JP2004200202A - 半導体受光素子 - Google Patents

半導体受光素子 Download PDF

Info

Publication number
JP2004200202A
JP2004200202A JP2002363382A JP2002363382A JP2004200202A JP 2004200202 A JP2004200202 A JP 2004200202A JP 2002363382 A JP2002363382 A JP 2002363382A JP 2002363382 A JP2002363382 A JP 2002363382A JP 2004200202 A JP2004200202 A JP 2004200202A
Authority
JP
Japan
Prior art keywords
layer
light receiving
electrode
semiconductor
type inp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002363382A
Other languages
English (en)
Inventor
Nami Yasuoka
奈美 安岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2002363382A priority Critical patent/JP2004200202A/ja
Publication of JP2004200202A publication Critical patent/JP2004200202A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Light Receiving Elements (AREA)

Abstract

【課題】半導体受光素子に関し、p型半導体層を薄層化した状態で横方向抵抗を増大させることなく反射効率を向上させる。
【解決手段】半導体基板1上に受光部2を設け、前記半導体基板1の裏面側から光を入射させる半導体受光素子の受光部2の最表面を構成する半導体層4と金属電極7との間に透明電極6を設け、透明電極6を半導体層4と金属電極7とに直接接触させる。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は半導体受光素子に関するものであり、特に、基板裏面から光を入射する構成のpinフォトダイオード或いはpinADP(アバランシェフォトダイオード)等の高速応答半導体受光素素子における反射電極構造の構成に特徴のある半導体受光素子に関するものである。
【0002】
【従来の技術】
最近のインターネットの構築でより高速な光通信システムの要求がより強くなるに伴って、半導体受光素子においても10Gbit/秒以上の情報伝達速度が要求されている。
【0003】
この様な要請に応えるためには、より高速動作可能な受光素子が必要となっているが、10Gbit/秒以上の動作速度を実現できる半導体受光素子としては、pinフォトダイオードが挙げられる。
この様なpinフォトダイオードにおいて、量子効率を高めるために、基板裏面から光を入射することが提案されている(例えば、特許文献1参照)。
【0004】
ここで、図7を参照して、従来の裏面入射型pinフォトダイオードを説明する。
図7参照
図7は、従来の裏面入射型pinフォトダイオードの概略的断面図であり、n型InP基板31上に、MOCVD法(有機金属気相成長法)を用いて、厚さが、例えば、1〜2μmのn型InP層32、厚さが、例えば、0.5〜1μmのi型InGaAs光吸収層33、及び、厚さが、例えば、1〜2μmのn- 型InP層34を順次成長させる。
【0005】
次いで、Znを選択拡散することによって、p型InP領域35を形成したのち、メサエッチングを施すことによってメサ受光部36と肩部37を形成し、次いで、メサ受光部36のp型InP領域35上にp側反射電極38を形成するとともに、肩部37にn側電極39を形成する。
【0006】
次いで、全面に絶縁膜40を形成したのち、p側反射電極38及びn側電極39が露出するように絶縁膜40をエッチングし、露出したp側反射電極38及びn側電極39上に各々バンプ電極41,42を形成する。
【0007】
次いで、n型InP基板31の裏面をエッチングしてマイクロレンズ43を形成したのち、マイクロレンズ43の表面の一部に反射膜44を形成することによって裏面入射型pinフォトダイオードの基本構造が完成する。
【0008】
この様な裏面入射型pinフォトダイオードにおいては、メサ構造にすることによってpn接合面積を小さくしているので接合容量が低減し、また、光吸収層の層厚を1μm以下に薄くしてキャリア走行時間を短縮させる構造となっているので、高速応答が可能になる。
【0009】
また、基板裏面にマイクロレンズを設けるとともに、p側電極を反射電極にしているので、入射した光は光吸収層を通過したのち、p側反射電極で反射されて再び光吸収層に入射するので多重吸収構造となり量子効率を高める構造となっている。
【0010】
また、アバランシェフォトダイオード(APD)においても、高速応答性と高量子効率化を達成するために、受光部をメサ構造にするとともに、基板裏面にマイクロレンズを形成することが提案されている(例えば、非特許文献1参照)。
【0011】
【特許文献1】
特開2001−320081号公報
【非特許文献1】
Y.Kito et.al.,IEEE Trans.Photo.Tech.Lett.,Vol.3,No.12,1991,pp.1115−1116
【0012】
【発明が解決しようとする課題】
しかし、p側コンタクト電極をそのまま反射電極とした場合には、オーミック性が低下してコンタクト抵抗が高まるとともに、反射率を高くすることができず、量子効率が低下するという問題がある。
【0013】
そこで、本出願人は、反射構造を改良することによって量子効率の改善を試みたので(必要ならば、特願2001−312109号参照)、図8を参照して説明する。
図8参照
図8は、本出願人の提案による裏面入射型pinフォトダイオードの概略的断面図であり、n型InP基板51上に、MOCVD法を用いて、n型InPバッファ層52、i型InGaAs光吸収層53、及び、p型InP層54を順次成長させる。
【0014】
次いで、メサエッチングを施すことによってメサ受光部55及び肩部56を形成したのち、テーパエッチングを施すことによって肩部56の側端面をテーパ状にすることによって、肩部56に設けるn側コンタクト電極58及びバンプ電極62の段切れを防止する。
【0015】
次いで、メサ受光部36のp型InP層54上にリング状のp側コンタクト電極57を形成するとともに、肩部56及びn型InPバッファ層52の露出部にかかるn側コンタクト電極58を形成する。
【0016】
次いで、全面にSiN膜59を形成したのち、p側コンタクト電極57及びn側コンタクト電極58が露出するようにSiN膜59をエッチングし、次いで、メサ受光部55及び肩部56の一部にAu・Snシード層60及びAuメッキ層61からなるバンプ電極62を形成したものである。
【0017】
この裏面入射型pinフォトダイオードにおいては、メサ受光部55において、バンプ電極62とp型InP層54との界面に透明なSiN膜59を設けているので反射率が高まり、また、p側コンタクト電極57をリング状にしているので良好な素子特性を得ることができる。
【0018】
図9(a)参照
さらに、プロセスの容易さ、及び、p型InP層54の抵抗の低減のためp型InP層54の厚さを0.2μmとして特性の向上を試みた。
【0019】
図9(b)参照
しかし、その結果、受光素子の動作層に均一に電圧がかからないという問題が生じ、これによって高速応答特性での応答特性に図に示すような面内感度分布が生じる。
これは、SiN膜59の直下のp型InP層54の横方向の抵抗によってメサ受光部55の中央部の電界が低下するためである。
【0020】
したがって、動作領域に均一に電界を掛けるためにはp型InP層54の厚さを2μm以上にする必要があるが、そうすると、p型InP層54の抵抗が1Ωから8Ωに倍増してしまい、この増加は受光素子のシリーズ抵抗を増加させることになる。
【0021】
したがって、本発明は、p型半導体層を薄層化した状態で横方向抵抗を増大させることなく反射効率を向上させることを目的とする。
【0022】
【課題を解決するための手段】
図1は本発明の原理的構成の説明図であり、この図1を参照して本発明における課題を解決するための手段を説明する。
なお、図において、符号9,10は、パッシベーション膜及び各々基板側のコンタクト電極である。
図1参照
上記の目的を達成するため、本発明は、半導体基板1上に受光部2を設け、前記半導体基板1の裏面側から光を入射させる半導体受光素子において、受光部2の最表面を構成する半導体層4と金属電極7との間に透明電極6が設けられ、透明電極6が半導体層4と金属電極7とに直接接触していることを特徴とする。
【0023】
このように、受光部2の最表面を構成する半導体層4と金属電極7、即ち、バンプ電極との間に透明電極6を設けることによって、高い反射率を保った状態で動作領域にかかる電界を均一にすることができる。
【0024】
この場合、受光部2の最表面を構成する半導体層4の表面にリング状のコンタクト電極5を設けることが望ましく、それによって、受光部2の最表面を構成する半導体層4に均一な電界を印加することができる。
【0025】
この場合の透明電極6は、単層膜でも良いし、或いは、異なった屈折率を有する透明導電膜を多層に重ねた多層構造膜としても良いものである。
なお、この場合、各透明導電膜の膜厚は、屈折率をn、入射光の波長をλ(=c/ν)とした場合、λ/4n膜とすることが望ましい。
【0026】
また、受光部2の構成としては、pin接合構造、或いは、少なくとも光吸収層3及び増倍層を有するAPD構造であることが望ましく、それによって、40GHz以上の高速応答性が可能になる。
【0027】
また、受光部2をメサ構造とすることが望ましく、それによって、pn接合による接合容量を低減することができるので、高速化が可能になる。
【0028】
この場合、メサ構造の受光部2の周囲の少なくとも一部に、受光部2と同一の層構造の肩部8を設けることが望ましく、それによって、フリップ・チップボンディングが容易になる。
【0029】
また、半導体基板1の裏面を凸レンズ形状にすることが望ましく、それによって、集光性が高まるので、量子効率を向上することができる。
【0030】
【発明の実施の形態】
ここで、図2及び図3を参照して、本発明の第1の実施の形態のpinフォトダイオードの製造工程を説明する。
図2(a)参照
まず、n型InP基板11上に、MOCVD法を用いて、厚さが、例えば、1〜2μmのn型InP層12、厚さが、例えば、0.5〜1μmのi型InGaAs光吸収層13、及び、厚さが0.03〜0.15μmのp型InP層14を順次成長させる。
【0031】
図2(b)参照
次いで、メサエッチングを施すことによってメサ受光部15と肩部16を形成する。
【0032】
図2(c)参照
次いで、メサ受光部15を覆った状態で肩部16に緩斜面形状にエッチングを施すことによって、肩部16の側端部をテーパ状にして、以降の堆積工程における段切れを防止する。
【0033】
図2(d)参照
次いで、マスク蒸着法を用いて、メサ受光部15のp型InP領域14上にAu・Zn膜及びAu膜を順次リング状に堆積させてp側コンタクト電極17を形成する。
【0034】
図3(e)参照
次いで、再びマスク蒸着法を用いて、肩部16からn型InPバッファ層12の露出部にかけてAu・Ge膜及びAu膜を順次堆積させてn型コンタクト電極18を形成する。
【0035】
図3(f)参照
次いで、プラズマCVD法を用いて全面にSiN膜19を堆積させたのち、p側コンタクト電極17とその内側のp型InP層14、及び、n側コンタクト電極18を露出するようにSiN膜19を選択的にエッチング除去する。
【0036】
図3(g)参照
次いで、スパッタリング法によって、ITO(屈折率n≒1.87)を厚さが、例えば、入射光のλ/4膜に相当する261nmの厚さに堆積させたのち、p側コンタクト電極17の内側及び内側のp型InP層14のみに残存するように他部をエッチング除去してITO透明電極20を形成する。
【0037】
図3(h)参照
次いで、マスク蒸着法を用いて、メサ受光部15及び肩部16上にAu・Snシード層21を選択的に形成したのち、フォトレジストパターン(図示を省略)をマスクとして、Au・Snシード層21上にAuメッキ層22を選択的に形成してバンプ電極23とする。
【0038】
最後に、n型InP基板11の裏面にプラズマCVD法によってλ/4膜に相当する膜厚のSiN膜を堆積させて反射防止膜24とすることによって、本発明の第1の実施の形態のpinフォトダイオードの基本構成が完成する。
【0039】
本発明の第1の実施の形態においては、バンプ電極23とp型InP層14との間にλ/4膜厚のITO透明電極20を介在させているので、図8に示した従来のSiN膜を介在させた場合と同様に95〜97%の反射率を得ることができる。
【0040】
また、p型InP層14に直接面接触するように固有コンタクト抵抗が1×10-4ΩcmのITO透明電極20を介在させているので、p型InP層14を0.2μm程度に薄層化しても動作層の電界分布が無くなり、均一性の良い面内感度分布を得ることができる。
【0041】
また、p型InP層14を薄層化することによって成膜時間を短縮することができるとともに、p型InP層14の横方向抵抗を8Ωから1Ωに低減することができる。
【0042】
さらに、薄層化することで、表面段差を小さくすることができるので、電極プロセスの簡便化等が改善され、この電極プロセスの簡便化は、p側コンタクト電極17上に設けたITO膜をパターニングする際のパターニング等の微細パターン工程におけるプロセス歩留りを向上することができる。
【0043】
次に、図4を参照して、本発明の第2の実施の形態のpinフォトダイオードを説明する。
図4参照
図4は、本発明の第2の実施の形態のpinフォトダイオードの概略的断面図であり、基本的構成は上記の第1の実施の形態のpinフォトダイオードと同様であるが、この第2の実施の形態においては、n型InP基板11の裏面にマイクロレンズ25を形成したものである。
【0044】
即ち、バンプ電極23を形成したのち、n型InP基板11の裏面に円形状のレジストパターンを形成したのち、例えば、200℃でベーキングすることによって凸レンズ状のレジストパターンに変換する。
【0045】
次いで、基板全体を回転させながらArイオンビームエッチングを施し、凸レンズ状のレジストパターンが消失するまでエッチングを行うことによって凸レンズ状のマイクロレンズ25を形成したものである。
【0046】
この様に、本発明の第2の実施の形態においては、基板の裏面に凸レンズ状のマイクロレンズを設けているので、入射光を効率的に光吸収層に集光することができ、それによって、量子効率を向上することができる。
【0047】
次に、図5を参照して、本発明の第3の実施の形態のpinフォトダイオードを説明する。
図5参照
図5は、本発明の第3の実施の形態のpinフォトダイオードの概略的断面図であり、基本的構成は上記の第1の実施の形態のpinフォトダイオードと同様であるが、この第3の実施の形態においては、透明電極を多層透明電極26としたものである。
【0048】
即ち、透明電極を形成する工程において、例えば、各々λ/4膜厚となる261nmのITO膜、188nmのCdS、及び、261nmのITOを順次堆積させてITO/CdS/ITO構造の多層透明電極26としたものである。
【0049】
このように、透明電極を多層透明電極26としているので、単層のλ/4膜とした透明電極より反射率を向上することができ、それによって、量子効率をより向上することができる。
【0050】
次に、図6を参照して、本発明の第4の実施の形態のAPDを説明する。
図6参照
図6は、本発明の第4の実施の形態のADPの概略的断面図であり、基本的構成及び製造工程は上記の第1の実施の形態のpinフォトダイオードと同様であるが、この第4の実施の形態においては、受光部に少なくとも増倍層29を設けてAPD構造としたものである。
【0051】
即ち、半導体層の成膜工程において、i型InGaAs光吸収層13上に、InGaAsP超格子層からなる電界調整層27、n+ 型InP層28、及び、アバランシェ増幅を起こすためのn- 型InP層からなる増倍層29を成膜したのち、p型InP層14を成長させたものである。
【0052】
以上、本発明の各実施の形態を説明してきたが、本発明は各実施の形態に記載した構成に限られるものではなく、各種の変更が可能である。
例えば、上記の各実施の形態の説明においては、InGaAs/InP系のpinフォトダイオード或いはAPDとして説明しているが、InGaAs/InP系に限られるものではなく、GaAs/AlGaAs系等の他のIII-V族化合物半導体にも適用されるものである。
【0053】
また、上記の各実施の形態においては、メサ受光部の周囲を囲むように肩部を設けているが、肩部はメサ受光部の周囲の少なくとも一部に存在すれば良いものであり、さらには、フリップ・チップボンディングしない場合には、肩部は省略しても良いものである。
【0054】
また、上記の各実施の形態においては、p型コンタクト電極をリング状に設けているが、リング状に限られるものではなく、メッシュ状でも良く、いずれにしても、p型InP層との接触面積を少なくした状態でp型InP層に面内均一な電界を印加できるパターンであれば良い。
【0055】
また、上記の第3の実施の形態においては、多層透明電極をITO/CdS/ITO構造としているが、CdS以外にZnSe,ZnS等の他の透明導電膜を用いても良いものであり、広い波長範囲で反射率の高い膜を形成することができるため受光素子の波長範囲を広くすることができる。
【0056】
また、上記の第3の実施の形態においては、多層透明電極をITO/CdS/ITOの3層構造としているが、3層構造に限られるものではなく、5層構造等の3層以上の多層構造膜としても良いものである。
【0057】
また、上記の第2の実施の形態或いは第4の実施の形態においても、上記の第3の実施の形態と同様に、透明電極として多層透明電極を用いていも良いものである。
【0058】
また、上記の第4の実施の形態においても、上記の第2の実施の形態と同様に基板裏面にマイクロレンズを形成しても良いものであり、その場合にも、透明電極を多層透明電極としても良いものである。
【0059】
また、上記の実施の形態においては、単体のpinフォトダイオード或いはAPDとして説明しているが、アレイ化したpinフォトダイオードアレイ或いはAPDアレイにも適用されるものであり、さらには、半導体レーザ等の他の光素子と集積化した光集積回路装置にも適用されるものである。
【0060】
ここで、再び、図1を参照して、改めて本発明の詳細な特徴を説明する。
再び、図1参照
(付記1) 半導体基板1上に受光部2を設け、前記半導体基板1の裏面側から光を入射させる半導体受光素子において、前記受光部2の最表面を構成する半導体層4と金属電極8との間に透明電極7が設けられ、前記透明電極7が前記半導体層4と前記金属電極8とに直接接触していることを特徴とする半導体受光素子。
(付記2) 上記受光部2の最表面を構成する半導体層4の表面にリング状のコンタクト電極6を設けるとともに、前記コンタクト電極6の少なくとも内円部に上記透明電極7が設けられていることを特徴とする付記1記載の半導体受光素子。
(付記3) 上記透明電極7が、多層膜構造であることを特徴とする付記1または2に記載の半導体受光素子。
(付記4) 上記受光部2が、pin接合構造を有していることを特徴とする付記1乃至4のいずれか1に記載の半導体受光素子。
(付記5) 上記受光部2が、少なくとも光吸収層3及び増倍層を有することを特徴とする付記1乃至4のいずれか1に記載の半導体受光素子。
(付記6) 上記受光部2が、メサ構造であることを特徴とする付記1乃至5のいずれか1に記載の半導体受光素子。
(付記7) 上記メサ構造の受光部2の周囲の少なくとも一部に、前記受光部2と同一の層構造の肩部を有することを特徴とする付記6記載の半導体受光素子。
(付記8) 上記半導体基板1の裏面が、凸レンズ形状であることを特徴とする付記1乃至7のいずれか1に記載の半導体受光素子。
【0061】
【発明の効果】
本発明によれば、反射構造を、透明電極/バンプ電極として、バンプ電極とp型半導体層との間に透明電極を設けているので、抵抗を低減するためにp型半導体層を薄層化した場合にも、周波数応答特性感度分布を均一にした状態で反射効率を高くすることができ、それによって、高効率で高速応答性にすぐれた半導体受光素子を実現することができ、ひいては、高速光通信網の普及・発展に寄与するところが大きい。
【図面の簡単な説明】
【図1】本発明の原理的構成の説明図である。
【図2】本発明の第1の実施の形態のpinフォトダイオードの途中までの製造工程の説明図である。
【図3】本発明の第1の実施の形態のpinフォトダイオードの図2以降の製造工程の説明図である。
【図4】本発明の第2の実施の形態のpinフォトダイオードの概略的断面図である。
【図5】本発明の第3の実施の形態のpinフォトダイオードの概略的断面図である。
【図6】本発明の第4の実施の形態のAPDの概略的断面図である。
【図7】従来の裏面入射型pinフォトダイオードの概略的断面図である。
【図8】本出願人の提案による裏面入射型pinフォトダイオードの概略的断面図である。
【図9】p型半導体層を薄層化した場合の問題点の説明図である。
【符号の説明】
1 半導体基板
2 受光部
3 光吸収層
4 半導体層
5 コンタクト電極
6 透明電極
7 金属電極
8 肩部
9 パッシベーション膜
10 コンタクト電極
11 n型InP基板
12 n型InPバッファ層
13 i型InGaAs光吸収層
14 p型InP層
15 メサ受光部
16 肩部
17 p型コンタクト電極
18 n側コンタクト電極
19 SiN膜
20 ITO透明電極
21 Au・Snシード層
22 Auメッキ層
23 バンプ電極
24 反射防止膜
25 マイクロレンズ
26 多層透明電極
27 電界調整部
28 n+ 型InP層
29 増倍層
30 メサ受光部
31 n型InP基板
32 n型InP層
33 i型InGaAs光吸収層
34 n- 型InP層
35 p型InP領域
36 メサ受光部
37 肩部
38 p型反射電極
39 n側電極
40 絶縁膜
41 バンプ電極
42 バンプ電極
43 マイクロレンズ
44 反射膜
51 n型InP基板
52 n型InPバッファ層
53 i型InGaAs光吸収層
54 p型InP層
55 メサ受光部
56 肩部
57 p型コンタクト電極
58 n側コンタクト電極
59 SiN膜
60 Au・Snシード層
61 Auメッキ層
62 バンプ電極

Claims (5)

  1. 半導体基板上に受光部を設け、前記半導体基板の裏面側から光を入射させる半導体受光素子において、前記受光部の最表面を構成する半導体層と金属電極との間に透明電極が設けられ、前記透明電極が前記半導体層と前記金属電極とに直接接触していることを特徴とする半導体受光素子。
  2. 上記受光部の最表面を構成する半導体層の表面にリング状のコンタクト電極を設けるとともに、前記コンタクト電極の少なくとも内円部に上記透明電極が設けられていることを特徴とする請求項1記載の半導体受光素子。
  3. 上記透明電極が、多層膜構造であることを特徴とする請求項1または2に記載の半導体受光素子。
  4. 上記受光部が、メサ構造であることを特徴とする請求項1乃至3のいずれか1項に記載の半導体受光素子。
  5. 上記半導体基板の裏面が、凸レンズ形状であることを特徴とする請求項1乃至4のいずれか1項に記載の半導体受光素子。
JP2002363382A 2002-12-16 2002-12-16 半導体受光素子 Pending JP2004200202A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002363382A JP2004200202A (ja) 2002-12-16 2002-12-16 半導体受光素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363382A JP2004200202A (ja) 2002-12-16 2002-12-16 半導体受光素子

Publications (1)

Publication Number Publication Date
JP2004200202A true JP2004200202A (ja) 2004-07-15

Family

ID=32761539

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363382A Pending JP2004200202A (ja) 2002-12-16 2002-12-16 半導体受光素子

Country Status (1)

Country Link
JP (1) JP2004200202A (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100809117B1 (ko) * 2007-02-26 2008-03-04 한국지질자원연구원 에이비에스와 아크릴수지가 혼합된 혼합플라스틱의재질분리방법
KR100835992B1 (ko) * 2007-02-22 2008-06-09 한국지질자원연구원 하전극성을 이용한 폴리에틸렌테레프탈레이트와에이비에스의 분리방법
KR100835997B1 (ko) * 2007-02-26 2008-06-09 한국지질자원연구원 폴리염화비닐, 고밀도 폴리에틸렌 및 켈리브로 이루어진혼합플라스틱의 재질분리방법
KR100835995B1 (ko) * 2007-02-22 2008-06-09 한국지질자원연구원 폴리염화비닐, 폴리에틸렌테레프탈레이트 및 에이비에스로이루어진 플라스틱의 재질에 따른 분리방법
KR100848478B1 (ko) * 2007-02-26 2008-07-28 한국지질자원연구원 폴리에틸렌, 에이비에스 및 나일론이 혼합된혼합플라스틱의 재질분리방법
JP2009283557A (ja) * 2008-05-20 2009-12-03 Sumitomo Electric Ind Ltd 半導体光デバイスの製造方法
JP2011210866A (ja) * 2010-03-29 2011-10-20 Opnext Japan Inc 半導体受光素子及びその製造方法
JP2018152369A (ja) * 2017-03-09 2018-09-27 三菱電機株式会社 裏面入射型受光素子およびその製造方法
US10204955B2 (en) 2016-04-25 2019-02-12 Oclaro Japan, Inc. Back illuminated photo detector and optical receiver module having a center portion of an exposed contact portion located on an optical axis of light
US10217879B2 (en) 2016-02-29 2019-02-26 Renesas Electronics Corporation Optical semiconductor device and manufacturing method thereof
JP2019075479A (ja) * 2017-10-17 2019-05-16 日本オクラロ株式会社 裏面入射型半導体受光素子、半導体受光装置、及びそれらの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100835992B1 (ko) * 2007-02-22 2008-06-09 한국지질자원연구원 하전극성을 이용한 폴리에틸렌테레프탈레이트와에이비에스의 분리방법
KR100835995B1 (ko) * 2007-02-22 2008-06-09 한국지질자원연구원 폴리염화비닐, 폴리에틸렌테레프탈레이트 및 에이비에스로이루어진 플라스틱의 재질에 따른 분리방법
KR100809117B1 (ko) * 2007-02-26 2008-03-04 한국지질자원연구원 에이비에스와 아크릴수지가 혼합된 혼합플라스틱의재질분리방법
KR100835997B1 (ko) * 2007-02-26 2008-06-09 한국지질자원연구원 폴리염화비닐, 고밀도 폴리에틸렌 및 켈리브로 이루어진혼합플라스틱의 재질분리방법
KR100848478B1 (ko) * 2007-02-26 2008-07-28 한국지질자원연구원 폴리에틸렌, 에이비에스 및 나일론이 혼합된혼합플라스틱의 재질분리방법
JP2009283557A (ja) * 2008-05-20 2009-12-03 Sumitomo Electric Ind Ltd 半導体光デバイスの製造方法
JP2011210866A (ja) * 2010-03-29 2011-10-20 Opnext Japan Inc 半導体受光素子及びその製造方法
US9029970B2 (en) 2010-03-29 2015-05-12 Oclaro Japan, Inc. Semiconductor light receiving device and method of manufacturing the same
US10217879B2 (en) 2016-02-29 2019-02-26 Renesas Electronics Corporation Optical semiconductor device and manufacturing method thereof
US10204955B2 (en) 2016-04-25 2019-02-12 Oclaro Japan, Inc. Back illuminated photo detector and optical receiver module having a center portion of an exposed contact portion located on an optical axis of light
JP2018152369A (ja) * 2017-03-09 2018-09-27 三菱電機株式会社 裏面入射型受光素子およびその製造方法
US11339494B2 (en) 2017-03-09 2022-05-24 Mitsubishi Electric Corporation Rear surface incident type light receiving device comprising an uppermost part of an electrode with a larger diameter than lowermost part of the electrode
JP2019075479A (ja) * 2017-10-17 2019-05-16 日本オクラロ株式会社 裏面入射型半導体受光素子、半導体受光装置、及びそれらの製造方法
JP7199143B2 (ja) 2017-10-17 2023-01-05 日本ルメンタム株式会社 半導体受光装置及びその製造方法

Similar Documents

Publication Publication Date Title
US20190288132A1 (en) Microstructure enhanced absorption photosensitive devices
CN1965414B (zh) 光电二极管及其制造方法
WO2013088762A1 (ja) 受光素子、その製造方法、光学装置
US8618622B2 (en) Photodetector optimized by metal texturing provided on the rear surface
JP6024755B2 (ja) 半導体受光素子及びその製造方法
JP2004200202A (ja) 半導体受光素子
US20070012948A1 (en) Combined APD / PIN InGaAs photodetector with microlens structure and method of manufacture
US20220149098A1 (en) Microstructure enhanced absorption photosensitive devices
JP5307750B2 (ja) 半導体受光素子
US7875905B2 (en) Semiconductor optical receiver device, optical receiver module, and method for manufacturing semiconductor optical receiver device
EP1204148A2 (en) Planar resonant cavity enhanced photodetector
JP6115566B2 (ja) 導波路結合msm型フォトダイオード
CN112768550A (zh) 一种用于提高背照式光电二极管响应度的结构及制作方法
RU2318272C1 (ru) СПОСОБ ИЗГОТОВЛЕНИЯ БЫСТРОДЕЙСТВУЮЩЕГО МНОГОЭЛЕМЕНТНОГО ФОТОПРИЕМНИКА НА ОСНОВЕ ЭПИТАКСИАЛЬНЫХ СТРУКТУР InGaAs/InP
JP4109159B2 (ja) 半導体受光素子
CN114284390B (zh) 垂直入射超宽带集成型光电探测器芯片及其制作方法
US3704377A (en) Laser comprising fresnel optics
JP7361490B2 (ja) 半導体受光素子及び半導体受光素子の製造方法
JP2015039032A (ja) アバランシェタイプのフォトダイオード
JPH05102513A (ja) 半導体受光素子
KR102423371B1 (ko) 집적 회로 광검출기
JPH02105585A (ja) 半導体受光素子
JP2001308368A (ja) 光共振器構造素子
CN114914313A (zh) 一种用于光子芯片的红外光电探测器及其制造方法
CN117894812A (zh) 单光子雪崩二极管的结构和制备方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080422

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080909