JP2004198328A - 多成分混合気体の組成測定方法及び組成測定装置 - Google Patents

多成分混合気体の組成測定方法及び組成測定装置 Download PDF

Info

Publication number
JP2004198328A
JP2004198328A JP2002369085A JP2002369085A JP2004198328A JP 2004198328 A JP2004198328 A JP 2004198328A JP 2002369085 A JP2002369085 A JP 2002369085A JP 2002369085 A JP2002369085 A JP 2002369085A JP 2004198328 A JP2004198328 A JP 2004198328A
Authority
JP
Japan
Prior art keywords
composition
pressure
physical property
gas
gas mixture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002369085A
Other languages
English (en)
Inventor
Akira Kurokawa
明 黒河
Shingo Ichimura
信吾 一村
Hidehiko Nonaka
秀彦 野中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2002369085A priority Critical patent/JP2004198328A/ja
Priority to PCT/JP2003/016169 priority patent/WO2004057309A1/ja
Priority to AU2003289393A priority patent/AU2003289393A1/en
Publication of JP2004198328A publication Critical patent/JP2004198328A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0011Sample conditioning
    • G01N33/0016Sample conditioning by regulating a physical variable, e.g. pressure or temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N7/00Analysing materials by measuring the pressure or volume of a gas or vapour

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Measuring Fluid Pressure (AREA)

Abstract

【課題】従来の多成分混合気体の組成測定に際して、混合気体の圧力が大気圧以外の時には正確な混合比(組成)が測定できず、また、熱や光を照射する測定方法では、爆発の危険性のある混合気体は測定できない等の問題があった。
【解決手段】例えば窒素、酸素、オゾンの多成分混合気体のように、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるが、その中でオゾンの混合比が不明の混合気体のような、多成分混合気体の配管4に対して、例えば隔膜真空計等の絶対圧力を測定する絶対圧力測定子1と、気体の物性値として例えば粘性に敏感な圧力計である水晶摩擦真空計、スピニングロータゲージ、あるいはその他の物性値に敏感な圧力測定子2とを接続し、同時に圧力を測定する。両圧力測定値から多成分混合気体の真の物性値を求め、物性値と組成の対応データから組成を求める。
【選択図】 図1

Description

【0001】
【発明の属する技術分野】
本発明は、予め構成する気体が知られている3成分以上の気体が混合した多成分混合気体(以下「多成分混合気体」という)であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成を測定する方法及びその方法を実施する装置に関し、特に、被測定気体の圧力に依存せず、計測時に被測定混合気体が分解することなく、また、計測後に被測定混合気を廃棄することがないようにした多成分混合気体の組成測定方法、及びこの測定方法を実施する装置に関する。
【0002】
【従来の技術】
従来、多成分の気体からなる混合気体の組成を求めるに際して、例えば窒素、酸素、オゾン混合ガス中のオゾン濃度を計測するとき、紫外線のうちオゾンは吸収するが他の成分はほとんど吸収しない特定の波長を選択してこれを混合ガスに照射し、紫外線の吸収率を測定することによりオゾンの濃度、即ち多成分の気体の組成を求めるようにした紫外線吸光度測定法が知られている。
【0003】
【発明が解決しようとする課題】
このような組成測定に際して一般に用いられている混合気体の圧力は大気圧であり、これ以外の圧力での組成測定はほとんど想定されることがなかった。そのため、たとえば上記のように紫外線吸光法を前記のような混合気体に用いる場合、混合気体圧力が減少するとオゾン濃度が同じでも紫外線吸光度が減少してしまうため、圧力が低い状態の多成分混合気体の組成を正確に測定することはできなかった。
【0004】
即ち、例えば上記の例の場合のように混合気体を紫外線吸光度によりを計測しているとき、混合気体の組成比が変化するとそれに対応して指示値が変化し、組成と物性指示値の間には相関がある。したがってその指示値から混合気体の組成を求めることができる。その指示値と混合気体の模式的関係を図8曲線p1で示す。しかしこの相関を示す曲線は、一般に圧力依存性があり、混合気体圧力が変わると、図8中のp2、p3で示すように相関曲線も変化する。そのため圧力が変動すると組成を求めることができなかった。
【0005】
また、前記のような光吸収法による組成測定方法においては、ランプのような光源が必要であるが、このランプは寿命が有限であり、定期的な交換が必要であり、メンテナンスが面倒であった。更に、前記紫外線の吸光度を利用して組成を測定する手法は、気体の種類毎に吸収波長が異なるため、一つの紫外線ランプで複数の混合ガスに対応することは不可能であり、混合ガスの種類によっては必要な光の波長を生成する光源が存在しない場合もあり、汎用性に欠けていた。
【0006】
一方、多成分混合気体の組成の測定法において熱や光を加えることで混合気体の分解率を測定する原理を利用した測定法も存在するが、このような測定方法においては熱や光を加えると爆発・引火の可能性がある混合気体の組成測定するとき、誘爆・引火の危険性があった。例えば、大気圧オゾン酸素混合気体を含む多成分混合気体でオゾン濃度が50%を越えると、引火したときに轟爆の危険性が伴うため、光照射によるオゾン分解を伴う紫外線吸光法では高濃度オゾン気体の測定には危険があった。
【0007】
また、上記のような熱や光を加えて分解率を測定する原理の測定法においては、例えばオゾン酸素混合気体を含む多成分混合気体の場合、サンプリングした混合気体中のオゾンは紫外線の照射により分解されて酸素になるため、混合気体中のオゾン濃度は減少してしまう。そのため精度の高い濃度測定にはオゾン分解による混合気体組成の変化を無視できるような、混合気体の大量のサンプリングが必要であった。しかも、測定によって被測定混合気体の組成が変化するため、サンプリングした気体は破棄して非測定気体に混入しないような手段が必要であった。
【0008】
更に、混合気体を一部抜きとった後別の場所で化学分析する方法もあるが、その場合は気体の組成が時間とともに変化していくために実時間で組成を知ることが必要な場合において、即時性の点で不都合であった。
【0009】
したがって本発明は、圧力が変化しても正確な組成を測定することができ、特定の波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、また、熱や光を加えて測定を行う方法のように爆発引火の危険性が無く、かつ、被測定ガスの分解が無いことによりサンプリングガスを多量に用意し、またそれを廃棄する必要が無く、気体組成の変化に対応して即時に組成を測定することができるようにした、多成分混合気体の組成測定方法、及びその方法を実施するための組成測定装置を提供することを目的とする。
【0010】
【課題を解決するための手段】
上記従来の課題を解決するため、本願の請求項1に係る発明は、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成を測定する多成分混合気体の組成測定方法において、混合気体の組成に対応した物性値のデータを取得し、物性値に敏感な圧力測定装置により被測定混合気体の圧力を測定し、同時に前記物性値に影響を受けない圧力測定装置により同気体の圧力を測定し、両圧力測定値から混合気体の物性値を求め、該物性値から組成を求めることを特徴とする多成分混合気体の組成測定方法としたものである。
【0011】
また、請求項2に係る発明は、前記物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を用いて同時に被測定混合気体の圧力を測定し、各圧力測定値と前記物性値に影響を受けない圧力測定装置装置の測定値から混合気体の物性値を求めることを特徴とする請求項1記載の多成分混合気体の組成測定方法としたものである。
【0012】
また、請求項3に係る発明は、前記物性値は粘性とし、該物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする請求項1または請求項2記載の多成分混合気体の組成測定方法としたものである。
【0013】
また、請求項4に係る発明は、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定装置において、物性値に敏感な圧力測定装置と、前記物性値に影響を受けない圧力測定装置と、両圧力測定装置からの圧力値を入力して物性値を求めると共に該物性値から予め取得されている組成に対応した物性値のデータに基づき組成を求める組成計算手段とを備えたことを特徴とする多成分混合気体の組成測定装置としたものである。
【0014】
また、請求項5に係る発明は、前記物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を備えたことを特徴とする請求項4記載の多成分混合気体の組成測定装置としたものである。
【0015】
また、請求項6に係る発明は、前記物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする請求項4または請求項5記載の多成分混合気体の組成測定装置としたものである。
【0016】
【発明の実施の形態】
本発明の基本原理は、粘性・熱伝導率・密度・分子量およびそれらの関数としての混合気体の物性値を測定し、純粋気体固有の物性値をもとに気体の成分を算出する手法を採用するものである。更に詳細には、圧力と例えば粘性等の物性値に敏感な測定子Aと、圧力のみに敏感な測定子Bを同時に用いて対象混合気体を計測し、演算処理によって圧力の影響を除いて混合気体の例えば粘性等の物性値を算出することで、物性値に応じた多成分混合気体の組成を求めるものである。
【0017】
上記測定子Aと測定子Bに、測定子Aの対象圧力範囲以外に対応した測定子Cを追加することでさらに測定圧力範囲を広げることができる。また、組成の校正は、混合ガスを構成する気体について、純気体をあらかじめ既知割合で混合して各種組成の標準気体を作成し、前記組成測定装置で標準気体を実測してみて検量線を得て、この検量線を組成計算機に記録させておくことで行うことができる。
【0018】
本発明における使用測定子の例としては、例えば液柱差真空計、圧縮真空計、隔膜真空計、ブルドン管真空計等の圧力のみに敏感なものや、圧力に依存して変わると共に、運動固体が気体から受ける摩擦力変化・固体から気体への熱伝導率変化・固体表面近傍で気体が反応したときの固体が受ける分解生成熱といった物理量のうち、いずれかの物理量が変化する圧力計が使用できる。
【0019】
前記圧力が変化すると共に物理量が変化する圧力計としては、例えば粘性(摩擦)を利用する水晶摩擦真空計やスピニングロータゲージ、熱伝導を利用する熱電対真空計やピラニー真空計、そのほかクヌーセン真空計等を用いることができ、また、電離現象を利用する例えば熱陰極電離真空計、冷陰極電離真空計、放射線電離真空計等を使用することができる。これら測定子は、引火性・爆発性といった気体の性質・対象混合気体の組成・圧力によって使い分けることができる。
【0020】
図1に本発明を実施する装置の概要を示す。同図に示されるように、被測定混合ガスが供給される配管4に連通管を接続し、この連通管に対して混合ガスの粘性や分子密度等の物性によって測定値が変化しない絶対圧力を測定することができる絶対圧力測定子1を接続すると共に、気体の粘度等の物性により表示圧力が変化し、且つ予めその特性が知られている圧力測定子、即ち圧力・物性値測定子2を接続している。また、前記絶対圧力測定子1、及び圧力・物性測定子2のデータを入力し、純粋気体固有の物性値に基づき、混合ガスの組成と物性値により変化した表示圧力の関係を示すデータから組成を計算する組成計算機3を備えている。
【0021】
上記のような本発明による組成測定の基本原理の元に、例えば図2に示すような具体的な装置により実施することができる。図2に示す装置においては、窒素、酸素、オゾン混合ガスに対する測定装置の実施例であり、絶対圧力測定子として隔膜真空計5を用いている。この隔膜真空計5は物性値に無関係に気体圧力の絶対値を得ることができ、それにより気体の種別に無関係に気体圧力の絶対値を計測することができる。
【0022】
また、圧力・物性値測定子としては水晶摩擦真空計6を用いている。この水晶摩擦真空計6の特性を図3に示す。これは例えば表1に示すように気体の分子量と粘性係数の違いによって水晶摩擦真空計の指示値が見かけ上異なる圧力を表示していることを示すものである。この理由は、水晶摩擦真空計が、気体に接した水晶振動子の受ける気体との摩擦力が、圧力が粘性流の領域では気体の分子量と気体の粘性係数の積の1/2乗に比例することから生じるものである。この水晶摩擦真空計は、常温で動作し、また気体への接触面も金、石英、ステンレスのみであり、オゾンを分解する要因がない。
【表1】
Figure 2004198328
【0023】
図4は、測定装置を校正するための検量線作成に用いた実測結果であり、測定装置でオゾン酸素を含む混合濃度標準気体(オゾン濃度5%、酸素濃度95%、窒素0%)を計測したものである。混合ガスの圧力を測定すると水晶摩擦真空計は粘性・分子量の大きいオゾン気体の混入のため純酸素圧力測定時よりも見かけ上圧力指示値が大きくなる。この実測値を元に検量線を作成し、濃度計算器に記憶させ、濃度の算出を行う。このような検量線データは各混合比に応じて予め計測しておくことができ、絶対圧力を示す隔膜真空計圧力の圧力測定値と、水晶摩擦真空計の圧力表示値に基づいて混合比を得ることができる。したがって、例えば窒素、酸素、オゾンの多成分混合気体についても、窒素の混合比率が一定でかつ既知であり、オゾンと酸素の混合比のみが変化するような気体の場合は、前記のような実測値を元に検量線を作成し、組成計算器に記憶させ、組成の算出を行う。このような検量線データは各組成に応じて予め計測しておくことができ、絶対圧力を示す隔膜真空計圧力の圧力測定値と、水晶摩擦真空計の圧力表示値に基づいて組成を得ることができる。
【0024】
図5は、前記図2に示す実施例の装置に、更に配管15の連通管にスピニングロータゲージ13を接続し、3種類の真空計で構成された組成計測装置の実施例を示す。隔膜式真空計11は前記のように気体の種別に無関係に絶対圧力を計測し、水晶摩擦真空計2は気体の粘性・分子量の物性値と圧力の双方に敏感であって使用圧力範囲は10−2paから10paであり、スピニングロータゲージ13は水晶摩擦真空計12と同様に気体の粘性・分子量の物性値と圧力の双方に敏感であって、使用圧力範囲は10−5Paから1Paである。図6には前記スピニングロータゲージ5の特性を示しており、この測定子は水晶摩擦真空計よりも真空度の高い領域を計測できる。
【0025】
したがって、図5の組成計算器14においては、真空度の高い領域ではスピニングロータゲージ13の表示値に基づいた組成の計算を行い、低い領域では水晶摩擦真空計12の表示値に基づいた組成の計算を行うことによってより正確な組成の計算を行うことができ、また、両者の値の有効な範囲では両者の値を用い、圧力の影響を演算処理して取り除くことで、気体の物性値を得ることにより、気体の組成をより正確に算出することができる。
【0026】
上記のように、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定に際しては、例えばその成分が窒素、酸素、オゾンであり、その中で窒素組成が一定であって、酸素とオゾンの混合比のみが変化するときには、図7(a)に示すように、多成分混合ガス中の窒素の組成割合C1%、C2%、・・・に応じて、他の2成分における1成分の組成割合(オゾンと酸素中のオゾンの組成割合等)に対する粘性が予め求められているときには、前記のような手法により粘性を求めることによって、この混合ガスの組成を求めることができる。即ち、窒素濃度が図7においてC1のときは、検量線S1を、C2のときはS2を使用する。
【0027】
また、2成分だけが変化するのでなく、3成分以上が変化するときも場合によっては本手法が使用でき、X,Y,Zの混合ガスにおいて、Xのガスの成分につれてYとZの成分が共に所定の割合で変化するガスの場合は、図7(b)に示すように、その混合ガスの粘性からX気体の混合割合が判明し、それによりYとZのガスの組成が判明する。
【0028】
【発明の効果】
本発明は上記のような測定方法を採用し、また上記測定装置としたので、予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定に際して、混合気体の圧力が大気圧以外の時でも、また圧力が変化しても常に正確な組成を測定することができる。また、熱や光を照射しない手法を採用することができるため、熱や光による刺激によって爆発の起こる混合気体でも安全に測定することができる。また、特定の波長の紫外線ランプ等を必要とせず、メンテナンスが容易であり、更に気体組成の変化に対応して即時にその組成を測定することが可能となる
【0029】
また、物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を用いたものにおいては、各特性の最も適切な部分を用いて物性値を求め、それにより組成を求めることができるので、より正確な組成測定装置とすることができる。
【図面の簡単な説明】
【図1】本発明の測定原理を説明する測定機器構成図である。
【図2】本発明の第1実施例の測定機器構成図である。
【図3】本発明の実施例で用いる水晶摩擦真空計の特性を示すグラフである。
【図4】本発明の実施例で用いる隔膜真空計と水晶摩擦真空計の指示値の相違の例を示すグラフである。
【図5】本発明の第2の実施例の測定機器構成図である。
【図6】本発明の実施例で用いるスピニングロータゲージの特性図である。
【図7】混合気体の組成と粘性の関係を示すグラフである。
【図8】従来の組成測定装置としての濃度計の圧力依存性を示す特性図であって、圧力はP1、P2、P3で異なっている例を示している。
【符号の説明】
1 絶対圧力測定子
2 圧力・物性値測定子
3 組成計算器
4 配管
5 隔膜真空計
6 水晶摩擦真空計
13 スピニングロータ真空計

Claims (6)

  1. 予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定方法において、
    混合気体の組成に対応した物性値のデータを取得し、
    物性値に敏感な圧力測定装置により被測定混合気体の圧力を測定し、
    同時に前記物性値に影響を受けない圧力測定装置により同気体の圧力を測定し、
    両圧力測定値から混合気体の物性値を求め、
    該物性値から組成を求めることを特徴とする多成分混合気体の組成測定方法。
  2. 前記物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を用いて同時に被測定混合気体の圧力を測定し、各圧力測定値と前記物性値に影響を受けない圧力測定装置装置の測定値から混合気体の物性値を求めることを特徴とする請求項1記載の多成分混合気体の組成測定方法。
  3. 前記物性値は粘性とし、該物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする請求項1または請求項2記載の多成分混合気体の組成測定方法。
  4. 予め構成する気体が知られている多成分混合気体であって、混合気体の粘性から組成が一意的に定義されるような組成変化をする混合気体の組成測定装置において、
    物性値に敏感な圧力測定装置と、
    前記物性値に影響を受けない圧力測定装置と、
    両圧力測定装置からの圧力値を入力して物性値を求めると共に該物性値から予め取得されている組成に対応した物性値のデータに基づき組成を求める組成計算手段とを備えたことを特徴とする多成分混合気体の組成測定装置。
  5. 前記物性値に敏感な圧力測定装置として、互いに特性の異なる複数の圧力測定装置を備えたことを特徴とする請求項4記載の多成分混合気体の組成測定装置。
  6. 前記物性値に敏感な圧力測定装置として水晶摩擦真空計またはスピニングロータゲージを用い、物性値に影響を受けない圧力測定装置として隔膜真空計を用いたことを特徴とする請求項4または請求項5記載の多成分混合気体の組成測定装置。
JP2002369085A 2002-12-20 2002-12-20 多成分混合気体の組成測定方法及び組成測定装置 Pending JP2004198328A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002369085A JP2004198328A (ja) 2002-12-20 2002-12-20 多成分混合気体の組成測定方法及び組成測定装置
PCT/JP2003/016169 WO2004057309A1 (ja) 2002-12-20 2003-12-17 多成分混合気体の組成測定方法及び組成測定装置
AU2003289393A AU2003289393A1 (en) 2002-12-20 2003-12-17 Method of measuring composition of multicomponent mixture gas and composition measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002369085A JP2004198328A (ja) 2002-12-20 2002-12-20 多成分混合気体の組成測定方法及び組成測定装置

Publications (1)

Publication Number Publication Date
JP2004198328A true JP2004198328A (ja) 2004-07-15

Family

ID=32677133

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002369085A Pending JP2004198328A (ja) 2002-12-20 2002-12-20 多成分混合気体の組成測定方法及び組成測定装置

Country Status (3)

Country Link
JP (1) JP2004198328A (ja)
AU (1) AU2003289393A1 (ja)
WO (1) WO2004057309A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241516A (ja) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology 混合ガスによる薄膜作製方法とその装置
JP2009115760A (ja) * 2007-11-09 2009-05-28 National Institute Of Advanced Industrial & Technology 濃度測定方法および装置
JP2013040914A (ja) * 2011-08-15 2013-02-28 Toyo Denshi Kenkyusho:Kk 校正機能付き冷陰極形電離真空計
JP2016151433A (ja) * 2015-02-16 2016-08-22 大陽日酸株式会社 ガス分析方法、ガス分析装置、及びヘリウム液化システム
JP2021523361A (ja) * 2018-05-09 2021-09-02 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated 分圧検出装置及び方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006241516A (ja) * 2005-03-03 2006-09-14 National Institute Of Advanced Industrial & Technology 混合ガスによる薄膜作製方法とその装置
JP2009115760A (ja) * 2007-11-09 2009-05-28 National Institute Of Advanced Industrial & Technology 濃度測定方法および装置
JP2013040914A (ja) * 2011-08-15 2013-02-28 Toyo Denshi Kenkyusho:Kk 校正機能付き冷陰極形電離真空計
JP2016151433A (ja) * 2015-02-16 2016-08-22 大陽日酸株式会社 ガス分析方法、ガス分析装置、及びヘリウム液化システム
JP2021523361A (ja) * 2018-05-09 2021-09-02 エム ケー エス インストルメンツ インコーポレーテッドMks Instruments,Incorporated 分圧検出装置及び方法

Also Published As

Publication number Publication date
WO2004057309A1 (ja) 2004-07-08
AU2003289393A1 (en) 2004-07-14

Similar Documents

Publication Publication Date Title
Wadsö et al. Standards in isothermal microcalorimetry (IUPAC Technical Report)
EP3674689A1 (en) Gas analyzer and gas analyzing method
CN104713606A (zh) 多组分气体的流量测量方法及装置
JP2004219386A (ja) 2種混合気体の濃度測定装置
Satyanarayana et al. Probing the intermolecular interactions in the binary liquid mixtures of o-chlorophenol with alkoxyethanols through ultrasonic, transport and FT-IR spectroscopic studies at different temperatures
Susaya et al. The use of permeation tube device and the development of empirical formula for accurate permeation rate
JP3336384B2 (ja) 2種類混合気体の濃度測定方法及び濃度測定装置
JP2004198328A (ja) 多成分混合気体の組成測定方法及び組成測定装置
EP0307265B1 (en) Gas generating device
Dubey et al. Study of molecular interactions in binary liquid mixtures containing tri-n-butylamine with 2-pentanone, 3-pentanone, and 4-methyl-2-pentanone: A thermophysical approach
JP4266850B2 (ja) 2成分混合気体の濃度測定装置
JPH04148846A (ja) 濃度補正装置
Nelson et al. Phase equilibrium and critical point data for ethylene and chlorodifluoromethane binary mixtures using a new “static-analytic” apparatus
Hübert et al. On-site calibration system for trace humidity sensors
Zachariadis et al. Optimization of cold vapour atomic absorption spectrometric determination of mercury with and without amalgamation by subsequent use of complete and fractional factorial designs with univariate and modified simplex methods
EP1338875B1 (en) Method for measuring effective temperature inside a sealed container
Saied et al. Design of a test system for fast time response fibre optic oxygen sensors
Nelson et al. A new high pressure phase equilibrium cell featuring the static-combined method: Equipment commissioning and data measurement
KR910001371A (ko) 장치공업계기의 직결교정방법과 확인장치
Rollins et al. Catalytic oxidation of H 2 on platinum: a robust method for generating low mixing ratio H 2 O standards
JP2004108913A (ja) 水晶振動子電極材料との反応を利用したガス測定法
JP4078422B2 (ja) ガス漏洩検知方法及び装置
Wareham et al. On-line analysis of sample atmospheres using membrane inlet mass spectrometry as a method of monitoring vegetable respiration rate
Friend et al. Establishing benchmarks for the second industrial fluids simulation challenge
Bengesai High pressure vapour-liquid equilibrium measurements for R116 and ethane with perfluorohexane and perfluorooctane.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040818

A131 Notification of reasons for refusal

Effective date: 20070417

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070814