JP2007311268A - Earth leakage breaker - Google Patents

Earth leakage breaker Download PDF

Info

Publication number
JP2007311268A
JP2007311268A JP2006141022A JP2006141022A JP2007311268A JP 2007311268 A JP2007311268 A JP 2007311268A JP 2006141022 A JP2006141022 A JP 2006141022A JP 2006141022 A JP2006141022 A JP 2006141022A JP 2007311268 A JP2007311268 A JP 2007311268A
Authority
JP
Japan
Prior art keywords
circuit
earth leakage
mega
circuit breaker
switch
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006141022A
Other languages
Japanese (ja)
Other versions
JP4972998B2 (en
Inventor
Taido Okamoto
泰道 岡本
Noritomo Satou
憲知 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric FA Components and Systems Co Ltd
Priority to JP2006141022A priority Critical patent/JP4972998B2/en
Priority to FR0703517A priority patent/FR2901633B1/en
Priority to KR1020070048742A priority patent/KR100928361B1/en
Priority to TW096117963A priority patent/TWI336483B/en
Priority to CN2007101040580A priority patent/CN101079353B/en
Publication of JP2007311268A publication Critical patent/JP2007311268A/en
Application granted granted Critical
Publication of JP4972998B2 publication Critical patent/JP4972998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/02Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents
    • H01H83/04Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by earth fault currents with testing means for indicating the ability of the switch or relay to function properly
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/20Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition
    • H01H83/22Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages
    • H01H83/226Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by excess current as well as by some other abnormal electrical condition the other condition being imbalance of two or more currents or voltages with differential transformer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H9/00Details of switching devices, not covered by groups H01H1/00 - H01H7/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H83/00Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current
    • H01H83/14Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection
    • H01H83/144Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer
    • H01H2083/148Protective switches, e.g. circuit-breaking switches, or protective relays operated by abnormal electrical conditions otherwise than solely by excess current operated by imbalance of two or more currents or voltages, e.g. for differential protection with differential transformer with primary windings formed of rigid copper conductors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Breakers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve the layout and assembly structure of parts to attain simplification of maintenance-inspection and internal wiring in combination with common use of interior parts for an earth leakage breaker equipped with a mega-test switch. <P>SOLUTION: The earth leakage breaker formed by mounting an opening/closing mechanism 3 for main circuit contacts, a zero-phase current transformer 6, an earth leakage detecting circuit 7, a trip coil unit 8, and a mega-test switch 11 connected to a power circuit for supplying power to the earth leakage detecting circuit from a main circuit, inside a body case 12 formed of a case and a cover, is constituted to operate the mega-test switch off during a mega-test of the earth leakage breaker to disconnect the earth leakage detecting circuit from the main circuit. The earth leakage detecting circuit, the trip coil unit and the mega-test switch are individually unitized, and then the respective units are convergently arranged on the side of the zero-phase current transformer inside the body case. In this position, an operating button 11b of the mega-test switch is placed to face a switch operating hole opened to the cover of the body case. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、低電圧配電系統に適用する漏電遮断器に関し、詳しくは遮断器のメガテスト(絶縁・耐電圧試験)を行う際に漏電検出回路を主回路から切り離すメガテスト用スイッチを搭載した漏電遮断器の組立構造に係わる。   The present invention relates to an earth leakage circuit breaker applied to a low voltage distribution system, and more particularly, to an earth leakage circuit equipped with a mega test switch for separating an earth leakage detection circuit from a main circuit when performing a mega test (insulation / withstand voltage test) of the circuit breaker. It relates to the circuit breaker assembly structure.

最近の漏電遮断器は、需要家サイドでの使い勝手性を高めるために、配線用遮断器,漏電遮断器の本体ケースを同じ外形サイズとし、本体ケースに内装した機能部品をできるだけ共用化した漏電遮断器が主流となっている。
この漏電遮断器は、配線用遮断器と同様な過電流保護機能部品のほかに、主回路を一次導体として主回路の不平衡電流を検出する零相変流器、および零相変流器の二次出力レベルから地絡事故発生を検知する漏電検出回路(ICを含む電子回路),および漏電検出回路の出力信号を受けて遮断器の開閉機構をトリップ動作させるトリップコイルユニットを装備している。また、前記漏電検出回路の制御電源として、主回路の相間電圧を整流して漏電検出回路に給電するようにしている。
The latest earth leakage breaker has the same outer size as the main body case of the circuit breaker and the earth leakage breaker to enhance the usability on the customer side, and the earth leakage breaker that shares the functional parts built in the body case as much as possible The vessel has become mainstream.
In addition to the overcurrent protection functional parts similar to the circuit breaker for wiring, this earth leakage circuit breaker has a zero-phase current transformer that detects the unbalanced current of the main circuit using the main circuit as a primary conductor, and a zero-phase current transformer. Equipped with a leakage detection circuit (electronic circuit including IC) that detects the occurrence of a ground fault from the secondary output level, and a trip coil unit that trips the circuit breaker switching mechanism in response to the output signal of the leakage detection circuit. . Further, as a control power source for the leakage detection circuit, the interphase voltage of the main circuit is rectified and supplied to the leakage detection circuit.

一方、漏電遮断器には主回路に対して所要の相間絶縁耐力が規格で規定されており、そのために製品ごとに絶縁・耐電圧試験(メガテスト)を行って絶縁強度を測定するようにしている。このメガテストは、漏電遮断器の主回路接点を開極(OFF)した状態で、主回路端子の相間に試験電圧を印加して行うようにしており、その試験電圧は漏電遮断器の定格電圧によって異なり、例えば定格電圧400〜600Vの漏電遮断器の試験電圧は2500Vに規定されている。   On the other hand, the required current-to-phase dielectric strength of the earth leakage circuit breaker is specified in the standard for the main circuit. For this purpose, the insulation strength is measured by performing an insulation / withstand voltage test (mega test) for each product. Yes. This mega test is performed by applying a test voltage between the phases of the main circuit terminals with the main circuit contact of the earth leakage breaker open (OFF), and the test voltage is the rated voltage of the earth leakage breaker. For example, the test voltage of the earth leakage breaker having a rated voltage of 400 to 600V is defined as 2500V.

ところで、この絶縁・耐電圧試験を実施する場合に、前記の漏電検出回路を主回路の相間に接続したまま試験電圧を印加すると、電子回路である漏電検出回路が試験電圧で破壊されてしまうため、試験時には必ず漏電検出回路を主回路から切り離しておくことが必要である。そこで、漏電遮断器の納品先でもメガテストが簡単に行えるようにするために、漏電遮断器の本体ケースに耐電圧テスト用スイッチ(メガテスト用スイッチ)を追加装備し、メガテスト時に漏電検出回路の電源回路を断路するようにしたものが知られている(例えば、特許文献1参照)。また、前記メガテスト用スイッチのOFF操作に連動して遮断器の開閉機構を機械的に強制トリップさせるようにした漏電遮断器が先に提案されており(例えば、特許文献2参照)、三相3線式回路用の漏電遮断器を例に、その回路図を図13に、また漏電遮断器の組立構造を図14に示す。   By the way, when this insulation / withstand voltage test is performed, if a test voltage is applied with the leakage detection circuit connected between the phases of the main circuit, the leakage detection circuit, which is an electronic circuit, is destroyed by the test voltage. During the test, it is necessary to disconnect the leakage detection circuit from the main circuit. Therefore, in order to make it easy to perform a mega test even at the delivery destination of the earth leakage breaker, a mains case of the earth leakage breaker is additionally equipped with a withstand voltage test switch (mega test switch), and a leakage detection circuit during the mega test. A power supply circuit is known that is disconnected (see, for example, Patent Document 1). In addition, an earth leakage circuit breaker that mechanically trips the circuit breaker switching mechanism in conjunction with the OFF operation of the mega test switch has been proposed (see, for example, Patent Document 2). As an example of a leakage breaker for a three-wire circuit, its circuit diagram is shown in FIG. 13, and the assembly structure of the leakage breaker is shown in FIG.

まず、図13において、1はR,S,Tの各相に対応する主回路、2は主回路接点、3は主回路接点2の開閉機構部、4は操作ハンドル、5は主回路1に流れる過負荷電流,短絡電流を検出して開閉機構3をトリップ動作させる過電流引外し装置である。また、配電路の地絡発生を検出して開閉機構3をトリップ動作させる漏電引外し装置は、R,S,T各相の主回路1を一次導体としてその不平衡電流を検出する零相変流器6と、零相変流器6の二次出力レベルから地絡発生を検知する漏電検出回路(ICを含む電子回路)7と、漏電検出回路7からの出力信号を受けて開閉機構3をトリップ動作させるトリップコイルユニット8からなる。   First, in FIG. 13, 1 is a main circuit corresponding to each phase of R, S, and T, 2 is a main circuit contact, 3 is an opening / closing mechanism part of the main circuit contact 2, 4 is an operation handle, and 5 is a main circuit 1. This is an overcurrent tripping device that trips the switching mechanism 3 by detecting a flowing overload current and a short-circuit current. An earth leakage trip device that detects the occurrence of a ground fault in the distribution path and trips the switching mechanism 3 uses the main circuit 1 of each of the R, S, and T phases as a primary conductor to detect the unbalanced current. A current leakage detection circuit (electronic circuit including IC) 7 that detects the occurrence of a ground fault from the secondary output level of the current transformer 6, the zero-phase current transformer 6, and an opening / closing mechanism 3 that receives an output signal from the leakage detection circuit 7 It comprises a trip coil unit 8 for tripping.

ここで、漏電検出回路7はその制御電源として、各相の主回路1との間に配線した電源線9,整流回路10を介して主回路の相間電圧を給電するようにし、この電源回路にはメガテスト用スイッチ(耐電圧テスト用スイッチ)11が介挿接続されている。そして、漏電遮断器のメガテストを実施する際には、試験に先立ちメガテスト用スイッチ11をOFF操作して漏電検出回路7を主回路から断路するようにしている。なお、図示例では主回路のR,S,T相の各相電圧を直流変換して給電しているが、R−T相の相間電圧を漏電検出回路7に給電する場合もある。   Here, the leakage detection circuit 7 feeds the inter-phase voltage of the main circuit via the power line 9 and the rectifier circuit 10 wired between the main circuit 1 of each phase as its control power source. Is connected to a mega test switch (withstand voltage test switch) 11. When a mega test of the earth leakage breaker is executed, the mega test switch 11 is turned off prior to the test to disconnect the earth leakage detection circuit 7 from the main circuit. In the illustrated example, the R, S, and T phase voltages of the main circuit are DC-converted and supplied, but the R-T phase voltage may be supplied to the leakage detection circuit 7 in some cases.

次に、前記漏電遮断器の構成を図14に示す。図14において、12はケース12aとカバー12bからなる本体ケース(モールド樹脂成形品)であり、本体ケース12にはトグルリンク式の開閉機構3,操作ハンドル4,バイメタル式の過電流引外し装置5,零相変流器6、およびユニット構造になる漏電検出回路7,トリップコイルユニット8,メガテスト用スイッチ11が図示のようにレイアウトして内装されている。なお、ケース12aの内部はR,S,T各相に対応する空間が相間隔壁で仕切られており、図中で13はR,S,Tの各相空間に敷設した主回路導体、14は電流遮断部に設けた消弧装置、15は過電流引外し装置5,ないしはトリップコイルユニット8の機械的な出力信号を受けて開閉機構3をトリップ動作させるトリップクロスバーである。   Next, the configuration of the earth leakage circuit breaker is shown in FIG. In FIG. 14, reference numeral 12 denotes a main body case (molded resin molded product) made up of a case 12a and a cover 12b. The main body case 12 has a toggle link type opening / closing mechanism 3, an operation handle 4, a bimetal type overcurrent trip device 5. , A zero-phase current transformer 6, a leakage detection circuit 7 having a unit structure, a trip coil unit 8, and a mega test switch 11 are laid out as shown in the figure. In addition, in the case 12a, spaces corresponding to the R, S, and T phases are partitioned by phase interval walls. In the figure, 13 is a main circuit conductor laid in the R, S, and T phase spaces, and 14 is An arc extinguishing device 15 provided in the current interrupting unit 15 is a trip crossbar that trips the switching mechanism 3 in response to a mechanical output signal from the overcurrent tripping device 5 or the trip coil unit 8.

ここで、漏電検出回路7はそのプリント板を縦長のユニットケースに収容した上で、零相変流器6と零相変流器を貫通する「U字形」の一次導体とケース12aの左側側壁とで囲まれたスペースに収容配置している。一方、メガテスト用スイッチ(スライド操作式)11は、その可動接点のホルダに連ねてスイッチケースから上方に引き出したロッドにアクチュエータ16および操作ノブ17を形成した構造になり、漏電検出回路7の収容位置とは反対側で零相変流器6と「U字形」の一次導体とケース12aの右側側壁とで囲まれたスペースに収容配置されている。なお、この内装位置で前記操作ボタン17が本体ケース12のカバー12bに開口したスイッチ操作穴12b−1に臨み、またアクチュエータ16の先端が過電流引外し装置5の操作端(アーマチュア)に対峙している。さらに、トリップコイルユニット8はトリップコイル(電磁ソレノイド)とアクチュエータをユニットケースに組み込んだ構造で本体ケース12の中央に配した操作ハンドル4の側方位置に配置し、この位置でアクチュエータをトリップクロスバー15に対峙させている。   Here, the leakage detection circuit 7 accommodates the printed board in a vertically long unit case, and then the zero-phase current transformer 6 and the “U-shaped” primary conductor that penetrates the zero-phase current transformer and the left side wall of the case 12a. It is housed in a space surrounded by On the other hand, the mega test switch (slide operation type) 11 has a structure in which an actuator 16 and an operation knob 17 are formed on a rod that is connected to the holder of the movable contact and is drawn upward from the switch case. On the opposite side to the position, the zero-phase current transformer 6 is accommodated and disposed in a space surrounded by the “U-shaped” primary conductor and the right side wall of the case 12a. In this interior position, the operation button 17 faces the switch operation hole 12b-1 opened in the cover 12b of the main body case 12, and the tip of the actuator 16 faces the operation end (armature) of the overcurrent trip device 5. ing. Further, the trip coil unit 8 has a structure in which a trip coil (electromagnetic solenoid) and an actuator are incorporated in the unit case, and is arranged at a side position of the operation handle 4 arranged in the center of the main body case 12, and the actuator is arranged at this position at the trip crossbar. 15 is confronted.

上記の組立状態で、主回路導体13,メガテスト用スイッチ11,漏電検出回路7,トリップコイル8の相互間を図13の回路図で示すようにリード線(図示せず)を介して内部配線している。なお、漏電遮断器を配電盤に装備する場合には、本体ケース12のカバー12bを前方に向けた縦向き姿勢で盤内に設置し、操作ハンドル4を配電盤の前面扉パネルに開口した窓穴を通じて前方に突き出して盤外から開閉操作するようにしている。   In the above assembled state, the main circuit conductor 13, the mega test switch 11, the leakage detection circuit 7, and the trip coil 8 are interconnected via lead wires (not shown) as shown in the circuit diagram of FIG. is doing. When the circuit breaker is installed in the switchboard, the cover 12b of the main body case 12 is installed in the panel in a vertical orientation with the front facing forward, and the operation handle 4 is passed through a window hole opened in the front door panel of the switchboard. It projects forward and can be opened and closed from outside the panel.

上記の構成で、漏電遮断器のメガテスト実施に際して、前記メガテスト用スイッチ11の操作ノブ17を本体ケース12の前方から引出してOFF操作すると、漏電検出回路7の電源回路が断路される。同時にメガテスト用スイッチ11のアクチュエータ16が引外し装置5の操作端(アーマチュア)をキックしてトリップクロスバー15を釈放位置に駆動する。これにより、開閉機構3が機械的にトリップ動作して主回路接点2(図13参照)が開極(OFF)する。また、メガテスト終了後に漏電遮断器を通常の使用状態に復帰するには、操作ノブ17を押し込んでメガテスト用スイッチ11をON位置に戻す。これにより、漏電検出回路7が主回路1の相間に接続される。同時に、メガテスト用スイッチ11のアクチュエータ16がトリップクロスバー15の拘束を解除する。この状態で操作ハンドル4をON位置に切換ると、主回路接点2が閉極して漏電遮断器が通常の使用状態に戻る。
特開2004−319135号公報(図1) 特開2004−349063号公報(図1−図4)
With the above configuration, when conducting the mega test of the earth leakage breaker, when the operation knob 17 of the mega test switch 11 is pulled out from the front of the main body case 12 and turned OFF, the power supply circuit of the earth leakage detection circuit 7 is disconnected. At the same time, the actuator 16 of the mega test switch 11 kicks the operating end (armature) of the trip device 5 and drives the trip cross bar 15 to the release position. As a result, the opening / closing mechanism 3 is mechanically tripped, and the main circuit contact 2 (see FIG. 13) is opened (OFF). In order to return the earth leakage circuit breaker to the normal use state after the mega test is completed, the operation knob 17 is pushed in to return the mega test switch 11 to the ON position. As a result, the leakage detection circuit 7 is connected between the phases of the main circuit 1. At the same time, the actuator 16 of the mega test switch 11 releases the restraint of the trip crossbar 15. When the operation handle 4 is switched to the ON position in this state, the main circuit contact 2 is closed and the earth leakage circuit breaker returns to the normal use state.
Japanese Patent Laying-Open No. 2004-319135 (FIG. 1) JP 2004-349063 A (FIGS. 1 to 4)

前記の漏電遮断器は、配線用遮断器と比べて零相変流器,漏電検出回路,トリップコイルなどの内装部品が多く、本体ケースには各種の機能部品が殆ど余分な隙間を残すことなく組み込まれている。このために、メガテスト用スイッチを新たに追加装備するスペースを確保することが実際には中々困難である。そのほか、主回路/メガテスト用スイッチ/漏電検出回路の相互間の内部配線処理、さらにはメガテスト用スイッチの操作性,開閉機構とのインターロック機能に高い信頼性が要求される。   The earth leakage circuit breaker has more interior parts such as a zero-phase current transformer, earth leakage detection circuit, trip coil, etc. than the circuit breaker for wiring, and various functional parts leave almost no extra space in the body case. It has been incorporated. For this reason, it is actually difficult to secure a space for newly installing a mega test switch. In addition, high reliability is required for the internal wiring processing between the main circuit / mega test switch / leakage detection circuit, the operability of the mega test switch, and the interlock function with the switching mechanism.

かかる点、図14に示した漏電遮断器の従来構造では、本体ケース内部の残余スペースを利用して漏電検出回路7とメガテスト用スイッチ11を零相変流器6の左右両側に振り分けて配置している。このために、主回路からメガテスト用スイッチ11を経由して漏電検出回路7に至る内部配線経路が長くなり、その配線処理が煩雑になる。
そのほか、メガテスト用スイッチ11についても、その外形サイズが遮断器本体ケース12の高さによって制約されるために、漏電遮断器のフレームサイズが異なる系列機種に対して部品の共用化が困難となる。
In the conventional structure of the earth leakage breaker shown in FIG. 14, the earth leakage detection circuit 7 and the mega test switch 11 are distributed and arranged on the left and right sides of the zero-phase current transformer 6 using the remaining space inside the main body case. is doing. For this reason, the internal wiring path from the main circuit via the mega test switch 11 to the leakage detection circuit 7 becomes long, and the wiring process becomes complicated.
In addition, since the outer size of the mega test switch 11 is limited by the height of the breaker body case 12, it is difficult to share parts for series models having different frame sizes of the earth leakage breaker. .

本発明は上記の点に鑑みなされたものであり、前記各課題を解消して内部配線処理の簡素化、使用部品の共用化を図り、併せて本体ケースに内装した主要機能部品のレイアウトを変更せずにメガテスト用スイッチを追加装備できるようにその組立構造,レイアウトを改良した漏電遮断器を提供することを目的とする。   The present invention has been made in view of the above points, and solves the above-mentioned problems, simplifies the internal wiring processing, and shares the parts used, and also changes the layout of the main functional parts installed in the main body case. It is an object of the present invention to provide an earth leakage circuit breaker having an improved assembly structure and layout so that an additional mega test switch can be installed without the need.

上記目的を達成するために、本発明によれば、ケースおよびカバーからなる本体ケースの内部に主回路接点、開閉機構、零相変流器、漏電検出回路、トリップコイルユニット、および主回路から漏電検出回路に給電する電源回路に接続したメガテスト用スイッチを内装し、漏電遮断器のメガテスト時に前記メガテスト用スイッチをOFF操作して漏電検出回路を主回路から断路するようにした漏電遮断器において、
前記漏電検出回路,トリップコイルユニット,メガテスト用スイッチを個々にユニット化した上で、各ユニットを本体ケース内部の片側に寄せて並置し、かつこの位置でメガテスト用スイッチの操作端を本体ケースのカバーに開口したスイッチ操作穴に臨ませるように集約配置する(請求項1)ものとし、具体的には次記のような態様で構成する。
(1)前記の漏電検出回路ユニットを零相変流器の側方位置で該零相変流器を貫通する「U字形」の一次導体と本体ケースの側壁との間に囲まれたスペースに収容し、その上方にメガテスト用スイッチユニット,トリップコイルユニットを前後に並べて本体ケースのカバー裏面側に集約配置する(請求項2)。
(2)前記メガテスト用スイッチのユニットは、横置姿勢に配したスイッチ本体と、操作ボタンと、操作ボタンとスイッチ本体および遮断器のトリップクロスバーとの間を連係するアクチュエータ部材と、前記の各部品を搭載したユニットケースとの組立体になり、前記ボタンのOFF操作によりアクチュエータ部材を介してスイッチ本体の接点を開極させるとともに、トリップクロスバーを釈放位置に駆動して遮断器を機械的に強制トリップさせるようにする(請求項3)。
(3)前項(2)において、操作ボタンがプッシュ/捻り操作式押しボタン、アクチュエータ部材が復帰ばねと組み合わせて操作ボタンと直交する向きに配したスライダであり、かつ操作ボタンとアクチュエータ部材との間には操作ボタンを押し込んだ際にスライダをOFF位置に係止保持するロック機構を設ける(請求項4)。
(4)三相4線式回路用の4極仕様に対応して零相変流器を貫通する中性線の一次導体を、各ユニットと反対側に引出して本体ケース内部に敷設する(請求項5)。
[請求項6]請求項5に記載の回路遮断器において、中性線の一次導体が、零相変流器を貫通する丸棒導体と、該丸棒導体の両端にねじ締結して零相変流器の側方に引出した平板導体とで構成する(請求項6)。
In order to achieve the above object, according to the present invention, a main circuit contact, a switching mechanism, a zero-phase current transformer, a leakage detection circuit, a trip coil unit, and a main circuit are connected to the main circuit. Built-in mega test switch connected to the power supply circuit that supplies power to the detection circuit, and the leakage test circuit is disconnected from the main circuit by turning off the mega test switch during the mega test of the leakage circuit breaker. In
The leakage detection circuit, trip coil unit, and mega test switch are individually unitized, and each unit is placed side by side on the inside of the main body case, and the operation end of the mega test switch is located at the main body case at this position. (Claim 1). Specifically, it is configured in the following manner.
(1) In the space surrounded by the “U-shaped” primary conductor penetrating the zero-phase current transformer at the side position of the zero-phase current transformer and the side wall of the main body case, A mega test switch unit and a trip coil unit are arranged in the front and back of the housing, and are collectively arranged on the back side of the cover of the main body case.
(2) The mega test switch unit includes a switch body arranged in a horizontal posture, an operation button, an actuator member that links the operation button, the switch body, and a trip crossbar of the circuit breaker, It becomes an assembly with the unit case loaded with each part, and the contact of the switch body is opened via the actuator member by the OFF operation of the button, and the circuit breaker is mechanically driven by driving the trip cross bar to the release position. Is forced to trip (claim 3).
(3) In the preceding item (2), the operation button is a push / twist operation type push button, the actuator member is a slider arranged in a direction orthogonal to the operation button in combination with a return spring, and between the operation button and the actuator member Is provided with a lock mechanism that holds and holds the slider in the OFF position when the operation button is pushed in.
(4) The neutral conductor that passes through the zero-phase current transformer corresponding to the four-pole specification for the three-phase four-wire circuit is drawn out to the opposite side of each unit and laid in the body case Item 5).
[Claim 6] The circuit breaker according to claim 5, wherein the primary conductor of the neutral wire is a round bar conductor penetrating the zero-phase current transformer, and screw-fastened to both ends of the round bar conductor. And a flat conductor drawn out to the side of the current transformer.

上記構成のように、漏電検出回路,トリップコイルユニット,メガテスト用スイッチの各ユニットを本体ケース内部の片側に寄せて零相変流器の側方に集約配置したことにより、各ユニット相互間の配線経路が短くなり、メガテスト用スイッチを経由して主回路と漏電検出回路との間に内部配線する制御電源回路の配線処理が従来の組立構造と比べて大幅に簡素化されるとともに、漏電遮断器の保守,点検も容易となる。   As in the above configuration, the leakage detection circuit, trip coil unit, and mega test switch unit are moved to one side of the main unit case and concentrated on the side of the zero-phase current transformer. The wiring process is shortened, and the wiring process of the control power supply circuit, which is internally wired between the main circuit and the leakage detection circuit via the mega test switch, is greatly simplified compared to the conventional assembly structure. Maintenance and inspection of the circuit breaker will be easy.

また、メガテスト用スイッチユニットについても、そのスイッチ本体を横置姿勢に配した上で、スライド式のアクチュエータ部材を介して操作ボタンに連係するような組立構造で構成したことにより、漏電遮断器の本体ケースサイズ(高さ)に制約されることなく、当該スイッチユニットを各機種に共用できる。
さらに、三相4線式回路に適用する4極仕様の漏電遮断器に対しては、零相変流器を貫通する中性線の一次導体を前記の各ユニットが集約配置された側と反対側に引き出すようにしたことにより、3極仕様の構成部品を共用して4極仕様の中性線導体を簡単に追加装備することができる。しかも、この中性線一次導体を、零相変流器を貫通する丸棒導体と該丸棒導体の両端にねじ締結して零相変流器の側方に引出した平板導体とで構成したことで簡単に対応できる。
In addition, the mega test switch unit is also constructed in an assembly structure in which the switch body is arranged in a horizontal position and linked to an operation button via a slide type actuator member. The switch unit can be shared by each model without being restricted by the body case size (height).
Furthermore, for a four-pole earth leakage breaker applied to a three-phase four-wire circuit, the primary conductor of the neutral wire penetrating the zero-phase current transformer is opposite to the side on which the above units are concentrated. By pulling out to the side, it is possible to easily equip a neutral conductor with a 4-pole specification by sharing a 3-pole specification component. Moreover, this neutral wire primary conductor is composed of a round bar conductor that penetrates the zero-phase current transformer and a flat conductor that is screwed to both ends of the round bar conductor and pulled out to the side of the zero-phase current transformer. This can be easily handled.

以下、本発明の実施の形態を図示の実施例に基づいて説明する。なお、実施例の図中で図14に対応する部材には同じ符号を付してその説明は省略する。
まず、本体ケースのカバーを外した漏電遮断器の全体構造を図1に、カバーを被せた状態の外形図を図2に示す。図1の組立構造では、本体ケース12に内装した漏電検出回路7,トリップコイルユニット8,およびメガテスト用スイッチ11の配置を除いた主要機能部品のレイアウトは図14と同様である。すなわち、図14では零相変流器6を挟んでその左右両側に漏電検出回路7,メガテスト用スイッチ11を振り分けて配置しているのに対して、図1では漏電検出回路7,メガテスト用スイッチ11,およびトリップコイルユニット8の各ユニットが本体ケース12の片側(ケース12aの左側サイド)に寄せて集約配置しており、その組立構造を図3に示す。
Hereinafter, embodiments of the present invention will be described based on the illustrated examples. In addition, in the figure of an Example, the same code | symbol is attached | subjected to the member corresponding to FIG. 14, and the description is abbreviate | omitted.
First, FIG. 1 shows the overall structure of the earth leakage circuit breaker with the cover of the body case removed, and FIG. In the assembly structure of FIG. 1, the layout of main functional components is the same as that of FIG. 14 except for the arrangement of the leakage detection circuit 7, trip coil unit 8, and mega test switch 11 built in the main body case 12. That is, in FIG. 14, the leakage detection circuit 7 and the mega test switch 11 are separately arranged on the left and right sides of the zero-phase current transformer 6, whereas in FIG. 1, the leakage detection circuit 7 and the mega test are arranged. Each unit of the switch 11 and the trip coil unit 8 is concentrated and arranged near one side (the left side of the case 12a) of the main body case 12, and the assembly structure is shown in FIG.

すなわち、漏電検出回路7は、従来構造と同様にプリント板をユニットケースに収容した上で、図9に示す組立構造の零相変流器6に対して、零相変流器の鉄心を貫通した「U字形」の一次導体13a(T相)とケース12aの右側側壁とで囲まれたスペースに縦向き姿勢で収容配置されている。一方、メガテスト用スイッチ11のユニットは漏電検出回路7の上側に横向き姿勢で配置し、さらにその後方にトリップコイルユニット8が操作ハンドル4の側方位置に配置され、その上方を図2で示すように本体ケースのカバー12bで覆っている。また、図1の組立状態では、メガテスト用スイッチ11のユニットに設けた後記の操作ボタンがカバー12b(図2参照)に開口したスイッチ操作穴12b−1に臨んでいる。なお、図2の図中に表したX,Yは配電盤の前面パネルに開口した窓穴の寸法を表している。   That is, the leakage detection circuit 7 penetrates the core of the zero-phase current transformer with respect to the zero-phase current transformer 6 of the assembly structure shown in FIG. 9 after the printed board is accommodated in the unit case as in the conventional structure. The “U-shaped” primary conductor 13a (T-phase) and the right side wall of the case 12a are accommodated and arranged in a vertical orientation. On the other hand, the unit of the mega test switch 11 is arranged in a lateral orientation on the upper side of the leakage detection circuit 7, and further, the trip coil unit 8 is arranged at the side position of the operation handle 4 behind it, and the upper part is shown in FIG. In this way, it is covered with a cover 12b of the main body case. Further, in the assembled state of FIG. 1, an operation button described later provided on the unit of the mega test switch 11 faces the switch operation hole 12b-1 opened in the cover 12b (see FIG. 2). In addition, X and Y represented in the figure of FIG. 2 represent the dimension of the window hole opened to the front panel of a switchboard.

そして、図1の組立状態で、図13の回路図で述べたようにメガテスト用スイッチ11を介して漏電遮断器の主回路導体13と漏電検出回路7との間,および漏電検出回路7とトリップコイルユニット8との間がリード線(図示せず)で内部配線されている。
次に、前記メガテスト用スイッチ11について、そのユニットの詳細な組立構造を図4〜図7で説明する。すなわち、図4で示すように、メガテスト用スイッチのユニットはスイッチ本体11aと、操作ボタン11bと、アクチュエータ部材としてのスライダ11cと、復帰ばね(圧縮コイルばね)11dとこれら各部品を搭載したユニットケース(組立フレーム)11eとの組立体になる。
In the assembled state of FIG. 1, as described in the circuit diagram of FIG. 13, between the main circuit conductor 13 of the earth leakage breaker and the earth leakage detection circuit 7 and the earth leakage detection circuit 7 through the mega test switch 11, The trip coil unit 8 is internally wired with a lead wire (not shown).
Next, a detailed assembly structure of the unit of the mega test switch 11 will be described with reference to FIGS. That is, as shown in FIG. 4, the mega test switch unit is a unit in which a switch main body 11a, an operation button 11b, a slider 11c as an actuator member, a return spring (compression coil spring) 11d, and these components are mounted. It becomes an assembly with the case (assembly frame) 11e.

ここで、スイッチ本体11aは、図6で示すように、スイッチケース11a−1に固定接触子11a−2,橋絡形の可動接触子11a−3,および可動接触子11a−3に連結してスイッチケース11a−1から引き出した操作ロッド11a−4を組み付けた構造で、操作ロッド11a−4をON,OFF方向にスライド操作することにより開閉動作する。そして、このスイッチ本体11aのケースから引出した操作ロッド11a−4の先端を前記スライダ11cの端部に形成したフック部11c−1に係合している。   Here, as shown in FIG. 6, the switch body 11a is connected to the switch case 11a-1 with a fixed contact 11a-2, a bridge-shaped movable contact 11a-3, and a movable contact 11a-3. The operation rod 11a-4 pulled out from the switch case 11a-1 is assembled and opened and closed by sliding the operation rod 11a-4 in the ON and OFF directions. And the front-end | tip of the operating rod 11a-4 pulled out from the case of this switch main body 11a is engaged with the hook part 11c-1 formed in the edge part of the said slider 11c.

また、操作ボタン11bはプッシュ/捻り式ボタンとして、前記スライダ11cに上方から対峙してユニットケース11eに案内支持されている。
一方、スライダ11cは復帰ばね11dと組み合わせてユニットケース11eにスライド可能に案内支持されており、当該スイッチユニットを漏電遮断器の本体ケース12に組み付けた状態(図1参照)で前記スライダの先端部11c−2をトリップクロスバー15に対峙させている。また、スライダ11cの中間部位には傾斜カム面11c−3を形成して操作ボタン11bの先端を対峙させている。この構造で操作ボタン11bを矢印A方向に押し込むと、操作ボタンの先端が前記の傾斜カム面11c−3に当たってスライダ11cを矢印B方向に駆動する。
The operation button 11b is a push / twist type button, and is supported by the unit case 11e while facing the slider 11c from above.
On the other hand, the slider 11c is slidably guided and supported by the unit case 11e in combination with the return spring 11d, and the tip of the slider is mounted in a state where the switch unit is assembled to the main body case 12 of the earth leakage circuit breaker (see FIG. 1). 11 c-2 is opposed to the trip crossbar 15. In addition, an inclined cam surface 11c-3 is formed at an intermediate portion of the slider 11c to oppose the tip of the operation button 11b. When the operation button 11b is pushed in the direction of arrow A with this structure, the tip of the operation button hits the inclined cam surface 11c-3 and drives the slider 11c in the direction of arrow B.

さらに、操作ボタン11bとスライダ11cとの間には、操作ボタン11bを押し込んだ際にスライダ11cをOFF位置に係止保持するロック機構として、操作ボタン11bの周面から突き出したロックアーム11b−1と、該アームに対向してスライダ11cに係合突起部11c−4を設けている。
次に、上記構成になるメガテスト用スイッチの機能,動作を図8で説明する。すなわち、漏電遮断器のメガテスト実施に際して、本体ケース12の前方からドライバなどの工具を使ってメガテスト用スイッチ11の操作ボタン11bを矢印A方向に押し込むと、これに従動してスライダ11cが復帰ばね11dに抗して矢印B方向に移動する。これにより、スイッチ本体11aがOFF動作して主回路と漏電検出回路7との間の電源回路を断路する。同時にスライダ11cの先端部11c−2がトリップクロスバー15をキックし、これによりトリップクロスバー15が矢印C方向に傾動して開閉機構3のラッチを釈放する。その結果、開閉機構3がトリップ動作して各相の主回路接点2が開極する。続いて操作ボタン11bを押し込んだまま矢印D方向に回すと、ロックアーム11b−1がスライダ11cに形成した係合突起部11c−4に係合し、スライダ11cは復帰ばね11dのばね力を受けてOFF位置に係止保持される。これでメガテストの準備が整うことになる。なお、このスライダロック状態では操作ハンドル4の操作により開閉機構3をリセットし、漏電遮断器をON位置に投入しようとしても、トリップクロスバー15がラッチ釈放位置に拘束されているので、ON操作することができない。
Further, between the operation button 11b and the slider 11c, a lock arm 11b-1 protruding from the peripheral surface of the operation button 11b is used as a lock mechanism that holds and holds the slider 11c in the OFF position when the operation button 11b is pushed. The slider 11c is provided with an engaging projection 11c-4 so as to face the arm.
Next, the function and operation of the mega test switch configured as described above will be described with reference to FIG. In other words, when the mega test of the earth leakage breaker is carried out, when the operation button 11b of the mega test switch 11 is pushed in the direction of the arrow A from the front of the main body case 12 using a tool such as a screwdriver, the slider 11c is returned following the operation. It moves in the direction of arrow B against the spring 11d. As a result, the switch main body 11a is turned off to disconnect the power supply circuit between the main circuit and the leakage detection circuit 7. At the same time, the tip end portion 11c-2 of the slider 11c kicks the trip cross bar 15, whereby the trip cross bar 15 tilts in the direction of arrow C to release the latch of the opening / closing mechanism 3. As a result, the opening / closing mechanism 3 is tripped to open the main circuit contact 2 of each phase. Subsequently, when the operation button 11b is pushed and turned in the direction of arrow D, the lock arm 11b-1 is engaged with the engaging protrusion 11c-4 formed on the slider 11c, and the slider 11c receives the spring force of the return spring 11d. Are held in the OFF position. You are now ready for the megatest. In this slider lock state, even if the open / close mechanism 3 is reset by operating the operation handle 4 and the earth leakage circuit breaker is turned on, the trip crossbar 15 is restrained to the latch release position, so that the ON operation is performed. I can't.

一方、メガテストの終了後に漏電遮断器を通常の使用状態に戻すには、操作ボタン11bを前記とは逆(矢印Dと反対側)に回す。これにより、操作ボタン/スライダ間のロック機構が外れ、復帰ばね11dのばね力を受けたスライダ11cが当初の位置に戻ってトリップクロスバー15から離脱するとともに、スイッチ本体11aがON動作して漏電検出回路7の電源回路を導通状態にする。   On the other hand, in order to return the earth leakage circuit breaker to the normal use state after the end of the mega test, the operation button 11b is turned in the opposite direction (opposite to the arrow D). As a result, the lock mechanism between the operation button / slider is released, the slider 11c receiving the spring force of the return spring 11d returns to the initial position and is detached from the trip cross bar 15, and the switch body 11a is turned on to cause an electric leakage. The power supply circuit of the detection circuit 7 is turned on.

したがって、操作ハンドル4をRESET位置に倒して開閉機構3のラッチをリセットした上で、ON位置に切換操作することにより、主回路接点2が閉極して漏電遮断器が通常の使用状態に復帰し、配電路が通電状態となる。
しかも、前記した漏電遮断器の組立構造によれば、本体ケース12の片側に寄せて集約配置した漏電検出回路7,トリップコイルユニット8,メガテスト用スイッチ11が接近しているので、各ユニットの相互間および主回路導体との間を接続する内部配線の処理が図14に示した従来構造と比べて大幅に簡素化されるほか、ユニット部品の保守,点検も容易となる。
Therefore, the main handle contact 2 is closed by closing the operation handle 4 to the RESET position and resetting the latch of the opening / closing mechanism 3 and switching to the ON position, so that the leakage breaker returns to the normal use state. Then, the distribution path is energized.
In addition, according to the assembly structure of the leakage breaker described above, the leakage detection circuit 7, the trip coil unit 8, and the mega test switch 11 that are centrally arranged close to one side of the main body case 12 are close to each other. The processing of the internal wiring connecting between each other and between the main circuit conductors is greatly simplified as compared with the conventional structure shown in FIG. 14, and maintenance and inspection of the unit parts are facilitated.

また、メガテスト用スイッチ11は、そのスイッチ本体11aを横置姿勢に配置してスイッチユニットを構成しているので、漏電遮断器の本体ケースサイズに制約されることなく、メガテスト用スイッチユニットを共用部品としてフレームサイズの異なる機種に使用することができる。さらに、操作ボタン11bとアクチュエータ部材(スライダ11c)との間に、操作ボタンの押し込み位置でスライダをOFF位置に鎖錠するロック機構を設けたことで、操作性,信頼性が向上する。   In addition, since the switch 11 for the mega test is configured by arranging the switch body 11a in the horizontal position, the switch unit for the mega test is not limited by the body case size of the earth leakage breaker. Can be used as a common part for models with different frame sizes. Furthermore, the operability and reliability are improved by providing a lock mechanism between the operation button 11b and the actuator member (slider 11c) to lock the slider to the OFF position when the operation button is pushed.

次に、本発明の応用実施例として、三相4線式回路に適用する4極仕様の漏電遮断器を図10〜図12に示す。まず、図12に示す漏電遮断器全体の組立図において、漏電検出回路7,トリップコイルユニット8,およびメガテスト用スイッチ11は、図1に示した3極の漏電遮断器と同様に本体ケース内部の右側サイド(T相に対応する主回路導体13の配置領域)に集約して配置されている。これに対して、三相4線式回路に対応して追加したN相(中性線)の主回路導体13は、本体ケース12の横幅を拡張してその左側サイドに画成したN相に対応のスペースに敷設されており、この配置で中性線(N相)の主回路導体を図10,図11で示すようにケース内部に引き回して零相変流器7を貫通させるようにしている。   Next, as an application example of the present invention, a four-pole earth leakage breaker applied to a three-phase four-wire circuit is shown in FIGS. First, in the assembly diagram of the whole earth leakage breaker shown in FIG. 12, the earth leakage detection circuit 7, the trip coil unit 8, and the mega test switch 11 are arranged inside the main body case in the same manner as the three-pole earth leakage breaker shown in FIG. Are arranged in an aggregated manner on the right side (arrangement region of the main circuit conductor 13 corresponding to the T phase). On the other hand, the N-phase (neutral wire) main circuit conductor 13 added corresponding to the three-phase four-wire circuit has an N-phase defined on the left side by expanding the lateral width of the body case 12. In this arrangement, the neutral circuit (N-phase) main circuit conductor is routed inside the case as shown in FIGS. 10 and 11 so as to penetrate the zero-phase current transformer 7. Yes.

すなわち、N相の主回路導体13は、互いに切り離して零相変流器6の前後面側に延在する2枚の平板導体13aと、零相変流器6の鉄心中央を貫通して前記平板導体13aの間に介挿した丸棒導体13bとに分割した上で、平板導体13aと丸棒導体13bとの間を締結ねじ13cおよびワッシャ13dを介して接続するようにしている。
上記の構成によれば、零相変流器6の鉄心を貫通して敷設したR,S,T相の各主回路導体13,および漏電検出回路7,トリップコイルユニット8,およびメガテスト用スイッチ11の集約配置については、図1に示した3極漏電遮断器と同じ組立構造を4極の漏電遮断器に採用しつつ、中性線(N相)の主回路導体を追加することができる。これにより、3極/4極の漏電遮断器に搭載する組立部品を共用化して生産性の向上が図れる。
That is, the N-phase main circuit conductor 13 passes through the center of the core of the zero-phase current transformer 6 and the two flat conductors 13a that are separated from each other and extend to the front and rear surface sides of the zero-phase current transformer 6. After being divided into round bar conductors 13b interposed between the flat plate conductors 13a, the flat plate conductors 13a and the round bar conductors 13b are connected via fastening screws 13c and washers 13d.
According to the above configuration, the R, S, T phase main circuit conductors 13 laid through the iron core of the zero-phase current transformer 6, the leakage detection circuit 7, the trip coil unit 8, and the mega test switch 11, the neutral circuit (N-phase) main circuit conductor can be added while adopting the same assembly structure as the three-pole earth leakage breaker shown in FIG. 1 for the four-pole earth leakage breaker. . As a result, it is possible to improve productivity by sharing the assembly parts mounted on the 3-pole / 4-pole earth leakage breaker.

本発明の実施例による3極漏電遮断器の内部組立構造を表す外観図The external view showing the internal assembly structure of the three-pole earth-leakage circuit breaker by the Example of this invention 図1にケースカバーを被せた状態の外観図Figure 1 is an external view of the case cover. 図1における要部部品の組立,配置図Assembly and layout of the main parts in Fig. 1 図3におけるメガテスト用スイッチのユニット全体の構成斜視図FIG. 3 is a perspective view of the overall configuration of the mega test switch unit in FIG. 図4における主用部品の拡大斜視図Enlarged perspective view of main components in FIG. 図5におけるスイッチ本体の詳細構造図Detailed structure diagram of switch body in FIG. 図5に対応するユニット組立構造の斜視側面図The perspective side view of the unit assembly structure corresponding to FIG. 図3に示したメガテスト用スイッチの動作機能の説明図Explanatory drawing of the operation function of the mega test switch shown in FIG. 図1における零相変流器の組立構造を表す斜視図The perspective view showing the assembly structure of the zero phase current transformer in FIG. 4極漏電遮断器に搭載する零相変流器の組立構造を表す斜視図The perspective view showing the assembly structure of the zero phase current transformer mounted in a 4-pole earth leakage circuit breaker 図10における主回路導体の分解斜視図10 is an exploded perspective view of the main circuit conductor in FIG. 図10の零相変流器を搭載した4極漏電遮断器の内部組立構造を表す外観図External view showing the internal assembly structure of a 4-pole earth leakage breaker equipped with the zero-phase current transformer of FIG. メガテスト用スイッチを搭載した漏電遮断器の回路図Circuit diagram of earth leakage breaker equipped with mega test switch 図13に対応する漏電遮断器の従来構造を表す外観図External view showing conventional structure of earth leakage circuit breaker corresponding to FIG.

符号の説明Explanation of symbols

1 主回路
2 主回路接点
3 開閉機構
4 操作ハンドル
6 零相変流器
7 漏電検出回路
8 トリップコイルユニット
9 漏電検出回路の電源線
11 メガテスト用スイッチ
11a スイッチ本体
11b 操作ボタン
11b−1 ロックアーム
11c スライダ(アクチュエータ部材)
11d 復帰ばね
13 主回路導体
13a 平板導体
13b 丸棒導体
15 トリップクロスバー
DESCRIPTION OF SYMBOLS 1 Main circuit 2 Main circuit contact 3 Opening and closing mechanism 4 Operation handle 6 Zero phase current transformer 7 Leakage detection circuit 8 Trip coil unit 9 Power supply line 11 of the leak detection circuit Mega test switch 11a Switch body 11b Operation button 11b-1 Lock arm 11c Slider (actuator member)
11d Return spring 13 Main circuit conductor 13a Flat plate conductor 13b Round bar conductor 15 Trip cross bar

Claims (6)

漏電保護機能を備えた多相回路用の漏電遮断器であって、ケースおよびカバーからなる本体ケースの内部に主回路接点、開閉機構、零相変流器、漏電検出回路、トリップコイル、および主回路から漏電検出回路に給電する電源回路に接続したメガテスト用スイッチを内装し、漏電遮断器のメガテスト時に前記メガテスト用スイッチをOFF操作して漏電検出回路を主回路から断路するようにしたものにおいて、
前記漏電検出回路,トリップコイル,メガテスト用スイッチを個々にユニット化した上で、各ユニットを本体ケース内部の片側に寄せて集約配置し、かつこの配置でメガテスト用スイッチの操作端を本体ケースのカバーに開口したスイッチ操作穴に臨ませたことを特徴とする漏電遮断器。
An earth leakage circuit breaker for a multi-phase circuit having an earth leakage protection function, wherein a main circuit contact, a switching mechanism, a zero-phase current transformer, an earth leakage detection circuit, a trip coil, A mega test switch connected to the power supply circuit that supplies power to the leakage detection circuit from the circuit is built in, and the leakage test circuit is disconnected from the main circuit by turning off the mega test switch during the mega test of the leakage breaker. In things,
The leakage detection circuit, trip coil, and mega test switch are individually unitized, and then each unit is moved to one side of the main body case, and the operation end of the mega test switch is connected to the main body case. Leakage circuit breaker characterized by facing the switch operation hole opened in the cover.
請求項1に記載の漏電遮断器において、漏電検出回路ユニットは零相変流器の側方位置で該零相変流器を貫通する「U字形」の一次導体と本体ケースの側壁との間に囲まれたスペースに収容し、その上方にメガテスト用スイッチユニット,トリップコイルユニットを前後に並べて本体ケースのカバー裏面側に集約配置したことを特徴とする漏電遮断器。 2. The earth leakage breaker according to claim 1, wherein the earth leakage detection circuit unit is located between a “U-shaped” primary conductor penetrating the zero phase current transformer at a side position of the zero phase current transformer and a side wall of the main body case. An earth leakage circuit breaker characterized in that a mega test switch unit and a trip coil unit are arranged in the front and back of the space and are collectively arranged on the back side of the cover of the main body case. 請求項1または2に記載の漏電遮断器において、メガテスト用スイッチのユニットが、横置姿勢に配したスイッチ本体と、操作ボタンと、操作ボタンとスイッチ本体および遮断器のトリップクロスバーとの間を連係するアクチュエータ部材と、前記の各部品を搭載したユニットケースとの組立体になり、前記ボタンのOFF操作によりアクチュエータ部材を介してスイッチ本体の接点を開極させるとともに、トリップクロスバーを釈放位置に駆動して遮断器を機械的に強制トリップさせるようにしたことを特徴とする漏電遮断器。 The earth leakage circuit breaker according to claim 1 or 2, wherein the mega test switch unit includes a switch body arranged in a horizontal posture, an operation button, the operation button, the switch body, and a trip crossbar of the circuit breaker. It is an assembly of the actuator member that links the above and the unit case on which each of the above components is mounted, and when the button is turned off, the contact of the switch body is opened via the actuator member and the trip crossbar is released. The earth leakage circuit breaker is characterized in that the circuit breaker is mechanically forcibly tripped by driving the circuit. 請求項3に記載の漏電遮断器において、操作ボタンがプッシュ/捻り操作式押しボタン、アクチュエータ部材が復帰ばねと組み合わせて操作ボタンと直交する向きに配したスライダであり、かつ操作ボタンとアクチュエータ部材との間には操作ボタンを押し込んだ際にスライダをOFF位置に係止保持するロック機構を設けたことを特徴とする漏電遮断器。 The earth leakage circuit breaker according to claim 3, wherein the operation button is a push / twist operation type push button, the actuator member is a slider arranged in a direction orthogonal to the operation button in combination with a return spring, and the operation button, the actuator member, An earth leakage circuit breaker provided with a lock mechanism that holds and holds the slider in the OFF position when the operation button is pushed in between. 請求項1に記載の漏電遮断器において、三相4線式回路用の4極仕様に対応して零相変流器を貫通する中性線の一次導体を、各ユニットと反対側に引出して本体ケース内部に敷設したことを特徴とする漏電遮断器。 The earth leakage circuit breaker according to claim 1, wherein the primary conductor of the neutral wire penetrating the zero-phase current transformer corresponding to the four-pole specification for the three-phase four-wire circuit is drawn to the opposite side of each unit. An earth leakage circuit breaker characterized by being laid inside the body case. 請求項5に記載の回路遮断器において、中性線の一次導体が、零相変流器を貫通する丸棒導体と、該丸棒導体の両端にねじ締結して零相変流器の側方に引出した平板導体からなることを特徴とする漏電遮断器。 6. The circuit breaker according to claim 5, wherein the primary conductor of the neutral wire is a round bar conductor penetrating the zero-phase current transformer, and screw-fastened to both ends of the round bar conductor to the side of the zero-phase current transformer. An earth-leakage circuit breaker comprising a flat conductor drawn out in the direction.
JP2006141022A 2006-05-22 2006-05-22 Earth leakage breaker Active JP4972998B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2006141022A JP4972998B2 (en) 2006-05-22 2006-05-22 Earth leakage breaker
FR0703517A FR2901633B1 (en) 2006-05-22 2007-05-16 EARTH LEAK CIRCUIT BREAKER
KR1020070048742A KR100928361B1 (en) 2006-05-22 2007-05-18 Earth Leakage Circuit Breaker for Multiphase Circuits
TW096117963A TWI336483B (en) 2006-05-22 2007-05-21 Earth leakage breaker
CN2007101040580A CN101079353B (en) 2006-05-22 2007-05-21 Earth leakage circuit-breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006141022A JP4972998B2 (en) 2006-05-22 2006-05-22 Earth leakage breaker

Publications (2)

Publication Number Publication Date
JP2007311268A true JP2007311268A (en) 2007-11-29
JP4972998B2 JP4972998B2 (en) 2012-07-11

Family

ID=38727393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006141022A Active JP4972998B2 (en) 2006-05-22 2006-05-22 Earth leakage breaker

Country Status (5)

Country Link
JP (1) JP4972998B2 (en)
KR (1) KR100928361B1 (en)
CN (1) CN101079353B (en)
FR (1) FR2901633B1 (en)
TW (1) TWI336483B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104979142B (en) * 2014-04-11 2017-03-29 施耐德电器工业公司 Electrical apparatus release and the chopper with electrical apparatus release
JP6237533B2 (en) * 2014-08-22 2017-11-29 三菱電機株式会社 Earth leakage breaker

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199881A (en) * 2002-12-16 2004-07-15 Fuji Electric Fa Components & Systems Co Ltd Ground fault breaker
JP2004349063A (en) * 2003-05-21 2004-12-09 Fuji Electric Fa Components & Systems Co Ltd Earth leakage circuit breaker

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4128897B2 (en) 2003-04-11 2008-07-30 三菱電機株式会社 Earth leakage breaker
JP4123081B2 (en) * 2003-07-03 2008-07-23 富士電機機器制御株式会社 Earth leakage breaker
JP4085911B2 (en) * 2003-07-31 2008-05-14 富士電機機器制御株式会社 Earth leakage breaker
JP4487673B2 (en) * 2004-07-26 2010-06-23 富士電機機器制御株式会社 Earth leakage breaker
JP4556614B2 (en) * 2004-10-25 2010-10-06 富士電機機器制御株式会社 Earth leakage breaker

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004199881A (en) * 2002-12-16 2004-07-15 Fuji Electric Fa Components & Systems Co Ltd Ground fault breaker
JP2004349063A (en) * 2003-05-21 2004-12-09 Fuji Electric Fa Components & Systems Co Ltd Earth leakage circuit breaker

Also Published As

Publication number Publication date
JP4972998B2 (en) 2012-07-11
KR100928361B1 (en) 2009-11-23
FR2901633B1 (en) 2014-10-31
TWI336483B (en) 2011-01-21
FR2901633A1 (en) 2007-11-30
CN101079353A (en) 2007-11-28
TW200820297A (en) 2008-05-01
CN101079353B (en) 2010-06-23
KR20070112715A (en) 2007-11-27

Similar Documents

Publication Publication Date Title
JP4816246B2 (en) Earth leakage breaker
US7167349B2 (en) Earth leakage breaker
EP2315228B1 (en) Molded case circuit breaker having an instantaneous trip mechanism
JP4839772B2 (en) Withstand voltage test switch and earth leakage breaker
JP4123081B2 (en) Earth leakage breaker
JPH03133019A (en) Circuit breaker
JP2004199881A (en) Ground fault breaker
JP4085911B2 (en) Earth leakage breaker
JP4972998B2 (en) Earth leakage breaker
JP2006120563A (en) Ground fault interrupter
JP4852380B2 (en) Circuit breaker
JP6440108B2 (en) Circuit breaker
JP4921931B2 (en) Circuit breaker
JP4856518B2 (en) Circuit breaker
KR101028183B1 (en) Circuit breaker
KR20090028291A (en) Mold cased circuit breaker
JP6163950B2 (en) Circuit breaker
JP4487673B2 (en) Earth leakage breaker
JP2008041580A (en) Ground-fault interrupter
JP2008130379A (en) Circuit breaker
KR101131673B1 (en) Circuit breaker
KR0172808B1 (en) Trip device for circuit breaker
JP4144589B2 (en) Remote control type earth leakage breaker
JP2008262935A (en) Ground fault breaker
JP2003203550A (en) Earth leakage breaker

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20081117

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081215

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081215

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090219

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090415

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110930

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120326

R150 Certificate of patent or registration of utility model

Ref document number: 4972998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150420

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250