JP2004204973A - Power transmission mechanism - Google Patents

Power transmission mechanism Download PDF

Info

Publication number
JP2004204973A
JP2004204973A JP2002375384A JP2002375384A JP2004204973A JP 2004204973 A JP2004204973 A JP 2004204973A JP 2002375384 A JP2002375384 A JP 2002375384A JP 2002375384 A JP2002375384 A JP 2002375384A JP 2004204973 A JP2004204973 A JP 2004204973A
Authority
JP
Japan
Prior art keywords
spring member
rotating body
transmission mechanism
power transmission
rotator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002375384A
Other languages
Japanese (ja)
Inventor
Takahiro Ota
貴博 太田
Masazumi Ishikawa
正純 石川
Hideyuki Gonda
英之 権田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2002375384A priority Critical patent/JP2004204973A/en
Publication of JP2004204973A publication Critical patent/JP2004204973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Transmission Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission mechanism capable of exhibiting stable torque cut-off performance. <P>SOLUTION: This power transmission mechanism is provided with a first rotor of annular shape of which the rotation is driven by an external driving source; a second rotor positioned inside a central opening of the first rotor; and a spring member which is inserted between the first rotor and the second rotor, of which both ends are fixed or supported on the first rotor, curved into a protrusion shape toward the second rotor and abuts against the outer peripheral surface of the second rotor. The section of the outer peripheral surface of the second rotor on which the spring member abuts, has a flat surface or a curved surface protruding outwards in the radial direction. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、動力伝達機構に関するものである。
【0002】
【従来の技術】
外部駆動により回転駆動される環状の第1回転体と、第1回転体の中央開口内に在る第2回転体と、第1回転体と第2回転体との間に介挿され、両端が第1回転体に支持され且つ第2回転体へ向けて凸に湾曲して第2回転体の外周面に当接するバネ部材とを備え、第2回転体外周面のバネ部材との当接部が径方向内方へ凸の曲面であることを特徴とする動力伝達機構が特許文献1に開示されている。
特許文献1の動力伝達機構においては、バネ部材を介して第1回転体から第2回転体へトルクが伝達される。第1回転体から第2回転体へ伝達されるトルクが過大になると、第2回転体とバネ部材との間に周方向の滑りが生じ、第2回転体により径方向外方へ押圧されたバネ部材が反転して第1回転体へ向けて凸に湾曲し、バネ部材と第2回転体との当接状態が解除されて、第1回転体から第2回転体へのトルク伝達が遮断される。
【0003】
【特許文献1】特開2000−249160
【0004】
【発明が解決しようとする課題】
特許文献1の動力伝達機構には、第2回転体外周面のバネ部材との当接部が、バネ部材と相補形状で湾曲しており、両者の接触面積が広いので両者の間に周方向の滑りが生じ難く、安定したトルク遮断性能を発揮し難いという問題がある。
本発明は上記問題に鑑みてなされたものであり、安定したトルク遮断性能を発揮できる動力伝達機構を提供することを目的とする。
【0005】
【課題を解決するための手段】
上記課題を解決するために、本発明においては、外部駆動により回転駆動される環状の第1回転体と、第1回転体の中央開口内に在る第2回転体と、第1回転体と第2回転体との間に介挿され、両端が第1回転体に固定又は支持され且つ第2回転体へ向けて凸に湾曲して第2回転体の外周面に当接するバネ部材とを備え、第2回転体外周面のバネ部材との当接部が平坦面又は径方向外方へ凸の曲面であることを特徴とする動力伝達機構を提供する。
また本発明においては、外部駆動により回転駆動される環状の第1回転体と、第1回転体の中央開口内に在る第2回転体と、第1回転体と第2回転体との間に介挿され、両端が第2回転体に固定又は支持され且つ第1回転体へ向けて凸に湾曲して第1回転体の内周面に当接するバネ部材とを備え、第1回転体内周面のバネ部材との当接部が平坦面又は径方向内方へ凸の曲面であることを特徴とする動力伝達機構を提供する。
本発明に係る動力伝達機構においては、バネ部材を介して第1回転体から第2回転体へトルクが伝達される。第1回転体から第2回転体へ伝達されるトルクが過大になると、第2回転体とバネ部材との間に周方向の滑りが生じ、第2回転体により径方向外方へ押圧されたバネ部材が反転して第1回転体へ向けて凸に湾曲し、バネ部材と第2回転体との当接状態が解除されて、第1回転体から第2回転体へのトルク伝達が遮断され、或いは、第1回転体とバネ部材との間に周方向の滑りが生じ、第1回転体により径方向内方へ押圧されたバネ部材が反転して第2回転体へ向けて凸に湾曲し、バネ部材と第1回転体との当接状態が解除されて、第1回転体から第2回転体へのトルク伝達が遮断される。
本発明に係る動力伝達機構においては、第2回転体外周面のバネ部材との当接部が平坦面又は径方向外方へ凸の曲面であり、両者の接触面積が狭いので、両者の間に周方向の滑りが支障無く生じ、或いは第1回転体内周面のバネ部材との当接部が平坦面又は径方向内方へ凸の曲面であり、両者の接触面積が狭いので、両者の間に周方向の滑りが支障なく生ずる。この結果、バネ部材が支障なく反転して、第1回転体から第2回転体へのトルク伝達が支障なく遮断される。従って、本発明に係る動力伝達機構は安定したトルク遮断性能を発揮できる。
【0006】
本発明の好ましい態様においては、周方向に互いに間隔を隔てて複数のバネ部材が配設されている。
周方向に互いに間隔を隔てて複数のバネ部材を配設することにより、バネ部材が小型化され、動力伝達機構が小型化される。
【0007】
本発明の好ましい態様においては、バネ部材は帯板状又はワイヤー状である。
バネ部材は帯板状でも良くワイヤー状でも良い。
【0008】
本発明の好ましい態様においては、第1回転体と第2回転体との間に介挿される前のバネ部材の形状が伸直形状又は湾曲形状である。
伸直形状のバネ部材を撓ませて第1回転体と第2回転体との間に介挿しても良く、或いは湾曲形状のバネ部材を第1回転体と第2回転体との間に介挿しても良い。
【0009】
本発明の好ましい態様においては、第2回転体のバネ部材との当接部に回転体が取り付けられている。
本発明の好ましい態様においては、第1回転体のバネ部材との当接部に回転体が取り付けられている。
回転体を取り付けることにより、第2回転体とバネ部材との間の周方向の滑り又は第1回転体とバネ部材との間の周方向の滑りを、支障なく生じさせることができる。
【0010】
本発明の好ましい態様においては、回転体が弾性を有する。
回転体に弾性を持たせることにより、第2回転体とバネ部材との間の周方向の滑り又は第1回転体とバネ部材との間の周方向の滑りを、更に支障なく生じさせることができる。
【0011】
本発明の好ましい態様においては、バネ部材が制振機能を有する。
バネ部材が制振機能を有することにより、第1回転部材が接続される外部駆動源の短周期トルク変動や第2回転部材が接続される回転機器の短周期トルク変動に起因する回転機器主軸の捩じり振動が抑制され、ひいては動力伝達機構作動が安定する。
