JP2004205198A - Unified refrigerating machine - Google Patents

Unified refrigerating machine Download PDF

Info

Publication number
JP2004205198A
JP2004205198A JP2003160457A JP2003160457A JP2004205198A JP 2004205198 A JP2004205198 A JP 2004205198A JP 2003160457 A JP2003160457 A JP 2003160457A JP 2003160457 A JP2003160457 A JP 2003160457A JP 2004205198 A JP2004205198 A JP 2004205198A
Authority
JP
Japan
Prior art keywords
refrigerant
gas
heat exchanger
evaporator
liquid separator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003160457A
Other languages
Japanese (ja)
Other versions
JP4282378B2 (en
Inventor
Kazuo Takemasa
一夫 竹政
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Biomedical Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Biomedical Co Ltd, Sanyo Electric Co Ltd filed Critical Sanyo Electric Biomedical Co Ltd
Priority to JP2003160457A priority Critical patent/JP4282378B2/en
Publication of JP2004205198A publication Critical patent/JP2004205198A/en
Application granted granted Critical
Publication of JP4282378B2 publication Critical patent/JP4282378B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/006Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant containing more than one component

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a unified refrigerating machine capable of sufficiently showing the refrigerating ability by appropriately combining the mixture refrigerant of nitrous oxide and HC refrigerant and a special heat exchanger for use. <P>SOLUTION: This unified refrigerating machine is formed by annularly connecting a compressor 1, a condenser 2, a pressure reducing device 8 and an evaporator 8. An air-liquid separator 3 and a heat exchanger 6 for passing the refrigerant from an air phase part of the air-liquid separator are provided in a pipe for connecting the condenser 2 to the pressure reducing device 8, and a liquid phase pipe of the air-liquid separator 3 wherein the liquid phase refrigerant flows and an outlet pipe of the evaporator 3 are connected to a return passage wherein the refrigerant returned from the heat exchanger 6 flows. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、1元冷凍の超低温冷凍装置に関する。
【0002】
【従来の技術】
従来より、−60℃〜−90℃以下の超低温の生成には、超低温冷凍装置が用いられている。この超低温冷凍装置は、1元冷凍装置(単元冷凍装置)と、高温側冷凍回路と低温側冷温回路により構成されている二元冷凍装置等の多元冷凍装置とがある。
【0003】
この1元冷凍装置に亜酸化窒素(NO)とHC冷媒の混合物を充填したものを本出願人は特許文献1として提案した。
【0004】
【特許文献1】
特願2002−173455号
【0005】
【発明が解決しようとする課題】
前述の本出願人が提案した1元冷凍装置では、圧縮機、凝縮器、キャピラリーチューブ、蒸発器を環状に配管接続した冷凍装置なので、亜酸化窒素やHC冷媒の一部が凝縮器で凝縮せずに循環する恐れがあり、冷凍能力を充分発揮できない恐れがあった。
【0006】
本発明は、亜酸化窒素とHC冷媒との混合冷媒と、特別な熱交換器とを適宜組み合わせて採用することにより、冷凍能力を充分に発揮できる1元冷凍装置を提供するものである。
【0007】
【課題を解決するための手段】
本発明は、圧縮機、凝縮器、減圧装置、蒸発器を環状に配管接続して構成した1元冷凍装置において、亜酸化窒素とHC冷媒との混合物を冷媒として使用し、前記凝縮器と前記減圧装置とをつなぐ管路には気液分離器とこの気液分離器の気相部からの未凝縮冷媒を通す熱交換器とを設け、前記気液分離器の液相部と前記熱交換器とを補助減圧装置を介してつなぐと共に、前記蒸発器の出口配管を前記熱交換器を経由させて前記圧縮機につなぎ、前記蒸発器からの冷媒及び前記補助減圧装置からの冷媒が前記圧縮機に吸入されるように構成したものである。
【0008】
また、本発明は、前記HC冷媒として、プロパン、エタン、エチレン、nブタン、イソブタン、nペンタンの何れか、又はそれらの混合物を用いたものである。
【0009】
また、本発明は、前記HC冷媒の割合を1〜50重量%としたものである。
【0010】
更に、本発明は、前記減圧装置として、運転停止時及び異常時に閉じられる膨張弁を用いたものである。
【0011】
一方、本発明は、圧縮機、凝縮器、減圧装置、蒸発器を環状に配管接続して構成した1元冷凍装置において、前記凝縮器と前記減圧装置とをつなぐ管路に、気液分離器と、当該気液分離器の気相部からの未凝縮冷媒を通す冷媒流通路を有する熱交換器とを設け、前記気液分離器の液相管と前記蒸発器の出口配管とを前記熱交換器の冷媒戻り流路に接続したものである。
【0012】
また、本発明は、前記冷媒として、亜酸化窒素とHC冷媒との混合物を使用したものである。
【0013】
そして、本発明は、当該HC冷媒として、プロパン、エタン、エチレン、nブタン、イソブタン、nペンタンの何れか、又はそれらの混合物を用いたものである。
【0014】
最後に、本発明は、当該気液分離器の液相管と前記熱交換器の戻り流路との接続位置を前記蒸発器の出口配管前記熱交換器の戻り流路との接続位置よりも下流側に設けたものである。
【0015】
【発明の実施の形態】
本発明の第1の実施形態を図1を参照しつつ説明する。
【0016】
図1は、通常の冷凍装置(1元冷凍装置)を示している。そして、この冷凍装置には、亜酸化窒素(NO、沸点−88.5℃)とHC冷媒(プロパン(R290、沸点−42.1℃)、又は、ブタン(R600、沸点−0.5℃)との混合物である冷媒が、例えば、1〜50重量%封入される。
【0017】
冷凍装置は、圧縮機1、凝縮器2、気液分離器3、デハイドレータ4、キャピラリーチュ−ブ(補助減圧装置)5、熱交換器6、デハイドレータ7、キャピラリーチュ−ブ(減圧装置)8、蒸発器9、及び膨張タンク10により構成されている。
【0018】
すなわち、特許請求の範囲に記載のように、圧縮機1、凝縮器2、キャピラリーチューブ(減圧装置)8、蒸発器9を環状に配管接続して構成した1元冷凍装置において、亜酸化窒素とHC冷媒との混合物を冷媒として使用し、前記凝縮器2と前記減圧装置8とをつなぐ管路には気液分離器3とこの気液分離器3の気相部からの未凝縮冷媒を通す熱交換器6とを設け、前記気液分離器3の液相部と前記熱交換器とをキャピラリーチューブ(補助減圧装置)5を介してつなぐと共に、前記蒸発器9の出口配管を前記熱交換器を経由させて前記圧縮機1につなぎ、前記蒸発器9からの冷媒及び前記補助減圧装置5からの冷媒が前記圧縮機1に吸入されるように構成したものである。
【0019】
冷媒を構成する亜酸化窒素とHC冷媒は、沸点が異なることから、その沸点の異なり及び凝縮器2通過に伴う相変化を利用して、気液分離器3で分離される。この分離は、実際には完全ではないが、説明を簡単にするために、沸点の低い液化しにくい亜酸化窒素とそれよりも沸点の高く液化しやすいHC冷媒に略分離されるものとして説明する。
【0020】
この冷凍装置では、気液分離器3を備えているので、亜酸化窒素に比べ沸点が高いHC冷媒は、液相部を通して主にデハイドレータ4、キャピラリーチュ−ブ5、熱交換器6における凝縮冷媒が通る冷媒戻り流路を介して圧縮機1に戻る(即ち、最も温度が低く粘性抵抗による残留問題のある蒸発器9を通過しない)。また、沸点の低い亜酸化窒素は、この気液分離器3の気相部を通して、熱交換器9における未凝縮冷媒(即ちガス冷媒)が通る冷媒流通路、デハイドレータ7、キャピラリーチュ−ブ8、蒸発器9、熱交換器6における凝縮冷媒が通る冷媒戻り流路を介して圧縮機1に戻る。なお、前述のごとく、気相分離器3で分離できなかった気相部を通過する少量のHC冷媒も蒸発器9に循環しており、この少量のHC冷媒は冷凍機油との相溶性が高いため亜酸化窒素に混合した場合の搬送性に優れ、またオイルキャリアとしての作用を備えているので、冷媒としての循環性があり、蒸発器9におけるオイル残りが防止できる。
【0021】
このように、本願では、亜酸化窒素にHC冷媒を混合しているので、圧縮機1、凝縮器2、蒸発器9内のガス冷媒はHC冷媒単体時に比べれば冷媒の可燃性が低くなる。
【0022】
また、亜酸化窒素はHC冷媒より沸点が低いので、主に亜酸化窒素が気液分離器3の気相部から熱交換器6の冷媒流通路に供給される。この亜酸化窒素は、熱交換器6における冷媒流通路と冷媒戻り通路とを流れる冷媒との熱交換作用で冷媒流通路を通過することにより冷却(凝縮)され、その出口側において液化される。このため、蒸発器9では少量のHC冷媒を含むが亜酸化窒素がリッチな状態の液冷媒が流入することとなり、ここで蒸発し、亜酸化窒素単体を用いた場合よりも熱交換器6で熱交換される分低い温度の冷媒が得られる。更に、気相と液相に分離された冷媒が熱交換器6で混ざり合うことなく熱交換されるため、蒸発器9へ流入させる冷媒の温度低下はもとより、熱交換器6を経ずに蒸発器9へ流入させる回路に比べて、低い温度の冷媒循環に伴う冷凍能力の増大が図れる。そして、HC冷媒(可燃性冷媒)は50重量%以下に抑えているので、不燃性且つ消火作用を有する亜酸化窒素によってHC冷媒の燃焼能力を十分打ち消すことができ、蒸発器9付近で万一リークが発生しても、燃えにくい混合冷媒のまま漏れることになって、冷媒としての安全性を確保できる。
【0023】
特に、沸点の高い冷媒による蒸発(吸熱=冷却)作用の能力(即ち冷凍能力)の方が、沸点の低い冷媒のそれよりも大きいことは周知の事実であるが、沸点の異なる冷媒を混合する場合、沸点の高いHC冷媒の混合比率を50重量%超に設定する方が、その冷凍能力を遺憾無く発揮できることに他ならない。本発明では、その混合比率の上限を50重量%にすることで、不燃性の点も鑑みてその冷媒の持つ冷凍能力を十分に発揮できるようになっている。
【0024】
なお、封入するHC冷媒としては、前述したように、プロパンやブタン以外に、イソブタン(R600a、沸点−11.7℃)、やエタン(沸点−88.5℃)、エチレン(沸点−103.57℃)、nブタン(沸点−0.55℃)、nペンタン(沸点36.2℃)、又はそれらの混合物等を用いても構わない。この場合でも、亜酸化窒素の消火作用を鑑みてHC冷媒の混合割合を50重量%以内にする必要があることは同様である。尚、50重量%を越えると、即座に燃焼能力が回復して危険に陥るというものではなく、勿論混合するHC冷媒の選定如何によってその重量比率は異なるものであり、HC冷媒を混合物とする場合でも、HC冷媒の総量が50重量%であればよい。
【0025】
また、この実施形態では、膨張タンク10を用いたが、たとえば、圧縮機1の停止圧力が小さな場合は、タンク10が必須というわけではない。
【0026】
また、本願によれば、冷媒の漏れが発生した場合を想定して、HC冷媒が可燃性であることを加味し、熱交換器6及び気液分離器3周辺では、ガスシール対策を行うのが良い。たとえば、金属容器で覆う等の対策を行うのが良い。
【0027】
次に、本発明の第2の実施形態を図2を参照しつつ説明する。図2において図1と同一部分には同一符号を付して説明を省略する。
【0028】
図2の冷凍装置において、減圧装置として膨張弁12を用いている。この実施形態では、熱交換器6からの冷媒はアキュムレータ11、膨張弁12を介して蒸発器9に供給される。
【0029】
この膨張弁12は、運転停止時及び異常時に閉じられる。これは、前述したように、この冷凍装置によれば、冷媒のリークが生じても気液分離器以降の冷媒回路(特に蒸発器近傍)においては、亜酸化窒素がリッチの状態の冷媒を循環させているため可燃性は低いが、時間が経過すると、気液分離器で完全に分離できなかったHC冷媒が漏れ出してしまうことがある。このため、機械式又は電子式の膨張弁12を蒸発器9の前段に配置して、運転停止時及び異常時に強制的に弁12を閉じることによって蒸発器9に冷媒が流れにくくしている。
【0030】
本発明の第3の実施形態について図3を参照しつつ説明する。図3において図1と同一部分には同一符号を付して説明を省略する。
【0031】
図3は、熱交換器6における気液分離器3の液相管と熱交換器6の戻り流路との接続位置Aを、蒸発器9の出口配管と熱交換器6の戻り流路との接続位置Bよりも戻り流路でいえば下流側(冷媒流通路でいえば上流側)に設けた例を示している。これは、気液分離器3の液相管(詳しくは補助減圧装置たるキャピラリチューブの出口側)を流れる冷媒の温度が−30℃程度であるのに対し、蒸発器9の出口配管を流れる冷媒の温度が−85℃程度と低いことから、後者の冷却能力の方が高いことに起因した配慮である。即ち、温度が+40℃程度の冷媒が流れる熱交換器6の冷媒流通路に対して上流側(戻り流路でいえば下流側)に気液分離器3の液相管との接続位置Aを配置させることにより、冷媒流通路を流れる温度の高い冷媒を一次冷却し、極力ガス冷媒を凝縮させるようにし、下流側の接続位置Bに流入する低温の蒸発器9の出口配管を流れる冷媒で二次冷却させることで、仮に冷媒流通路において冷媒の未凝縮分が残っていたとしても、より低温の熱交換で凝縮させることができる(即ち二段冷却することができる)ため、通過冷媒の温度をより効率よく低下させることができる。尚、液相管には、補助減圧装置としてのキャピラリチューブ5を配置しているため、熱交換器6へ流入する冷媒を絞り込む一方、できる限り凝縮して冷媒温度を低下させている。
【0032】
【発明の効果】
本発明は、請求項1に記載のように、気液分離器で混合冷媒を気相と液相に分離し、この分離した液相の冷媒と気相の冷媒とを熱交換器で熱交換させるように構成しているので、凝縮器から直接減圧装置に冷媒を循環させる場合に比べて、減圧装置に流入する冷媒の凝縮量が増大し、且つ冷媒の温度を低下することができる。このため、未凝縮冷媒が循環することを抑制し、冷凍機としての冷凍能力の低下を防止できる。
【0033】
また、請求項2に記載のように、前記HC冷媒として、プロパン、エタン、エチレン、nブタン、イソブタン、nペンタンの何れか、又はそれらの混合物を用いたので、一般的に他の冷媒に比べて安価であり、かつ、入手も容易であるため、1元冷凍装置を安価に提供することができる。
【0034】
また、請求項3に記載のように、HC冷媒の割合を1〜50重量%としたので、亜酸化窒素単体を用いた場合よりも、冷凍能力を増加させることができると共に、この冷媒が万一漏れたとしても気液分離器を通過後の冷媒は亜酸化窒素がリッチな状態で燃えにくくなっているため、燃焼による危険を抑えることができる。
【0035】
更に、請求項4に記載の発明のように、減圧装置として、運転停止時及び異常時に閉じられる膨張弁を用いたので、運転停止時及び異常時に蒸発器から冷媒が漏れる恐れを極力防止することができる。
【0036】
一方、請求項5の発明によれば、圧縮機、凝縮器、減圧装置、蒸発器を環状に配管接続して構成した1元冷凍装置において、凝縮器と減圧装置とをつなぐ管路に、気液分離器と、気液分離器の気相部からの未凝縮冷媒を通す冷媒流通路を有する熱交換器とを設け、気液分離器の液相管と蒸発器の出口配管とを熱交換器の冷媒戻り流路に接続したので、気相と液相に分離された冷媒は熱交換器で混ざり合うことなく熱交換され、蒸発器へ流入させる冷媒の温度を低下することができ、蒸発器の冷凍能力が向上する。
【0037】
最後に、本発明の請求項8によれば、気液分離器の液相管と熱交換器の戻り流路との接続位置を蒸発器の出口配管と熱交換器の戻り流路との接続位置よりも下流側に設けたので、熱交換器における冷媒流通路を流れる高温の気相冷媒を低温の液相冷媒と熱交換して一次冷却し、低温の蒸発器通過後の冷媒で続けて二次冷却することができるため、この熱交換器の冷媒流通路を通過する冷媒温度を二段階で低下させることができ、結果的に温度の低い冷媒の循環する蒸発器の冷凍能力を効率よく向上できる。
【図面の簡単な説明】
【図1】この発明の実施形態を説明するための冷凍回路図である。
【図2】この発明の他の実施形態を説明するための冷凍回路図である。
【図3】この発明のさらに他の実施形態を説明するための熱交換器図である。
【符号の説明】
1 圧縮機
2 凝縮器
3 気液分離器
5 キャピラリーチューブ(補助減圧装置)
6 熱交換器
8 キャピラリーチューブ(減圧装置)
9 蒸発器
12 膨張弁(減圧装置)
A 接続位置
B 接続位置
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a one-way refrigeration ultra-low temperature refrigeration apparatus.
[0002]
[Prior art]
Conventionally, an ultra-low-temperature refrigeration apparatus has been used to generate an ultra-low temperature of −60 ° C. to −90 ° C. or less. This ultra-low temperature refrigeration system includes a one-way refrigeration system (a single-stage refrigeration system) and a multi-stage refrigeration system such as a binary refrigeration system including a high-temperature refrigeration circuit and a low-temperature refrigeration circuit.
[0003]
The applicant of the present invention has proposed a one-way refrigeration apparatus in which a mixture of nitrous oxide (N 2 O) and an HC refrigerant is charged as Patent Document 1.
[0004]
[Patent Document 1]
Japanese Patent Application No. 2002-173455 [0005]
[Problems to be solved by the invention]
The one-way refrigeration system proposed by the applicant of the present invention is a refrigeration system in which a compressor, a condenser, a capillary tube, and an evaporator are connected in a circular pipe, so that part of nitrous oxide and HC refrigerant is condensed in the condenser. Refrigeration capacity could not be exhibited sufficiently.
[0006]
The present invention provides a one-way refrigeration apparatus capable of sufficiently exhibiting a refrigeration capacity by appropriately combining a mixed refrigerant of nitrous oxide and HC refrigerant and a special heat exchanger.
[0007]
[Means for Solving the Problems]
The present invention provides, in a one-way refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator are connected by piping in a ring, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant; A gas-liquid separator and a heat exchanger for passing uncondensed refrigerant from the gas phase of the gas-liquid separator are provided in a pipe connecting the pressure reducing device, and the heat exchange with the liquid phase of the gas-liquid separator is performed. And an outlet pipe of the evaporator through the heat exchanger and the compressor, and the refrigerant from the evaporator and the refrigerant from the auxiliary decompression device are compressed. It is configured to be sucked into the machine.
[0008]
Further, in the present invention, any of propane, ethane, ethylene, n-butane, isobutane, and n-pentane, or a mixture thereof is used as the HC refrigerant.
[0009]
In the present invention, the ratio of the HC refrigerant is set to 1 to 50% by weight.
[0010]
Further, the present invention uses an expansion valve that is closed at the time of operation stop and at the time of abnormality as the pressure reducing device.
[0011]
On the other hand, the present invention relates to a one-way refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator are connected in a ring-like pipe, and a gas-liquid separator is provided in a pipe connecting the condenser and the decompression device. And a heat exchanger having a refrigerant flow passage for passing uncondensed refrigerant from the gas-phase part of the gas-liquid separator, wherein the liquid-phase pipe of the gas-liquid separator and the outlet pipe of the evaporator are connected to the heat pipe. It is connected to the refrigerant return flow path of the exchanger.
[0012]
Further, the present invention uses a mixture of nitrous oxide and HC refrigerant as the refrigerant.
[0013]
In the present invention, any one of propane, ethane, ethylene, n-butane, isobutane, and n-pentane, or a mixture thereof is used as the HC refrigerant.
[0014]
Finally, in the present invention, the connection position between the liquid-phase pipe of the gas-liquid separator and the return flow path of the heat exchanger is more than the connection position of the outlet pipe of the evaporator and the return flow path of the heat exchanger. It is provided on the downstream side.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
A first embodiment of the present invention will be described with reference to FIG.
[0016]
FIG. 1 shows a normal refrigeration apparatus (one-way refrigeration apparatus). The refrigerating apparatus includes nitrous oxide (N 2 O, boiling point −88.5 ° C.) and HC refrigerant (propane (R290, boiling point −42.1 ° C.)) or butane (R600, boiling point −0.5 ° C.). C) is enclosed, for example, in an amount of 1 to 50% by weight.
[0017]
The refrigerating apparatus includes a compressor 1, a condenser 2, a gas-liquid separator 3, a dehydrator 4, a capillary tube (auxiliary decompression device) 5, a heat exchanger 6, a dehydrator 7, a capillary tube (decompression device) 8, It comprises an evaporator 9 and an expansion tank 10.
[0018]
That is, as described in the claims, in a one-way refrigeration system in which the compressor 1, the condenser 2, the capillary tube (decompression device) 8, and the evaporator 9 are connected in a circular pipe, nitrous oxide and A mixture of the HC refrigerant and the refrigerant is used as a refrigerant, and a gas-liquid separator 3 and an uncondensed refrigerant from a gas phase portion of the gas-liquid separator 3 pass through a pipe connecting the condenser 2 and the pressure reducing device 8. A heat exchanger 6 is provided to connect the liquid phase portion of the gas-liquid separator 3 to the heat exchanger via a capillary tube (auxiliary decompression device) 5 and to connect an outlet pipe of the evaporator 9 to the heat exchange. The refrigerant is connected to the compressor 1 via a compressor, and the refrigerant from the evaporator 9 and the refrigerant from the auxiliary pressure reducing device 5 are sucked into the compressor 1.
