JP2006349057A - Power transmission device - Google Patents

Power transmission device Download PDF

Info

Publication number
JP2006349057A
JP2006349057A JP2005176483A JP2005176483A JP2006349057A JP 2006349057 A JP2006349057 A JP 2006349057A JP 2005176483 A JP2005176483 A JP 2005176483A JP 2005176483 A JP2005176483 A JP 2005176483A JP 2006349057 A JP2006349057 A JP 2006349057A
Authority
JP
Japan
Prior art keywords
spring member
rotating body
buffer
transmission device
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005176483A
Other languages
Japanese (ja)
Inventor
Masazumi Ishikawa
正純 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP2005176483A priority Critical patent/JP2006349057A/en
Publication of JP2006349057A publication Critical patent/JP2006349057A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power transmission device capable of preventing occurrence of permanent distortion of a buffer member and obtaining sufficient damping effect for fluctuation of rotation by the buffer member. <P>SOLUTION: The buffer member 12 is formed by a spring member 12a and a rubber member 12b, compression deformation of the buffer member 12 is absorbed by elasticity of the spring member 12a, and damping force by elasticity of the rubber member 12b is given to compression deformation of the spring member 12a to prevent permanent distortion of the buffer member 12 by the spring member 12a, even if hardness of the rubber member 12b is reduced and increase damping effect by the rubber member 12b. Consequently, even when load is repeatedly applied by fluctuation of rotation, rupture strength of each connection part 11c of a transmission ring 11 is not reduced by fatigue by damping effect of the rubber member 12b, and each connection part 11c is always broken only when it reaches predetermined torque. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、例えば車両用空気調和装置の圧縮機に用いられる動力伝達装置に関するものである。   The present invention relates to a power transmission device used in, for example, a compressor of a vehicle air conditioner.

一般に、車両用空気調和装置に用いられる圧縮機としては、中空状に形成された圧縮機本体と、圧縮機本体内に吸入された流体を圧縮する圧縮部と、圧縮部に連結された駆動シャフトとを備え、駆動シャフトをエンジンの動力によって回転させることにより、圧縮部を駆動して冷媒を吸入及び吐出するようにしたものが知られている。   Generally, as a compressor used in an air conditioner for a vehicle, a compressor body formed in a hollow shape, a compression unit that compresses fluid sucked into the compressor body, and a drive shaft connected to the compression unit And the drive shaft is rotated by the power of the engine to drive the compression section to suck and discharge the refrigerant.

また、前記圧縮機に備わる動力伝達装置としては、エンジンからの動力によって回転するプーリと、プーリによって回転する伝動部材と、伝動部材に連結されたハブとを備え、プーリ及び伝動部材のそれぞれに周方向に間隔をおいて設けた複数の突出部を互いに周方向に対向させるとともに、プーリの各突出部と伝動部材の各突出部との間にそれぞれブロック状の緩衝ゴムを介在させ、各緩衝ゴムを介してプーリの回転力を伝動部材に伝達するとともに、プーリと伝動部材との間に所定の大きさ以上のトルクが生ずると、伝動部材の一部の部材を破断させて動力の伝達を遮断するようにしたものが知られている(例えば、特許文献1参照。)。
特開2002−54711号公報
The power transmission device provided in the compressor includes a pulley that is rotated by power from the engine, a transmission member that is rotated by the pulley, and a hub that is coupled to the transmission member. A plurality of projecting portions provided at intervals in the direction are opposed to each other in the circumferential direction, and a block-shaped cushioning rubber is interposed between each projecting portion of the pulley and each projecting portion of the transmission member. The rotational force of the pulley is transmitted to the transmission member via the power transmission, and if a torque of a predetermined magnitude or more is generated between the pulley and the transmission member, the transmission of power is interrupted by breaking a part of the transmission member. What was made to do is known (for example, refer patent document 1).
JP 2002-54711 A

ところで、前記動力伝達装置では、プーリと伝動部材との間に回転変動が生ずると、各突出部間の緩衝ゴムが圧縮方向に弾性変形し、回転変動による衝撃が吸収されるようになっているが、緩衝ゴムは永久歪みを少なくするために硬度の高いゴム材料を用いる必要があるため、回転変動に対する十分な減衰効果を得ることができない。このため、回転変動による荷重が伝動部材に繰り返し加わることにより、伝動部材の破断強度が疲労により低下して所定のトルクよりも低いトルクで破断を生じ易くなり、トルクリミッタとしての機能を長期間に亘って正常に維持することができないという問題点があった。   By the way, in the power transmission device, when a rotational fluctuation occurs between the pulley and the transmission member, the buffer rubber between the projecting portions is elastically deformed in the compression direction, and an impact due to the rotational fluctuation is absorbed. However, since it is necessary to use a rubber material having high hardness in order to reduce permanent set, the buffer rubber cannot obtain a sufficient damping effect against rotational fluctuation. For this reason, when a load due to rotational fluctuation is repeatedly applied to the transmission member, the rupture strength of the transmission member is reduced due to fatigue, and breakage is likely to occur at a torque lower than a predetermined torque, and the function as a torque limiter is extended for a long period of time. There was a problem that it could not be maintained normally.

本発明は前記問題点に鑑みてなされたものであり、その目的とするところは、緩衝部材の永久歪みを生ずることがなく、しかも緩衝部材によって回転変動に対する十分な減衰効果を得ることのできる動力伝達装置を提供することにある。   The present invention has been made in view of the above problems, and an object of the present invention is to provide a power that does not cause permanent deformation of the shock-absorbing member and that can obtain a sufficient damping effect against rotational fluctuation by the shock-absorbing member. It is to provide a transmission device.

本発明は前記目的を達成するために、外部からの動力によって回転する駆動側回転体と、駆動側回転体によって回転する従動側回転体とを備え、駆動側回転体及び従動側回転体のそれぞれに周方向に間隔をおいて設けた複数の突出部を互いに周方向に対向させるとともに、駆動側回転体の各突出部と従動側回転体の各突出部との間にそれぞれ各回転体の周方向に弾性変形可能な複数の緩衝部材を介在させ、各緩衝部材を介して駆動側回転体の回転力を従動側回転体に伝達するとともに、駆動側回転体と従動側回転体との間に所定の大きさ以上のトルクが生ずると、従動側回転体の一部の部材を破断させて動力の伝達を遮断するようにした動力伝達装置において、前記各緩衝部材を、各突出部を各回転体の周方向に付勢するバネ部材と、バネ部材の圧縮方向の変形に減衰力を付与するゴム部材とから形成している。   In order to achieve the above-mentioned object, the present invention includes a driving side rotating body that rotates by external power and a driven side rotating body that rotates by the driving side rotating body, each of the driving side rotating body and the driven side rotating body. A plurality of projecting portions provided at intervals in the circumferential direction are opposed to each other in the circumferential direction, and the circumference of each rotating body is between each projecting portion of the driving side rotating body and each projecting portion of the driven side rotating body. A plurality of buffer members that can be elastically deformed in the direction are interposed, and the rotational force of the driving side rotating body is transmitted to the driven side rotating body via each buffer member, and between the driving side rotating body and the driven side rotating body. In a power transmission device in which when a torque of a predetermined magnitude or more occurs, a part of the driven-side rotator is broken to interrupt power transmission, each of the buffer members and each of the protrusions is rotated. A spring member that urges the body in the circumferential direction, and a spring portion The variations in the compressing direction is formed from a rubber member for applying a damping force.

これにより、駆動側回転体と従動側回転体との間に回転変動が生ずると、各突出部間の緩衝部材がそれぞれ圧縮方向に弾性変形し、回転変動による衝撃が吸収される。その際、緩衝部材の圧縮変形がバネ部材の弾性によって吸収されるとともに、バネ部材の圧縮変形にゴム部材の弾性による減衰力が付与されることから、ゴム部材の硬度を低くしても緩衝部材の永久歪みをバネ部材によって防止することができる。   As a result, when a variation in rotation occurs between the driving-side rotator and the driven-side rotator, the buffer members between the protrusions are elastically deformed in the compression direction, and the impact due to the variation in rotation is absorbed. At this time, the compression deformation of the buffer member is absorbed by the elasticity of the spring member, and a damping force is applied to the compression deformation of the spring member by the elasticity of the rubber member. Can be prevented by the spring member.

本発明の動力伝達装置によれば、ゴム部材の硬度を低くしても緩衝部材の永久歪みをバネ部材によって防止することができるので、ゴム部材による減衰効果を高めることができる。これにより、回転変動による荷重が繰り返し加わっても、ゴム部材の減衰効果により、従動側回転体の破断強度が疲労により低下することがなく、従動側回転体の一部の部材を常に所定のトルクに達したときのみ破断させることができる。従って、回転変動による有害な振動や騒音の発生を確実に防止することができるとともに、トルクリミッタとしての機能を長期間に亘って正常に維持することができ、信頼性の向上を図ることができる。   According to the power transmission device of the present invention, even if the hardness of the rubber member is lowered, permanent deformation of the buffer member can be prevented by the spring member, so that the damping effect by the rubber member can be enhanced. As a result, even when a load due to rotational fluctuation is repeatedly applied, the breaking strength of the driven side rotating body does not decrease due to fatigue due to the damping effect of the rubber member, and some members of the driven side rotating body are always subjected to a predetermined torque. It can be broken only when Therefore, it is possible to reliably prevent generation of harmful vibrations and noise due to rotational fluctuations, maintain the function as a torque limiter normally over a long period of time, and improve reliability. .

図1乃至図6は本発明の一実施形態を示すもので、図1は動力伝達装置の側面断面図、図2は図1のA−A線矢視方向断面図、図3は動力伝達装置の要部分解斜視図、図4は緩衝部材の正面図、図5はその斜視図、図6はその分解斜視図である。   1 to 6 show an embodiment of the present invention. FIG. 1 is a side sectional view of a power transmission device, FIG. 2 is a sectional view in the direction of arrows AA in FIG. 1, and FIG. 4 is a front view of the buffer member, FIG. 5 is a perspective view thereof, and FIG. 6 is an exploded perspective view thereof.

この動力伝達装置は、車両用空気調和装置の圧縮機に用いられ、圧縮機本体1の一端から突出する回転軸2に動力を伝達するものである。   This power transmission device is used in a compressor of a vehicle air conditioner, and transmits power to a rotating shaft 2 protruding from one end of a compressor body 1.

本実施形態の動力伝達装置は、外部からの動力によって回転する駆動側回転体としてのプーリ10と、プーリ10によって回転する従動側回転体としての伝動リング11と、プーリ10と伝動リング11との間に介在する複数の緩衝部材12と、伝動リング11と回転軸2とを連結するハブ13とを備え、プーリ10の回転力を各緩衝部材12を介して伝動リング11に伝達するようになっている。   The power transmission device of the present embodiment includes a pulley 10 as a driving side rotating body that rotates by power from the outside, a transmission ring 11 as a driven side rotating body that rotates by the pulley 10, and a pulley 10 and a transmission ring 11. A plurality of buffer members 12 interposed therebetween and a hub 13 for connecting the transmission ring 11 and the rotary shaft 2 are provided, and the rotational force of the pulley 10 is transmitted to the transmission ring 11 via the buffer members 12. ing.

プーリ10は外周面に図示しないVベルトが巻き掛けられるようになっており、その内周面と圧縮機本体1との間に配置したベアリング10aを介して圧縮機本体1に回動自在に支持されている。プーリ10の一端面には伝動リング11が配置される凹部10bが設けられ、凹部10bの内周面側には互いに周方向に間隔をおいて径方向内側に向かって突出する複数の突出部10cが設けられている。   The pulley 10 is configured such that a V belt (not shown) is wound around the outer peripheral surface, and is rotatably supported by the compressor main body 1 via a bearing 10 a disposed between the inner peripheral surface and the compressor main body 1. Has been. A recess 10b in which the transmission ring 11 is disposed is provided on one end surface of the pulley 10, and a plurality of projecting portions 10c projecting radially inward from each other on the inner peripheral surface side of the recess 10b at intervals in the circumferential direction. Is provided.

伝動リング11は、プーリ10側から回転力が入力される外周部11aと、軸方向一端側からハブ13が連結される内周部11bとからなり、外周部11aと内周部11bは周方向複数箇所に設けた連結部11cを介して互いに一体に形成されている。外周部11aには互いに周方向に間隔をおいて径方向外側に向かって突出する複数の突出部11dが設けられ、各突出部11dはプーリ10の各突出部10cと周方向に間隔をおいて一つずつ交互に配置されている。各連結部11cはその一部が幅方向にくびれるように形成されており、外周部11aと内周部11bとの間に所定の大きさ以上のトルクが生ずると破断するようになっている。この場合、トルクの大きさに対する各連結部11cの破断精度を高めるため、伝動リング11には低破壊強度を有する材料を用いることが好ましい。また、伝動リング11の他端側はカバー部材14によって覆われている。   The transmission ring 11 includes an outer peripheral portion 11a to which a rotational force is input from the pulley 10 side, and an inner peripheral portion 11b to which the hub 13 is connected from one axial end side. The outer peripheral portion 11a and the inner peripheral portion 11b are in the circumferential direction. They are integrally formed with each other via connecting portions 11c provided at a plurality of locations. The outer peripheral portion 11a is provided with a plurality of protruding portions 11d protruding radially outward at intervals in the circumferential direction, and each protruding portion 11d is spaced apart from each protruding portion 10c of the pulley 10 in the circumferential direction. They are alternately arranged one by one. Each of the connecting portions 11c is formed so that a part thereof is narrowed in the width direction, and is broken when a torque of a predetermined magnitude or more is generated between the outer peripheral portion 11a and the inner peripheral portion 11b. In this case, in order to increase the breaking accuracy of each connecting portion 11c with respect to the magnitude of torque, it is preferable to use a material having a low breaking strength for the transmission ring 11. Further, the other end side of the transmission ring 11 is covered with a cover member 14.

各緩衝部材12はそれぞれプーリ10の突出部10cと伝動リング11の突出部11dとの間に配置され、プーリ10及び伝動リング11の周方向に弾性変形可能に形成されている。緩衝部材12は、各突出部10c,11dを周方向外側に付勢するバネ部材12aと、バネ部材12aの圧縮方向の変形に減衰力を付与するゴム部材12bとからなる。バネ部材12aはプーリ10及び伝動リング11の径方向に交互に屈曲するように形成され、その両端は各突出部10c,11dにそれぞれ当接するようになっている。ゴム部材12bは、プーリ10の凹部10bの内周面及び伝動リング11の外周部11aに沿って湾曲する底面部12cと、底面部12c上に一体に形成された複数のブロック部12dとからなり、各ブロック部12dはバネ部材12aの屈曲部の間にそれぞれ介在するようになっている。即ち、バネ部材12aは各ブロック部12d間の隙間12eに嵌合されており、緩衝部材12がプーリ10及び伝動リング11の周方向に圧縮されると、バネ部材12aと共にゴム部材12bの各ブロック部12dが弾性変形するようになっている。   Each buffer member 12 is disposed between the protruding portion 10 c of the pulley 10 and the protruding portion 11 d of the transmission ring 11, and is formed to be elastically deformable in the circumferential direction of the pulley 10 and the transmission ring 11. The buffer member 12 includes a spring member 12a that urges the protrusions 10c and 11d outward in the circumferential direction, and a rubber member 12b that applies a damping force to the deformation of the spring member 12a in the compression direction. The spring member 12a is formed to bend alternately in the radial direction of the pulley 10 and the transmission ring 11, and both ends thereof are in contact with the projecting portions 10c and 11d, respectively. The rubber member 12b includes a bottom surface portion 12c that curves along the inner peripheral surface of the recess 10b of the pulley 10 and the outer peripheral portion 11a of the transmission ring 11, and a plurality of block portions 12d that are integrally formed on the bottom surface portion 12c. Each block portion 12d is interposed between the bent portions of the spring member 12a. That is, the spring member 12a is fitted in the gap 12e between the block portions 12d, and when the buffer member 12 is compressed in the circumferential direction of the pulley 10 and the transmission ring 11, each block of the rubber member 12b together with the spring member 12a. The portion 12d is elastically deformed.

ハブ13は円板状に形成され、伝動リング11の内周部11bに連結されている。ハブ13の一端側には圧縮機の回転軸2が連結される連結部13aが設けられ、回転軸2はハブ13の他端側から螺合するナット13bによって連結部13aに締結されている。   The hub 13 is formed in a disk shape and is connected to the inner peripheral portion 11 b of the transmission ring 11. One end of the hub 13 is provided with a connecting portion 13a to which the rotary shaft 2 of the compressor is connected. The rotary shaft 2 is fastened to the connecting portion 13a by a nut 13b that is screwed from the other end of the hub 13.

以上のように構成された動力伝達装置においては、エンジンの動力がプーリ10に入力されると、プーリ10と一体に伝動リング11が回転する。その際、プーリ10の回転力は各緩衝部材12を介して伝動リング11に伝達される。ここで、例えば圧縮機の焼付きなどにより、プーリ10側に過大な回転負荷が加わると、伝動リング11の各連結部11cが破断し、プーリ10から圧縮機の回転軸2への動力の伝達が遮断される。   In the power transmission device configured as described above, when engine power is input to the pulley 10, the transmission ring 11 rotates integrally with the pulley 10. At that time, the rotational force of the pulley 10 is transmitted to the transmission ring 11 via each buffer member 12. Here, if an excessive rotational load is applied to the pulley 10 due to, for example, seizure of the compressor, each connecting portion 11c of the transmission ring 11 is broken, and power is transmitted from the pulley 10 to the rotary shaft 2 of the compressor. Is cut off.

また、正常な回転動作において、プーリ10と伝動部材11との間に回転変動が生ずると、各突出部10c,11d間の緩衝部材12がそれぞれ圧縮方向に弾性変形し、回転変動による衝撃が吸収される。その際、緩衝部材12の圧縮変形がバネ部材12aの弾性によって吸収されるとともに、バネ部材12aの圧縮変形にゴム部材12bの弾性による減衰力が付与される。   Further, in a normal rotational operation, when a rotational fluctuation occurs between the pulley 10 and the transmission member 11, the buffer member 12 between the protrusions 10c and 11d is elastically deformed in the compression direction, and the shock due to the rotational fluctuation is absorbed. Is done. At this time, the compression deformation of the buffer member 12 is absorbed by the elasticity of the spring member 12a, and a damping force due to the elasticity of the rubber member 12b is applied to the compression deformation of the spring member 12a.

ところで、エンジンによって回転する所定部品(プーリ10または圧縮機側の回転部品)の固有振動数をfn [Hz]、エンジンの振動数をf[Hz]とすると、エンジンの振動数fが固有振動数fn と等しくなった場合、共振が起きて振動が大きくなる。ここで、アイドリング時のエンジンの回転数を700[rpm] とすると、エンジンの一回転当たりの爆発回数が2回(2次)の場合、エンジンの振動数fは23.3[Hz]となる。一方、各緩衝部材12のバネ定数をk[kgf・m/rad] 、各緩衝部材12と共に回転する所定部品の慣性質量をm[kg・m2] とすると、前記固有振動数fn は以下の式(1) によって求まる。 By the way, if the natural frequency of a predetermined part (pulley 10 or a rotating part on the compressor side) rotated by the engine is fn [Hz] and the engine frequency is f [Hz], the engine frequency f is the natural frequency. When it becomes equal to fn, resonance occurs and vibration increases. Here, assuming that the engine speed at idling is 700 [rpm], the engine frequency f is 23.3 [Hz] when the number of explosions per engine revolution is two (secondary). . On the other hand, if the spring constant of each buffer member 12 is k [kgf · m / rad] and the inertial mass of a predetermined part rotating together with each buffer member 12 is m [kg · m 2 ], the natural frequency fn is It can be obtained from equation (1).

fn =1/2π・(k/m)1/2 …(1)
このとき、減衰が開始されるための条件は一般にf/fn>21/2であるから、アイドリング時のエンジンの回転数以上で共振を生じないためには、固有振動数fn が以下の式(2) の条件を満たす必要がある。
fn = 1 / 2π · (k / m) 1/2 (1)
At this time, since the condition for starting the damping is generally f / fn> 2 1/2 , the natural frequency fn is expressed by the following equation in order to prevent resonance above the engine speed at idling. The condition (2) must be satisfied.

fn <f/21/2 …(2)
この場合、f=23.3[Hz]であるから、
fn <16.5[Hz] …(3)
となる。従って、式(1) 及び式(3) より、固有振動数fn が16.5[Hz]よりも小さくなるように各緩衝部材12のバネ定数kを設定すれば、エンジンによって回転する前記所定部品がアイドリング時のエンジンの回転数以上で共振を生ずることがない。
fn <f / 2 1/2 (2)
In this case, since f = 23.3 [Hz],
fn <16.5 [Hz] (3)
It becomes. Therefore, from the equations (1) and (3), if the spring constant k of each buffer member 12 is set so that the natural frequency fn is smaller than 16.5 [Hz], the predetermined component that is rotated by the engine. However, resonance does not occur when the engine speed exceeds the idling speed.

このように、本実施形態の動力伝達装置によれば、緩衝部材12をバネ部材12aとゴム部材12bとから形成し、緩衝部材12の圧縮変形をバネ部材12aの弾性によって吸収するとともに、バネ部材12aの圧縮変形にゴム部材12bの弾性による減衰力を付与するようにしたので、ゴム部材12bの硬度を低くしても緩衝部材12の永久歪みをバネ部材12aによって防止することができ、ゴム部材12bによる減衰効果を高めることができる。これにより、回転変動による荷重が繰り返し加わっても、ゴム部材12bの減衰効果により、伝動リング11の各連結部11cの破断強度が疲労により低下することがなく、各連結部11cを常に所定のトルクに達したときのみ破断させることができる。従って、回転変動による有害な振動や騒音の発生を確実に防止することができるとともに、トルクリミッタとしての各連結部11cの機能を長期間に亘って正常に維持することができ、信頼性の向上を図ることができる。   As described above, according to the power transmission device of this embodiment, the buffer member 12 is formed of the spring member 12a and the rubber member 12b, and the compression deformation of the buffer member 12 is absorbed by the elasticity of the spring member 12a. Since the damping force due to the elasticity of the rubber member 12b is applied to the compression deformation of the rubber member 12a, the spring member 12a can prevent permanent deformation of the buffer member 12 even if the hardness of the rubber member 12b is lowered. The attenuation effect by 12b can be heightened. As a result, even if a load due to rotational fluctuation is repeatedly applied, due to the damping effect of the rubber member 12b, the breaking strength of each connecting portion 11c of the transmission ring 11 does not decrease due to fatigue, and each connecting portion 11c is always subjected to a predetermined torque. It can be broken only when Accordingly, it is possible to reliably prevent the generation of harmful vibrations and noise due to rotational fluctuations, and to maintain the function of each connecting portion 11c as a torque limiter normally over a long period of time, thereby improving reliability. Can be achieved.

また、バネ部材12aをプーリ10及び伝動リング11の径方向に交互に屈曲するように形成し、ゴム部材12bをバネ部材12aの屈曲部の間に介在させるようにしたので、バネ部材12aの屈曲によってゴム部材12bを確実に弾性変形させることができ、減衰性の高い緩衝部材12を形成することができる。   Further, since the spring member 12a is formed to bend alternately in the radial direction of the pulley 10 and the transmission ring 11, and the rubber member 12b is interposed between the bent portions of the spring member 12a, the spring member 12a is bent. Thus, the rubber member 12b can be reliably elastically deformed, and the shock-absorbing member 12 with high attenuation can be formed.

この場合、ゴム部材12bに複数のブロック部12dを形成し、バネ部材12aを各ブロック部12dの隙間12eに嵌合するようにしたので、バネ部材12aをゴム部材12bに一体に組付けることができ、他の部品との組立作業を極めて容易に行うことができる。   In this case, since the plurality of block portions 12d are formed in the rubber member 12b and the spring member 12a is fitted into the gap 12e of each block portion 12d, the spring member 12a can be assembled integrally with the rubber member 12b. And the assembly work with other parts can be performed very easily.

また、各緩衝部材12を、エンジンによって各緩衝部材12と共に回転する所定部品の固有振動数fn が16.5[Hz]よりも小さくなるように形成したので、回転部品がアイドリング時のエンジンの回転数以上で共振を生ずることがなく、共振による過大な振動の発生を確実に防止することができる。   Further, since each buffer member 12 is formed so that the natural frequency fn of a predetermined component that rotates together with each buffer member 12 by the engine is smaller than 16.5 [Hz], the rotation of the engine when the rotating component is idling. Resonance does not occur when the number is more than a few, and excessive vibration due to resonance can be reliably prevented.

尚、前記実施形態ではゴム部材12bの各ブロック部12dを底面部12cと一体に形成したものを示したが、バネ部材12aの屈曲部の間に配置される複数のゴム部材を互いに別体に形成するようにしてもよい。   In the above embodiment, the block portions 12d of the rubber member 12b are formed integrally with the bottom surface portion 12c. However, a plurality of rubber members arranged between the bent portions of the spring member 12a are separated from each other. You may make it form.

図7乃至11は本発明の他の実施形態を示すもので、図7は図1のA−A線矢視方向断面図、図8は緩衝部材の正面図、図9はその平面図、図10はその斜視図、図11はその分解斜視図である。尚、前記実施形態と同等の構成部分には同一の符号を付して示す。   7 to 11 show another embodiment of the present invention. FIG. 7 is a cross-sectional view taken along line AA in FIG. 1, FIG. 8 is a front view of the buffer member, FIG. 9 is a plan view thereof, FIG. 10 is a perspective view thereof, and FIG. 11 is an exploded perspective view thereof. In addition, the same code | symbol is attached | subjected and shown to the component equivalent to the said embodiment.

同図に示す緩衝部材15は、それぞれプーリ10の突出部10cと伝動リング11の突出部11dとの間に配置され、プーリ10及び伝動リング11の周方向に弾性変形可能に形成されている。緩衝部材15は、各突出部10c,11dを周方向外側に付勢するバネ部材15aと、バネ部材15aの圧縮方向の変形に減衰力を付与するゴム部材15bとからなる。バネ部材15aは両端側にそれぞれ円形に屈曲する屈曲部15cを有し、その両端は各突出部10c,11dにそれぞれ当接するようになっている。即ち、バネ部材15aは、各突出部10c,11d間でプーリ10及び伝動リング11の周方向に圧縮力を受けると、図9に示すように各屈曲部15cが径方向内側に向かって弾性変形するようになっている。ゴム部材15bはプーリ10の凹部10bの内周面及び伝動リング11の外周部11aに沿って湾曲する底面部15dと、底面部15dの両端側に形成された円柱状の一対のブロック部15eとからなり、各ブロック部15eはバネ部材15aの各屈曲部15cの内側にそれぞれ配置されている。即ち、バネ部材15aの各屈曲部15cは各ブロック部15eにそれぞれ嵌合されており、緩衝部材15がプーリ10及び伝動リング11の周方向に圧縮されると、バネ部材15aの各屈曲部15cと共にゴム部材15bの各ブロック部15eが径方向内側に向かって弾性変形するようになっている。   The buffer member 15 shown in the figure is disposed between the protruding portion 10 c of the pulley 10 and the protruding portion 11 d of the transmission ring 11, and is formed so as to be elastically deformable in the circumferential direction of the pulley 10 and the transmission ring 11. The buffer member 15 includes a spring member 15a that urges the protrusions 10c and 11d outward in the circumferential direction, and a rubber member 15b that applies a damping force to deformation of the spring member 15a in the compression direction. The spring member 15a has bent portions 15c that are bent in a circular shape on both ends, and both ends thereof are in contact with the protruding portions 10c and 11d, respectively. That is, when the spring member 15a receives a compressive force in the circumferential direction of the pulley 10 and the transmission ring 11 between the protrusions 10c and 11d, the bent portions 15c are elastically deformed radially inward as shown in FIG. It is supposed to be. The rubber member 15b includes a bottom surface portion 15d that curves along the inner peripheral surface of the recess 10b of the pulley 10 and the outer peripheral portion 11a of the transmission ring 11, and a pair of columnar block portions 15e formed on both ends of the bottom surface portion 15d. Each block portion 15e is disposed inside each bent portion 15c of the spring member 15a. That is, each bent portion 15c of the spring member 15a is fitted to each block portion 15e, and when the buffer member 15 is compressed in the circumferential direction of the pulley 10 and the transmission ring 11, each bent portion 15c of the spring member 15a. At the same time, each block portion 15e of the rubber member 15b is elastically deformed radially inward.

本実施形態によれば、プーリ10と伝動部材11との間に回転変動が生ずると、各突出部10c,11d間の緩衝部材15がそれぞれ圧縮方向に弾性変形し、回転変動による衝撃が吸収される。その際、緩衝部材15の圧縮変形がバネ部材15aの弾性によって吸収されるとともに、バネ部材15aの圧縮変形にゴム部材15bの弾性による減衰力が付与される。従って、前記実施形態と同様、ゴム部材15bの硬度を低くしても緩衝部材15の永久歪みをバネ部材15aによって防止することができ、ゴム部材15bによる減衰効果を高めることができる。   According to the present embodiment, when a rotational fluctuation occurs between the pulley 10 and the transmission member 11, the buffer member 15 between the projecting portions 10c and 11d is elastically deformed in the compression direction, and the shock due to the rotational fluctuation is absorbed. The At that time, the compression deformation of the buffer member 15 is absorbed by the elasticity of the spring member 15a, and a damping force by the elasticity of the rubber member 15b is applied to the compression deformation of the spring member 15a. Therefore, as in the above-described embodiment, even if the hardness of the rubber member 15b is lowered, permanent deformation of the buffer member 15 can be prevented by the spring member 15a, and the damping effect by the rubber member 15b can be enhanced.

また、バネ部材15aを両端側が円形に屈曲するように形成し、その屈曲部15c内にゴム部材の各ブロック部15eをそれぞれ配置するようにしたので、屈曲部15cの径方向内側への収縮によりゴム部材15bの各ブロック部15eを確実に弾性変形させることができ、減衰性の高い緩衝部材15を形成することができる。   Further, the spring member 15a is formed so that both end sides thereof are bent in a circular shape, and each block portion 15e of the rubber member is disposed in the bent portion 15c, so that the bent portion 15c is contracted inward in the radial direction. Each block portion 15e of the rubber member 15b can be reliably elastically deformed, and the buffer member 15 with high attenuation can be formed.

この場合、ゴム部材15bに一対のブロック部15eを形成し、バネ部材15aを各ブロック部15eに嵌合するようにしたので、バネ部材15aをゴム部材15bに一体に組付けることができ、他の部品との組立作業を極めて容易に行うことができる。   In this case, since the pair of block portions 15e are formed in the rubber member 15b and the spring member 15a is fitted to each block portion 15e, the spring member 15a can be assembled integrally with the rubber member 15b. Assembling work with these parts can be performed very easily.

尚、前記実施形態ではゴム部材15bの各ブロック部15eを底面部15dと一体に形成したものを示したが、バネ部材15aの屈曲部15cの内側に配置される一対のゴム部材を互いに別体に形成するようにしてもよい。   In the above embodiment, the block portions 15e of the rubber member 15b are integrally formed with the bottom surface portion 15d. However, the pair of rubber members disposed inside the bent portion 15c of the spring member 15a are separated from each other. You may make it form in.

また、前記実施形態においても、各緩衝部材15を、エンジンによって各緩衝部材15と共に回転する所定部品の固有振動数fn が16.5[Hz]よりも小さくなるように形成することにより、回転部品の共振を防止することができる。   Also in the above-described embodiment, each buffer member 15 is formed such that the natural frequency fn of a predetermined component that rotates together with each buffer member 15 by the engine is smaller than 16.5 [Hz]. Can be prevented.

本発明の一実施形態を示す動力伝達装置の側面断面図Side surface sectional drawing of the power transmission device which shows one Embodiment of this invention 図1のA−A線矢視方向断面図AA arrow direction sectional view of FIG. 動力伝達装置の要部分解斜視図Main part exploded perspective view of power transmission device 緩衝部材の正面図Front view of cushioning member 緩衝部材の斜視図Perspective view of buffer member 緩衝部材の分解斜視図Exploded perspective view of buffer member 本発明の他の実施形態を示す図1のA−A線矢視方向断面図FIG. 1 is a cross-sectional view taken along line AA in FIG. 1 showing another embodiment of the present invention. 緩衝部材の正面図Front view of cushioning member 緩衝部材の平面図Top view of cushioning member 緩衝部材の斜視図Perspective view of buffer member 緩衝部材の分解斜視図Exploded perspective view of buffer member

符号の説明Explanation of symbols

10…プーリ、10c…突出部、11…伝動リング、11c…連結部、11a…突出部、12…緩衝部材、12a…バネ部材、12b…ゴム部材、15…緩衝部材、15a…バネ部材、15b…ゴム部材。   DESCRIPTION OF SYMBOLS 10 ... Pulley, 10c ... Projection part, 11 ... Transmission ring, 11c ... Connection part, 11a ... Projection part, 12 ... Buffer member, 12a ... Spring member, 12b ... Rubber member, 15 ... Buffer member, 15a ... Spring member, 15b ... rubber member.

Claims (5)

外部からの動力によって回転する駆動側回転体と、駆動側回転体によって回転する従動側回転体とを備え、駆動側回転体及び従動側回転体のそれぞれに周方向に間隔をおいて設けた複数の突出部を互いに周方向に対向させるとともに、駆動側回転体の各突出部と従動側回転体の各突出部との間にそれぞれ各回転体の周方向に弾性変形可能な複数の緩衝部材を介在させ、各緩衝部材を介して駆動側回転体の回転力を従動側回転体に伝達するとともに、駆動側回転体と従動側回転体との間に所定の大きさ以上のトルクが生ずると、従動側回転体の一部の部材を破断させて動力の伝達を遮断するようにした動力伝達装置において、
前記各緩衝部材を、各突出部を各回転体の周方向に付勢するバネ部材と、バネ部材の圧縮方向の変形に減衰力を付与するゴム部材とから形成した
ことを特徴とする動力伝達装置。
A plurality of drive-side rotators that are rotated by power from the outside and driven-side rotators that are rotated by the drive-side rotator, and are provided at intervals in the circumferential direction on each of the drive-side rotator and the driven-side rotator. A plurality of cushioning members that are elastically deformable in the circumferential direction of each rotating body between each projecting part of the driving side rotating body and each projecting part of the driven side rotating body. When the torque of a predetermined magnitude or more is generated between the driving side rotating body and the driven side rotating body while transmitting the rotational force of the driving side rotating body to the driven side rotating body via each buffer member, In the power transmission device in which a part of the driven-side rotator is broken to interrupt the transmission of power,
Each of the buffer members is formed of a spring member that urges each protrusion in the circumferential direction of each rotating body, and a rubber member that applies a damping force to deformation of the spring member in the compression direction. apparatus.
前記バネ部材を各回転体の径方向に交互に屈曲するように形成し、ゴム部材を少なくとも一部がバネ部材の屈曲部の間に介在するように形成した
ことを特徴とする請求項1記載の動力伝達装置。
The said spring member is formed so that it may bend alternately in the radial direction of each rotary body, The rubber member was formed so that at least one part might interpose between the bending parts of a spring member. Power transmission device.
前記バネ部材を各回転体の周方向の少なくとも一端側が円形に屈曲するように形成し、ゴム部材を少なくとも一部がバネ部材の円形屈曲部の内側に配置されるように形成した
ことを特徴とする請求項1記載の動力伝達装置。
The spring member is formed such that at least one end side in the circumferential direction of each rotating body is bent in a circle, and the rubber member is formed so that at least a part thereof is disposed inside the circular bent portion of the spring member. The power transmission device according to claim 1.
前記バネ部材とゴム部材とを互いに嵌合可能に形成した
ことを特徴とする請求項1、2または3記載の動力伝達装置。
The power transmission device according to claim 1, wherein the spring member and the rubber member are formed so as to be fitted to each other.
前記各緩衝部材を、外部からの動力によって各緩衝部材と共に回転する所定部品の固有振動数が16.5Hzよりも小さくなるように形成した
ことを特徴とする請求項1、2、3または4記載の動力伝達装置。
The said buffer member was formed so that the natural frequency of the predetermined component which rotates with each buffer member with the power from the outside might become smaller than 16.5Hz. Power transmission device.
JP2005176483A 2005-06-16 2005-06-16 Power transmission device Pending JP2006349057A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005176483A JP2006349057A (en) 2005-06-16 2005-06-16 Power transmission device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005176483A JP2006349057A (en) 2005-06-16 2005-06-16 Power transmission device

Publications (1)

Publication Number Publication Date
JP2006349057A true JP2006349057A (en) 2006-12-28

Family

ID=37645132

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005176483A Pending JP2006349057A (en) 2005-06-16 2005-06-16 Power transmission device

Country Status (1)

Country Link
JP (1) JP2006349057A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158002A (en) * 2010-01-29 2011-08-18 Denso Corp Electromagnetic clutch
JP2018132105A (en) * 2017-02-14 2018-08-23 株式会社デンソー Power transmission device
JP2021025562A (en) * 2019-08-02 2021-02-22 Nok株式会社 Coupling

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011158002A (en) * 2010-01-29 2011-08-18 Denso Corp Electromagnetic clutch
JP2018132105A (en) * 2017-02-14 2018-08-23 株式会社デンソー Power transmission device
JP2021025562A (en) * 2019-08-02 2021-02-22 Nok株式会社 Coupling

Similar Documents

Publication Publication Date Title
JP3578687B2 (en) A device for transmitting torque from an internal combustion engine to a compressor
CN107676428B (en) Balancing device for internal combustion engine
KR20140069295A (en) Torsional oscillation damping device
US6705181B2 (en) Torque transmission apparatus
JP2005054845A (en) Damper mechanism for lock-up device
JP2006349057A (en) Power transmission device
CN108730408B (en) Torsional vibration reducing device
CA2473913C (en) Shaft damper
AU2003212807A1 (en) Shaft damper
JP4298574B2 (en) Power transmission device
JP2006234116A (en) Pulley
JP2002227871A (en) Damping device for flexible coupling
JP2006090528A (en) Vibration control device for rotary shaft
JP4476197B2 (en) Power transmission device
KR200267231Y1 (en) Damper-pulley for automobile
JP2001221259A (en) Coupling
JP2002147487A (en) Torque transmission device
JP2005273816A (en) Power transmitting device
JP5708528B2 (en) Torsional vibration damping device
JP2006090530A (en) Vibration control device for rotary shaft
JP2005249037A (en) Power transmission device
EP3369963B1 (en) Torsional vibration damper for automotive applications
KR102126283B1 (en) Belt Mounting Structure
WO2012008136A1 (en) Power transmission device
JP2005299856A (en) Power transmitting apparatus