JP2004200098A - Manufacturing method of oxide superconductive wire rod - Google Patents

Manufacturing method of oxide superconductive wire rod Download PDF

Info

Publication number
JP2004200098A
JP2004200098A JP2002369565A JP2002369565A JP2004200098A JP 2004200098 A JP2004200098 A JP 2004200098A JP 2002369565 A JP2002369565 A JP 2002369565A JP 2002369565 A JP2002369565 A JP 2002369565A JP 2004200098 A JP2004200098 A JP 2004200098A
Authority
JP
Japan
Prior art keywords
wire
heat
heat treatment
wire rod
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002369565A
Other languages
Japanese (ja)
Other versions
JP4212882B2 (en
Inventor
Shigeo Nagaya
重夫 長屋
Naoki Hirano
直樹 平野
Takayo Hasegawa
隆代 長谷川
Yasuo Hikichi
康雄 引地
Teruto Nakatsu
照人 仲津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
SWCC Corp
Original Assignee
Chubu Electric Power Co Inc
Showa Electric Wire and Cable Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc, Showa Electric Wire and Cable Co filed Critical Chubu Electric Power Co Inc
Priority to JP2002369565A priority Critical patent/JP4212882B2/en
Publication of JP2004200098A publication Critical patent/JP2004200098A/en
Application granted granted Critical
Publication of JP4212882B2 publication Critical patent/JP4212882B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To enable to precisely carry out controlled heat treatment with a prescribed heat treatment pattern, and manufacture a long oxide superconductive wire rod superior in superconduction property. <P>SOLUTION: The critical current value (Ic) of the oxide superconductive wire rod applied with heat treatment, after having wound a wire rod 1 in the shape of a solenoid wherein raw material powders containing elements constituting a long oxide superconductor in a prescribed mole ratio on the exterior of the spool in which ZrO<SB>2</SB>layer 3 is installed on the circumference of a drum 2 made of heat-resistant stainless steel are housed, shows the value of 1,050 A at 4.2 K and at OT, whereas, this shows the Ic value of 250 A, when the wire rod is directly wound in the shape of the solenoid on the exterior of the cylindrical member made of heat resistant stainless steel. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は酸化物超電導線材の製造方法に係り、特に熱処理時の線材支持具からの熱流入とその構成元素の拡散を防止し、特性の優れた酸化物超電導線材を製造することができる酸化物超電導線材の製造方法に関する。
【0002】
【従来の技術】
従来、酸化物超電導体として、Bi系(2212)酸化物超電導導体(Bi:Sr:Ca:Cu=2:2:1:2のモル比)及びBi系(2223)酸化物超電導導体(Bi:Sr:Ca:Cu=2:2:2:3のモル比)が線材化に成功しており、これらの線材は所謂銀シース法(Powder in Tube Method)によって製造されている。この方法は、銀又は銀合金シース内に超電導物質の原料粉末を充填し、これに縮径加工を施すか、あるいは更に圧延加工を施して断面丸形又はテープ状に成形した後、熱処理を施して原料粉末を超電導化するものである(例えば、非特許文献1参照。)。
【0003】
上記の銀シース法により酸化物超電導線材を製造する場合、冷間加工後に酸化物超電導体を生成させるための熱処理が必要となる。この酸化物超電導体の合成温度は適正温度範囲が狭く、例えば温度範囲を±1〜2℃に制御する必要がある。
【0004】
以上の厳しい温度管理は、線材の長尺化に伴い電気炉が大型化するに従って、その困難さが著しく増大する。これに加えて、長尺の線材の重量を高温中で支えるためには、大型の線材支持具が必要となり、耐熱性の観点からこの線材支持具は耐熱ステンレス鋼、セラミックス成型体等により形成されている。
【0005】
【非特許文献1】
T.Hasegawa et.al.“HTS Conductors for Magnets”,MT-17,Sep.2001,
Geneva.
【0006】
【発明が解決しようとする課題】
上記の線材支持具は熱容量が大きいため、例えば、この線材支持具を円筒状に形成し、この外周に長尺の酸化物超電導体を構成する元素を含む線材をソレノイド状に巻回して熱処理を施すと、線材の熱挙動は線材支持具の熱挙動や熱容量に大きく影響され、熱処理すべき線材の温度制御が困難になり所望の熱処理パターンを得ることが困難になるという欠点があり、特に、冷却条件を厳密に制御しなければならないBi系(2212)酸化物超電導線材の製造においては、特性の優れた超電導線材を得ることは極めて困難となる。
【0007】
また、線材支持具として耐熱ステンレス鋼を用いた場合には、線材支持具上に巻回した線材との熱膨張率の差により、熱処理時に線材に歪が加わり超電導特性が劣化するという問題がある上、線材支持具を構成する元素の線材への拡散により超電導体を汚染し、超電導特性が劣化するという問題がある。
【0008】
以上の問題を解決する手段として、耐熱紙やセラミックスファイバーシート等をセパレーターとして使用することが行われているが、熱処理時の線材支持具からの熱流入とその構成元素の拡散を防止するには不十分であるという問題がある。
【0009】
本発明は、以上の問題を解決するためになされたもので、線材支持具と長尺の酸化物超電導体を構成する元素を含む線材との間に熱絶縁層を設けて線材支持具からの熱流入を防止することにより、所定の熱処理パターンで精密な熱処理制御を可能にするとともに、線材支持具からの線材支持具を構成する元素の線材への拡散を防止して、超電導特性の優れた長尺の酸化物超電導線材を製造することができる酸化物超電導線材の製造方法を提供することをその目的とする。
【0010】
【課題を解決するための手段】
以上の目的を達成するために、本発明による酸化物超電導線材の製造方法は、耐熱性金属材料からなる円筒状部材の表面にセラミックス層を設けた巻枠の外側に、長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施すことを特徴としている。
【0011】
また、本発明による他の酸化物超電導線材の製造方法は、耐熱性金属材料からなる線状体を編むことにより形成された直径の異なる2つの円筒状体を同心状に配置し、これらの2つの円筒状体の間の空間内に、長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に収容した後、熱処理を施すことを特徴としている。
【0012】
以上の発明における酸化物超電導線材は、銀シース法による溶融〜凝固プロセスを必要とするBi系(2212)酸化物超電導体に適し、この場合の超電導体の構成元素は、Bi:Sr:Ca:Cu=1.8〜2.5:1.8〜2.2:0.8〜1.2:1.6〜2.5のモル比を有するBi2Sr2CaCu2O8系超電導導体からなることが好ましい。
【0013】
本発明における酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材としては、銀シース法により製造した単芯線、多芯線又はこれらの複数本を集合又は撚合せた集合導体を挙げることができる。
【0014】
【発明の実施の形態】
本発明による酸化物超電導線材の製造方法においては、巻枠として、耐熱性金属材料からなる円筒状部材の表面にセラミックス層を設けたものが用いられるが、円筒状部材としては、熱処理中の酸化性雰囲気及び温度でその形状及び機械的強度を保持することができるものであればよく、ステンレス鋼、ハステロイ、インコネル等の耐熱金属材料を用いることができる。
【0015】
円筒状部材の表面に設けられるセラミックス層は、溶射等の手段により形成され、円筒状部材を構成する元素の超電導体への拡散による超電導特性の劣化を防止し、かつ線材支持具の熱挙動及び熱容量による熱処理パターンへの影響を防止する。
【0016】
このセラミックス層としては、超電導体との反応性の小さいZrO、AlO、MgO等が用いられ、その厚さは、8μm以上であることが好ましい。セラミックス層の厚さが8μm未満であると、十分に連続した膜を形成することができず、上述の元素の拡散や熱流入を防止することが困難となる。セラミックス層は、膜の形成後に欠落等の欠陥が生じなければ、特に限定されない。
【0017】
本発明による他の酸化物超電導線材の製造方法においては、耐熱性金属材料からなる線状体を編んだ2つの円筒状体が用いられるが、この線状体としては、熱処理中の酸化性雰囲気及び温度でその形状を保持することができるものであればよく、ステンレス鋼、ハステロイ、インコネル等の耐熱金属材料を用いることができる。ソレノイド状に巻回した長尺の線材は、2つの円筒状体の間の空間内に収容されることにより機械的強度を保持することができる。
【0018】
上記の線状体の表面に、溶射等の手段により超電導体との反応性の小さいZrO、AlO、MgO等のセラミックス層を設けたものを用いることにより、より大きな効果を得ることができる。
【0019】
円筒状体間の空間は、線材の径や線材間の融着を防止するセパレータの厚さにより適宜決定される。この空間内に線材を落とし込み、積み上げて熱処理が施される。この場合、線材を保持する円筒状体は、通常の巻枠に比較して、線材との接触面積及び熱容量が小さいため、円筒状体を構成する元素の超電導体への拡散による超電導特性の劣化を防止し、かつ線材支持具の熱挙動及び熱容量による熱処理パターンへの影響を防止することができる。また、熱膨張の差により発生する歪に基づく超電導特性の劣化を防ぐことができる上、雰囲気ガスの出入も自由である利点もある。
【0020】
以上の発明において、ソレノイド状に巻回又は収容された長尺の線材に、酸化物超電導体を生成させるための熱処理が施されるが、この熱処理は酸化物超電導体の合成温度で施され、Bi系(2212)酸化物超電導導体の場合、酸素濃度50%以上の雰囲気中での加熱とそれに続く徐冷工程により施される。この加熱工程は、Bi系(2212)酸化物超電導導体の融点以上で融点以上20℃未満の温度で施され、一方、徐冷工程は、0.1〜10℃/hの冷却速度の範囲で、少なくともBi系(2212)酸化物超電導導体の凝固温度以下10℃まで施される。
【0021】
【実施例】
以下本発明の一実施例について説明する。
【0022】
実施例1
外径φ18mm、内径φ15mmの純銀パイプ中に、Bi2Sr2CaCu2O8の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を充填し、これに伸線加工を施して外径φ2mmまで成形した。この61本を束ねて同一サイズの純銀パイプ中に収容し、更に外径φ4.5mmまで伸線加工を施した。
【0023】
次いで、この6本を束ねてAg−Mg−Sb三元合金を用いて作製したパイプ中に収容し、これに伸線加工を施してφ1mmまで成形した。
【0024】
このようにして成形した線材1の300mを、図1に示すように、外径φ1m、高さ0.5m、厚さ5mmの耐熱ステンレス製の円筒状部材2の表面に所定のセラミックス層3を10μmの厚さに設けた巻枠4の外側にソレノイド状に巻回した後、熱処理炉5中に収容して、酸素雰囲気中で900℃に加熱し、冷却速度10℃/hで熱処理を施した。
【0025】
このようにして製造した酸化物超電導線材の臨界電流値(Ic)を4.2K、0Tで測定した結果、AlOのバリア層を設けた巻枠の場合のIc値は890A、ZrOのバリア層を設けた巻枠の場合のIc値は1050A、MgOのバリア層を設けた巻枠の場合
のIc値は850Aの値を示した。
実施例2
図2に示すように、外径φ1m、高さ0.5mの耐熱ステンレス製の線状体を編むことにより形成された円筒状体10と、これより径の大きい円筒状体11を同心状に配置し、2つの円筒状体の間の空間内12に、実施例1と同様にして製造した線材1の300mをソレノイド状に収容した後、同様の熱処理を施して酸化物超電導線材を製造し、Ic値を測定した。その結果、1050AのIc値を示した。
【0026】
実施例3
実施例2の円筒状体の表面にZrOを溶射した2つの円筒状体を用いた他は実施例2と同様の方法により熱処理を施して酸化物超電導線材を製造し、Ic値を測定した。その結果、1030AのIc値を示した。
【0027】
比較例1
実施例1の耐熱ステンレス製の円筒状部材の外側に、直接線材をソレノイド状に巻回した他は、同様の方法により熱処理を施して酸化物超電導線材を製造し、Ic値を測定した。その結果、250AのIc値を示した。
【0028】
比較例2
比較例1の耐熱ステンレス製の円筒状部材の代わりにAlO製の円筒状部材を用いた他は、比較例1と同様の方法により熱処理を施して酸化物超電導線材を製造し、Ic値を測定した。その結果、600AのIc値を示した。
【0029】
比較例3
実施例1の耐熱ステンレス製の円筒状部材の表面に、厚さ600μmのMgO紙又は厚さ700μmのZrO紙を巻いた他は、同様の方法により熱処理を施して酸化物超電導線材を製造し、Ic値を測定した。その結果、MgO紙を用いた場合に500A、ZrO紙を用いた場合に500AのIc値を示した。
【0030】
【発明の効果】
以上述べたように、本発明による酸化物超電導線材の製造方法によれば、熱処理時の線材支持具からの熱流入を防止して所定の熱処理パターンで精密な熱処理制御を可能にするとともに、線材支持具からの線材支持具を構成する元素の線材への拡散を防止し、さらに、熱処理時に線材に加わる歪による劣化を防止して、超電導特性の優れた長尺の酸化物超電導線材を製造することができる利点を有する。
【図面の簡単な説明】
【図1】本発明による酸化物超電導線材の製造方法の一実施例を示す概略図である。
【図2】本発明による酸化物超電導線材の製造方法の他の実施例を示す概略図である。
【符号の説明】
1…線材
2…耐熱ステンレス製の円筒状部材
3…セラミックス層
4…巻枠
5…熱処理炉
10…網目状の内側円筒状体
11…網目状の外側円筒状体
12…空間
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for manufacturing an oxide superconducting wire, and more particularly to an oxide capable of preventing heat inflow from a wire support and diffusion of its constituent elements during heat treatment and producing an oxide superconducting wire having excellent properties. The present invention relates to a method for manufacturing a superconducting wire.
[0002]
[Prior art]
Conventionally, Bi-based (2212) oxide superconductor (Bi: Sr: Ca: Cu = 2: 2: 1: 2 molar ratio) and Bi-based (2223) oxide superconductor (Bi: (Sr: Ca: Cu = 2: 2: 2: 3 molar ratio) has succeeded in forming wires, and these wires are manufactured by a so-called silver sheath method (Powder in Tube Method). In this method, a silver or silver alloy sheath is filled with a raw material powder of a superconducting material and subjected to diameter reduction processing or rolling processing to form a round or tape-shaped cross section, and then to heat treatment. Thus, the raw material powder is made superconductive (for example, see Non-Patent Document 1).
[0003]
When an oxide superconducting wire is manufactured by the above-described silver sheath method, heat treatment for generating an oxide superconductor after cold working is required. The synthesis temperature of this oxide superconductor has a narrow appropriate temperature range. For example, it is necessary to control the temperature range to ± 1 to 2 ° C.
[0004]
The above-mentioned strict temperature control becomes significantly more difficult as the size of the electric furnace increases with the length of the wire. In addition, a large wire support is needed to support the weight of a long wire at high temperatures, and from the viewpoint of heat resistance, this wire support is made of heat-resistant stainless steel, ceramic moldings, etc. ing.
[0005]
[Non-patent document 1]
T. Hasegawa et.al. “HTS Conductors for Magnets”, MT-17, Sep. 2001,
Geneva.
[0006]
[Problems to be solved by the invention]
Since the above wire support has a large heat capacity, for example, the wire support is formed in a cylindrical shape, and a wire containing an element constituting a long oxide superconductor is wound around the outer periphery of the wire support in a solenoid shape to perform heat treatment. When applied, the thermal behavior of the wire is greatly affected by the thermal behavior and heat capacity of the wire support, there is a drawback that it is difficult to control the temperature of the wire to be heat-treated and it is difficult to obtain a desired heat treatment pattern. In the production of a Bi-based (2212) oxide superconducting wire in which cooling conditions must be strictly controlled, it is extremely difficult to obtain a superconducting wire having excellent characteristics.
[0007]
In addition, when heat-resistant stainless steel is used as the wire support, there is a problem that due to the difference in the coefficient of thermal expansion between the wire and the wire wound on the wire support, strain is applied to the wire during heat treatment and the superconducting characteristics are deteriorated. In addition, there is a problem in that the superconductor is contaminated by the diffusion of the elements constituting the wire support into the wire, and the superconductivity is deteriorated.
[0008]
As a means to solve the above problems, heat-resistant paper or ceramic fiber sheet is used as a separator.However, to prevent heat inflow from the wire support and diffusion of its constituent elements during heat treatment. There is a problem of insufficient.
[0009]
The present invention has been made in order to solve the above-described problems, and a heat insulating layer is provided between a wire support and a wire containing an element constituting a long oxide superconductor to form a wire support. Prevents heat inflow, enables precise heat treatment control with a predetermined heat treatment pattern, and prevents diffusion of elements constituting the wire support from the wire support into the wire, resulting in excellent superconducting properties. An object of the present invention is to provide a method for producing an oxide superconducting wire capable of producing a long oxide superconducting wire.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, a method for manufacturing an oxide superconducting wire according to the present invention comprises a step of forming a long oxide superconducting wire outside a winding frame in which a ceramic layer is provided on the surface of a cylindrical member made of a heat-resistant metal material. It is characterized in that a wire containing a raw material powder containing the elements constituting the body at a predetermined molar ratio is wound in a solenoid shape and then subjected to a heat treatment.
[0011]
Further, another method of manufacturing an oxide superconducting wire according to the present invention is to dispose two cylindrical bodies having different diameters formed by knitting a linear body made of a heat-resistant metal material, and concentrically dispose these two cylindrical bodies. In the space between the two cylindrical bodies, a wire containing a raw material powder containing the elements constituting the long oxide superconductor at a predetermined molar ratio is housed in a solenoid shape, and then heat-treated. I have.
[0012]
The oxide superconducting wire in the above invention is suitable for a Bi-based (2212) oxide superconductor that requires a melting to solidification process by a silver sheath method. In this case, the constituent elements of the superconductor are Bi: Sr: Ca: Cu = 1.8~2.5: 1.8~2.2: 0.8~1.2: preferably consists of Bi 2 Sr 2 CaCu 2 O 8 type superconductor having a molar ratio of 1.6 to 2.5.
[0013]
The wire containing the raw material powder containing the elements constituting the oxide superconductor in the present invention at a predetermined molar ratio may be a single-core wire, a multi-core wire manufactured by a silver sheath method, or an assembly obtained by assembling or twisting a plurality of these wires. Conductors can be mentioned.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
In the method for manufacturing an oxide superconducting wire according to the present invention, a winding frame having a ceramic layer provided on the surface of a cylindrical member made of a heat-resistant metal material is used. Any material that can maintain its shape and mechanical strength in a neutral atmosphere and temperature can be used, and a heat-resistant metal material such as stainless steel, Hastelloy, or Inconel can be used.
[0015]
The ceramic layer provided on the surface of the cylindrical member is formed by means such as thermal spraying to prevent deterioration of superconducting characteristics due to diffusion of elements constituting the cylindrical member into the superconductor, and to determine the thermal behavior of the wire support. Prevents the heat capacity from affecting the heat treatment pattern.
[0016]
As this ceramic layer, ZrO 2 , Al 2 O 3 , MgO or the like having low reactivity with the superconductor is used, and its thickness is preferably 8 μm or more. If the thickness of the ceramic layer is less than 8 μm, a sufficiently continuous film cannot be formed, and it becomes difficult to prevent the above-mentioned diffusion of elements and heat inflow. The ceramic layer is not particularly limited as long as no defect such as dropout occurs after the formation of the film.
[0017]
In another method for manufacturing an oxide superconducting wire according to the present invention, two cylindrical bodies formed by knitting a linear body made of a heat-resistant metal material are used. Any material that can maintain its shape at the same temperature and temperature can be used, and a heat-resistant metal material such as stainless steel, Hastelloy, or Inconel can be used. A long wire wound in a solenoid shape can maintain mechanical strength by being accommodated in a space between two cylindrical bodies.
[0018]
Greater effects can be obtained by using a ceramic material layer of ZrO 2 , Al 2 O 3 , MgO, etc., which has low reactivity with the superconductor on the surface of the linear body by means of thermal spraying or the like. Can be.
[0019]
The space between the cylindrical bodies is appropriately determined by the diameter of the wire and the thickness of the separator for preventing fusion between the wires. The wires are dropped into this space, stacked and subjected to a heat treatment. In this case, the cylindrical body holding the wire has a smaller contact area with the wire and a smaller heat capacity than the ordinary winding frame, so that the superconducting characteristics are deteriorated due to the diffusion of the elements constituting the cylindrical body into the superconductor. And the thermal behavior and heat capacity of the wire support can be prevented from affecting the heat treatment pattern. In addition, it is possible to prevent deterioration of superconducting characteristics due to strain generated due to a difference in thermal expansion, and there is an advantage that atmospheric gas can freely enter and exit.
[0020]
In the above invention, a long wire wound or housed in a solenoid shape is subjected to a heat treatment for generating an oxide superconductor, but this heat treatment is performed at a synthesis temperature of the oxide superconductor, In the case of a Bi-based (2212) oxide superconductor, heating is performed in an atmosphere having an oxygen concentration of 50% or more, followed by a slow cooling step. This heating step is performed at a temperature equal to or higher than the melting point of the Bi-based (2212) oxide superconducting conductor and equal to or higher than the melting point and lower than 20 ° C., while the slow cooling step is performed at a cooling rate of 0.1 to 10 ° C./h at least. It is applied up to the solidification temperature of the Bi-based (2212) oxide superconductor up to 10 ° C.
[0021]
【Example】
Hereinafter, an embodiment of the present invention will be described.
[0022]
Example 1
In a pure silver pipe having an outer diameter of 18 mm and an inner diameter of 15 mm, a raw material powder containing an element constituting the oxide superconductor of Bi 2 Sr 2 CaCu 2 O 8 at a predetermined molar ratio is filled and subjected to wire drawing. It was molded to an outer diameter of φ2 mm. These 61 pieces were bundled and housed in a pure silver pipe of the same size, and further subjected to wire drawing to an outer diameter of 4.5 mm.
[0023]
Next, the six wires were bundled and housed in a pipe made of a ternary alloy of Ag-Mg-Sb, which was subjected to wire drawing and formed into a diameter of 1 mm.
[0024]
As shown in FIG. 1, 300 m of the wire 1 thus formed was coated with a predetermined ceramic layer 3 of 10 μm on the surface of a heat-resistant stainless steel cylindrical member 2 having an outer diameter of φ1 m, a height of 0.5 m and a thickness of 5 mm. After being wound in a solenoid shape outside the winding frame 4 provided in a thickness of 5 mm, it was housed in a heat treatment furnace 5, heated to 900 ° C. in an oxygen atmosphere, and heat-treated at a cooling rate of 10 ° C./h. .
[0025]
The critical current value (Ic) of the oxide superconducting wire thus manufactured was measured at 4.2 K and 0 T. As a result, the Ic value in the case of the winding form provided with the barrier layer of Al 2 O 3 was 890 A and the ZrO 2 The Ic value in the case of the bobbin provided with the barrier layer was 1050 A, and the Ic value in the case of the bobbin provided with the 2 MgO barrier layer was 850 A.
Example 2
As shown in FIG. 2, a cylindrical body 10 formed by knitting a heat-resistant stainless steel linear body having an outer diameter of φ1 m and a height of 0.5 m, and a cylindrical body 11 having a larger diameter are concentrically arranged. Then, after 300 m of the wire 1 manufactured in the same manner as in Example 1 is accommodated in a solenoid shape in the space 12 between the two cylindrical bodies, the same heat treatment is performed to manufacture an oxide superconducting wire, Ic values were measured. As a result, an Ic value of 1050A was shown.
[0026]
Example 3
A heat treatment was performed in the same manner as in Example 2 except that two cylindrical bodies sprayed with ZrO 2 on the surface of the cylindrical body of Example 2 to produce an oxide superconducting wire, and the Ic value was measured. . As a result, an Ic value of 1030A was shown.
[0027]
Comparative Example 1
An oxide superconducting wire was manufactured by performing a heat treatment in the same manner as in Example 1 except that the wire was directly wound in a solenoid shape outside the heat-resistant stainless steel cylindrical member, and the Ic value was measured. As a result, an Ic value of 250 A was shown.
[0028]
Comparative Example 2
A heat treatment was performed in the same manner as in Comparative Example 1 except that a cylindrical member made of Al 2 O 3 was used instead of the cylindrical member made of heat-resistant stainless steel of Comparative Example 1 to produce an oxide superconducting wire. The value was measured. As a result, an Ic value of 600 A was shown.
[0029]
Comparative Example 3
A heat treatment was performed in the same manner as in Example 1 except that 600 μm thick MgO paper or 700 μm thick ZrO 2 paper was wound on the surface of the heat-resistant stainless steel cylindrical member to produce an oxide superconducting wire. , Ic values were measured. As a result, an Ic value of 500 A was obtained when MgO paper was used, and 500 A when ZrO 2 paper was used.
[0030]
【The invention's effect】
As described above, according to the method for manufacturing an oxide superconducting wire according to the present invention, it is possible to prevent heat inflow from the wire support at the time of heat treatment, thereby enabling precise heat treatment control with a predetermined heat treatment pattern, and Prevents diffusion of elements constituting the wire support from the support to the wire, and further prevents deterioration due to strain applied to the wire during heat treatment, thereby producing a long oxide superconducting wire having excellent superconducting properties. Can have the advantage.
[Brief description of the drawings]
FIG. 1 is a schematic view showing one embodiment of a method for producing an oxide superconducting wire according to the present invention.
FIG. 2 is a schematic view showing another embodiment of the method for producing an oxide superconducting wire according to the present invention.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Wire 2 ... Heat resistant stainless steel cylindrical member 3 ... Ceramic layer 4 ... Reel 5 ... Heat treatment furnace
10… Reticulated inner cylindrical body
11… Reticulated outer cylindrical body
12… space

Claims (4)

耐熱性金属材料からなる円筒状部材の表面にセラミックス層を設けた巻枠の外側に、長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に巻回した後、熱処理を施すことを特徴とする酸化物超電導線材の製造方法。A wire rod containing a raw material powder containing a predetermined molar ratio of elements constituting a long oxide superconductor is provided outside a winding frame in which a ceramic layer is provided on the surface of a cylindrical member made of a heat-resistant metal material. A method for producing an oxide superconducting wire, comprising performing heat treatment after winding. セラミックス層の厚さは、8μm以上であることを特徴とする請求項1記載の酸化物超電導線材の製造方法。The method for producing an oxide superconducting wire according to claim 1, wherein the thickness of the ceramic layer is 8 µm or more. 耐熱性金属材料からなる線状体を編むことにより形成された直径の異なる2つの円筒状体を同心状に配置し、前記2つの円筒状体の間の空間内に、長尺の酸化物超電導体を構成する元素を所定のモル比で含む原料粉末を収容した線材をソレノイド状に収容した後、熱処理を施すことを特徴とする酸化物超電導線材の製造方法。Two cylindrical bodies having different diameters formed by knitting a linear body made of a heat-resistant metal material are concentrically arranged, and a long oxide superconductor is provided in a space between the two cylindrical bodies. A method for producing an oxide superconducting wire, comprising: carrying out a heat treatment after accommodating a wire containing a raw material powder containing an element constituting a body at a predetermined molar ratio in a solenoid shape. 酸化物超電導体は、Bi:Sr:Ca:Cu=1.8〜2.5:1.8〜2.2:0.8〜1.2:1.6〜2.5のモル比を有するBi2Sr2CaCu2O8系超電導体からなることを特徴とする請求項1乃至3いずれか1項記載の酸化物超電導線材の製造方法。Oxide superconductor, Bi: Sr: Ca: Cu = 1.8~2.5: 1.8~2.2: 0.8~1.2: characterized in that it consists of Bi 2 Sr 2 CaCu 2 O 8 type superconductor having a molar ratio of 1.6 to 2.5 The method for producing an oxide superconducting wire according to any one of claims 1 to 3.
JP2002369565A 2002-12-20 2002-12-20 Manufacturing method of oxide superconducting wire Expired - Fee Related JP4212882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002369565A JP4212882B2 (en) 2002-12-20 2002-12-20 Manufacturing method of oxide superconducting wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369565A JP4212882B2 (en) 2002-12-20 2002-12-20 Manufacturing method of oxide superconducting wire

Publications (2)

Publication Number Publication Date
JP2004200098A true JP2004200098A (en) 2004-07-15
JP4212882B2 JP4212882B2 (en) 2009-01-21

Family

ID=32765750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369565A Expired - Fee Related JP4212882B2 (en) 2002-12-20 2002-12-20 Manufacturing method of oxide superconducting wire

Country Status (1)

Country Link
JP (1) JP4212882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775017B1 (en) 2006-02-23 2007-11-09 한국기계연구원 Method of manufacturing superconducting tapes using batch-type calcination and annealing process
WO2009084764A1 (en) * 2008-01-03 2009-07-09 Korea Institute Of Machinery & Materials Method of manufacturing superconducting tape using continuous nano-dots formation and calcination
WO2009084763A1 (en) * 2008-01-03 2009-07-09 Korea Institute Of Machinery & Materials Superconducting tapes and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100775017B1 (en) 2006-02-23 2007-11-09 한국기계연구원 Method of manufacturing superconducting tapes using batch-type calcination and annealing process
WO2009084764A1 (en) * 2008-01-03 2009-07-09 Korea Institute Of Machinery & Materials Method of manufacturing superconducting tape using continuous nano-dots formation and calcination
WO2009084763A1 (en) * 2008-01-03 2009-07-09 Korea Institute Of Machinery & Materials Superconducting tapes and method of manufacturing the same

Also Published As

Publication number Publication date
JP4212882B2 (en) 2009-01-21

Similar Documents

Publication Publication Date Title
US3983521A (en) Flexible superconducting composite compound wires
US5531015A (en) Method of making superconducting wind-and-react coils
JPH0268820A (en) Electric conductor in the form of wire or cable
JP2004200098A (en) Manufacturing method of oxide superconductive wire rod
WO1988008618A2 (en) Ceramic superconducting devices and fabrication methods
US5758405A (en) Consumable mandrel for superconducting magnetic coils
JP3015389B2 (en) Superconducting coil manufacturing method
JP3635210B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP2006073236A (en) Manufacturing method of oxide superconductive wire rod and support tool for manufacturing the wire rod
JP4150129B2 (en) Oxide superconducting compression molded conductor and manufacturing method thereof
JP4542240B2 (en) Oxide superconducting stranded conductor
JPH11273469A (en) Superconductive precursor composite wire and manufacture of superconductive composite wire
JPH09232131A (en) Winding spacer for oxide superconductor wire
JP4373683B2 (en) Method for manufacturing Bi-based oxide superconducting coil
JPH01321605A (en) Manufacture of oxide ceramic superconductor coil
AU709072B2 (en) Method of making superconducting wind-and-react coils
JPH07169342A (en) Multi-filament oxide superconducting wire
JPH01143108A (en) Manufacture of ceramics superconductive wire
JPH01149316A (en) Manufacture of ceramic superconductive wire
JPS604573B2 (en) Manufacturing method of compound hollow superconducting magnet
JPH01144524A (en) Manufacture of ceramic-based superconductive wire
JPH117845A (en) Superconductive wire
JPH01149307A (en) Ceramic superconductive wire
JP2004241301A (en) Method of manufacturing oxide superconductive wire rod, and raw material powder of oxide superconductive wire rod
JPH03158203A (en) Manufacture of ceramic superconductor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051014

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060424

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060620

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060816

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080501

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081029

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111107

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121107

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131107

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees