JP2004200392A - Manufacturing method of multilayer printed circuit board - Google Patents

Manufacturing method of multilayer printed circuit board Download PDF

Info

Publication number
JP2004200392A
JP2004200392A JP2002366890A JP2002366890A JP2004200392A JP 2004200392 A JP2004200392 A JP 2004200392A JP 2002366890 A JP2002366890 A JP 2002366890A JP 2002366890 A JP2002366890 A JP 2002366890A JP 2004200392 A JP2004200392 A JP 2004200392A
Authority
JP
Japan
Prior art keywords
board
multilayer
forming
hole
conductor circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002366890A
Other languages
Japanese (ja)
Inventor
Hiroaki Kobayashi
博明 小林
Naotaka Nakamura
直孝 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AIREX Inc
Original Assignee
AIREX Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AIREX Inc filed Critical AIREX Inc
Priority to JP2002366890A priority Critical patent/JP2004200392A/en
Publication of JP2004200392A publication Critical patent/JP2004200392A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide the manufacturing method of a multilayer printed circuit board capable of obtaining a multilayer printed circuit board, capable of easily forming a recess for mounting a component, and capable of utilizing a conventional manufacturing facility while retaining high working efficiency and stabilized quality. <P>SOLUTION: The manufacturing method of the multilayer printed circuit board comprises a process for forming a multilayer board 14 by laminating a base substrate 1, an insulating substrate 10 having an opening 11 and a circuit substrate 13 having a conductor circuit 5, a process for forming a conductive via-hole 3 on one side of the multilayer board 14 as well as a through hole 15 on a place except a hollow section to apply through hole plating 151, a process for forming an outer layer conductor circuit 54 on the surface of the multilayer board 14, a process for forming a recess 17 by cutting one side of the multilayer board 14, and a process for applying plating on the outer layer conductor circuit 54. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明が属する技術分野】
本発明は、部品実装用の凹部を有し、半導体チップ、抵抗素子、コンデンサ素子、コイル素子、センサー素子等の電子部品の搭載が容易となる多層プリント配線板の製造方法に関する。
【0002】
【従来の技術】
従来、複数枚のプリント配線板を積層して多層配線板と成した後、ザグリ加工により凹部を形成し、該凹部に電子部品を搭載する多層プリント配線板が知られている。
しかしながら、上記従来の多層プリント配線板は、複数枚のプリント配線板を積層した後、ザグリ加工によって凹部を形成するものであるから、部品を搭載する側の回路を変形させたり、傷つける恐れがあり、高い精度でザグリ加工を施すことが困難であるという問題があった。
この問題を解決するために、ザグリ加工を省略して凹部を形成する方法が提案されており、例えば特開平9−321437号公報には、開口部を有するプリント配線板を複数枚積層して凹部を形成する方法が開示されている。
しかしながら、この方法においても回路形成したプリント配線板を切削加工して開口部を形成するために、回路を傷つけることなく加工することは困難であるという問題があった。
【文献名】
特開平 9−321437号公報
【0003】
【発明が解決しようとする課題】
本発明は、部品搭載用凹部を容易に形成することができるとともに、従来の製造設備を利用することができ、作業効率が高く、且つ安定した品質の多層プリント配線板を得ることができる多層プリント配線板の製造方法を提供することを目的とする。
【0004】
【課題を解決するための手段】
本発明は、上記課題を解決するために、請求項1の発明において、
A.一方の外層に導体回路を有し、他方に導電材を有する単位基板を2層以上重ねて成る基礎基板と、
開口部を有し、両側に接着層を有する絶縁基板と、
両側に導体回路を有する回路基板とを積層して多層板を形成する工程と、
B.該多層板の一方の側に導通バイヤホールを形成し、中空部以外の箇所にスルーホールを形成し、該スルーホールにメッキを施す工程と、
C.前記多層板の表面に外層導体回路を形成する工程と、
D.前記多層板の片側を切削し、凹部を形成する工程と、
E.外層導体回路にメッキを施す工程
とから成る多層プリント配線板の製造方法。
請求項2の発明において、基板がガラス布熱硬化性樹脂またはガラス不織布熱硬化性樹脂である多層プリント配線板の製造方法。
請求項3の発明において、外層導体回路に施されるメッキがニッケルメッキ及び金メッキである多層プリント配線板の製造方法。
【0005】
請求項1の工程Aにおいて、一方の外層に導体回路を有し、他方に導電材を有する単位基板を2層以上重ねた基礎基板として、両面板、多層板、インタースティシャルバイヤホール板が一般に使用されている。
また基板としては、請求項2に記載されたように、ガラス布熱硬化性樹脂またはガラス不織布熱硬化性樹脂を使用することができ、具体的にはガラス布エポキシ樹脂、ガラス不織布エポキシ樹脂、ガラス布ビスマレイミドトリアジン樹脂、アラミド不織布エポキシ樹脂がある。
【0006】
開口部を有し、両側に接着層を有する絶縁基板は、接着層材料としてエポキシ系樹脂、ポリイミド系樹脂、ビスマレイミドトリアジン系樹脂、アクリレート系樹脂を使用し、絶縁基板の両側に接着層材料から成る接着剤を塗布したり、或いは絶縁基板の両側に接着層材料から成る接着シートをラミネートし、加熱して固化させた後、プレス加工又はルータ加工により開口部を形成して製造される。
接着層を有する絶縁基板は、導体回路を有していないから、プレス加工又はルータ加工により開口部を形成するに際して導体回路を傷つける恐れがなく、効率よく作業することができる。
【0007】
外層に導体回路を有する回路基板として、一般に使用されている導体回路が形成された両面板、多層板を使用する。
この結果、(1)一方の外層に導体回路を有し、他方に導電材を有する単位基板を2層以上重ねた基礎基板と、(2)開口部を有し、両側に接着層を有する絶縁基板と、(3)外層に導体回路を有する回路基板とを積層し、真空プレス機により加熱加圧して多層板を形成する。
これにより、絶縁基板の有する開口部が、基礎基板と回路基板との間に中空部を形成する。
【0008】
次に工程Bにおいて、多層板の導電材側にレーザ加工、又はドリル加工で穴明けしてバイヤホールを形成し、次いで中空部以外の箇所に孔明け加工してスルーホールを形成し、パネルメッキ法によりメッキを施して導通バイヤホールを形成するとともに、スルーホールにメッキを施す。
【0009】
工程Cにおいて、多層板の両面に、エッチングレジストとしてドライフィルムをラミネートし、露光、現像、エッチングを行なって外層導体回路を形成する。
この際、次工程Dでルータ加工で凹部を形成する部位の外側導体を除去しておくことにより、ルータ加工時のバリの発生を防止することができると同時に加熱加圧して積層するに際しエア抜き効果も期待できる。
【0010】
その後、工程Dにおいて、ルータ加工により多層板の外層部から中空部に沿って切込みを入れて開口させ、凹部を形成する。
多層板には、積層により、予め中空部が形成されているから、上下方向に高い加工精度を必要としないので、ルータ加工を採用することにより、極めて容易に且つ効率的に加工することができ、高い加工精度を得られるが、手間のかかる ザグリ加工を必要とすることはない。
【0011】
最後に、工程Eにおいて、外層導体回路に仕上げメッキとして、ニッケルメッキ並びに金メッキを施すことにより、部品実装に際して半導体チップとの接続信頼性を確保することができる。
【0012】
【発明の実施の形態】
多層プリント配線板の製造方法であって、多層板を形成する工程と、多層板に導通バイヤホール及びスルーホールを形成し、該スルーホールにメッキを施す工程と、多層板の表面に外層導体回路を形成する工程と、多層板の片側を切削し、凹部を形成する工程と、外層導体回路にメッキを施す工程とを備える。
【0013】
【実施例】
本発明の実施例を図を参照して説明する。
図2において、導通バイアホール3と第1導体回路51,第3導体回路53が設けられた第1絶縁材21と、導通バイアホール4と第2導体回路52が設けられた第2絶縁材22と、他の絶縁材に接触しない外側面に第3導電材63が設けられた第3絶縁材23とが積層されて基礎基板1が形成される。
基礎基板1としては、両面板、多層板、インタースティシャルバイヤホール板等が使用されるが本実施例では4層(第1〜3絶縁材及び導電材)から成るインタースティシャルバイヤホール板を用いている。
【0014】
このインタースティシャルバイヤホール板から成る基礎基板1の製造工程を図8及び図9を参照して説明する。
図8(イ)は、絶縁板2の両側に導電材6を積層して成る両面銅張積層板7を示すもので、絶縁板2の材料として、ガラス布エポキシ樹脂、ガラス不織布エポキシ樹脂、ガラス布ビスマレイミドトリアジン樹脂、アラミド不織布エポキシ樹脂が用いられる。
絶縁板2の板厚を0.05〜0.20mmに形成する。
【0015】
導電材6としては、銅が一般に使用されており、厚さが12〜35μmのものを使用する。
本実施例においては、導電材6に厚さ12μmの銅箔を用い、絶縁板2として板厚0.15mmの両面銅張ガラス布エポキシ樹脂板を使用している。
【0016】
図8(ロ)は、両面銅張積層板7に、ドリル径0.15〜0.30mmのドリルで孔開け加工し、貫通バイアホール8を穿設したものを示す。
次いで図8(ハ)に示すように、貫通バイアホール8にパネルメッキを施して導通バイアホール3を形成し、シリカ粒子を含有するエポキシ樹脂9で導通バイアホール3を穴埋めした後に、パネルメッキを施し、エッチングレジストのドライフィルムをラミネートし、露光、現像、エッチングを行い、一側の導電材6を除去して第1導体回路51を形成し、他側に第1導電材61を有する第1絶縁材21を形成する。
【0017】
この場合、両側に導体回路を形成することも可能であるが、次の工程で絶縁板の積層を行なうものであり、積層時に、導体回路により形成される凹凸の影響を受けないようにするため、積層後に積層板の外側となる側の第1導電材を残し、他側面にのみ導体回路を形成している。
【0018】
図9(イ)において、第1絶縁材21の第1導電材61と反対側に、第2導電材62が一側に積層された第2絶縁材22を積層する。
第2絶縁材22は、導電材が積層されていない側を、第1絶縁材21との接着面としている。
第2導電材62として厚さ12μmの銅箔を、第2絶縁材22として厚さ0.06mmのガラス布エポキシ樹脂プリプレグを積層し、加熱温度170〜200℃、圧力1〜3MPa、時間90〜150分で加熱・加圧して積層する。
【0019】
次に、第2絶縁材22において、ビヤホールを形成する位置の第2導電材62を除去し、炭酸ガスレーザ等でレーザ加工して穴開けして直径0.07〜0.15mmのバイアホールを形成し、デスミア後にパネルメッキを施し、エッチングレジストのドライフィルムをラミネートした後、露光、現像、エッチングを行って、図9(ロ)に示すように、導通バイアホール4並びに第2導体回路52を形成する。
【0020】
さらに、図9(イ)、(ロ)に示す積層方法と同様の方法で、導通バイアホール4及び第2導体回路52を覆って、第3絶縁材23と、その外側に第3導電材63を積層する〔図9(ハ)参照〕。
図9(ハ)において、ドライフィルムをラミネートし、導通バイアホール3の側(第1絶縁材21の外側)のみに第3導体回路53を形成し、さらに必要に応じて導体回路にソルダーレジスト膜(図示略)を形成して図2に示すような4層から成るインタースティシャルバイヤホール板(基礎基板1)が形成される。
【0021】
図3において、絶縁基板10は、開口部11を有し、絶縁層24の両側面に接着剤から成る接着層12が設けられている。
絶縁層24の材料として、硬化した板厚0.05〜0.4mmのガラス布エポキシ樹脂、ガラス不織布エポキシ樹脂、ガラス布ビスマレイミドトリアジン樹脂、又はアラミド不織布エポキシ樹脂を使用することができる。
【0022】
接着層12の材料としては、エポキシ系樹脂、ポリイミド系樹脂、ビスマレイミドトリアジン系樹脂、アクリレート系樹脂等が使用できる。
これら接着層12を形成する方法としては、絶縁層24にローラコート等により塗布する方法、或いは接着シートとしてラミネートし、加熱して半硬化状態として使用する方法がある。
また、接着層12の厚さは、30〜70μmが望ましい。
【0023】
本実施例では、絶縁層24として板厚0.13mmの硬化したガラス布エポキシ樹脂を使用し、接着層12として厚さ50μmのローフローエポキシ接着シートを絶縁層24の両側にラミネートし、温度140〜160℃、圧力1〜2Paで20〜30分加熱加圧して仮圧着した後ルータ加工して、10mm×10mmの開口部11を形成した。
【0024】
絶縁層24の両側に接着層12を有する絶縁基板10は、導体回路を備えていないから、ルータ加工による中空部(開口部11)の形成加工により導体パターンに損傷を与える懸念も無く、上下方向での高い位置精度を必要としないので、高い作業効率で製作できる。
【0025】
図4は、基部絶縁層25の両側外層に導体回路5が設けられた回路基板13を示すもので、外層に導体回路5が設けられた両面板又は多層板が使用できる。
絶縁基板10の開口部11に対応する位置は、エッチングにより導体を除去しておくことで、後工程での切削加工時のバリ発生を防止することができると同時に加熱加圧して積層するに際しエア抜きの効果がある。
【0026】
基部絶縁層25としてガラス布エポキシ樹脂、ガラス不織布エポキシ樹脂、ガラス布ビスマレイミドトリアジン樹脂、又はアラミド不織布エポキシ樹脂等が使用される。
本実施例では、厚さ12μmの銅箔を両面に貼付した板厚0.13mmの両面銅張ガラス布エポキシ樹脂が基部絶縁層25として用いられ、通常の方法で導体回路5が形成される。
なお、基部絶縁層25に両面板を用いたものが示されているが、多層板を使用しても良いことは勿論である。
【0027】
次いで、図5に示すように、インタースティシャルバイヤホール板から成る基礎基板1と、開口部11を備え、両側に接着層12を有する絶縁基板10と、両側に導体回路5を有する回路基板13とを積層し、その上下両面から真空プレス機により加熱しながら加圧して接着させ、多層板14を形成する。
本実施例では、加熱温度170〜190℃、加圧圧力2〜5MPaで加熱・加圧時間60〜120分で処理した。
【0028】
これにより、基礎基板1と、絶縁基板10と、回路基板13とは接着層12により相互に接着される。
なお、接着層12としてローフロータイプエポキシ樹脂を使用しているから、接着層(接着剤)12が大きく流動して導体パターンを汚すという恐れが無い。
【0029】
図6において、多層板14に導通バイヤホール41を設けるとともに、スルーホール15を穿設し、スルーホール15の内周壁及び開口縁にスルーホールメッキ151を施す。
即ち多層板14の一方の外層に炭酸ガスレーザで0.07〜0.15mm径の有底円孔を穿設し、次いで開口部11で形成された中空部16以外の箇所をドリルで貫通孔を穿設して0.3〜0.6mm径のスルーホール15を形成し、デスミア処理をした後、パネルメッキを行い、導通バイヤホール41及びスルーホールメッキ151を形成する。
【0030】
図7において、多層板14の表面にドライフィルムをラミネートして、露光、現像、エッチングう行うことにより、外層導体回路54を形成するとともに、不要の部位(例えば、中空部16に対応する部位)の銅箔等の導体を除去する。
中空部16に対応する部位の銅箔等の導体を除去することで、次の工程での切削加工(ルータ加工)時のバリ発生を防止することができる。
【0031】
図1において、外層導体回路の必要な部位にソルダレジスト膜を形成し、ルータ加工により外側から中空部16(図7参照)に沿って切込みを入れて凹部17を形成する。
中空部16(図7参照)が既に形成されているから、ルータ加工での垂直方向の位置決めには、厳密な位置決め精度を必要としないから、ルータ加工は効率よく実施することができる。
【0032】
次いで凹部17内の第2導体回路52、スルーホール15にニッケルメッキおよび金メッキを施して多層プリント配線板18が形成される。
多層プリント配線板18の外層導体回路54には、ニッケルメッキおよび金メッキが施されているので、半導体チップ、その他の電子部品の実装による接続信頼性が確保される。
また、スルーホールにもニッケルメッキおよび金メッキが施されているので、スルーホールを垂直方向に切断して端面スルーホールとして使用することができる。
【0033】
【発明の効果】
本発明は、上述のとおり構成されているから次に述べる効果を奏する。
開口部を有する絶縁基板を積層することにより、凹部を形成する切削加工によって導体回路を傷つけること無く、またザグリ加工を必要としないので、作業効率が高く、且つ品質の安定した多層プリント配線板を製造することができる。
【図面の簡単な説明】
【図1】本発明の実施例である多層プリント配線板の概略構成図である。
【図2】本発明の基礎基板の概略構成図である。
【図3】本発明の絶縁基板の概略構成図である。
【図4】本発明の回路基板の概略構成図である。
【図5】本発明の実施例の製造工程説明図である。
【図6】本発明の実施例の製造工程説明図である。
【図7】本発明の実施例の製造工程説明図である。
【図8】本発明の基礎基板の製造工程説明図である。
【図9】本発明の基礎基板の製造工程説明図である。
【符号の説明】
1 基礎基板、2 絶縁板、3,4,41 導通バイアホール、5 導体回路
6 導電材、7 両面銅張積層板、8 貫通バイアホール、9 穴埋め樹脂
10 絶縁基板、11 開口部、12 接着層、13 回路基板
14 多層板、15 スルーホール、16 中空部、17 凹部
18 多層プリント配線板
21 第1絶縁材、22 第2絶縁材、23 第3絶縁材、24 絶縁層
25 基部絶縁層、
51 第1導体回路、52 第2導体回路、53 第3導体回路
54 外層導体回路、
61 第1導電材、62 第2導電材、63 第3導電材、
151 スルーホールメッキ、
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing a multilayer printed wiring board having a concave portion for mounting components, which facilitates mounting of electronic components such as a semiconductor chip, a resistor, a capacitor, a coil, and a sensor.
[0002]
[Prior art]
2. Description of the Related Art Conventionally, there has been known a multilayer printed wiring board in which a plurality of printed wiring boards are laminated to form a multilayer wiring board, a recess is formed by counterboring, and an electronic component is mounted in the recess.
However, since the conventional multilayer printed wiring board forms a recess by counterboring after laminating a plurality of printed wiring boards, there is a possibility that the circuit on which the component is mounted is deformed or damaged. However, there is a problem that it is difficult to perform counterboring with high accuracy.
In order to solve this problem, a method has been proposed in which a recess is formed by omitting the counterbore processing. For example, Japanese Patent Application Laid-Open No. 9-321439 discloses a method in which a plurality of printed wiring boards having openings are laminated. Are disclosed.
However, even in this method, there is a problem that it is difficult to perform processing without damaging the circuit because the printed wiring board on which the circuit is formed is cut to form the opening.
[Title]
Japanese Patent Application Laid-Open No. 9-321439
[Problems to be solved by the invention]
The present invention provides a multilayer printed circuit that can easily form a component mounting concave portion, can use a conventional manufacturing facility, has a high working efficiency, and can obtain a multilayer printed wiring board of stable quality. An object of the present invention is to provide a method for manufacturing a wiring board.
[0004]
[Means for Solving the Problems]
The present invention, in order to solve the above problems, in the invention of claim 1,
A. A basic substrate having a conductor circuit on one outer layer and a unit substrate having a conductive material on the other layer of two or more layers,
An insulating substrate having an opening and having an adhesive layer on both sides,
A step of laminating a circuit board having conductor circuits on both sides to form a multilayer board,
B. Forming a conductive via hole on one side of the multilayer board, forming a through hole in a portion other than the hollow portion, and plating the through hole;
C. Forming an outer conductor circuit on the surface of the multilayer board;
D. Cutting one side of the multilayer board, forming a recess,
E. FIG. Plating the outer conductor circuit.
3. The method according to claim 2, wherein the substrate is a glass cloth thermosetting resin or a glass nonwoven thermosetting resin.
4. The method according to claim 3, wherein the plating applied to the outer conductor circuit is nickel plating and gold plating.
[0005]
In step A of claim 1, a double-sided board, a multilayer board, and an interstitial via-hole board are generally used as a basic board having two or more unit boards each having a conductor circuit on one outer layer and a conductive material on the other. It is used.
Further, as the substrate, a glass cloth thermosetting resin or a glass nonwoven cloth thermosetting resin can be used, and specifically, a glass cloth epoxy resin, a glass nonwoven cloth epoxy resin, glass There are cloth bismaleimide triazine resin and aramid non-woven epoxy resin.
[0006]
An insulating substrate having an opening and having an adhesive layer on both sides uses an epoxy-based resin, a polyimide-based resin, a bismaleimide triazine-based resin, and an acrylate-based resin as an adhesive layer material. It is manufactured by applying an adhesive or laminating an adhesive sheet made of an adhesive layer material on both sides of the insulating substrate, solidifying it by heating, and forming an opening by press working or router working.
Since the insulating substrate having the adhesive layer does not have a conductor circuit, there is no risk of damaging the conductor circuit when forming an opening by press working or router working, and the work can be performed efficiently.
[0007]
As a circuit board having a conductor circuit in an outer layer, a double-sided board or a multilayer board having a commonly used conductor circuit formed thereon is used.
As a result, (1) an insulating substrate having a conductor circuit in one outer layer and two or more unit substrates having a conductive material stacked on the other, and (2) an insulating member having an opening and having an adhesive layer on both sides. The substrate and (3) a circuit substrate having a conductor circuit in an outer layer are laminated, and heated and pressed by a vacuum press to form a multilayer board.
Thus, the opening of the insulating substrate forms a hollow portion between the base substrate and the circuit board.
[0008]
Next, in the process B, a via hole is formed by drilling by laser or drilling on the conductive material side of the multilayer board, and then a through hole is formed by drilling a portion other than the hollow portion, and panel plating is performed. A conductive via hole is formed by plating by a method, and plating is performed on the through hole.
[0009]
In step C, a dry film is laminated as an etching resist on both sides of the multilayer board, and is exposed, developed and etched to form an outer conductor circuit.
At this time, by removing the outer conductor of the portion where the concave portion is formed by the router processing in the next step D, it is possible to prevent the generation of burrs at the time of the router processing, and at the same time, to release the air when laminating by heating and pressing The effect can be expected.
[0010]
Thereafter, in step D, a cut is made along the hollow portion from the outer layer portion of the multilayer board to form an opening by router processing, thereby forming a concave portion.
Since the hollow portion is formed in the multilayer board by lamination in advance, high processing accuracy is not required in the vertical direction. Therefore, by employing the router processing, the processing can be performed very easily and efficiently. Although high processing accuracy can be obtained, it does not require time-consuming counterbore processing.
[0011]
Finally, in step E, the outer conductor circuit is subjected to nickel plating and gold plating as finish plating, so that the connection reliability with the semiconductor chip can be ensured at the time of component mounting.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
A method of manufacturing a multilayer printed wiring board, comprising the steps of: forming a multilayer board; forming conductive via holes and through holes in the multilayer board; plating the through holes; and forming an outer conductor circuit on the surface of the multilayer board. , A step of cutting one side of the multilayer board to form a recess, and a step of plating the outer conductor circuit.
[0013]
【Example】
An embodiment of the present invention will be described with reference to the drawings.
In FIG. 2, a first insulating material 21 provided with a conductive via hole 3, a first conductive circuit 51, and a third conductive circuit 53, and a second insulating material 22 provided with a conductive via hole 4 and a second conductive circuit 52 are provided. And the third insulating material 23 provided with the third conductive material 63 on the outer surface not in contact with another insulating material, thereby forming the basic substrate 1.
As the base substrate 1, a double-sided board, a multilayer board, an interstitial via-hole board, or the like is used. In this embodiment, an interstitial via-hole board composed of four layers (first to third insulating materials and conductive materials) is used. Used.
[0014]
The manufacturing process of the basic substrate 1 composed of the interstitial via hole plate will be described with reference to FIGS.
FIG. 8A shows a double-sided copper-clad laminate 7 formed by laminating a conductive material 6 on both sides of an insulating plate 2. As a material of the insulating plate 2, a glass cloth epoxy resin, a glass nonwoven epoxy resin, glass A cloth bismaleimide triazine resin and an aramid non-woven fabric epoxy resin are used.
The thickness of the insulating plate 2 is set to 0.05 to 0.20 mm.
[0015]
Copper is generally used as the conductive material 6 and has a thickness of 12 to 35 μm.
In this embodiment, a copper foil having a thickness of 12 μm is used for the conductive material 6 and a double-sided copper-clad glass cloth epoxy resin plate having a thickness of 0.15 mm is used as the insulating plate 2.
[0016]
FIG. 8B shows a double-sided copper-clad laminate 7 in which a through-hole 8 is formed by drilling a hole with a drill having a drill diameter of 0.15 to 0.30 mm.
Next, as shown in FIG. 8C, the through via hole 8 is subjected to panel plating to form a conductive via hole 3, and the conductive via hole 3 is filled with an epoxy resin 9 containing silica particles. Then, a dry film of an etching resist is laminated, exposed, developed, and etched to remove the conductive material 6 on one side to form a first conductive circuit 51 and a first conductive circuit 61 having a first conductive material 61 on the other side. An insulating material 21 is formed.
[0017]
In this case, although it is possible to form a conductor circuit on both sides, the insulating plates are laminated in the next step, and the lamination is performed so as not to be affected by the unevenness formed by the conductor circuit at the time of lamination. The conductor circuit is formed only on the other side, leaving the first conductive material on the side outside the laminate after lamination.
[0018]
In FIG. 9A, a second insulating material 22 in which a second conductive material 62 is stacked on one side is stacked on the side of the first insulating material 21 opposite to the first conductive material 61.
The second insulating material 22 has a side on which the conductive material is not laminated as a bonding surface with the first insulating material 21.
A copper foil having a thickness of 12 μm is laminated as the second conductive material 62, and a glass cloth epoxy resin prepreg having a thickness of 0.06 mm is laminated as the second insulating material 22. The heating temperature is 170 to 200 ° C., the pressure is 1 to 3 MPa, and the time is 90 to 90 μm. Laminate by heating and pressing for 150 minutes.
[0019]
Next, in the second insulating material 22, the second conductive material 62 at the position where the via hole is to be formed is removed, and the hole is formed by laser processing using a carbon dioxide laser or the like to form a via hole having a diameter of 0.07 to 0.15 mm. After desmearing, panel plating is performed, and after laminating a dry film of an etching resist, exposure, development, and etching are performed to form the conductive via hole 4 and the second conductor circuit 52 as shown in FIG. I do.
[0020]
Further, in the same manner as the laminating method shown in FIGS. 9A and 9B, the third insulating material 23 and the third conductive material 63 are formed outside the third insulating material 23 so as to cover the conductive via hole 4 and the second conductive circuit 52. (See FIG. 9C).
In FIG. 9C, a dry film is laminated, a third conductive circuit 53 is formed only on the side of the conductive via hole 3 (outside the first insulating material 21), and a solder resist film is formed on the conductive circuit if necessary. (Not shown) are formed to form an interstitial via hole plate (basic substrate 1) composed of four layers as shown in FIG.
[0021]
In FIG. 3, the insulating substrate 10 has an opening 11, and an adhesive layer 12 made of an adhesive is provided on both sides of the insulating layer 24.
As a material of the insulating layer 24, a hardened glass cloth epoxy resin, a glass nonwoven cloth epoxy resin, a glass cloth bismaleimide triazine resin, or an aramid nonwoven cloth epoxy resin having a thickness of 0.05 to 0.4 mm can be used.
[0022]
As a material of the adhesive layer 12, an epoxy resin, a polyimide resin, a bismaleimide triazine resin, an acrylate resin, or the like can be used.
As a method of forming the adhesive layer 12, there is a method of applying the adhesive layer to the insulating layer 24 by a roller coat or the like, or a method of laminating as an adhesive sheet and using it in a semi-cured state by heating.
Further, the thickness of the adhesive layer 12 is preferably 30 to 70 μm.
[0023]
In this embodiment, a hardened glass cloth epoxy resin having a thickness of 0.13 mm is used as the insulating layer 24, and a low-flow epoxy adhesive sheet having a thickness of 50 μm is laminated on both sides of the insulating layer 24 as the adhesive layer 12. After heating and pressurizing at 160 ° C. and a pressure of 1 to 2 Pa for 20 to 30 minutes and performing temporary press bonding, a router process was performed to form an opening 11 of 10 mm × 10 mm.
[0024]
Since the insulating substrate 10 having the adhesive layer 12 on both sides of the insulating layer 24 does not have a conductor circuit, there is no fear of damaging the conductor pattern by forming a hollow portion (opening 11) by a router process, and Since it does not require high positional accuracy, it can be manufactured with high work efficiency.
[0025]
FIG. 4 shows a circuit board 13 in which the conductor circuits 5 are provided on both outer layers of the base insulating layer 25. A double-sided board or a multilayer board in which the conductor circuits 5 are provided in the outer layer can be used.
By removing the conductor by etching at the position corresponding to the opening 11 of the insulating substrate 10, it is possible to prevent the generation of burrs at the time of the cutting process in the later step, and at the same time, to heat and press the air when laminating. There is an effect of skipping.
[0026]
As the base insulating layer 25, a glass cloth epoxy resin, a glass nonwoven cloth epoxy resin, a glass cloth bismaleimide triazine resin, an aramid nonwoven cloth epoxy resin, or the like is used.
In the present embodiment, a double-sided copper-clad glass cloth epoxy resin having a thickness of 0.13 mm and a copper foil having a thickness of 12 μm attached to both sides is used as the base insulating layer 25, and the conductor circuit 5 is formed by an ordinary method.
Although a double-sided board is shown as the base insulating layer 25, a multilayer board may be used.
[0027]
Next, as shown in FIG. 5, a base substrate 1 composed of an interstitial via hole plate, an insulating substrate 10 having an opening 11 and having an adhesive layer 12 on both sides, and a circuit substrate 13 having a conductive circuit 5 on both sides Are laminated on each other, and are pressed and bonded from both upper and lower surfaces while heating with a vacuum press machine to form a multilayer board 14.
In this example, the treatment was performed at a heating temperature of 170 to 190 ° C. and a pressure of 2 to 5 MPa for a heating and pressing time of 60 to 120 minutes.
[0028]
Thus, the base substrate 1, the insulating substrate 10, and the circuit board 13 are bonded to each other by the bonding layer 12.
In addition, since the low flow type epoxy resin is used as the adhesive layer 12, there is no possibility that the adhesive layer (adhesive) 12 flows greatly and stains the conductor pattern.
[0029]
In FIG. 6, a conductive via hole 41 is provided in the multilayer board 14, a through hole 15 is formed, and a through hole plating 151 is applied to an inner peripheral wall and an opening edge of the through hole 15.
That is, a bottomed circular hole having a diameter of 0.07 to 0.15 mm is formed in one outer layer of the multilayer board 14 with a carbon dioxide gas laser, and a portion other than the hollow portion 16 formed by the opening 11 is drilled into a through hole. The through hole 15 having a diameter of 0.3 to 0.6 mm is formed by punching, and after performing desmearing, panel plating is performed to form the conductive via hole 41 and the through hole plating 151.
[0030]
In FIG. 7, by laminating a dry film on the surface of the multilayer board 14, exposing, developing, and etching, an outer layer conductor circuit 54 is formed, and unnecessary portions (for example, portions corresponding to the hollow portion 16) are formed. The conductor such as copper foil is removed.
By removing a conductor such as a copper foil at a portion corresponding to the hollow portion 16, it is possible to prevent burrs from being generated at the time of cutting (router processing) in the next step.
[0031]
In FIG. 1, a solder resist film is formed on a necessary portion of the outer layer conductor circuit, and a cut is made along the hollow portion 16 (see FIG. 7) from the outside by a router process to form a concave portion 17.
Since the hollow portion 16 (see FIG. 7) has already been formed, strict positioning accuracy is not required for vertical positioning in the router processing, so that the router processing can be performed efficiently.
[0032]
Next, nickel plating and gold plating are applied to the second conductor circuit 52 and the through hole 15 in the recess 17 to form the multilayer printed wiring board 18.
Since the outer layer conductor circuit 54 of the multilayer printed wiring board 18 is plated with nickel and gold, the connection reliability by mounting the semiconductor chip and other electronic components is ensured.
Further, since the through holes are also plated with nickel and gold, the through holes can be cut in the vertical direction and used as end surface through holes.
[0033]
【The invention's effect】
The present invention has the following effects because it is configured as described above.
By laminating an insulating substrate having an opening, the conductive circuit is not damaged by the cutting process for forming the concave portion, and the counterboring process is not required, so that a multi-layer printed wiring board with high working efficiency and stable quality is provided. Can be manufactured.
[Brief description of the drawings]
FIG. 1 is a schematic configuration diagram of a multilayer printed wiring board according to an embodiment of the present invention.
FIG. 2 is a schematic configuration diagram of a basic substrate of the present invention.
FIG. 3 is a schematic configuration diagram of an insulating substrate of the present invention.
FIG. 4 is a schematic configuration diagram of a circuit board of the present invention.
FIG. 5 is an explanatory view of a manufacturing process according to the embodiment of the present invention.
FIG. 6 is an explanatory view of a manufacturing process according to an example of the present invention.
FIG. 7 is an explanatory diagram of a manufacturing process according to an example of the present invention.
FIG. 8 is an explanatory view of a manufacturing process of the basic substrate of the present invention.
FIG. 9 is an explanatory diagram of a manufacturing process of the basic substrate of the present invention.
[Explanation of symbols]
REFERENCE SIGNS LIST 1 basic substrate, 2 insulating plate, 3, 4, 41 conductive via hole, 5 conductive circuit, 6 conductive material, 7 double-sided copper-clad laminate, 8 through via hole, 9 filled resin 10 insulating substrate, 11 opening, 12 adhesive layer , 13 circuit board 14 multilayer board, 15 through hole, 16 hollow portion, 17 concave portion 18 multilayer printed wiring board 21 first insulating material, 22 second insulating material, 23 third insulating material, 24 insulating layer 25 base insulating layer,
51 first conductor circuit, 52 second conductor circuit, 53 third conductor circuit 54 outer layer conductor circuit,
61 first conductive material, 62 second conductive material, 63 third conductive material,
151 through-hole plating,

Claims (3)

次に述べる工程から成ることを特徴とする多層プリント配線板の製造方法。
A.一方の外層に導体回路を有し、他方に導電材を有する単位基板を2層以上重ねて成る基礎基板と、
開口部を有し、両側に接着層を有する絶縁基板と、
両側に導体回路を有する回路基板とを積層して多層板を形成する工程と、
B.該多層板の一方の側に導通バイヤホールを形成し、中空部以外の箇所にスルーホールを形成し、該スルーホールにメッキを施す工程と、
C.前記多層板の表面に外層導体回路を形成する工程と、
D.前記多層板の片側を切削し、凹部を形成する工程と、
E.外層導体回路にメッキを施す工程。
A method for manufacturing a multilayer printed wiring board, comprising the following steps.
A. A basic substrate having a conductor circuit on one outer layer and a unit substrate having a conductive material on the other layer of two or more layers,
An insulating substrate having an opening and having an adhesive layer on both sides,
A step of laminating a circuit board having conductor circuits on both sides to form a multilayer board,
B. Forming a conductive via hole on one side of the multilayer board, forming a through hole in a portion other than the hollow portion, and plating the through hole;
C. Forming an outer conductor circuit on the surface of the multilayer board;
D. Cutting one side of the multilayer board, forming a recess,
E. FIG. A step of plating the outer conductor circuit.
基板がガラス布熱硬化性樹脂またはガラス不織布熱硬化性樹脂であることを特徴とする請求項1記載の多層プリント配線板の製造方法。The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the substrate is a thermosetting resin of glass cloth or a thermosetting resin of glass nonwoven fabric. 外層導体回路に施されるメッキがニッケルメッキ及び金メッキであることを特徴とする請求項1または2記載の多層プリント配線板の製造方法。3. The method for manufacturing a multilayer printed wiring board according to claim 1, wherein the plating applied to the outer layer conductor circuit is nickel plating and gold plating.
JP2002366890A 2002-12-18 2002-12-18 Manufacturing method of multilayer printed circuit board Pending JP2004200392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366890A JP2004200392A (en) 2002-12-18 2002-12-18 Manufacturing method of multilayer printed circuit board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366890A JP2004200392A (en) 2002-12-18 2002-12-18 Manufacturing method of multilayer printed circuit board

Publications (1)

Publication Number Publication Date
JP2004200392A true JP2004200392A (en) 2004-07-15

Family

ID=32763961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366890A Pending JP2004200392A (en) 2002-12-18 2002-12-18 Manufacturing method of multilayer printed circuit board

Country Status (1)

Country Link
JP (1) JP2004200392A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734049B1 (en) * 2005-11-29 2007-06-29 주식회사 코리아써키트 Manufacturing method of cavity typed printed circuit board
KR100934734B1 (en) 2008-02-26 2009-12-30 주식회사 코리아써키트 Cavity Printed Circuit Board Manufacturing Method
KR101775150B1 (en) 2010-07-30 2017-09-05 삼성전자주식회사 Multi-layered laminates package and method for manufacturing the same
US11295896B2 (en) * 2018-10-30 2022-04-05 Tdk Corporation Multilayer ceramic electronic component and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100734049B1 (en) * 2005-11-29 2007-06-29 주식회사 코리아써키트 Manufacturing method of cavity typed printed circuit board
KR100934734B1 (en) 2008-02-26 2009-12-30 주식회사 코리아써키트 Cavity Printed Circuit Board Manufacturing Method
KR101775150B1 (en) 2010-07-30 2017-09-05 삼성전자주식회사 Multi-layered laminates package and method for manufacturing the same
US11295896B2 (en) * 2018-10-30 2022-04-05 Tdk Corporation Multilayer ceramic electronic component and method of manufacturing the same

Similar Documents

Publication Publication Date Title
KR100965339B1 (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
US8435376B2 (en) Carrier for manufacturing substrate and method of manufacturing substrate using the same
JPWO2007052674A1 (en) Multilayer printed wiring board for semiconductor device and manufacturing method thereof
WO2001045478A1 (en) Multilayered printed wiring board and production method therefor
WO1997048260A1 (en) One-sided circuit board for multi-layer printed wiring board, multi-layer printed wiring board, and method for its production
JP2010157709A (en) Printed wiring board and method for manufacturing the same
JP2007173459A (en) Production method of printed wiring board
JP2004311736A (en) Method for manufacturing built-up multilayer wiring board incorporating chip comp0nents
KR100861619B1 (en) Radiant heat printed circuit board and fabricating method of the same
JP3492467B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JPH0936551A (en) Single-sided circuit board for multilayer printed wiring board use, multilayer printed wiring board and manufacture thereof
KR100722599B1 (en) All layer inner via hall printed circuit board and the manufacturing method that utilize the fill plating
JP2004200392A (en) Manufacturing method of multilayer printed circuit board
KR100494339B1 (en) Method for making inner-layer window-open part of multi-layer flexible printed circuit board
JP2002237682A (en) Multilayer printed circuit board having component- mounting recess, and its manufacturing method
JPH0719970B2 (en) Method for manufacturing multilayer printed wiring board
JP2007250608A (en) Circuit board including hollow part, method for manufacturing the same, method for manufacturing circuit device using the same
KR20070013634A (en) Multi-layer printed circuit board making method
KR101055455B1 (en) Carrier member for substrate manufacturing and method for manufacturing substrate using same
JP2002198652A (en) Multilayer printed wiring board, method of manufacturing the same and single-sided circuit board therefor
KR101077377B1 (en) A carrier member for manufacturing a substrate and a method of manufacturing a substrate using the same
JP3492667B2 (en) Single-sided circuit board for multilayer printed wiring board, multilayer printed wiring board and method of manufacturing the same
JP3540809B2 (en) Single-sided circuit board for high density multilayer printed wiring board and high density multilayer printed wiring board
JPH10126058A (en) Manufacture of multilayered printed interconnection board
JP2001308521A (en) Method for manufacturing multilayered circuit board