【0012】
本発明の好ましい態様においては、バネ部材と第2回転部材との当接部が潤滑されている。
本発明の好ましい態様においては、バネ部材と第1回転部材との当接部が潤滑されている。
バネ部材と第2回転部材との当接部を潤滑し、或いはバネ部材と第1回転部材との当接部を潤滑することにより、第2回転体とバネ部材との間の周方向の滑り、或いは第1回転体とバネ部材との間の周方向の滑りを、支障なく生じさせることができる。
【0013】
【発明の実施の形態】
本発明の実施例に係る動力伝達機構を説明する。
図1(a)に示すように、動力伝達機構1は、外周が円形で内周が六角形の環状のプーリー2を備えている。プーリー2は、ベアリング3を介して図示しない圧縮機のケーシングにより支持されている。プーリー2は図示しない無端ベルトを介して図示しない車両エンジンに接続されている。
動力伝達機構1は、プーリー2の中心開口内に在る外周が六角形のハブ4を備えている。ハブ4と同心に延在する図示しない圧縮機の主軸が、ハブ4に固定されている。
帯板から成る断面が略六角形の環状のバネ5が、プーリー2とハブ4との間に介挿されている。バネ5の六角形の各頂点はブロック6を介して、プーリー2内周の六角形の各辺に固定されている。バネ5の六角形の各辺は、ハブ4へ向けて凸に湾曲しており、前記各辺の中央部はハブ4外周の六角形の各辺に当接している。
【0014】
動力伝達機構1の作動を説明する。
図示しない無端ベルトを介して図示しない車両エンジンからプーリー2にトルクが伝達される。バネ部材5を介してプーリー2からハブ4へトルクが伝達される。ハブ4から図示しない圧縮機の主軸へトルクが伝達され、図示しない圧縮機が稼動する。
プーリー2とハブ4との間の伝達トルクが所定値を超えると、ハブ4外周面の六角形の各辺とバネ部材5の略六角形の各辺の中央部との間に周方向の滑りが生じ、ハブ4外周面の六角形の各辺により径方向外方へ押圧されたバネ部材5の略六角形の各辺が反転して、図1(b)に示すように、プーリー2へ向けて凸に湾曲する。反転したバネ部材5の略六角形の各辺は、プーリー2内周の六角形の各頂点近傍の空間に収容される。この結果、バネ部材5とハブ4外周面との当接状態が解除され、プーリー2からハブ4へのトルク伝達が遮断される。
【0015】
動力伝達機構1においては、ハブ4外周面のバネ部材5との当接部が平坦面であり、両者の接触面積が狭いので、両者の間に周方向の滑りが支障無く生ずる。この結果、バネ部材5が支障なく反転して、プーリー2からハブ4へのトルク伝達が支障なく遮断される。従って、動力伝達機構1は安定したトルク遮断性能を発揮できる。
ハブ4外周面とバネ部材5との複数の当接部を介してプーリー2からハブ4へトルクを伝達することにより、バネ部材5のハブ4外周面との当接部の部材強度低減が可能となる。この結果、バネ部材5が小型化され、ひいては動力伝達機構1が小型化される。
【0016】
バネ部材5を帯板ではなくワイヤーで形成しても良い。
断面が略六角形の環状のバネ部材5に代えて、ハブ4へ向けて凸に湾曲したバネ部材を、隣接するブロック6間に一個ずつ配設しても良い。各バネ部材両端のブロック6との取り合いは、固定でも良く支持でも良く或いは両者の中間でも良い。各バネ部材のブロック6への取付け前の形状は、伸直でも良く湾曲していても良い。
図2に示すように、ハブ4外周面の六角形の各辺の端部、すなわちハブ4外周面の六角形の各頂点に、回転体7を取り付けても良い。回転体7を取り付けることにより、ハブ4外周面とバネ部材5との間の周方向の滑りを、支障なく生じさせることができる。
回転体7を弾性体で形成し、或いは回転体7に弾性体を外嵌合させても良い。回転体7に弾性を持たせることにより、ハブ4外周面とバネ部材5との間の周方向の滑りを、より一層支障なく生じさせることができる。
バネ部材5を金属と粘弾性体とのクラッド材等の制振材で形成しても良い。バネ部材5が制振機能を有することにより、プーリー2が接続される車両エンジンの短周期トルク変動やハブ4が接続される圧縮機の短周期トルク変動に起因する圧縮機主軸の捩じり振動が抑制され、ひいては動力伝達機構1の作動が安定する。バネ部材5及び/又はハブ4外周面のバネ部材5との当接部に固体潤滑材等を塗布しても良い。バネ部材5とハブ4外周面との当接部を潤滑することにより、ハブ4外周面とバネ部材5との間の周方向の滑りを、支障なく生じさせることができる。
プーリー2の内周は六角形以外の多角形でも良く円形でも良く、他の任意形状でも良い。ハブ4の外周を六角形以外の多角形にしても良く、或いは楕円形にしても良い。図3に示すように、楕円形のハブ14外周面のバネ部材15との当接部は径方向外方へ凸に湾曲し、両者の接触面積は狭いので、ハブ14外周面とバネ部材15との間の周方向の滑りを、支障なく生じさせることができる。図3において、トルク伝達時のバネ部材15を実線で示し、トルク遮断時のバネ部材15を一点鎖線で示している。
図4に示すように、円環形状のプーリー22の内周面に三角形の突起22aを形成し、プーリー22へ向けて凸に湾曲したバネ部材25の両端を略円形のハブ24に固定し又は略円形のハブ24で支持し、バネ部材25を突起22aに当接可能としても良い。反転したバネ部材25を収容する凹部24aをハブ24に形成する。突起22aのバネ部材25との当接部は平坦面であり、両者の接触面積は狭いので、突起22aとバネ部材25との間の周方向の滑りを、支障なく生じさせることができる。図4において、トルク伝達時のバネ部材25を実線で示し、トルク遮断時のバネ部材25を一点鎖線で示している。突起22aの外形を径方向内方へ凸の曲面としても良い。突起22aの頂点に回転体を取り付けても良い。突起22aとバネ部材25との当接部を潤滑しても良い。
【0017】
【発明の効果】
以上説明したごとく、本発明に係る動力伝達機構においては、第2回転体外周面のバネ部材との当接部が平坦面又は径方向外方へ凸の曲面であり、両者の接触面積が狭いので、両者の間に周方向の滑りが支障無く生じ、或いは第1回転体内周面のバネ部材との当接部が平坦面又は径方向内方へ凸の曲面であり、両者の接触面積が狭いので、両者の間に周方向の滑りが支障なく生ずる。この結果、バネ部材が支障なく反転して、第1回転体から第2回転体へのトルク伝達が支障なく遮断される。従って、本発明に係る動力伝達機構は安定したトルク遮断性能を発揮できる。
【図面の簡単な説明】
【図1】本発明の実施例に係る動力伝達機構の斜視図である。(a)はトルク伝達時の形態を示し、(b)はトルク遮断時の形態を示す。
【図2】本発明の他の実施例に係る動力伝達機構の斜視図である。
【図3】本発明の他の実施例に係る動力伝達機構の断面図である。
【図4】本発明の他の実施例に係る動力伝達機構の断面図である。
【符号の説明】
1 動力伝達機構
2、12、22 プーリー
3 ベアリング
4、14、24 ハブ
5、15、25 バネ部材
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a power transmission mechanism.
[0002]
[Prior art]
An annular first rotator driven by an external drive source, a second rotator located in a central opening of the first rotator, and interposed between the first rotator and the second rotator; A spring member, both ends of which are supported by the first rotator and which are convexly curved toward the second rotator and contact the outer peripheral surface of the second rotator; Patent Document 1 discloses a power transmission mechanism in which a contact portion has a curved surface that is convex inward in the radial direction.
In the power transmission mechanism of Patent Document 1, torque is transmitted from the first rotating body to the second rotating body via a spring member. When the torque transmitted from the first rotator to the second rotator becomes excessive, a circumferential slip occurs between the second rotator and the spring member, and the second rotator is pressed radially outward. The spring member reverses and curves convexly toward the first rotator, the contact state between the spring member and the second rotator is released, and torque transmission from the first rotator to the second rotator is interrupted. Is done.
[0003]
[Patent Document 1] JP-A-2000-249160
[0004]
[Problems to be solved by the invention]
In the power transmission mechanism disclosed in Patent Document 1, the contact portion of the outer peripheral surface of the second rotating body with the spring member is curved in a complementary shape to the spring member, and the contact area between the two is large. This is problematic in that slippage does not easily occur and it is difficult to exhibit stable torque interruption performance.
The present invention has been made in view of the above problems, and an object of the present invention is to provide a power transmission mechanism that can exhibit stable torque cutoff performance.
[0005]
[Means for Solving the Problems]
In order to solve the above-mentioned problems, in the present invention, an annular first rotator driven by an external drive source, a second rotator located in a central opening of the first rotator, and a first rotator are provided. A spring member interposed between the first rotating body and the first rotating body, both ends of which are fixed or supported, and which convexly curves toward the second rotating body and abuts on the outer peripheral surface of the second rotating body; And a contact portion of the outer peripheral surface of the second rotating body with the spring member is a flat surface or a curved surface that projects radially outward.
Further, in the present invention, an annular first rotator that is rotationally driven by an external drive source, a second rotator located in a central opening of the first rotator, and a first rotator and a second rotator are included. A spring member interposed therebetween, both ends of which are fixed or supported by the second rotating body, and which are convexly curved toward the first rotating body and abut against the inner peripheral surface of the first rotating body; A power transmission mechanism characterized in that a contact portion of a peripheral surface of a body with a spring member is a flat surface or a curved surface convex inward in a radial direction.
In the power transmission mechanism according to the present invention, torque is transmitted from the first rotating body to the second rotating body via the spring member. When the torque transmitted from the first rotator to the second rotator becomes excessive, a circumferential slip occurs between the second rotator and the spring member, and the second rotator is pressed radially outward. The spring member reverses and curves convexly toward the first rotator, the contact state between the spring member and the second rotator is released, and torque transmission from the first rotator to the second rotator is interrupted. Alternatively, a circumferential slip occurs between the first rotating body and the spring member, and the spring member pressed inward in the radial direction by the first rotating body is inverted to be convex toward the second rotating body. It is bent, and the contact state between the spring member and the first rotating body is released, and the transmission of torque from the first rotating body to the second rotating body is interrupted.
In the power transmission mechanism according to the present invention, the contact portion between the outer peripheral surface of the second rotating body and the spring member is a flat surface or a curved surface that is convex radially outward, and the contact area between the two is small. In this case, the sliding in the circumferential direction occurs without any trouble, or the contact portion of the peripheral surface of the first rotating body with the spring member is a flat surface or a curved surface that is convex inward in the radial direction, and the contact area between them is small. A circumferential slippage occurs without any trouble. As a result, the spring member is turned over without hindrance, and the transmission of torque from the first rotator to the second rotator is interrupted without hindrance. Therefore, the power transmission mechanism according to the present invention can exhibit stable torque interruption performance.
[0006]
In a preferred aspect of the present invention, a plurality of spring members are arranged at intervals in the circumferential direction.
By disposing a plurality of spring members at intervals in the circumferential direction, the size of the spring members is reduced, and the power transmission mechanism is reduced in size.
[0007]
In a preferred aspect of the present invention, the spring member is in the shape of a strip or a wire.
The spring member may have a strip shape or a wire shape.
[0008]
In a preferred aspect of the present invention, the shape of the spring member before being inserted between the first rotating body and the second rotating body is an elongated shape or a curved shape.
The straight spring member may be bent and inserted between the first rotating body and the second rotating body, or a curved spring member may be inserted between the first rotating body and the second rotating body. May be inserted.
[0009]
In a preferred aspect of the present invention, the rotating body is attached to a contact portion of the second rotating body with the spring member.
In a preferred aspect of the present invention, the rotating body is attached to a contact portion of the first rotating body with the spring member.
By attaching the rotating body, circumferential sliding between the second rotating body and the spring member or circumferential sliding between the first rotating body and the spring member can be generated without any trouble.
[0010]
In a preferred aspect of the present invention, the rotating body has elasticity.
By providing the rotating body with elasticity, circumferential sliding between the second rotating body and the spring member or circumferential sliding between the first rotating body and the spring member can be caused without any trouble. it can.
[0011]
In a preferred aspect of the present invention, the spring member has a vibration damping function.
Since the spring member has the vibration damping function, the short-period torque fluctuation of the external drive source to which the first rotating member is connected and the short-period torque fluctuation of the rotating device to which the second rotating member is connected are caused by the rotation device main shaft. The torsional vibration is suppressed, and the operation of the power transmission mechanism is stabilized.
[0012]
In a preferred aspect of the present invention, a contact portion between the spring member and the second rotating member is lubricated.
In a preferred aspect of the present invention, a contact portion between the spring member and the first rotating member is lubricated.
By lubricating the contact portion between the spring member and the second rotating member, or by lubricating the contact portion between the spring member and the first rotating member, circumferential sliding between the second rotating body and the spring member is performed. Alternatively, the circumferential sliding between the first rotating body and the spring member can be caused without any trouble.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
A power transmission mechanism according to an embodiment of the present invention will be described.
As shown in FIG. 1A, the power transmission mechanism 1 includes an annular pulley 2 having a circular outer periphery and a hexagonal inner periphery. The pulley 2 is supported by a compressor casing (not shown) via a bearing 3. The pulley 2 is connected to a vehicle engine (not shown) via an endless belt (not shown).
The power transmission mechanism 1 includes a hub 4 having a hexagonal outer periphery in the center opening of the pulley 2. A main shaft of a compressor (not shown) extending concentrically with the hub 4 is fixed to the hub 4.
An annular spring 5 having a substantially hexagonal cross section and made of a strip is inserted between the pulley 2 and the hub 4. Each vertex of the hexagon of the spring 5 is fixed to each side of the hexagon on the inner periphery of the pulley 2 via the block 6. Each hexagonal side of the spring 5 is convexly curved toward the hub 4, and the center of each side is in contact with each hexagonal side of the outer periphery of the hub 4.
[0014]
The operation of the power transmission mechanism 1 will be described.
Torque is transmitted to the pulley 2 from a vehicle engine (not shown) via an endless belt (not shown). Torque is transmitted from the pulley 2 to the hub 4 via the spring member 5. Torque is transmitted from the hub 4 to the main shaft of the compressor (not shown), and the compressor (not shown) operates.
When the transmission torque between the pulley 2 and the hub 4 exceeds a predetermined value, a circumferential slippage occurs between each hexagonal side of the outer peripheral surface of the hub 4 and the center portion of each substantially hexagonal side of the spring member 5. Occurs, and the substantially hexagonal sides of the spring member 5 pressed radially outward by the hexagonal sides of the outer peripheral surface of the hub 4 are inverted, and as shown in FIG. It curves convex toward it. Each hexagonal side of the inverted spring member 5 is accommodated in a space near each vertex of the hexagon on the inner periphery of the pulley 2. As a result, the contact state between the spring member 5 and the outer peripheral surface of the hub 4 is released, and the transmission of torque from the pulley 2 to the hub 4 is interrupted.
[0015]
In the power transmission mechanism 1, the contact portion between the outer peripheral surface of the hub 4 and the spring member 5 is a flat surface, and the contact area between the two is small, so that circumferential slippage occurs between the two without any trouble. As a result, the spring member 5 is inverted without any trouble, and the torque transmission from the pulley 2 to the hub 4 is interrupted without any trouble. Therefore, the power transmission mechanism 1 can exhibit stable torque interruption performance.
By transmitting torque from the pulley 2 to the hub 4 via a plurality of contact portions between the outer peripheral surface of the hub 4 and the spring member 5, the member strength of the contact portion of the spring member 5 with the outer peripheral surface of the hub 4 can be reduced. It becomes. As a result, the size of the spring member 5 is reduced, and the power transmission mechanism 1 is reduced in size.
[0016]
The spring member 5 may be formed of a wire instead of a strip.
Instead of the annular spring member 5 having a substantially hexagonal cross section, a spring member convexly curved toward the hub 4 may be provided between adjacent blocks 6 one by one. The engagement between the ends of each spring member and the block 6 may be fixed, supported, or intermediate between the two. The shape of each spring member before being attached to the block 6 may be straight or curved.
As shown in FIG. 2, the rotating body 7 may be attached to the end of each side of the hexagon on the outer peripheral surface of the hub 4, that is, to each vertex of the hexagon on the outer peripheral surface of the hub 4. By attaching the rotating body 7, circumferential sliding between the outer peripheral surface of the hub 4 and the spring member 5 can be generated without any trouble.
The rotating body 7 may be formed of an elastic body, or the elastic body may be externally fitted to the rotating body 7. By making the rotating body 7 elastic, the sliding in the circumferential direction between the outer peripheral surface of the hub 4 and the spring member 5 can be generated without any trouble.
The spring member 5 may be formed of a damping material such as a clad material of a metal and a viscoelastic body. Since the spring member 5 has the vibration damping function, the torsional vibration of the compressor main shaft caused by the short-period torque fluctuation of the vehicle engine to which the pulley 2 is connected and the short-period torque fluctuation of the compressor to which the hub 4 is connected. And the operation of the power transmission mechanism 1 is stabilized. A solid lubricant or the like may be applied to the spring member 5 and / or a contact portion of the outer peripheral surface of the hub 4 with the spring member 5. By lubricating the contact portion between the spring member 5 and the outer peripheral surface of the hub 4, circumferential sliding between the outer peripheral surface of the hub 4 and the spring member 5 can be caused without any trouble.
The inner circumference of the pulley 2 may be a polygon other than a hexagon, a circle, or any other shape. The outer periphery of the hub 4 may be a polygon other than a hexagon, or may be an ellipse. As shown in FIG. 3, the contact portion of the outer peripheral surface of the elliptical hub 14 with the spring member 15 is convexly curved radially outward, and the contact area between the two is small. In the circumferential direction can be caused without any trouble. In FIG. 3, the spring member 15 at the time of torque transmission is indicated by a solid line, and the spring member 15 at the time of torque interruption is indicated by a dashed line.
As shown in FIG. 4, a triangular protrusion 22 a is formed on the inner peripheral surface of the annular pulley 22, and both ends of a spring member 25 convexly curved toward the pulley 22 are fixed to a substantially circular hub 24. The support may be supported by a substantially circular hub 24 so that the spring member 25 can contact the projection 22a. A recess 24 a for receiving the inverted spring member 25 is formed in the hub 24. The contact portion of the projection 22a with the spring member 25 is a flat surface, and the contact area between them is small, so that circumferential sliding between the projection 22a and the spring member 25 can be caused without any trouble. In FIG. 4, the spring member 25 at the time of torque transmission is indicated by a solid line, and the spring member 25 at the time of torque interruption is indicated by a dashed line. The outer shape of the projection 22a may be a curved surface that is convex inward in the radial direction. A rotating body may be attached to the top of the projection 22a. The contact portion between the projection 22a and the spring member 25 may be lubricated.
[0017]
【The invention's effect】
As described above, in the power transmission mechanism according to the present invention, the contact portion between the outer peripheral surface of the second rotating body and the spring member is a flat surface or a curved surface that projects radially outward, and the contact area between the two is small. Therefore, circumferential slippage occurs between the two members without any trouble, or the contact portion of the peripheral surface of the first rotating body with the spring member is a flat surface or a curved surface that is convex inward in the radial direction. Due to the narrowness, circumferential slippage occurs between the two without any problem. As a result, the spring member is turned over without hindrance, and the transmission of torque from the first rotator to the second rotator is interrupted without hindrance. Therefore, the power transmission mechanism according to the present invention can exhibit stable torque interruption performance.
[Brief description of the drawings]
FIG. 1 is a perspective view of a power transmission mechanism according to an embodiment of the present invention. (A) shows the form at the time of torque transmission, and (b) shows the form at the time of torque interruption.
FIG. 2 is a perspective view of a power transmission mechanism according to another embodiment of the present invention.
FIG. 3 is a cross-sectional view of a power transmission mechanism according to another embodiment of the present invention.
FIG. 4 is a cross-sectional view of a power transmission mechanism according to another embodiment of the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 Power transmission mechanism 2, 12, 22 Pulley 3 Bearing 4, 14, 24 Hub 5, 15, 25 Spring member

Claims (11)

外部駆動により回転駆動される環状の第1回転体と、第1回転体の中央開口内に在る第2回転体と、第1回転体と第2回転体との間に介挿され、両端が第1回転体に固定又は支持され且つ第2回転体へ向けて凸に湾曲して第2回転体の外周面に当接するバネ部材とを備え、第2回転体外周面のバネ部材との当接部が平坦面又は径方向外方へ凸の曲面であることを特徴とする動力伝達機構。An annular first rotator driven by an external drive source, a second rotator located in a central opening of the first rotator, and interposed between the first rotator and the second rotator; A spring member fixed at both ends to or supported by the first rotating body and convexly curved toward the second rotating body and abutting against the outer peripheral surface of the second rotating body; A power transmission mechanism characterized in that the abutting portion is a flat surface or a curved surface protruding radially outward. 外部駆動により回転駆動される環状の第1回転体と、第1回転体の中央開口内に在る第2回転体と、第1回転体と第2回転体との間に介挿され、両端が第2回転体に固定又は支持され且つ第1回転体へ向けて凸に湾曲して第1回転体の内周面に当接するバネ部材とを備え、第1回転体内周面のバネ部材との当接部が平坦面又は径方向内方へ凸の曲面であることを特徴とする動力伝達機構。An annular first rotator driven by an external drive source, a second rotator located in a central opening of the first rotator, and interposed between the first rotator and the second rotator; A spring member fixed at both ends to or supported by the second rotating body and convexly curved toward the first rotating body and abutting against the inner peripheral surface of the first rotating body; A power transmission mechanism characterized in that the abutting portion is a flat surface or a curved surface protruding radially inward. 周方向に互いに間隔を隔てて複数のバネ部材が配設されていることを特徴とする請求項1又は2に記載の動力伝達機構。The power transmission mechanism according to claim 1, wherein a plurality of spring members are arranged at intervals in a circumferential direction. バネ部材は帯板状又はワイヤー状であることを特徴とする請求項1乃至3の何れか1項に記載の動力伝達機構。The power transmission mechanism according to any one of claims 1 to 3, wherein the spring member has a strip shape or a wire shape. 第1回転体と第2回転体との間に介挿される前のバネ部材の形状が伸直形状又は湾曲形状であることを特徴とする請求項1乃至4の何れか1項に記載の動力伝達機構。The power according to any one of claims 1 to 4, wherein the shape of the spring member before being inserted between the first rotating body and the second rotating body is an elongated shape or a curved shape. Transmission mechanism. 第2回転体のバネ部材との当接部に回転体が取り付けられていることを特徴とする請求項1に記載の動力伝達機構。The power transmission mechanism according to claim 1, wherein the rotating body is attached to a contact portion of the second rotating body with the spring member. 第1回転体のバネ部材との当接部に回転体が取り付けられていることを特徴とする請求項2に記載の動力伝達機構。The power transmission mechanism according to claim 2, wherein the rotating body is attached to a contact portion of the first rotating body with the spring member. 回転体が弾性を有することを特徴とする請求項6又は7に記載の動力伝達機構。The power transmission mechanism according to claim 6, wherein the rotating body has elasticity. バネ部材が制振機能を有することを特徴とする請求項1乃至8の何れか1項に記載の動力伝達機構。The power transmission mechanism according to any one of claims 1 to 8, wherein the spring member has a vibration damping function. バネ部材と第2回転体との当接部が潤滑されていることを特徴とする請求項1に記載の動力伝達機構。The power transmission mechanism according to claim 1, wherein a contact portion between the spring member and the second rotating body is lubricated. バネ部材と第1回転体との当接部が潤滑されていることを特徴とする請求項2に記載の動力伝達機構。The power transmission mechanism according to claim 2, wherein a contact portion between the spring member and the first rotating body is lubricated.
JP2002375384A 2002-12-25 2002-12-25 Power transmission mechanism Pending JP2004204973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002375384A JP2004204973A (en) 2002-12-25 2002-12-25 Power transmission mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002375384A JP2004204973A (en) 2002-12-25 2002-12-25 Power transmission mechanism

Publications (1)

Publication Number Publication Date
JP2004204973A true JP2004204973A (en) 2004-07-22

Family

ID=32813154

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002375384A Pending JP2004204973A (en) 2002-12-25 2002-12-25 Power transmission mechanism

Country Status (1)

Country Link
JP (1) JP2004204973A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215171A1 (en) 2018-05-08 2019-11-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plug-in coupling for connecting shafts
DE102018110987A1 (en) * 2018-05-08 2019-11-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plug-in coupling for connecting shafts

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019215171A1 (en) 2018-05-08 2019-11-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plug-in coupling for connecting shafts
DE102018110987A1 (en) * 2018-05-08 2019-11-14 MAX-PLANCK-Gesellschaft zur Förderung der Wissenschaften e.V. Plug-in coupling for connecting shafts

Similar Documents

Publication Publication Date Title
JP2007113634A (en) Pulley structure
JP2008101740A (en) Spring clutch
EP2530349B1 (en) Centrifugal clutch device
JP2007270878A (en) Vibration noise suppression type sprocket
JP3811569B2 (en) Engine crankshaft, accessory pulley unit
JP4078761B2 (en) Power transmission device
JP4134470B2 (en) Power transmission device
JP2004204973A (en) Power transmission mechanism
JP2008019959A (en) Spring clutch
JP2004293713A (en) Power transmission device
JPH08145147A (en) Rotor such as gear, pulley
JP4352046B2 (en) V-belt type automatic transmission
WO2019046957A1 (en) Single spring, torsionally compliant, overruning decoupler
JP2000179568A (en) Power transmission
JP4194334B2 (en) Spring clutch
JP2006349057A (en) Power transmission device
JP2007333051A (en) Spring clutch
KR200267231Y1 (en) Damper-pulley for automobile
JP2005337398A (en) Power transmission device
JPH1182630A (en) Torque transmitting device
JPH0583479U (en) Centrifugal clutch
JP2563147Y2 (en) Coupling
JP2007309408A (en) Spring clutch
JP2004204972A (en) Power transmission mechanism
WO2012008136A1 (en) Power transmission device