[0019]
Since the nitrous oxide and the HC refrigerant constituting the refrigerant have different boiling points, they are separated by the gas-liquid separator 3 using the difference in the boiling points and the phase change accompanying the passage through the condenser 2. Although this separation is not actually complete, for the sake of simplicity, it will be described as being roughly separated into nitrous oxide having a low boiling point and being difficult to be liquefied and an HC refrigerant having a higher boiling point and being easily liquefied. .
[0020]
In this refrigerating apparatus, since the gas-liquid separator 3 is provided, the HC refrigerant having a boiling point higher than that of nitrous oxide is mainly condensed in the dehydrator 4, the capillary tube 5, and the heat exchanger 6 through the liquid phase portion. Returns to the compressor 1 through the refrigerant return flow path through which the refrigerant passes (ie, does not pass through the evaporator 9 which has the lowest temperature and has a residual problem due to viscous resistance). Nitrous oxide having a low boiling point passes through the gas phase of the gas-liquid separator 3, through which a non-condensed refrigerant (that is, gas refrigerant) in the heat exchanger 9 passes, a dehydrator 7, a capillary tube 8, The refrigerant returns to the compressor 1 via a refrigerant return flow path through which the condensed refrigerant in the evaporator 9 and the heat exchanger 6 passes. As described above, a small amount of the HC refrigerant passing through the gaseous phase part that could not be separated by the gaseous phase separator 3 also circulates through the evaporator 9, and this small amount of the HC refrigerant has high compatibility with the refrigerating machine oil. Therefore, it is excellent in transportability when mixed with nitrous oxide, and has an action as an oil carrier, so that it has circulation as a refrigerant and can prevent oil residue in the evaporator 9.
[0021]
As described above, in the present application, since the HC refrigerant is mixed with the nitrous oxide, the gas refrigerant in the compressor 1, the condenser 2, and the evaporator 9 has lower flammability than the HC refrigerant alone.
[0022]
Since nitrous oxide has a lower boiling point than HC refrigerant, nitrous oxide is mainly supplied from the gas phase of the gas-liquid separator 3 to the refrigerant flow passage of the heat exchanger 6. This nitrous oxide is cooled (condensed) by passing through the refrigerant flow passage by heat exchange between the refrigerant flowing through the refrigerant flow passage and the refrigerant return passage in the heat exchanger 6, and is liquefied at the outlet side. For this reason, a liquid refrigerant containing a small amount of HC refrigerant but rich in nitrous oxide flows into the evaporator 9, evaporates here, and in the heat exchanger 6 as compared with the case where nitrous oxide alone is used. A refrigerant having a lower temperature is obtained by the heat exchange. Further, since the refrigerant separated into the gaseous phase and the liquid phase exchanges heat without being mixed in the heat exchanger 6, not only does the temperature of the refrigerant flowing into the evaporator 9 decrease, but also the evaporation without passing through the heat exchanger 6. The refrigeration capacity can be increased due to the circulation of the refrigerant at a lower temperature as compared with the circuit that flows into the vessel 9. Since the HC refrigerant (flammable refrigerant) is suppressed to 50% by weight or less, the combustion capacity of the HC refrigerant can be sufficiently canceled by the non-flammable and extinguishing nitrous oxide. Even if a leak occurs, the mixed refrigerant hardly burns and leaks, so that the safety as the refrigerant can be ensured.
[0023]
In particular, it is a well-known fact that the ability of vaporizing (absorbing heat = cooling) action by a refrigerant having a high boiling point (that is, refrigeration capacity) is larger than that of a refrigerant having a low boiling point, but a refrigerant having a different boiling point is mixed. In such a case, setting the mixing ratio of the HC refrigerant having a high boiling point to more than 50% by weight is the only one that can exhibit its refrigeration capacity without regret. In the present invention, by setting the upper limit of the mixing ratio to 50% by weight, the refrigeration capacity of the refrigerant can be sufficiently exhibited in view of the nonflammability.
[0024]
As described above, as the HC refrigerant to be filled, in addition to propane and butane, isobutane (R600a, boiling point: -11.7 ° C), ethane (boiling point: 88.5 ° C), and ethylene (boiling point: 103.57) ° C), n-butane (boiling point -0.55 ° C), n-pentane (boiling point 36.2 ° C), a mixture thereof, or the like may be used. Even in this case, it is the same that the mixing ratio of the HC refrigerant must be within 50% by weight in view of the fire extinguishing action of nitrous oxide. If the amount exceeds 50% by weight, the combustion capacity is not immediately restored and a danger is not caused. Of course, the weight ratio differs depending on the selection of the HC refrigerant to be mixed. However, the total amount of the HC refrigerant may be 50% by weight.
[0025]
Although the expansion tank 10 is used in this embodiment, for example, when the stop pressure of the compressor 1 is small, the tank 10 is not essential.
[0026]
Further, according to the present application, assuming that a refrigerant leak occurs, taking into account the fact that the HC refrigerant is flammable, a gas sealing measure is taken around the heat exchanger 6 and the gas-liquid separator 3. Is good. For example, it is good to take measures such as covering with a metal container.
[0027]
Next, a second embodiment of the present invention will be described with reference to FIG. In FIG. 2, the same parts as those in FIG.
[0028]
2, the expansion valve 12 is used as a pressure reducing device. In this embodiment, the refrigerant from the heat exchanger 6 is supplied to the evaporator 9 via the accumulator 11 and the expansion valve 12.
[0029]
The expansion valve 12 is closed when the operation is stopped and when an abnormality occurs. This is because, as described above, according to this refrigeration apparatus, even if a refrigerant leak occurs, in the refrigerant circuit (especially near the evaporator) after the gas-liquid separator, the refrigerant in which nitrous oxide is rich is circulated. Although the flammability is low because of this, HC refrigerant that has not been completely separated by the gas-liquid separator may leak out over time. For this reason, the mechanical or electronic expansion valve 12 is arranged in front of the evaporator 9, and the valve 12 is forcibly closed at the time of operation stop or abnormality, thereby preventing the refrigerant from flowing into the evaporator 9.
[0030]
A third embodiment of the present invention will be described with reference to FIG. In FIG. 3, the same portions as those in FIG.
[0031]
FIG. 3 shows the connection position A between the liquid-phase pipe of the gas-liquid separator 3 and the return flow path of the heat exchanger 6 in the heat exchanger 6, the outlet pipe of the evaporator 9 and the return flow path of the heat exchanger 6 This is an example in which it is provided on the downstream side in the return flow path (upstream side in the refrigerant flow path) with respect to the connection position B. This is because the temperature of the refrigerant flowing through the liquid-phase pipe of the gas-liquid separator 3 (specifically, the outlet side of the capillary tube serving as the auxiliary pressure reducing device) is about −30 ° C., whereas the refrigerant flowing through the outlet pipe of the evaporator 9 is This is a consideration due to the fact that the cooling capacity of the latter is higher because the temperature is as low as about −85 ° C. That is, the connection position A with the liquid phase pipe of the gas-liquid separator 3 is located upstream (downstream in the return flow path) with respect to the refrigerant flow passage of the heat exchanger 6 through which the refrigerant having a temperature of about + 40 ° C. flows. By arranging, the refrigerant having a high temperature flowing through the refrigerant flow passage is primarily cooled, the gas refrigerant is condensed as much as possible, and the refrigerant flowing through the outlet pipe of the low-temperature evaporator 9 flowing into the downstream connection position B is cooled by the refrigerant. By performing the next cooling, even if an uncondensed portion of the refrigerant remains in the refrigerant flow passage, the refrigerant can be condensed by lower-temperature heat exchange (that is, two-stage cooling can be performed). Can be reduced more efficiently. In addition, since the capillary tube 5 as an auxiliary decompression device is arranged in the liquid phase tube, the refrigerant flowing into the heat exchanger 6 is narrowed down, while being condensed as much as possible to lower the refrigerant temperature.
[0032]
【The invention's effect】
In the present invention, the mixed refrigerant is separated into a gas phase and a liquid phase by a gas-liquid separator, and the separated liquid phase refrigerant and the gas phase refrigerant are heat-exchanged by a heat exchanger. With this configuration, the amount of refrigerant condensed into the decompression device can be increased and the temperature of the refrigerant can be reduced as compared with the case where the refrigerant is circulated from the condenser directly to the decompression device. Therefore, the circulation of the uncondensed refrigerant can be suppressed, and a decrease in the refrigerating capacity of the refrigerator can be prevented.
[0033]
Further, as described in claim 2, as the HC refrigerant, any of propane, ethane, ethylene, n-butane, isobutane, and n-pentane, or a mixture thereof is used. Since it is inexpensive and easily available, a one-way refrigeration apparatus can be provided at low cost.
[0034]
Further, since the ratio of the HC refrigerant is set to 1 to 50% by weight, the refrigerating capacity can be increased as compared with the case where only nitrous oxide is used, and the amount of the refrigerant can be reduced. Even if one leak occurs, the refrigerant after passing through the gas-liquid separator is hardly burnable in a state in which nitrous oxide is rich, so that danger due to combustion can be suppressed.
[0035]
Furthermore, since the expansion valve that is closed when the operation is stopped or abnormally is used as the pressure reducing device as in the invention according to claim 4, it is possible to minimize the possibility that the refrigerant leaks from the evaporator when the operation is stopped or abnormally. Can be.
[0036]
On the other hand, according to the fifth aspect of the present invention, in a one-way refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator are connected in a circular pipe, a gas connecting a condenser and a decompression device is connected to a pipe. A liquid separator and a heat exchanger having a refrigerant flow passage through which uncondensed refrigerant flows from the gas phase of the gas-liquid separator are provided, and heat exchange is performed between the liquid-phase pipe of the gas-liquid separator and the outlet pipe of the evaporator. Connected to the refrigerant return flow path of the heat exchanger, the refrigerant separated into the gaseous phase and the liquid phase is heat-exchanged without being mixed in the heat exchanger, and the temperature of the refrigerant flowing into the evaporator can be lowered, thereby evaporating. The refrigeration capacity of the vessel is improved.
[0037]
Finally, according to claim 8 of the present invention, the connection position between the liquid phase pipe of the gas-liquid separator and the return flow path of the heat exchanger is connected to the connection between the outlet pipe of the evaporator and the return flow path of the heat exchanger. Since it is provided downstream from the position, the high-temperature gas-phase refrigerant flowing through the refrigerant flow passage in the heat exchanger is heat-exchanged with the low-temperature liquid-phase refrigerant to perform primary cooling, and the refrigerant after passing through the low-temperature evaporator continues. Since the secondary cooling can be performed, the temperature of the refrigerant passing through the refrigerant flow passage of the heat exchanger can be reduced in two stages, and as a result, the refrigeration capacity of the evaporator in which the low-temperature refrigerant circulates can be efficiently increased. Can be improved.
[Brief description of the drawings]
FIG. 1 is a refrigeration circuit diagram for explaining an embodiment of the present invention.
FIG. 2 is a refrigeration circuit diagram for explaining another embodiment of the present invention.
FIG. 3 is a heat exchanger diagram for explaining still another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Gas-liquid separator 5 Capillary tube (auxiliary decompression device)
6 heat exchanger 8 capillary tube (decompression device)
9 Evaporator 12 Expansion valve (pressure reducing device)
A Connection position B Connection position

Claims (8)

圧縮機、凝縮器、減圧装置、蒸発器を環状に配管接続して構成した1元冷凍装置において、亜酸化窒素とHC冷媒との混合物を冷媒として使用し、前記凝縮器と前記減圧装置とをつなぐ管路には気液分離器とこの気液分離器の気相部からの未凝縮冷媒を通す熱交換器とを設け、前記気液分離器の液相部と前記熱交換器とを補助減圧装置を介してつなぐと共に、前記蒸発器の出口配管を前記熱交換器を経由させて前記圧縮機につなぎ、前記蒸発器からの冷媒及び前記補助減圧装置からの冷媒が前記圧縮機に吸入されるようにしたことを特徴とする1元冷凍装置。In a one-way refrigeration apparatus configured by connecting a compressor, a condenser, a decompression device, and an evaporator in an annular pipe, a mixture of nitrous oxide and HC refrigerant is used as a refrigerant, and the condenser and the decompression device are connected to each other. A gas-liquid separator and a heat exchanger for passing uncondensed refrigerant from the gas phase part of the gas-liquid separator are provided in the connecting pipe, and the liquid-phase part of the gas-liquid separator and the heat exchanger are assisted. While connecting via a decompression device, the outlet pipe of the evaporator is connected to the compressor via the heat exchanger, and the refrigerant from the evaporator and the refrigerant from the auxiliary decompression device are sucked into the compressor. A one-way refrigeration apparatus characterized in that: 前記HC冷媒として、プロパン、エタン、エチレン、nブタン、イソブタン、nペンタンの何れか、又はそれらの混合物を用いたことを特徴とする請求項1に記載の1元冷凍装置。The one-way refrigeration system according to claim 1, wherein any one of propane, ethane, ethylene, n-butane, isobutane, and n-pentane or a mixture thereof is used as the HC refrigerant. 前記HC冷媒の割合を1〜50重量%としたことを特徴とする請求項1又は2に記載の1元冷凍装置。The one-way refrigeration system according to claim 1 or 2, wherein the ratio of the HC refrigerant is 1 to 50% by weight. 前記減圧装置として、運転停止時及び異常時に閉じられる膨張弁を用いたこと特徴とする請求項1乃至3の何れかに記載の1元冷凍装置。The one-way refrigeration system according to any one of claims 1 to 3, wherein an expansion valve that is closed when operation is stopped and when an abnormality occurs is used as the pressure reducing device. 圧縮機、凝縮器、減圧装置、蒸発器を環状に配管接続して構成した1元冷凍装置において、前記凝縮器と前記減圧装置とをつなぐ管路に、気液分離器と、当該気液分離器の気相部からの未凝縮冷媒を通す熱交換器とを設け、前記気液分離器の液相管と前記蒸発器の出口配管とを前記熱交換器の戻り流路に接続したことを特徴とする1元冷凍装置。In a one-way refrigeration system in which a compressor, a condenser, a decompression device, and an evaporator are connected in a circular pipe, a gas-liquid separator and a gas-liquid separation device are provided in a pipe connecting the condenser and the decompression device. A heat exchanger for passing uncondensed refrigerant from the gas phase part of the vessel, and connecting a liquid phase pipe of the gas-liquid separator and an outlet pipe of the evaporator to a return flow path of the heat exchanger. One-way refrigeration equipment. 前記冷媒として、亜酸化窒素とHC冷媒との混合物を使用したことを特徴とする請求項5に記載の1元冷凍装置。The one-way refrigeration apparatus according to claim 5, wherein a mixture of nitrous oxide and HC refrigerant is used as the refrigerant. 前記HC冷媒として、プロパン、エタン、エチレン、nブタン、イソブタン、nペンタンの何れか、又はそれらの混合物を用いたことを特徴とする請求項6に記載の1元冷凍装置。The one-way refrigeration system according to claim 6, wherein any one of propane, ethane, ethylene, n-butane, isobutane, and n-pentane or a mixture thereof is used as the HC refrigerant. 前記気液分離器の液相管と前記熱交換器の戻り流路との接続位置を前記蒸発器の出口配管と前記熱交換器の戻り流路との接続位置よりも下流側に設けたことを特徴とする請求項5に記載の1元冷凍装置。The connection position between the liquid-phase pipe of the gas-liquid separator and the return flow path of the heat exchanger is provided downstream of the connection position between the outlet pipe of the evaporator and the return flow path of the heat exchanger. The one-way refrigeration apparatus according to claim 5, wherein
JP2003160457A 2002-10-31 2003-06-05 1-unit refrigeration equipment Expired - Fee Related JP4282378B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003160457A JP4282378B2 (en) 2002-10-31 2003-06-05 1-unit refrigeration equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002317604 2002-10-31
JP2003160457A JP4282378B2 (en) 2002-10-31 2003-06-05 1-unit refrigeration equipment

Publications (2)

Publication Number Publication Date
JP2004205198A true JP2004205198A (en) 2004-07-22
JP4282378B2 JP4282378B2 (en) 2009-06-17

Family

ID=32828267

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003160457A Expired - Fee Related JP4282378B2 (en) 2002-10-31 2003-06-05 1-unit refrigeration equipment

Country Status (1)

Country Link
JP (1) JP4282378B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036706A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
CN105102777A (en) * 2013-02-25 2015-11-25 艾诺巴有限公司 Heat-insulated system for lubricating rotating and oscillating components of motor vehicle
CN115031422A (en) * 2022-05-23 2022-09-09 西安交通大学 Mixed working medium throttling refrigeration system capable of adjusting circulating concentration and pressure and control method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036706A (en) * 2011-08-10 2013-02-21 Mitsubishi Electric Corp Refrigerating cycle apparatus
CN105102777A (en) * 2013-02-25 2015-11-25 艾诺巴有限公司 Heat-insulated system for lubricating rotating and oscillating components of motor vehicle
JP2016513212A (en) * 2013-02-25 2016-05-12 アイエヌオーエイト ピーティーワイ リミテッド Thermal insulation system for lubrication of rotating and swinging parts of drive units
US10001038B2 (en) 2013-02-25 2018-06-19 Ino8 Pty Ltd Heat-insulated system for lubricating rotating and oscillating components of a motor vehicle
CN115031422A (en) * 2022-05-23 2022-09-09 西安交通大学 Mixed working medium throttling refrigeration system capable of adjusting circulating concentration and pressure and control method
CN115031422B (en) * 2022-05-23 2023-02-07 西安交通大学 Mixed working medium throttling refrigeration system capable of adjusting circulating concentration and pressure and control method

Also Published As

Publication number Publication date
JP4282378B2 (en) 2009-06-17

Similar Documents

Publication Publication Date Title
US9994751B2 (en) Absorption refrigeration cycles using a LGWP refrigerant
JP3208151B2 (en) Refrigeration equipment
JPWO2009154149A1 (en) Non-azeotropic refrigerant mixture and refrigeration cycle equipment
JPH07260265A (en) Freezing heat exchanger
JP2022087163A (en) Working medium for heat cycle, composition for heat cycle system, and heat cycle system
JP2004205198A (en) Unified refrigerating machine
JPH0340297B2 (en)
JP2020525745A (en) Refrigeration system and method
JP2007169331A (en) Non-azeotropic mixture coolant for super low temperature and single unit type freezing circuit for super low temperature
JP2004019995A (en) Refrigeration device
JPH01256766A (en) Freezing device
JP3863831B2 (en) Refrigerant composition and refrigeration circuit using the refrigerant composition
WO2007060771A1 (en) Refrigerant composition
JP2006038283A (en) Working fluid and refrigeration cycle using working fluid as refrigerant
JP4108656B2 (en) Refrigeration method with non-azeotropic refrigerant mixture
JP2012251762A (en) Air conditioner
JP2012236884A (en) Mixed refrigerant and air conditioner using the same
JP2008057974A (en) Cooling apparatus
JP2017138046A (en) Refrigeration device
JP2003287293A (en) Refrigeration unit and refrigerator
JP2009156563A (en) Self-balancing condensing and evaporating heat exchanger device, refrigerating cycle incorporating it, and partial recovery device for condensate using the same
JP2002081798A (en) Refrigeration cycle device
JP3674974B2 (en) Water cooler
KR20240057071A (en) A ternary refrigerant composition and a heat pump comprising the same
JPH08200866A (en) Air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050920

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051219

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080529

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090217

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090317

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120327

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130327

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140327

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees