JP2004199881A - Ground fault breaker - Google Patents

Ground fault breaker Download PDF

Info

Publication number
JP2004199881A
JP2004199881A JP2002363511A JP2002363511A JP2004199881A JP 2004199881 A JP2004199881 A JP 2004199881A JP 2002363511 A JP2002363511 A JP 2002363511A JP 2002363511 A JP2002363511 A JP 2002363511A JP 2004199881 A JP2004199881 A JP 2004199881A
Authority
JP
Japan
Prior art keywords
withstand voltage
circuit
voltage test
switch
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002363511A
Other languages
Japanese (ja)
Other versions
JP4253700B2 (en
JP2004199881A5 (en
Inventor
Hisanobu Asano
久伸 浅野
Koji Asakawa
浩司 浅川
Yasuhiro Takahashi
康弘 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2002363511A priority Critical patent/JP4253700B2/en
Priority to KR1020030061721A priority patent/KR100981872B1/en
Priority to CNB03156724XA priority patent/CN100466141C/en
Priority to DE10357691A priority patent/DE10357691A1/en
Priority to FR0314706A priority patent/FR2848722B1/en
Publication of JP2004199881A publication Critical patent/JP2004199881A/en
Publication of JP2004199881A5 publication Critical patent/JP2004199881A5/ja
Application granted granted Critical
Publication of JP4253700B2 publication Critical patent/JP4253700B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H71/00Details of the protective switches or relays covered by groups H01H73/00 - H01H83/00
    • H01H71/10Operating or release mechanisms
    • H01H71/12Automatic release mechanisms with or without manual release
    • H01H71/128Manual release or trip mechanisms, e.g. for test purposes
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements
    • H02H1/06Arrangements for supplying operative power

Landscapes

  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To safely test a ground fault breaker by separating a ground fault detecting circuit from a main circuit with a simple operation when performing a voltage-withstanding test for the breaker having a main body case with a wiring breaker, components of a ground fault detecting/separating device mounted therein. <P>SOLUTION: The breaker with overcurrent and ground protection functions mounts a ground fault separating device including a main contact 2, an opening/closing mechanism 3, an operation handle, an overcurrent separating device 5 and a ground fault detecting circuit 7 for opening/closing a main circuit 1, and applies an interphase voltage of the main circuit 1 to the detecting circuit via a power supply line 9 wired between the detecting circuit. The breaker has a switch 21 for the voltage-withstanding test for switching on or off the circuit of the power supply line 9 connected to the detecting circuit in conjunction with opening/closing operations of the main contact 2, and, as the switch 21, an auxiliary switch of an attachment, for example, is used to separate the detecting circuit from the main circuit 1 in conjunction with the opening pole operation of the main contact 2 when performing the voltage-withstanding test. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、低電圧配電系統に適用する過電流保護および地絡保護機能を備えた漏電遮断器に関し、詳しくは漏電遮断器の耐電圧試験を行なう際に漏電検出回路を主回路から切り離す保護手段に係わる。
【0002】
【従来の技術】
低電圧配電系統の保護機器として配線用遮断器,漏電遮断器が周知であり、国内に普及している漏電遮断器は過電流保護の機能と地絡保護機能を備えた構成のものが一般的である。また、最近の漏電遮断器では、需要家サイドでの使い勝手性を高めるために、同じフレームの配線用遮断器,漏電遮断器は同じ外形サイズの本体ケースとした上で、主要部品をできるだけ共用化するように構成したものが主流となっている(例えば、特許文献1参照。)。
また、配電設備の多様な保護システムにも柔軟に対応させるために、配線用遮断器,漏電遮断器には付属装置として補助スイッチ,警報スイッチ,電圧引外し装置,不足電圧引外し装置などの各種付属品を組合せたものが一般化されている(例えば、特許文献2参照)。
【0003】
次に、従来における一般的な漏電遮断器(3相回路用)の回路図を図7に、またその構造を図8に示す。まず、図7において、1はR,S,T相の主回路、2は主接点、3は主接点2の開閉機構部、4は操作ハンドル、5は主回路に流れる過負荷電流,短絡電流を検出して開閉機構をトリップ動作させる熱動式,電磁式の過電流引外し装置である。
また、配電系統の地絡発生を検出して開閉機構をトリップ動作させる漏電引外し装置は、R,S,T相の主回路1を一次導体として主回路1の不平衡電流を検出する零相変流器6と、零相変流器6の二次出力レベルから地絡発生を検知する漏電検出回路(ICを含む電子回路)7と、漏電検出回路7からの出力を受けて開閉機構をトリップさせるトリップコイルユニット8とからなる。また、漏電検出回路7はその制御電源として、主回路1との間に配線した電源線9,整流回路10を介して主回路1の相間電圧を給電するようにしている。なお、図示例では主回路1のR−T相の相間電圧を漏電検出回路7に給電しているが、R,S,T相の各相電圧を直流に変換して給電する場合もある。
【0004】
一方、図8において、11は下部ケース11aと上部カバー11bからなる二分割構造の本体ケース、12,13は電源側,負荷側の主回路端子(ねじ端子)、14は主回路端子12に連なる主接点の固定接触子、15は可動接触子、16は可動接触子15を支持した回動式の接触子ホルダ、17は消弧装置である。また、開閉機構部3は良く知られているように、前記の接触子ホルダ16と操作ハンドル4との間を連繋するトグルリンク3a,開閉スプリング3bのトグルリンク機構,およびラッチ18,ラッチ受け19,トリップクロスバー20を組合せたラッチ機構との組立体からなり、トリップクロスバー20には前記した過電流引外し装置5,およびトリップコイルユニット8(図7参照)の操作端が対向している。なお、図示のラッチ機構は一例を示したもので、これ以外にも様々な構造のラッチ機構が知られている。
【0005】
また、図8の図中には描かれてないが、本体ケース11には下部ケース11a、上部カバー11bに相間隔壁が形成されており、この相間隔壁で本体ケース内に組付けた各相の部品の相互間が隔離されている。さらに、図7に示した漏電検出回路7はプリント板に実装し、本体ケース11の内部に組付けた上で、主回路1との間に配線した電源線9を半田付け(あるいはねじ止め)して接続している。同様に、主回路1の各相に直列介装した過電流引外し装置5に対応するリード線、零相変流器6の二次出力側と漏電検出回路7の間,および漏電検出回路7とトリップコイルユニット8との間を接続するリード線も本体ケース11の内部に配線されている。
【0006】
上記の構成で、操作ハンドル4をON,OFF位置に移動操作すると、操作ハンドル4に連動して開閉機構部3のトグルリンク機構が反転動作し、可動接触子15が開閉動作する。また、主接点が閉極(ON)している図示の投入状態では、ラッチ18がラッチ受け19に係止され、ラッチ受け19はこの位置でトリップクロスバー20に支持されている。この状態から主回路に過負荷電流,短絡電流が流れて過電流引外し装置5が作動すると、トリップクロスバー20が反時計方向に回動してラッチ受け19とラッチ18との係合を釈放する。これにより開閉機構部3がトリップ動作し、可動接触子15が固定接触子14から開離して主回路の電流を遮断する。同様に図7の主回路1に地絡電流が流れて漏電引外し装置のトリップコイルユニット8が作動すると、トリップクロスバー20を釈放位置に駆動する。これにより開閉機構部3がトリップ動作し、可動接触子15が開極して主回路1を断路する。なお、トリップ動作後に遮断器を再投入するには、トリップ位置に停止している操作ハンドル4をトリップ位置から一旦RESET位置(OFF位置を若干超えた位置)に戻してラッチ機構をリセットさせた上で、さらに操作ハンドル4をOFFからON位置に移動することにより可動接触子15が閉極する。
【0007】
ところで、前記した漏電遮断器の製品については、安全性の面から所定の絶縁耐力を備えていることが規格で規定されており、そのために製品ごとに耐電圧試験を行って絶縁破壊が生じないことを確認するようにしている。この耐電圧試験は、規格で定めた試験方法にしたがって、主回路端子の相間に規定の試験電圧を印加して行なうようにしており、その試験電圧は漏電遮断器の定格電圧ごとに規定されており、例えば定格電圧300〜600Vの漏電遮断器での試験電圧は2500Vである。
この耐電圧試験について、現在国内ではメーカーサイドで漏電遮断器を出荷する以前に試験を行なうようにしている。この場合に、漏電遮断器の製品組立状態で漏電検出回路(IC)を主回路に接続したまま相間に高い試験電圧を印加すると、漏電検出回路が高電圧で破壊してしまう。このために、耐圧試験を行なう場合は漏電検出回路の電源線を外した状態で実施していた。
【0008】
一方、海外の欧米諸国などでは国内の漏電遮断器と異なり、配線用遮断器に別構造の漏電検出ユニット(零相変流器,漏電検出回路などを装備してユニット化したもの)を組合せて使用するのが一般的である。このことから、前記した耐電圧試験は、ユーザーサイドで配電設備の施工業者が配線用遮断器に漏電検出ユニットを組付けた状態で試験を行なうようにしている。そこで、この耐電圧試験に対応させるために、漏電検出ユニットに例えば押しボタン式の耐電圧テスト用スイッチを設け、耐電圧試験を行なう際には耐電圧テスト用スイッチを操作して漏電検出回路を主回路から切り離し、耐電圧試験の終了後に耐電圧テスト用スイッチを操作して漏電回路を主回路に接続して通常の使用状態に戻すようにしたものが知られている(例えば、特許文献3参照。)。
【0009】
【特許文献1】
特許第3246562号明細書
【0010】
【特許文献2】
特許第3097368号明細書
【0011】
【特許文献3】
米国特許出願公開第2001/0022713A1号明細書
【0012】
【発明が解決しようとする課題】
ところで、前記した従来の漏電遮断器は、耐電圧試験との対応面で次記のような問題点がある。
(1) 図8のように配線用遮断器の構成部品と漏電検出回路を含む漏電引外し装置を一括して単一の本体ケースに組み込んだ漏電遮断器の製品について、メーカーから海外への輸出などで出荷した後に、ユーザーサイドで耐電圧試験を実施しようとする場合には、本体ケースのカバーを外した上で、漏電検出回路と主回路との間に配線されている電源線のはんだ付け部,あるいはねじ止め部を一旦外して漏電検出回路を主回路から切り離す必要があり、試験の準備作業に大きな手間がかかる。
【0013】
(2) また、前記の特許文献3に開示されている漏電検知デバイスの構成では、耐電圧試験の実施に際して漏電検出ユニットに備えた耐電圧テスト用スイッチ(dielectric test switch) をOFF操作すると、漏電検出回路が主回路から切り離されると同時に、配線用遮断器(circuit breaker)がトリップ動作して主接点が開極する。これにより、漏電検出回路を主回路から切り離して耐電圧試験を安全に行なうことができる。
しかしながら、その耐電圧テスト用スイッチは配線用遮断器の開閉動作とは連動していなく、ON復帰は当該スイッチのボタン操作により単独で行なうようにしており、耐電圧試験終了後は耐電圧テスト用スイッチをONに戻してない状態でも、配線用遮断器のハンドル操作により主接点を投入させることが可能である。このために、耐電圧試験後に耐電圧テスト用スイッチをONに復帰操作するのを忘れ、配線用遮断器の操作ハンドルで主接点を投入して配線用遮断器を使用状態に戻すおそれがある。しかも、耐電圧試験の終了後に耐電圧テスト用スイッチの入れ忘れがあると、漏電検出回路が主回路から切り離されたままとなるので、その後の使用状態で配電線路に地絡が発生した場合に漏電保護機能が働かなくなるといった事態が生じる。
【0014】
本発明は上記の点に鑑みなされたものであり、図8のように単一の本体ケースに配線用遮断器の構成部品と漏電検出,引外し装置の構成部品を一括して組み込んだ構成の漏電遮断器を対象に、製品の出荷後にユーザーサイドで耐電圧試験を実施する場合でも、簡単な操作で漏電検出回路を主回路から切り離して耐電圧試験が安全に行なえるように改良した漏電遮断器を提供することを目的とする。
【0015】
【課題を解決するための手段】
上記目的を達成するために、本発明によれば、過電流保護および地絡保護機能を備えた漏電遮断器であって、主接点,開閉機構,操作ハンドル,過電流引外し装置,および漏電検出回路を含む漏電引外し装置を一括して本体ケースに装備し、前記漏電検出回路の電源として、主回路の相間電圧を漏電検出回路との間に配線した電源線を介して給電するようにしたものにおいて、
第1の発明では、主接点のON,OFF動作に連動して、漏電検出回路に接続した前記電源線の給電回路を入り,切りする耐電圧テスト用スイッチを備える(請求項1)ものとし、その実施態様として、耐電圧テスト用スイッチに、漏電遮断器の付属品である補助スイッチを用いる(請求項2)ことができる。
【0016】
上記の構成において、耐電圧試験の実施に際して操作ハンドルで主接点を開極すると、同時に耐電圧テスト用スイッチの自動的にOFFとなって主回路から漏電検出回路に通じる電源線の給電回路を断路する。したがって、耐電圧試験に際して遮断器のカバーを外して漏電検出回路の内部配線のはんだ付け箇所を外すといった手間の掛かる準備作業が必要なく、主回路の相間に印加する高い試験電圧から漏電検出回路を安全に切り離して耐電圧試験を安全に行なうことができる。また、耐電圧試験の終了後にハンドル操作で主接点を閉極すると、同時に耐電圧テスト用スイッチがONに復帰して漏電検出回路の給電回路が通電状態に戻る。
【0017】
また、この場合に前記の耐電圧テスト用スイッチとして、漏電遮断器の付属装置品である補助スイッチ(補助スイッチの本来の機能は、遮断器の主接点の開閉状態を電気信号で外部に取り出すためのスイッチ)を用いて補助スイッチを主回路と漏電検出回路との間に電源線に接続すれば、漏電遮断器に大きな変更を加えることなしに耐電圧試験に対応させることができる。
一方、第2の発明では、漏電検出回路に接続した前記電源線の給電回路を入り,切りする手動操作式の耐電圧テスト用スイッチを本体ケースに内装した上で、該スイッチを主接点の開閉機構にインターロックし、耐電圧テスト用スイッチのOFF操作に連動して開閉機構をトリップ動作させ、主接点を開極するように構成する(請求項3)ものとし、その具体的な実施態様として次記のように構成することができる。
【0018】
(1) 耐電圧テスト用スイッチに該スイッチのON,OFF操作に従動するアクチュエータを設けた上で、該アクチュエータを開閉機構のトリップクロスバーに連係し、耐電圧テスト用スイッチのOFF操作により、トリップクロスバーをラッチ釈放位置に駆動して開閉機構をトリップさせるとともに、トリップクロスバーをラッチ釈放位置に拘束して主接点の投入を阻止し、耐電圧テスト用スイッチのON復帰操作でトリップクロスバーの拘束を解除するように構成する(請求項4)。
(2)耐圧テスト用スイッチに該スイッチのON,OFF操作に従動するアクチュエータを設けた上で、該アクチュエータを開閉機構のトリップクロスバーに連係し、耐電圧テスト用スイッチのOFF操作によりトリップクロスバーをラッチ釈放位置に駆動して開閉機構をトリップさせ、ハンドルのリセット操作によりトリップクロスバーをラッチ鎖錠位置に駆動してラッチ機構をリセットさせる同時に、トリップクロスバーを介して耐電圧テストスイッチをONに復帰させるように構成する(請求項5)。
【0019】
(3) 前項(1),(2) において、耐電圧テスト用スイッチにスライドスイッチ,あるいはトグルスイッチを用い、その操作ノブに連結した操作部材にアクチュエータを設けてトリップクロスバーに連係させる(請求項6)。
上記の構成において、耐電圧試験の際に耐電圧テスト用スイッチをOFF操作すると、漏電検出回路が主回路から切り離されるとともに、このスイッチ操作に連動して開閉機構がトリップ動作し、主接点が開極する。これにより、耐電圧試験の準備が整い、漏電検出回路を主回路から切り離した状態で耐電圧試験を安全に行なうことができる。
【0020】
しかも、耐電圧テスト用スイッチのOFF状態では、トリップクロスバーがラッチ釈放位置に拘束保持される。これにより、耐電圧テスト用スイッチをONに復帰操作せずに、操作ハンドルをON位置に移動して主接点を再投入しようとしても、ラッチ機構がリセットされなので主接点を閉極することができず、これにより、試験の終了後に耐電圧テスト用スイッチを入れ忘れて漏電検出回路を主回路から切り離したまま、主接点を閉極して漏電遮断器を使用状態に戻すようなことを回避できる。
また、操作ハンドルのリセット操作によりトリップクロスバーを戻してラッチ機構をリセットさせる同時に、トリップクロスバーを介して耐電圧テストスイッチをONに復帰させるようにインターロックして構成することにより、前記と同様に試験の終了後に耐電圧テスト用スイッチの入れ忘れを防止できる。
【0021】
【発明の実施の形態】
以下、本発明の実施の形態を図1〜図6に示す実施例に基づいて説明する。なお、実施例の図中において図7,図8に対応する部材には同じ符号を付してその詳細な説明は省略する。
〔実施例1〕
図1〜図3は本発明の請求項1,2に対応する実施例の構成図である。この実施例の漏電遮断器は図7,図8に示した従来構成と基本的に同じであるが、図1の回路図で示すように、主回路1との間に電源線9を配線した漏電検出回路7の給電回路に対して、該回路に新たに耐電圧テスト用スイッチ21が介装されている。この耐電圧テスト用スイッチ21は、主接点2の開閉動作に連動して前記給電回路を入り,切りするように動作するスイッチであり、この実施例においては、後記のように漏電遮断器の付属品として本体ケース11に搭載した補助スイッチが採用されている。また、図示実施例では主回路1と漏電検出回路7との間にR,S,T相の各相に対応する3本の電源線9を配線し、3相電源を直流に変換(3相ブリッジ整流回路10を用いる)して漏電検出回路7に給電するようにしており、この電源線9の配線に合わせて前記耐電圧テスト用スイッチ21が三つの接点(三個のマイクロスイッチ)を備えている。
【0022】
なお、図1では耐電圧テスト用スイッチ21がR,S,T相の各電源線9に対応して三つの接点を備えているが、3相のうちの2相分に相応した二つの接点を備えて実施することもできる。また、図7で示すように主回路1と漏電検出回路7との間に2本の電源線9を配線してR−T相の相間電圧を給電する2相電源の場合には、耐電圧テスト用スイッチ21の接点を二つ,あるいはR,Tいずれかの相に接点を一つ備えるものとする。
図2は、前記の耐電圧テスト用スイッチ21として、漏電遮断器の付属品である補助スイッチを採用した漏電遮断器の構成図(上部カバーは外してある)であり、補助スイッチ22は操作ハンドル4の側方に並べて本体ケースの付属品収納部に外部から挿脱可能に組み込まれている(特許文献2参照)。ここで、補助スイッチ22は、図1の耐電圧テスト用スイッチ21に対応して3個のマイクロスイッチを備えており、そのマイクロスイッチが次記のように主接点の開閉動作に合わせてON,OFF動作する。
【0023】
次に、前記した補助スイッチ22(耐電圧テスト用スイッチ21)の開閉機構および動作を図3(a),(b) で説明する。図3において、補助スイッチ22はその操作端と可動接触子15の接触子ホルダ16との間をインターロックするように支軸23aを揺動支点としたレバー式のアクチュエータ23を備えており、このアクチュエータ23の先端が接触子ホルダ16に対峙している。
ここで、図3(a) は可動接触子15の接点15aが固定接触子14の接点14aに接触している主接点1(図1参照)の閉極状態を表している。この状態では、前記アクチュエータ23は接触子ホルダ16から離間していて、補助スイッチ22の各マイクロスイッチはONとなって図1に示した漏電検出回路7の電源回路を導通状態に保っている。
【0024】
この状態から、耐電圧試験の実施に際して主接点を開極するために、操作ハンドル4をONからOFFの位置に移動すると、図7で説明したように開閉機構部3のトグルリンク機構が反転動作して可動接触子15が開極するとともに、この動作に連動して接触子ホルダ16の後端がアクチュエータ23を押す。これにより、アクチュエータ23は反時計方向に回動して補助スイッチ23から離脱し、これに応動して補助スイッチの各マイクロスイッチがOFFとなる。つまり、図1における耐電圧テスト用スイッチ21が開いて、漏電検出回路7と主回路1との間の電源回路が断路される。したがって、この状態で耐電圧試験を行なえば、漏電検出回路7を試験電圧から保護できる。
【0025】
なお、試験の終了後に操作ハンドル4を図3(a) のON位置に戻して主接点を閉極すると、接触子ホルダ16が反時計方向に回動してアクチュエータ23から離脱し、これにより補助スイッチ23は自動的にONに切り換わって漏電検出回路7が主回路1から給電を受ける定常状態に復帰する。
この実施例によれば、耐電圧テスト用スイッチ21として付属スイッチ22を用いたので、漏電遮断器を大幅に変更するこしとなしに簡単な構成で実施することができる。なお、図2の構成では補助スイッチ22を本体ケース11の付属品収納部に収納するようにしているが、補助スイッチの設置場所は図示例に限定されるものではなく、トリップクロスバーの近傍であれば、本体ケースの外部側に設置するようにしてもよい。
【0026】
〔実施例2〕
次に、本発明の請求項3〜5に対応する実施例の構成,動作を図4〜図7で説明する。
この実施例は、図1における耐電圧テスト用スイッチ21について、その機能をさらに発展させたものである。すなわち、この実施例では耐電圧テスト用スイッチ21を手動操作式スイッチとした上で、このスイッチを後記のように開閉機構3のトリップクロスバーに連係させる。そして、耐電圧試験の際に耐電圧テスト用スイッチ21を手動でOFF操作し、主回路1と漏電検出回路7との間に配線した電源線9の給電回路を断路すると、これに連動して開閉機構部3がトリップして主接点1が開極し、これで耐電圧試験の準備が整う。また、耐電圧試験の終了後に漏電遮断器を通常の使用状態に戻す場合には、耐電圧テスト用スイッチ21をON位置に復帰操作するか、あるいは操作ハンドル4をRESET位置に移動操作しない限り、ラッチ機構をリセットできないようにして主接点の投入を阻止し、耐電圧テスト用スイッチ21の入れ忘れを防ぐようにしている。
【0027】
このために、図4で示すように、前記した手動操作式の耐電圧テスト用スイッチ21が操作ハンドル4の側方に並べて開閉機構のトリップクロスバー20の上方位置に装着されている。また、本体ケースの上部カバー11bには、耐電圧テスト用スイッチ21を外部からON,OFF操作できるようにするために、スライド式の小カバー11b-1を備えている。
次に、耐電圧テスト用スイッチ21の具体的な組立構造を図5(a),(b) に示す。すなわち、耐電圧テスト用スイッチ21は、その接点数に対応した数のスライドスイッチ24と、このスライドスイッチ24を左右に並べて収容する皿形のスイッチケース25と、該スイッチケース25の上に被せてスライドスイッチ24の操作ノブ24aに係合し、各スライドスイッチ24を一括してON,OFF操作するスライド式のスイッチカバー26との組立体からなり、かつスイッチカバー26には下方に延在する脚片状のアクチュエータ26aが一体形成されている。なお、図示例では3相の漏電遮断器用として2個のスライドスイッチ24を備えているが、単相漏電遮断器ではスライドスイッチ24を1個とする。
【0028】
そして、この耐電圧テスト用スイッチ21を図4で示す位置に組付けると、この位置で前記のアクチュエータ26aの先端が開閉機構のトリップクロスバー状態に対峙し、図6(a),(b) で示すようにアクチュエータ26aとトリップクロスバー20との間がインターロックされる。
図6(a) は図5に示した耐電圧テスト用スイッチ21について、そのスイッチカバー26を右方向にスライド操作してスライドスイッチ24をON位置に保持し、かつ操作ハンドル4をON位置にセットして可動接触子15を閉極した定常の主回路通電状態を表しており、図1における耐電圧テスト用スイッチ21の接点が閉じて主回路1から電源線9を介して漏電検出回路7に給電している状態に対応している。また、この状態では、図6(a) のようにトリップクロスバー20はアクチュエータ26aの拘束を受けずに開閉機構3のラッチ18を係止保持している。
【0029】
この状態から、耐電圧試験を行なうには、外部からの操作で耐電圧テスト用スイッチ21のスイッチカバー26をOFF位置にスライドする。これにより、スライドスイッチ24の接点がOFFとなって図1に示した漏電検出回路7の電源回路を断路して主回路1から切り離すと同時に、図6(b) で表すようにスイッチカバー26に設けたアクチュエータ26aがトリップクロスバー20を背後から押し、その支軸20aの回りで反時計方向に回動させる。これにより、いままでトリップクロスバー20に係止保持されていたラッチ18が釈放されて開閉機構部3がトリップ動作し、可動接触子15が開極して主接点2がOFFとなる。そして、この状態で耐電圧試験を行なえば、漏電検出回路7が主回路1から切り離されていて主回路1の相間に印加する高い試験電圧から安全に保護できる。
【0030】
また、耐電圧テスト用スイッチ21をOFF位置にスライド操作した図6(b) の状態では、該スイッチのアクチュエータ26aに押されたトリップクロスバー20がラッチ18の釈放位置に保持されている。したがって、耐電圧試験の終了後は、耐電圧テスト用スイッチ21を元のON位置に戻さない限りは、操作ハンドル4をトリップ位置からRESET位置に移動操作してもラッチ機構部がリセットされないので、主接点1を再投入することができない。これにより、耐電圧テスト用スイッチ21の入れ忘れが原因で漏電遮断器の地絡検出,漏電保護機能が働かなくなるといった事態を未然に防止できる。
【0031】
なお、開閉機構部3のトリップクロスバー20は比較的弱い復帰ばね(図示せず)のばね力でラッチ18との係合位置(リセット位置)に向けて時計方向に付勢されている。そこで、図4に示したスライドスイッチ24のON,OFF位置における機械的な保持力をトリップクロスバー20の復帰ばね力よりも強くしておくように設定しておけば、耐電圧テスト用スイッチ21を図6(b) のようにOFF位置にスライド操作した状態では、トリップクロスバー20が復帰ばねに抗してラッチ釈放位置に保持される。したがって、耐電圧試験の終了後に、耐電圧テスト用スイッチ21をOFFからON位置に戻さない限りはトリップクロスバー20が復帰しないので、操作ハンドル4をTRIP位置からりリセット操作してもラッチ18がリセットされることがなく、これにより主回路接点を投入することができない。これにより、耐電圧試験の終了後に漏電遮断器を通電状態に戻す際に、耐電圧テスト用スイッチ21の戻し忘れミスを防止できる。
【0032】
また、前記実施例のように耐電圧テスト用スイッチ21のON,OFF保持力をトリップクロスバー20の復帰ばね力よりも強く設定する以外に、次記のようなインターロック機構で実施することもできる。すなわち、耐電圧テスト用スイッチ21をOFF位置に移動操作すると、該スイッチをこのOFF位置に拘束保持し、耐電圧試験の終了後に操作ハンドル4をTRIP位置からRESET位置に移動操作すると、これに連動してトリップクロスバー20をリセット位置に戻すと同時に、トリップクロスバー20の復帰ばね力で耐電圧テスト用スイッチ21をON位置に復帰させるようにインターロックしておけば、前記実施例と同様に耐電圧試験の終了後に漏電遮断器を通電状態に戻す際に、耐電圧テスト用スイッチ21の入れ忘れミスを防止できる。
【0033】
なお、図示実施例では、耐電圧テスト用スイッチ21にスライドスイッチ24を採用しているが、これに限定されるものではなく、例えばトグルスイッチを採用して実施することもできる。
【0034】
【発明の効果】
以上述べたように、本発明によれば、過電流保護および地絡保護機能を備えた漏電遮断器であって、主接点,開閉機構,操作ハンドル,過電流引外し装置,および漏電検出回路を含む漏電引外し装置を一括して本体ケースに装備し、前記漏電検出回路の電源として、主回路の相間電圧を漏電検出回路との間に配線した電源線を介して給電するようにしたものにおいて、
第1の発明では、主接点のON,OFF動作に連動して、漏電検出回路に接続した前記電源線の給電回路を入り,切りする耐電圧テスト用スイッチを備える。また第2の発明では、漏電検出回路に接続した前記電源線の給電回路を入り,切りする手動操作式の耐電圧テスト用スイッチを本体ケースに内装した上で、該スイッチを主接点の開閉機構にインターロックし、耐電圧テスト用スイッチのOFF操作に連動して開閉機構をトリップ動作させ、主接点を開極するように構成したことにより、
漏電遮断器の製品について耐電圧試験を行なう際には、従来のように遮断器の本体ケースを開いて漏電検出回路の電源線を主回路から切り離すといった面倒な準備作業が必要なく、操作ハンドルで主接点をOFFする、あるいは本体ケースに内装した手動操作式の耐電圧テスト用スイッチをOFFするだけで、漏電検出回路を主回路から切り離して安全に耐電圧試験を実施することができる。
【0035】
これにより、メーカーから出荷した漏電遮断器の製品について、現在諸外国で行われているようにユーザーサイドで耐電圧試験を実施する場合でも簡単操作で試験を安全に行なうことができる。しかも、耐電圧試験の終了後に漏電遮断器を通常の使用状態に戻す場合に、第1の発明では操作ハンドルで主接点を投入することで、これに連動して耐電圧テスト用スイッチが自動的にON位置復帰する。
また第2の発明では、手動操作式の耐電圧テスト用スイッチをOFFからONに復帰操作する,あるいは操作ハンドルをリセット操作ない限りは主接点を投入できない。
【0036】
これにより、耐電圧試験後に漏電遮断器を通常の使用状態に戻す場合に、耐電圧テスト用スイッチの入れ忘れミスが原因で、主回路の通電状態で漏電遮断器の地絡検出,漏電保護が機能しなくなるといった異常な事態を未然に防ぐことができる。
【図面の簡単な説明】
【図1】本発明の実施例による漏電遮断器の回路図
【図2】図1における耐電圧テスト用スイッチとして補助スイッチを採用した本発明の実施例1に対応する漏電遮断器の内部を表す構成斜視図
【図3】図2における補助スイッチの動作説明図で、(a),(b) はそれぞれ主接点のON,およびOFFに対応した動作状態を表す図
【図4】図1における耐電圧テスト用スイッチとして手動操作式スイッチを採用した本発明の実施例2に対応する漏電遮断器の構成斜視図
【図5】図4における耐電圧テスト用スイッチの組立構造図で、(a) は組立状態の斜視図、(b) は(a) の分解斜視図
【図6】図5の耐電圧テスト用スイッチと遮断器本体の開閉機構部との連係構造,および開閉動作の説明図で、(a),(b) はそれぞれ耐電圧テスト用スイッチのON,OFFに対応した動作状態を表す図
【図7】本発明の実施対象となる漏電遮断器の従来回路図
【図8】図7に対応する漏電遮断器の構成断面図
【符号の説明】
1 主回路
2 主接点
3 開閉機構部
4 操作ハンドル
5 過電流引外し装置
6 零相変流器
7 漏電検出回路
8 漏電引外し用のトリップコイルユニット
9 電源線
11 本体ケース
11a 下部ケース
11b 上部カバー
14 固定接触子
15 可動接触子
16 接触子ホルダ
18 開閉機構のラッチ
20 トリップクロスバー
21 耐電圧テスト用スイッチ
22 補助スイッチ(漏電遮断器の付属品)
24 スライドスイッチ
26 スイッチカバー
26a アクチュエータ
[0001]
TECHNICAL FIELD OF THE INVENTION
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an earth leakage circuit breaker having an overcurrent protection and a ground fault protection function applied to a low voltage distribution system, and more particularly to a protection means for separating an earth leakage detection circuit from a main circuit when performing a withstand voltage test of the earth leakage breaker. Related to
[0002]
[Prior art]
Wiring circuit breakers and earth leakage breakers are well-known as protection equipment for low-voltage distribution systems, and earth leakage circuit breakers that are widely used in Japan generally have overcurrent protection and ground fault protection functions. It is. In recent earth leakage breakers, wiring breakers and earth leakage breakers of the same frame have the same external dimensions and a main body case, and the main parts are shared as much as possible in order to improve the usability on the customer side. The mainstream of such a configuration is described in US Pat.
In order to flexibly cope with various protection systems for distribution equipment, various types of auxiliary devices such as auxiliary switches, alarm switches, voltage trip devices, undervoltage trip devices, etc. A combination of accessories has been generalized (for example, see Patent Document 2).
[0003]
Next, a circuit diagram of a conventional general earth leakage breaker (for a three-phase circuit) is shown in FIG. 7, and its structure is shown in FIG. First, in FIG. 7, 1 is a main circuit of R, S, and T phases, 2 is a main contact, 3 is an opening / closing mechanism of the main contact 2, 4 is an operation handle, 5 is an overload current and a short-circuit current flowing in the main circuit. This is a thermal or electromagnetic overcurrent trip device that trips the opening and closing mechanism by detecting the overcurrent.
Further, the earth leakage trip device that detects the occurrence of a ground fault in the distribution system and trips the switching mechanism includes a zero-phase current detection circuit that detects an unbalanced current in the main circuit 1 using the main circuit 1 of the R, S, and T phases as a primary conductor. A current transformer 6, a leakage detection circuit (electronic circuit including an IC) 7 for detecting occurrence of a ground fault from the secondary output level of the zero-phase current transformer 6, and an opening / closing mechanism which receives an output from the leakage detection circuit 7. And a trip coil unit 8 for tripping. Further, the leakage detection circuit 7 supplies an inter-phase voltage of the main circuit 1 as a control power supply through a power supply line 9 laid between the main circuit 1 and the rectifier circuit 10. In the illustrated example, the inter-phase voltage of the R-T phase of the main circuit 1 is supplied to the leakage detection circuit 7. However, the voltage of each of the R, S, and T phases may be converted to DC and supplied.
[0004]
On the other hand, in FIG. 8, reference numeral 11 denotes a main body case having a two-part structure including a lower case 11a and an upper cover 11b; 12, 13; main circuit terminals (screw terminals) on a power supply side and a load side; The fixed contact of the main contact, 15 is a movable contact, 16 is a rotary contact holder that supports the movable contact 15, and 17 is an arc extinguishing device. As is well known, the opening / closing mechanism 3 includes a toggle link 3a for connecting the contact holder 16 and the operation handle 4, a toggle link mechanism of the opening / closing spring 3b, a latch 18, and a latch receiver 19. , And a trip mechanism, which is a combination of a latch mechanism and a trip crossbar 20. The trip crossbar 20 is opposed to the operation ends of the overcurrent trip device 5 and the trip coil unit 8 (see FIG. 7). . The illustrated latch mechanism is an example, and other various latch mechanisms are known.
[0005]
Although not illustrated in the drawing of FIG. 8, a phase space wall is formed in the lower case 11 a and the upper cover 11 b in the main body case 11, and each of the phases assembled in the main body case by the phase space wall is formed. Parts are isolated from each other. Further, the leakage detection circuit 7 shown in FIG. 7 is mounted on a printed board, assembled inside the main body case 11, and then soldered (or screwed) with the power supply line 9 wired between the main circuit 1 and the main circuit 1. Connected. Similarly, a lead wire corresponding to the overcurrent trip device 5 interposed in series with each phase of the main circuit 1, between the secondary output side of the zero-phase current transformer 6 and the leakage detection circuit 7, and between the leakage detection circuit 7 A lead wire connecting between the main body case 11 and the trip coil unit 8 is also wired.
[0006]
In the above configuration, when the operation handle 4 is moved to the ON / OFF position, the toggle link mechanism of the opening / closing mechanism 3 is reversed in conjunction with the operation handle 4, and the movable contact 15 is opened / closed. When the main contact is closed (ON), the latch 18 is locked by the latch receiver 19, and the latch receiver 19 is supported by the trip crossbar 20 at this position. In this state, when an overload current and a short-circuit current flow in the main circuit and the overcurrent trip device 5 operates, the trip crossbar 20 rotates counterclockwise to release the engagement between the latch receiver 19 and the latch 18. I do. As a result, the opening / closing mechanism 3 trips, and the movable contact 15 is separated from the fixed contact 14 to cut off the current in the main circuit. Similarly, when a ground fault current flows through the main circuit 1 of FIG. 7 and the trip coil unit 8 of the earth leakage trip device operates, the trip crossbar 20 is driven to the release position. As a result, the opening / closing mechanism 3 trips, the movable contact 15 opens, and the main circuit 1 is disconnected. In order to reclose the circuit breaker after the trip operation, the operation handle 4 stopped at the trip position is returned from the trip position to the RESET position (a position slightly beyond the OFF position) to reset the latch mechanism. Then, by further moving the operation handle 4 from the OFF position to the ON position, the movable contact 15 is closed.
[0007]
By the way, regarding the above-mentioned earth leakage circuit breaker products, it is stipulated in the standards that they have a predetermined dielectric strength from the viewpoint of safety, and therefore, a breakdown voltage test is performed for each product so that insulation breakdown does not occur. Make sure that you are. This withstand voltage test is performed by applying a specified test voltage between the phases of the main circuit terminals in accordance with the test method specified in the standard, and the test voltage is specified for each rated voltage of the earth leakage breaker. For example, the test voltage at the earth leakage breaker having a rated voltage of 300 to 600 V is 2500 V.
In Japan, manufacturers are currently conducting tests on this withstand voltage test before shipping the leakage breaker on the manufacturer side. In this case, if a high test voltage is applied between the phases while the leakage detection circuit (IC) is connected to the main circuit in a product assembled state of the leakage breaker, the leakage detection circuit is broken by the high voltage. For this reason, the withstand voltage test has been performed with the power supply line of the leakage detection circuit removed.
[0008]
On the other hand, in overseas countries such as Europe and the United States, unlike the earth leakage breaker in Japan, the circuit breaker for wiring is combined with a leakage detection unit of another structure (unitized with a zero-phase current transformer, leakage detection circuit, etc.). It is common to use. For this reason, the above-mentioned withstand voltage test is performed by a user of the distribution equipment installation facility on the user side in a state where the leakage detecting unit is assembled to the circuit breaker for wiring. In order to cope with this withstand voltage test, for example, a switch for a withstand voltage test of a push button type is provided in the leakage detection unit, and when performing the withstand voltage test, the switch for the withstand voltage test is operated to configure the leakage detection circuit. There is known a device in which a leakage circuit is connected to a main circuit by operating a withstand voltage test switch after completion of a withstand voltage test and returning to a normal use state after a withstand voltage test is completed (for example, Patent Document 3). reference.).
[0009]
[Patent Document 1]
Patent No. 3246562
[0010]
[Patent Document 2]
Patent No. 3097368
[0011]
[Patent Document 3]
US Patent Application Publication No. 2001/0022713 A1
[0012]
[Problems to be solved by the invention]
By the way, the above-mentioned conventional earth leakage breaker has the following problems in correspondence with the withstand voltage test.
(1) As shown in Fig. 8, the products of the earth leakage breaker, in which the components of the circuit breaker for wiring and the earth leakage trip device including the earth leakage detection circuit are assembled in a single main unit case, are exported from the manufacturer overseas. If the user intends to conduct a withstand voltage test after shipment, remove the cover of the main unit case, and then solder the power supply wires that are wired between the leakage detection circuit and the main circuit. It is necessary to disconnect the leakage detecting circuit from the main circuit by temporarily removing the portion or the screwed portion, which requires a great deal of time for the test preparation work.
[0013]
(2) In the configuration of the leakage detection device disclosed in Patent Document 3, when a withstand voltage test switch (dielectric test switch) provided in the leakage detection unit is turned off at the time of performing the withstand voltage test, the leakage is detected. As soon as the detection circuit is disconnected from the main circuit, a circuit breaker trips and the main contact is opened. As a result, the leakage detection circuit can be separated from the main circuit to safely perform the withstand voltage test.
However, the withstand voltage test switch is not linked with the opening / closing operation of the circuit breaker, and the ON return is performed independently by operating the button of the switch. Even when the switch is not turned back on, the main contact can be turned on by operating the handle of the wiring breaker. For this reason, there is a risk of forgetting to return the withstand voltage test switch to the ON state after the withstand voltage test and turning on the main contact with the operation handle of the wiring breaker to return the wiring breaker to the use state. In addition, if the user forgets to turn on the withstand voltage test switch after the end of the withstand voltage test, the leakage detection circuit will remain disconnected from the main circuit. A situation occurs in which the protection function does not work.
[0014]
The present invention has been made in view of the above points, and has a configuration in which the components of the circuit breaker for wiring and the components of the leakage detection and trip device are collectively incorporated in a single main body case as shown in FIG. Even if a withstand voltage test is performed on the user side after the product is shipped to a leakage breaker, the leakage detection circuit has been modified so that the leakage detection circuit can be separated from the main circuit with a simple operation and the withstand voltage test can be performed safely. The purpose is to provide a vessel.
[0015]
[Means for Solving the Problems]
To achieve the above object, according to the present invention, there is provided an earth leakage circuit breaker having overcurrent protection and ground fault protection functions, comprising a main contact, a switching mechanism, an operation handle, an overcurrent trip device, and an earth leakage detection. An earth leakage trip device including a circuit is collectively provided in the main body case, and as a power supply of the earth leakage detection circuit, the inter-phase voltage of the main circuit is supplied via a power line wired between the earth leakage detection circuit and the main circuit. In things
In the first invention, there is provided a withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the leakage detection circuit in conjunction with the ON / OFF operation of the main contact (claim 1). As an embodiment thereof, an auxiliary switch which is an accessory of the earth leakage circuit breaker can be used as the withstand voltage test switch (claim 2).
[0016]
In the above configuration, when the main contact is opened with the operation handle at the time of performing the withstand voltage test, the withstand voltage test switch is automatically turned off at the same time, and the power supply circuit of the power supply line from the main circuit to the leakage detection circuit is disconnected. I do. Therefore, there is no need for troublesome preparation work such as removing the circuit breaker cover and removing the soldered part of the internal wiring of the leakage detection circuit during the withstand voltage test, and the leakage detection circuit is started from the high test voltage applied between the main circuits. The withstand voltage test can be performed safely by safely disconnecting. When the main contact is closed by operating the handle after the end of the withstand voltage test, at the same time, the withstand voltage test switch returns to ON and the power supply circuit of the leakage detection circuit returns to the energized state.
[0017]
Also, in this case, as the above-mentioned withstand voltage test switch, an auxiliary switch which is an accessory of the earth leakage breaker (the original function of the auxiliary switch is to extract the open / closed state of the main contact of the breaker to the outside by an electric signal. If the auxiliary switch is connected to the power supply line between the main circuit and the leakage detection circuit using the switch of (1), the withstand voltage test can be performed without making a large change to the leakage breaker.
On the other hand, in the second invention, a manually operated withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the earth leakage detection circuit is provided in the main body case, and the switch is opened and closed by the main contact. The mechanism is interlocked, and the opening / closing mechanism is tripped in conjunction with the OFF operation of the withstand voltage test switch to open the main contact (claim 3). It can be configured as follows.
[0018]
(1) An actuator that follows the ON / OFF operation of the withstand voltage test switch is provided in the withstand voltage test switch, and the actuator is linked to the trip crossbar of the opening / closing mechanism. The crossbar is driven to the latch release position to trip the opening / closing mechanism, and the trip crossbar is restrained to the latch release position to prevent the main contacts from being turned on. It is configured to release the constraint (claim 4).
(2) After providing an actuator that follows the ON / OFF operation of the switch for the withstand voltage test, the actuator is linked to the trip crossbar of the opening / closing mechanism, and the trip crossbar is turned off by the OFF operation of the withstand voltage test switch. Is driven to the latch release position to trip the opening / closing mechanism, and the reset operation of the handle drives the trip crossbar to the latch locked position to reset the latch mechanism. At the same time, turns on the withstand voltage test switch via the trip crossbar. (Claim 5).
[0019]
(3) In the preceding paragraphs (1) and (2), a slide switch or a toggle switch is used as a withstand voltage test switch, and an actuator is provided on an operation member connected to the operation knob to link the trip crossbar (claim) 6).
In the above configuration, if the withstand voltage test switch is turned off during the withstand voltage test, the leakage detection circuit is disconnected from the main circuit, and the opening and closing mechanism trips in conjunction with the operation of the switch to open the main contact. Pole. Thereby, the preparation for the withstand voltage test is completed, and the withstand voltage test can be safely performed in a state where the leakage detection circuit is disconnected from the main circuit.
[0020]
In addition, when the withstand voltage test switch is in the OFF state, the trip crossbar is restrained and held at the latch release position. As a result, even if the operation handle is moved to the ON position and the main contact is to be turned on again without returning the withstand voltage test switch to the ON state, the main contact can be closed because the latch mechanism is reset. Thus, it is possible to avoid closing the main contact and returning the earth leakage breaker to the use state while leaving the earth leakage detection circuit disconnected from the main circuit due to forgetting to turn on the withstand voltage test switch after the end of the test.
Also, by resetting the trip crossbar by resetting the operation handle and resetting the latch mechanism, at the same time, by interlocking so as to return the withstand voltage test switch to ON via the trip crossbar, the configuration is the same as described above. In addition, it is possible to prevent the user from forgetting to turn on the withstand voltage test switch after the test is completed.
[0021]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the examples shown in FIGS. In the drawings of the embodiment, members corresponding to those in FIGS. 7 and 8 are denoted by the same reference numerals, and detailed description thereof will be omitted.
[Example 1]
1 to 3 are configuration diagrams of an embodiment corresponding to claims 1 and 2 of the present invention. The earth leakage breaker of this embodiment is basically the same as the conventional structure shown in FIGS. 7 and 8, but a power supply line 9 is wired between the main circuit 1 and the circuit as shown in the circuit diagram of FIG. A withstand voltage test switch 21 is newly provided in the power supply circuit of the leakage detection circuit 7. The withstand voltage test switch 21 is a switch that operates so as to turn on and off the power supply circuit in conjunction with the opening and closing operation of the main contact 2. An auxiliary switch mounted on the main body case 11 is employed as a product. In the illustrated embodiment, three power lines 9 corresponding to the R, S, and T phases are connected between the main circuit 1 and the leakage detection circuit 7, and the three-phase power is converted to DC (three-phase power). The power supply circuit 9 is used to supply power to the leakage detection circuit 7, and the withstand voltage test switch 21 has three contacts (three micro switches) in accordance with the wiring of the power supply line 9. ing.
[0022]
In FIG. 1, the withstand voltage test switch 21 has three contacts corresponding to the respective power lines 9 of the R, S and T phases, but two contacts corresponding to two of the three phases. Can also be implemented. As shown in FIG. 7, in the case of a two-phase power supply in which two power supply lines 9 are wired between the main circuit 1 and the leakage detection circuit 7 to supply an inter-RT-phase voltage, It is assumed that the test switch 21 has two contacts or one contact in either R or T phase.
FIG. 2 is a configuration diagram of an earth leakage breaker adopting an auxiliary switch as an accessory of the earth leakage breaker as the withstand voltage test switch 21 (an upper cover is removed), and the auxiliary switch 22 is an operation handle. 4 and are incorporated in the accessory storage section of the main body case so as to be insertable and removable from the outside (see Patent Document 2). Here, the auxiliary switch 22 includes three microswitches corresponding to the withstand voltage test switch 21 in FIG. 1, and the microswitches are turned ON and OFF according to the opening and closing operations of the main contact as described below. OFF operation.
[0023]
Next, the opening / closing mechanism and operation of the auxiliary switch 22 (withstand voltage test switch 21) will be described with reference to FIGS. 3 (a) and 3 (b). In FIG. 3, the auxiliary switch 22 includes a lever-type actuator 23 having a support shaft 23a as a swing fulcrum so as to interlock between an operation end of the auxiliary switch 22 and the contact holder 16 of the movable contact 15. The tip of the actuator 23 faces the contact holder 16.
Here, FIG. 3A shows a closed state of the main contact 1 (see FIG. 1) in which the contact 15a of the movable contact 15 is in contact with the contact 14a of the fixed contact 14. In this state, the actuator 23 is separated from the contact holder 16 and each microswitch of the auxiliary switch 22 is turned on to keep the power supply circuit of the leakage detection circuit 7 shown in FIG. 1 conductive.
[0024]
In this state, when the operating handle 4 is moved from the ON position to the OFF position in order to open the main contact when the withstand voltage test is performed, the toggle link mechanism of the opening / closing mechanism 3 is turned over as described with reference to FIG. As a result, the movable contact 15 is opened, and the rear end of the contact holder 16 pushes the actuator 23 in conjunction with this operation. As a result, the actuator 23 rotates counterclockwise and separates from the auxiliary switch 23, and in response thereto, each micro switch of the auxiliary switch is turned off. That is, the withstand voltage test switch 21 in FIG. 1 is opened, and the power supply circuit between the leakage detection circuit 7 and the main circuit 1 is disconnected. Therefore, if a withstand voltage test is performed in this state, the leakage detection circuit 7 can be protected from the test voltage.
[0025]
When the operation handle 4 is returned to the ON position in FIG. 3A and the main contact is closed after the end of the test, the contact holder 16 pivots counterclockwise and separates from the actuator 23, thereby assisting. The switch 23 is automatically turned ON to return to the steady state in which the leakage detection circuit 7 receives power supply from the main circuit 1.
According to this embodiment, since the attached switch 22 is used as the withstand voltage test switch 21, it can be implemented with a simple configuration without greatly changing the earth leakage breaker. In the configuration of FIG. 2, the auxiliary switch 22 is stored in the accessory storage section of the main body case 11, but the installation location of the auxiliary switch is not limited to the illustrated example, and may be located near the trip crossbar. If so, it may be installed outside the main body case.
[0026]
[Example 2]
Next, the configuration and operation of an embodiment according to claims 3 to 5 of the present invention will be described with reference to FIGS.
In this embodiment, the function of the withstand voltage test switch 21 in FIG. 1 is further developed. That is, in this embodiment, the withstand voltage test switch 21 is a manually operated switch, and this switch is linked to the trip crossbar of the opening / closing mechanism 3 as described later. When the withstand voltage test switch 21 is manually turned off during the withstand voltage test and the power supply circuit of the power supply line 9 wired between the main circuit 1 and the leakage detection circuit 7 is disconnected, the power supply circuit 9 is interlocked with this. The switching mechanism 3 trips and the main contact 1 is opened, thereby preparing for the withstand voltage test. When the earth leakage breaker is returned to the normal use state after the withstand voltage test is completed, unless the withstand voltage test switch 21 is operated to return to the ON position or the operation handle 4 is moved to the RESET position, The latch mechanism cannot be reset to prevent the main contact from being turned on, so that the withstand voltage test switch 21 is forgotten to be turned on.
[0027]
For this purpose, as shown in FIG. 4, the above-mentioned manually operated withstand voltage test switch 21 is arranged on the side of the operation handle 4 and mounted above the trip crossbar 20 of the opening / closing mechanism. The upper cover 11b of the main body case is provided with a small sliding cover 11b-1 so that the withstand voltage test switch 21 can be turned on and off from the outside.
Next, a specific assembly structure of the withstand voltage test switch 21 is shown in FIGS. That is, the withstand voltage test switch 21 includes a number of slide switches 24 corresponding to the number of contacts, a dish-shaped switch case 25 for accommodating the slide switches 24 arranged side by side, and a cover over the switch case 25. It comprises an assembly with a slide-type switch cover 26 that engages with the operation knob 24a of the slide switch 24 and collectively turns on and off each slide switch 24. The switch cover 26 has legs extending downward. A piece-shaped actuator 26a is integrally formed. In the illustrated example, two slide switches 24 are provided for a three-phase earth leakage breaker, but one slide switch 24 is used for a single-phase earth leakage breaker.
[0028]
When the withstand voltage test switch 21 is assembled at the position shown in FIG. 4, the tip of the actuator 26a faces the trip crossbar state of the opening / closing mechanism at this position, and FIG. 6 (a), (b) Is interlocked between the actuator 26a and the trip crossbar 20.
FIG. 6A shows the switch 21 for the withstand voltage test shown in FIG. 5 which is slid to the right to hold the slide switch 24 in the ON position and set the operation handle 4 to the ON position. In this state, the contact of the withstand voltage test switch 21 in FIG. 1 is closed and the main circuit 1 is connected to the earth leakage detection circuit 7 via the power supply line 9 when the movable contact 15 is closed. It corresponds to the state where power is supplied. In this state, the trip crossbar 20 holds and holds the latch 18 of the opening / closing mechanism 3 without being restrained by the actuator 26a, as shown in FIG.
[0029]
To perform the withstand voltage test from this state, the switch cover 26 of the withstand voltage test switch 21 is slid to the OFF position by an external operation. Thereby, the contact of the slide switch 24 is turned off to disconnect and disconnect the power supply circuit of the leakage detection circuit 7 shown in FIG. 1 from the main circuit 1, and at the same time, to the switch cover 26 as shown in FIG. The provided actuator 26a pushes the trip cross bar 20 from behind, and rotates the trip cross bar 20 counterclockwise around the support shaft 20a. As a result, the latch 18 previously locked and held by the trip crossbar 20 is released, the opening / closing mechanism 3 trips, the movable contact 15 is opened, and the main contact 2 is turned off. If a withstand voltage test is performed in this state, the leakage detection circuit 7 is separated from the main circuit 1 and can be safely protected from a high test voltage applied between the phases of the main circuit 1.
[0030]
In the state shown in FIG. 6B in which the withstand voltage test switch 21 is slid to the OFF position, the trip crossbar 20 pushed by the actuator 26a of the switch is held at the release position of the latch 18. Therefore, after the withstand voltage test is completed, unless the switch 21 for withstand voltage test is returned to the original ON position, even if the operation handle 4 is moved from the trip position to the RESET position, the latch mechanism is not reset. The main contact 1 cannot be turned on again. As a result, it is possible to prevent a situation in which the ground fault detection of the earth leakage breaker and the earth leakage protection function do not work due to forgetting to turn on the withstand voltage test switch 21.
[0031]
The trip crossbar 20 of the opening / closing mechanism 3 is urged clockwise toward the engagement position (reset position) with the latch 18 by the spring force of a relatively weak return spring (not shown). Therefore, if the mechanical holding force at the ON / OFF position of the slide switch 24 shown in FIG. 4 is set to be greater than the return spring force of the trip crossbar 20, the withstand voltage test switch 21 is set. 6B, the trip crossbar 20 is held at the latch release position against the return spring. Therefore, after the withstand voltage test is completed, the trip crossbar 20 does not return unless the withstand voltage test switch 21 is returned from the OFF position to the ON position. There is no reset, which prevents closing of the main circuit contacts. This makes it possible to prevent a mistake in forgetting to return the withstand voltage test switch 21 when returning the earth leakage breaker to the energized state after the end of the withstand voltage test.
[0032]
Further, in addition to setting the ON / OFF holding force of the withstand voltage test switch 21 to be higher than the return spring force of the trip crossbar 20 as in the above-described embodiment, the present invention may be implemented by an interlock mechanism as described below. it can. That is, when the withstand voltage test switch 21 is moved to the OFF position, the switch is restrained and held at the OFF position. When the operation handle 4 is moved from the TRIP position to the RESET position after the end of the withstand voltage test, the switch is interlocked therewith. Then, when the trip crossbar 20 is returned to the reset position and the switch 21 for withstand voltage test is returned to the ON position by the return spring force of the trip crossbar 20, an interlock is performed in the same manner as in the previous embodiment. When the earth leakage breaker is returned to the energized state after the end of the withstand voltage test, it is possible to prevent a mistake in turning on the withstand voltage test switch 21.
[0033]
In the illustrated embodiment, the slide switch 24 is employed as the withstand voltage test switch 21, but the present invention is not limited to this. For example, a toggle switch may be employed.
[0034]
【The invention's effect】
As described above, according to the present invention, an earth leakage circuit breaker having overcurrent protection and ground fault protection functions, comprising a main contact, an opening / closing mechanism, an operation handle, an overcurrent trip device, and an earth leakage detection circuit. In the apparatus, the leakage detecting device including the leakage detecting device is collectively provided in the main body case, and as a power supply of the leakage detecting circuit, an inter-phase voltage of the main circuit is supplied via a power supply line wired between the main circuit and the leakage detecting circuit. ,
In the first invention, there is provided a withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the leakage detection circuit in conjunction with the ON / OFF operation of the main contact. In the second invention, a manually operated withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the earth leakage detection circuit is provided in the main body case, and the switch is connected to a main contact opening / closing mechanism. By interlocking with the switch, the opening and closing mechanism is tripped in conjunction with the OFF operation of the withstand voltage test switch, and the main contacts are opened.
When conducting a withstand voltage test on a product of an earth leakage breaker, there is no need for troublesome preparation work such as opening the case of the circuit breaker and disconnecting the power line of the earth leakage detection circuit from the main circuit as in the past. By simply turning off the main contact or turning off the manually operated withstand voltage test switch provided in the main body case, the leak detection circuit can be separated from the main circuit and the withstand voltage test can be performed safely.
[0035]
As a result, even if a withstand voltage test is carried out on the user side, as is currently performed in various foreign countries, the test of the earth leakage breaker product shipped from the manufacturer can be safely performed by a simple operation. In addition, when the earth leakage breaker is returned to a normal use state after the end of the withstand voltage test, in the first invention, by turning on the main contact with the operation handle, the withstand voltage test switch is automatically operated in conjunction with this. To the ON position.
Further, in the second invention, the main contact cannot be turned on unless the manually operated withstand voltage test switch is returned from OFF to ON or the operation handle is reset.
[0036]
As a result, when the earth leakage breaker is returned to the normal use state after the withstand voltage test, the ground fault detection and the earth leakage protection of the earth leakage breaker function when the main circuit is energized due to the mistake of forgetting to turn on the withstand voltage test switch. It is possible to prevent an unusual situation such as no longer being performed.
[Brief description of the drawings]
FIG. 1 is a circuit diagram of an earth leakage breaker according to an embodiment of the present invention.
FIG. 2 is a configuration perspective view showing the inside of an earth leakage breaker corresponding to Embodiment 1 of the present invention in which an auxiliary switch is employed as a withstand voltage test switch in FIG.
3A and 3B are explanatory diagrams of the operation of the auxiliary switch in FIG. 2, wherein FIGS. 3A and 3B show operating states corresponding to ON and OFF of a main contact, respectively.
FIG. 4 is a configuration perspective view of an earth leakage breaker corresponding to a second embodiment of the present invention employing a manually operated switch as the withstand voltage test switch in FIG. 1;
5 (a) is a perspective view of an assembled state of the withstand voltage test switch in FIG. 4, and FIG. 5 (b) is an exploded perspective view of FIG. 4 (a).
6 (a) and 6 (b) are explanatory diagrams of a linking structure of a withstand voltage test switch of FIG. 5 and an opening / closing mechanism of a circuit breaker main body and an opening / closing operation. Diagram showing the operating state corresponding to OFF
FIG. 7 is a conventional circuit diagram of an earth leakage breaker to which the present invention is applied.
FIG. 8 is a sectional view of the configuration of an earth leakage breaker corresponding to FIG. 7;
[Explanation of symbols]
1 Main circuit
2 Main contacts
3 opening and closing mechanism
4 Operation handle
5 Overcurrent trip device
6 Zero-phase current transformer
7 Leakage detection circuit
8 Trip coil unit for earth leakage trip
9 Power line
11 Body case
11a Lower case
11b Top cover
14 Fixed contact
15 Movable contact
16 Contact holder
18 Opening / closing mechanism latch
20 Trip Crossbar
21 Withstand voltage test switch
22 Auxiliary switch (accessory for earth leakage breaker)
24 slide switch
26 Switch cover
26a Actuator

Claims (6)

過電流保護および地絡保護機能を備えた漏電遮断器であって、主接点,開閉機構,操作ハンドル,過電流引外し装置,および漏電検出回路を含む漏電引外し装置を一括して本体ケースに装備し、前記漏電検出回路の電源として、主回路の相間電圧を漏電検出回路との間に配線した電源線を介して給電するようにしたものにおいて、
主接点のON,OFF動作に連動して、漏電検出回路に接続した前記電源線の給電回路を入り,切りする耐電圧テスト用スイッチを備えたことを特徴とする漏電遮断器。
An earth leakage circuit breaker with overcurrent protection and ground fault protection functions. The earth leakage trip device including the main contacts, switching mechanism, operation handle, overcurrent trip device, and leakage detection circuit is collectively installed in the body case. Equipped with, as a power supply of the leakage detection circuit, to supply power via a power supply line wired between the main circuit and the leakage detection circuit of the main circuit,
An earth leakage breaker comprising a withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the earth leakage detection circuit in conjunction with ON / OFF operation of a main contact.
請求項1に記載の漏電遮断器において、耐電圧テスト用スイッチとして、漏電遮断器の付属品である補助スイッチを用いたことを特徴とする漏電遮断器。The earth leakage breaker according to claim 1, wherein an auxiliary switch, which is an accessory of the earth leakage breaker, is used as a withstand voltage test switch. 過電流保護および地絡保護機能を備えた漏電遮断器であって、主接点,開閉機構,操作ハンドル,過電流引外し装置,および漏電検出回路を含む漏電引外し装置を一括して本体ケースに装備し、前記漏電検出回路の電源として、主回路の相間電圧を漏電検出回路との間に配線した電源線を介して給電するようにしたものにおいて、
漏電検出回路に接続した前記電源線の給電回路を入り,切りする手動操作式の耐電圧テスト用スイッチを本体ケースに内装した上で、該スイッチを主接点の開閉機構にインターロックし、耐電圧テスト用スイッチのOFF操作に連動して開閉機構をトリップ動作させ、主接点を開極するようにしたことを特徴とする漏電遮断器。
An earth leakage circuit breaker with overcurrent protection and ground fault protection functions. The earth leakage trip device including the main contacts, switching mechanism, operation handle, overcurrent trip device, and leakage detection circuit is collectively installed in the body case. Equipped with, as a power supply of the leakage detection circuit, to supply power via a power supply line wired between the main circuit and the leakage detection circuit of the main circuit,
A manually operated withstand voltage test switch for turning on and off the power supply circuit of the power supply line connected to the leakage detection circuit is provided in the main body case, and the switch is interlocked with a main contact opening / closing mechanism to withstand the withstand voltage. An earth leakage breaker characterized in that an opening / closing mechanism is tripped in conjunction with an OFF operation of a test switch to open a main contact.
請求項3に記載の漏電遮断器において、耐電圧テスト用スイッチに該スイッチのON,OFF操作に従動するアクチュエータを設けた上で、該アクチュエータを開閉機構のトリップクロスバーに連係し、耐電圧テスト用スイッチのOFF操作により、トリップクロスバーをラッチ釈放位置に駆動して開閉機構をトリップさせるとともに、トリップクロスバーをラッチ釈放位置に拘束して主接点の投入を阻止し、耐電圧テスト用スイッチのON復帰操作でトリップクロスバーの拘束を解除するようにしたことを特徴とする漏電遮断器。4. The withstand voltage test switch according to claim 3, further comprising: an actuator that is driven by ON / OFF operation of the withstand voltage test switch provided on the withstand voltage test switch; and connecting the actuator to a trip crossbar of the opening / closing mechanism. When the trip switch is turned off, the trip crossbar is driven to the latch release position to trip the opening / closing mechanism, and the trip crossbar is restrained to the latch release position to prevent the main contacts from being turned on. An earth leakage breaker characterized in that the trip crossbar is released from restraint by an ON return operation. 請求項3に記載の漏電遮断器において、耐電圧テスト用スイッチに該スイッチのON,OFF操作に従動するアクチュエータを設けた上で、該アクチュエータを開閉機構のトリップクロスバーに連係し、耐電圧テスト用スイッチのOFF操作によりトリップクロスバーをラッチ釈放位置に駆動して開閉機構をトリップさせ、ハンドルのリセット操作によりトリップクロスバーをラッチ鎖錠位置に駆動してラッチ機構をリセットさせる同時に、トリップクロスバーを介して耐電圧テストスイッチをONに復帰させるようにしたことを特徴とする漏電遮断器。4. The withstand voltage test switch according to claim 3, further comprising: an actuator that is driven by ON / OFF operation of the withstand voltage test switch provided on the withstand voltage test switch; and connecting the actuator to a trip crossbar of the opening / closing mechanism. The trip crossbar is driven to the latch release position by turning off the switch for tripping and the opening / closing mechanism is tripped, and the trip crossbar is driven to the latch lock position by resetting the handle to reset the latch mechanism. A withstand voltage test switch is returned to ON via a circuit breaker. 請求項4または5に記載の漏電遮断器において、耐電圧テスト用スイッチがスライドスイッチ,あるいはトグルスイッチスイッチであり、その操作ノブに連結した操作部材にアクチュエータを設けたことを特徴とする漏電遮断器。6. The earth leakage breaker according to claim 4, wherein the withstand voltage test switch is a slide switch or a toggle switch, and an actuator is provided on an operation member connected to the operation knob. .
JP2002363511A 2002-12-16 2002-12-16 Earth leakage breaker Expired - Fee Related JP4253700B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2002363511A JP4253700B2 (en) 2002-12-16 2002-12-16 Earth leakage breaker
KR1020030061721A KR100981872B1 (en) 2002-12-16 2003-09-04 Earth leakage circuit breaker
CNB03156724XA CN100466141C (en) 2002-12-16 2003-09-08 Leakage circuit breaker
DE10357691A DE10357691A1 (en) 2002-12-16 2003-12-10 Residual Current Device
FR0314706A FR2848722B1 (en) 2002-12-16 2003-12-16 EARTH LEAK CIRCUIT BREAKER

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002363511A JP4253700B2 (en) 2002-12-16 2002-12-16 Earth leakage breaker

Publications (3)

Publication Number Publication Date
JP2004199881A true JP2004199881A (en) 2004-07-15
JP2004199881A5 JP2004199881A5 (en) 2005-09-15
JP4253700B2 JP4253700B2 (en) 2009-04-15

Family

ID=32376202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002363511A Expired - Fee Related JP4253700B2 (en) 2002-12-16 2002-12-16 Earth leakage breaker

Country Status (5)

Country Link
JP (1) JP4253700B2 (en)
KR (1) KR100981872B1 (en)
CN (1) CN100466141C (en)
DE (1) DE10357691A1 (en)
FR (1) FR2848722B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120563A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
JP2006302601A (en) * 2005-04-19 2006-11-02 Fuji Electric Holdings Co Ltd Earth leakage breaker
JP2007311268A (en) * 2006-05-22 2007-11-29 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
KR100876413B1 (en) 2007-07-12 2008-12-31 엘에스산전 주식회사 Circuit breaker having trip function connected with over current relay
WO2013111858A1 (en) * 2012-01-27 2013-08-01 三菱電機株式会社 Power supply switching device and switch board
CN103337429A (en) * 2013-07-01 2013-10-02 浙江正泰电器股份有限公司 Residual current operated circuit-breaker
JP2014131481A (en) * 2012-01-27 2014-07-10 Mitsubishi Electric Corp Monitoring device, electric power changeover method, and program

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006009228B4 (en) * 2006-02-28 2014-02-20 Siemens Aktiengesellschaft Circuit breaker with integrated auxiliary switch or error signal switch
EP2137746B1 (en) * 2007-04-19 2014-12-31 Abb Ag Locking device for an installation switch device
JP2011253744A (en) * 2010-06-03 2011-12-15 Kawamura Electric Inc Circuit breaker capable of detecting poor contact
DE102014201501A1 (en) * 2014-01-28 2015-07-30 Siemens Aktiengesellschaft External control of an electromagnetic release

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR850002266Y1 (en) * 1983-10-13 1985-10-10 신영전기주식회사 Relay
US4578732A (en) * 1983-12-14 1986-03-25 Square D Company Ground fault circuit interrupter including snap-acting contacts
JPH01307133A (en) * 1988-06-02 1989-12-12 Mitsubishi Electric Corp Earth leakage breaker with protection against neutral wire open-phase for single-phase three wires
JPH05325775A (en) * 1992-05-18 1993-12-10 Toshiba Corp Earth leakage breaker
JPH06223704A (en) * 1993-01-26 1994-08-12 Fuji Electric Co Ltd Test circuit of earth leakage breaker
JP3920963B2 (en) * 1997-03-31 2007-05-30 テンパール工業株式会社 Earth leakage breaker with overcurrent protection function
US6392513B1 (en) * 1998-04-29 2002-05-21 Eaton Corporation Circuit breaker with common test button for ground fault and arc fault circuit
JP3559165B2 (en) * 1998-05-25 2004-08-25 三菱電機株式会社 Earth leakage breaker
ES2164593B1 (en) * 2000-03-17 2003-05-16 Ge Power Controls Iberica S L DETECTION DEVICE FROM GROUND TO EARTH.
KR200196838Y1 (en) 2000-04-21 2000-09-15 엘지산전주식회사 Leakage breaker
JP2002170477A (en) * 2000-11-30 2002-06-14 Mitsubishi Electric Corp Ground leakage breaker

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006120563A (en) * 2004-10-25 2006-05-11 Fuji Electric Fa Components & Systems Co Ltd Ground fault interrupter
JP4556614B2 (en) * 2004-10-25 2010-10-06 富士電機機器制御株式会社 Earth leakage breaker
JP2006302601A (en) * 2005-04-19 2006-11-02 Fuji Electric Holdings Co Ltd Earth leakage breaker
JP2007311268A (en) * 2006-05-22 2007-11-29 Fuji Electric Fa Components & Systems Co Ltd Earth leakage breaker
KR100876413B1 (en) 2007-07-12 2008-12-31 엘에스산전 주식회사 Circuit breaker having trip function connected with over current relay
WO2013111858A1 (en) * 2012-01-27 2013-08-01 三菱電機株式会社 Power supply switching device and switch board
JP2013176278A (en) * 2012-01-27 2013-09-05 Mitsubishi Electric Corp Electric power source switching device and distribution board
JP2014131481A (en) * 2012-01-27 2014-07-10 Mitsubishi Electric Corp Monitoring device, electric power changeover method, and program
KR101741386B1 (en) * 2012-01-27 2017-05-29 미쓰비시덴키 가부시키가이샤 Power supply switching device, switch board, monitoring device, power supply switching method and recording medium
US9825488B2 (en) 2012-01-27 2017-11-21 Mitsubishi Electric Corporation Power supply switching device and switch board
CN103337429A (en) * 2013-07-01 2013-10-02 浙江正泰电器股份有限公司 Residual current operated circuit-breaker

Also Published As

Publication number Publication date
KR100981872B1 (en) 2010-09-10
CN100466141C (en) 2009-03-04
FR2848722B1 (en) 2008-02-29
DE10357691A1 (en) 2004-06-24
FR2848722A1 (en) 2004-06-18
JP4253700B2 (en) 2009-04-15
CN1508832A (en) 2004-06-30
KR20040053755A (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7167349B2 (en) Earth leakage breaker
JP4816246B2 (en) Earth leakage breaker
AU2006203110B2 (en) Electrical switching apparatus and trip unit including one or more fuses
US7843291B2 (en) Integrated maglatch accessory
JP2008159456A (en) Ground-fault interrupter
US20110248815A1 (en) Method For Expanding The Adjustment Range of Overload Protection Devices, Associated Overload Protection Devices, and Their Use
JP4253700B2 (en) Earth leakage breaker
JP5402378B2 (en) Circuit breaker
JP4123081B2 (en) Earth leakage breaker
US6222143B1 (en) Positive off toggle mechanism
JP4085911B2 (en) Earth leakage breaker
JP4839772B2 (en) Withstand voltage test switch and earth leakage breaker
JP4852380B2 (en) Circuit breaker
JP4972998B2 (en) Earth leakage breaker
US6472965B2 (en) Molded case circuit breaker accessory system
JP2008041580A (en) Ground-fault interrupter
JP4487673B2 (en) Earth leakage breaker
US10665411B2 (en) In multi-pole electronic circuit breakers preventing breaker armature from latching with cradle if certain criteria are met
JP2004319135A (en) Earth leakage breaker
JP2008262935A (en) Ground fault breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050404

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060703

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20060704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080331

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081118

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120206

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130206

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees