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101034035B1 (en) * 2008-06-12 2011-05-11 (주)동성이엔씨 Battery pack circuit and method of protecting the battery by using the battery pack circuit
JP2012517003A (en) * 2009-02-06 2012-07-26 ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツング Drive battery with improved usability
US9041341B2 (en) 2009-02-06 2015-05-26 Robert Bosch Gmbh More readily available traction battery
US8538711B2 (en) 2009-10-01 2013-09-17 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte type lithium ion secondary battery system, method of determining lithium deposition in the system, and vehicle mounting the system
JP2011164258A (en) * 2010-02-08 2011-08-25 Asahi Kasei Corp Led flash device and electronic equipment
CN102939684A (en) * 2010-04-16 2013-02-20 Sb锂摩托有限公司 Battery with cell balancing
JP2013526243A (en) * 2010-04-16 2013-06-20 エス・ビー リモーティブ カンパニー リミテッド Battery having cell balancing function
CN106941197A (en) * 2010-04-16 2017-07-11 罗伯特·博世有限公司 Unit battery in a balanced way
US10063082B2 (en) 2010-04-16 2018-08-28 Samsung Sdi Co., Ltd. Battery with cell balancing
EP2385605A3 (en) * 2010-05-03 2015-03-18 Infineon Technologies AG Active charge balancing circuit
CN113224470A (en) * 2020-02-05 2021-08-06 大有能源科技有限公司 Power supply battery of electric vehicle
CN113690986A (en) * 2021-08-29 2021-11-23 浙江锋锂新能源科技有限公司 Lithium metal battery module and charge-discharge control method

Also Published As

Publication number Publication date
JP3378293B2 (en) 2003-02-17

Similar Documents

Publication Publication Date Title
US8232776B2 (en) Charging method for an assembled cell and an assembled cell system
TWI472446B (en) Hybrid power supply system
CN102545291B (en) Solar power storage system and solar power supply system
US8760118B2 (en) System and method for charging and discharging a Li-ion battery
WO2007142041A1 (en) Charging circuit, charging system, and charging method
JP2009072039A (en) Power system
CN108141059B (en) Power supply system
WO2008137764A1 (en) Fine-controlled battery-charging system
CN101523659B (en) Discharge controller
JP6408912B2 (en) Hybrid battery system
JP2009080938A (en) Power source system and control method of battery assembly
US20070111044A1 (en) Hybrid cell and method of driving the same
CN101504977B (en) Multi-cell electric power system
JP5705046B2 (en) Power system
JP3378293B2 (en) Equipment system
CN111987759B (en) Active equalization topology and method based on high-frequency power electronic transformer
CN114865772B (en) Energy storage system and power supply method thereof
CN107946528B (en) Battery pack and battery pack system
EP4239828A1 (en) Charging method, charging device and charging system for power battery
JPH08241705A (en) Battery
JP3428895B2 (en) Charging method of alkaline aqueous secondary battery for backup
JP3649655B2 (en) Charging method for multiple parallel alkaline aqueous solution secondary batteries for backup
CN220711161U (en) Dynamic balancing system for lithium battery
EP4152552A1 (en) Battery charging method and charging and discharging apparatus
CN212967957U (en) Lithium battery with two positive poles, one negative pole and three electric inlet and outlet pile heads for starting internal combustion engine

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20021126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071206

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081206

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091206

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101206

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees